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Foreword

With 32 technical articles and 76 authors, this handbook represents a full post-
graduate course in Model Checking. If a reader can verify that he or she has read
and studied every article, then Springer should certainly award that reader a Mas-
ter’s Degree in Model Checking! Departments in Computer Science everywhere will
certainly welcome access to this major resource.

Model Checking has become a major area of research and development both
for hardware and software verification owing to many factors. First, the improved
speed and capacity of computers in recent times have made all kinds of problem
solving both practical and efficient. Moreover, in the area of Model Checking the
methods of design of models have contributed to the best formulation of problems.
Then we have seen SAT solvers gain unexpected and truly remarkable efficiency
improvements—despite theoretical limitations. Additionally, the methodology of
Satisfiability Modulo Theories (SMT) has contributed to finding excellent ways to
pose and solve problems. Uses of temporal logic and data-flow-analysis techniques
have also made model checking more naturally efficient. All these contributions
have helped solve the ever-present “state explosion problem.” The urgency to make
greater strides has increased because new applications in such diverse areas as health
care, transportation, security, and robotics require work in the field to achieve greater
scale, expressivity, and automation.

I would definitely recommend new Ph.D. candidates look seriously into going
into research in this field, because success in Model Checking can directly lead to
future success in many other activities in Computer Science.

Finally, the recent tragic loss of Helmut Veith has been a dreadful blow to his
family, friends, colleagues, and students. Let’s take up the flag in his honor to help
promote and expand the field in which he was poised to become a recognized world
leader.

Dana S. ScottCarnegie Mellon University
Department of Mathematics, University of California, Berkeley
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Preface

This handbook is intended to give an in-depth description of the many research ar-
eas that make up the expanding field of model checking. In 32 chapters, 76 of the
world’s leading researchers in this domain present a thorough review of the ori-
gins, theory, methods, and applications of model checking. The book is meant for
researchers and graduate students who are interested in the development of for-
malisms, algorithms, and software tools for the computer-aided verification of com-
plex systems in general, and of hardware and software systems in particular.

The idea for this handbook originated with Helmut Veith around 2006. It was
clear to Helmut that a field as strong and useful as model checking needed a hand-
book to make its foundations broadly accessible. Helmut was in many ways the
soul of this project. His untimely death in March 2016, with the project in its final
phase, was a shock to all of us and we greatly miss him. His visionary ideas, his
unbelievable energy in bringing these ideas to life, and his wonderful sense of com-
munity left a lasting mark, and this book will serve as an enduring memorial to his
contributions to the field and the community.

Roderick Bloem
Thomas A. Henzinger

Edmund M. Clarke

Graz, Klosterneuburg, Pittsburgh
November 2016
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Antonín Kučera, Andreas Kuehlmann, Viktor Kunčak, Orna Kupferman, Robert
P. Kurshan, Marta Kwiatowska, Shuvendu Lahiri, Yassine Lakhnech, Akash Lal,
Salvatore La Torre, Martin Leucker, Rupak Majumdar, Oded Maler, Tiziana
Margaria, Nicolas Markey, Joao Marquez-Silva, Wilfredo Marrero, João Martins,
Richard Mayr, Catherine Meadows, Tom Melham, Shin-ichi Minato, Marius
Minea, David Monniaux, Kedar S. Namjoshi, Dejan Ničković, Joël Ouaknine,
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Chapter 1
Introduction to Model Checking

Edmund M. Clarke, Thomas A. Henzinger, and Helmut Veith

Abstract Model checking is a computer-assisted method for the analysis of dynam-
ical systems that can be modeled by state-transition systems. Drawing from research
traditions in mathematical logic, programming languages, hardware design, and the-
oretical computer science, model checking is now widely used for the verification of
hardware and software in industry. This chapter is an introduction and short survey
of model checking. The chapter aims to motivate and link the individual chapters of
the handbook, and to provide context for readers who are not familiar with model
checking.

1.1 The Case for Computer-Aided Verification

The only effective way to raise the confidence level of a program significantly is to give a
convincing proof of its correctness. [32]

In the ideal world of Dijkstra’s Turing Award Lecture 1972, programs are intellectu-
ally manageable, and every program grows hand in hand with a mathematical proof
of the program’s correctness. The history of computer science has proven Dijkstra’s
vision limited. Manual proofs, if at all, can be found only in students’ exercises,
research papers on algorithms, and certain critical application areas. Although the
work of McCarthy, Floyd, Hoare, and other pioneers [7, 36, 45, 62, 66] provided us
with formal proof systems for program correctness, little use is made of these tech-
niques in practice. The main challenge is scalability: real-world software systems
not only include complex control and data structures, but depend on much “context”
such as libraries and interfaces to other code, including lower-level systems code. As
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a result, proving a software system correct requires much more effort, knowledge,
training, and ingenuity than writing the software in trial-and-error style. This asym-
metry between coding and verification is the main motivation for computer-aided
verification, i.e., the use of computers for the verification of software and hardware.

From a 1972 perspective, the computer industry has changed the world beyond
recognition. Computer programs today have millions of lines of code, they are writ-
ten and maintained by globally distributed teams over decades, and they are used
in diverse and complex computing environments from micro-code to cloud comput-
ing. Computer science has become pervasive in production, transportation, infras-
tructure, health care, science, finance, administration, defense, and entertainment.
Programs are the most complex machines built by humans, and have huge responsi-
bilities for human safety, security, health, and well-being. These developments have
exacerbated the challenges and, at the same time, dramatically increased the need
for correct programs and, hence, for computer-aided verification.

Starting with the work of Turing, the perspectives for automated verification did
not look promising. Turing’s halting problem [82] and Rice’s Theorem [79] tell
us that computer-aided verification is, in general, an unsolvable problem. At face
value, these theorems demonstrate the undecidability of verification even for sim-
ple properties of simple programs. Technically, all that is needed for undecidability
are two integer variables that, embedded into a looping control structure, can be
incremented, decremented, and checked for zero. If the values of integer variables
are bounded, we obtain a system with finitely many different states, and verification
becomes decidable. However, complexity theory tells us that even for finite-state
systems, many verification questions require a prohibitive effort.

Yet, at a time when logic in computer science was a synonym for undecidability
and intractability, the invention of model checking marked a paradigm shift towards
the practical use of logic for bug finding—i.e., falsification rather than verification—
in the hardware and software industries. Not untypical of paradigms acquired many
decades ago, the case for model checking appears simple and convincing in ret-
rospect [22, 23, 72, 75]. In its basic classical form, the paradigm consists of the
following insights:

Modeling. Finite state-transition graphs provide an adequate formalism for the de-
scription of finite-state systems such as hardware, but also for finite-state abstrac-
tions of software and of communication protocols.

Specification. Temporal logics provide a natural framework for the description of
correctness properties for state-transition systems.

Algorithms. There are decision procedures for determining whether a finite state-
transition structure is a model of a temporal-logic formula. Moreover, the decision
procedures can produce diagnostic counterexamples when the formula is not true
in the structure.

Taken together, these insights motivate the methodology that is shown in Fig. 1: the
system under investigation is compiled into a state-transition graph (a.k.a. Kripke
structure) K , the specification is expressed as a temporal-logic formula ϕ, and a
decision procedure—the model checker—decides whether K |� ϕ, i.e., whether the
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Fig. 1 Basic model-checking
methodology

structure K is a model of the formula ϕ. If K �|� ϕ, then the model checker outputs
a counterexample that witnesses the violation of ϕ by K . The generation of coun-
terexamples means that, in practice, falsification (the detection of bugs) can often
be faster than verification (the proof of their absence).

There is of course a mismatch between the early model checkers, which were
essentially graph algorithms on Kripke structures, and the complexity of modern
computer systems sketched above. Research in model checking spanning more than
three decades has helped to close this gap in many areas that are documented
throughout this handbook. We can roughly classify the advances in model check-
ing and the chapters of this handbook in terms of two recurrent themes that have
driven much of the research agenda in model checking:

1 The algorithmic challenge: Design model-checking algorithms that scale to
real-life problems. The main practical problem in model checking is the com-
binatorial explosion of states in the Kripke structure—the “state-explosion prob-
lem.” Since each state represents the global system status at a given time point,
a state is essentially a memory snapshot of the system under investigation, and,
thus, the size of the state space is exponential in the size of the memory. There-
fore, even for systems of relatively modest size, it is impossible to compute and
analyze the entire corresponding Kripke structure directly. In fact, in most situa-
tions, the state space is not finite (e.g., unbounded memory, unbounded number
of parallel processes), which leads to the modeling challenge. In practice, very
large and infinite state-transition systems are approximated by effective abstrac-
tions such as finite-state abstractions, or decision procedures are approximated
by so-called “semi-algorithms,” which are aimed at finding bugs but may fail to
prove correctness, or both.

2 The modeling challenge: Extend the model-checking framework beyond Kripke
structures and temporal logic. Kripke structures are natural representations for
various flavors of communicating finite-state machines. To model and specify
unbounded iteration and recursion, unbounded concurrency and distribution, pro-
cess creation and reconfiguration, unbounded data types, real-time and cyber-
physical systems, probabilistic computation, security aspects, etc., and to ab-
stract these features effectively, we need to extend the modeling and specifica-
tion frameworks beyond Kripke structures and classical temporal logics. Some
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extensions maintain decidability, often through the construction of finite-state ab-
stractions, which ties the modeling challenge back to the algorithmic challenge.
Other extensions sacrifice decidability, but maintain the ability of model checking
to find bugs automatically, systematically, and early in the system design process.

As the two challenges are tied together closely, many chapters of this handbook
address both. New models without algorithms and without experimental validation
are not central to model-checking research.

We believe that the main strengths of model checking are threefold. First, model
checking is a systematic, algorithmic methodology which can be computerized and,
ideally, fully automated. Thus, model-checking tools have the goal and promise to
be used during the design process by hardware and software engineers without the
assistance of verification experts. Second, model checking can be applied at dif-
ferent stages of the design process, on abstract models as well as on implemented
code. While any one model-checking tool is usually limited to particular model-
ing and specification languages, the methodology as such is not restricted to any
level or formalism and can be applied at different levels, to incomplete systems and
partial specifications, to find different kinds of bugs. Third, and perhaps most im-
portantly, model checking deals particularly well with concurrency. The interaction
between parallel processes is one of the main sources of complexity and errors in
system design. Moreover, concurrency errors are especially subtle, contingent, and
therefore difficult to reproduce; they are hard to find by testing the system, and their
absence is hard to prove by logical arguments or program analyses because of the
extremely large number of possible interactions between parallel processes. Model
checking, on the other hand, which is based on the algorithmic exploration of large
state spaces, is particularly well suited for finding concurrency bugs and proving
their absence.

These strengths distinguish model checking from related approaches for improv-
ing system quality:

Testing is the fastest and simplest way to detect errors. It lends itself to easy automa-
tion and can often be handled with limited academic background. Testing covers
a large spectrum from manual, ad hoc testing of code all the way to automated ef-
forts and model-based testing [37, 48, 50]. Fundamentally dynamic, testing is able
to detect compiler errors, hardware errors, and modeling errors that are invisible
to static tools; it is integral to any comprehensive approach to safety engineering
and software certification [60]. However, “program testing can be a very effective
way to show the presence of bugs, but is hopelessly inadequate for showing their
absence” [32], especially for concurrent systems. Model checking, on the other
hand, provides a systematic approach to bug detection that can be applied to in-
complete systems and, even for concurrent systems, offers in the limit—when no
more errors are found—a certificate of correctness. In other words, while testing
is only debugging, model checking is systematic debugging aimed at model veri-
fication. Chapter 19 will discuss the cross-fertilization of modern model-checking
and white-box testing techniques.
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Abstract interpretation and other program analyses are similar to model check-
ing in that they employ algorithms to prove program properties automatically
[29, 68]. Following the tradition of programming-language semantics rather than
logic, static analysis frameworks such as data-flow analysis, abstract interpreta-
tion, and rich type systems are built on lattice theory. Historically, their applica-
tions have focused mainly on fast analyses for compilers, in particular on overap-
proximative analyses of numerical data types and assertion violations [6]. Thus,
in comparison to model checking, the focus of program analyses is on efficiency
rather than expressiveness, and on code rather than models. In recent research on
software verification, abstract interpretation and model checking have converged
to a large extent. Chapters 15 and 16 will explore the rich relationship between
abstract interpretation and model checking in depth.

Higher-order theorem proving is a powerful and proven approach for the verifica-
tion of complex systems. Semi-manual theorem provers [13, 69, 85] have been
used to verify critical systems ranging from floating-point arithmetic [1] to micro-
kernels [51], and even to the proof of deep mathematics such as the Kepler con-
jecture [40]. In comparison to model checking, the focus of higher-order theorem
proving is on expressiveness rather than efficiency: it handles data manipulation
precisely and typically aims at full functional correctness. Theorem proving nat-
urally incorporates the manual decomposition of a verification problem, which
is obligatory for complex systems. But even for experts, developing proofs in
higher-order logic tools is a time-consuming and often non-trivial effort worthy
of a research publication. Chapter 20 will explore some connections and combi-
nations of model checking and theorem proving.

While the different verification methods have different historical starting points and
different communities, ultimately they simply represent different trade-offs on the
efficiency versus expressiveness (or precision) spectrum: greater expressive power
tends to take us, at the cost of efficiency, from testing to abstract interpretation to
model checking to theorem proving, and, over time, the differences become smaller.
Through more than three decades, model checking has acquired and adapted meth-
ods from all of these research areas, but also from automata theory, process alge-
bra, graph algorithms, game theory, hardware simulation, stochastic processes, con-
trol theory, and many other areas. At the same time, model checking has interacted
with target areas for verification, most importantly computer engineering and VLSI
design, software engineering and programming languages, embedded and cyber-
physical systems, artificial intelligence, and even computational biology. It is thus
fair to say that model checking is characterized less by purity of method than by the
goal of debugging and analyzing dynamical systems that exist in the real world and
can be modeled as state-transition systems.

Model checking has been covered by several monographs [8, 11, 12, 26, 46,
47, 54, 55, 67, 71] and surveys [25, 28, 33]. The early history of model checking
is documented in several collections of essays [38, 63]. The rest of this chapter
serves as an introduction to the handbook for readers with little familiarity with
the material. In Sect. 1.2 we give a minimalist introduction to the classical setting
of temporal-logic model checking over Kripke structures. Section 1.3 then revisits
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Fig. 2 American and Austrian traffic lights as Kripke structures

some of the fundamental challenges for model checking and puts the individual
chapters of the handbook in perspective. In Sect. 1.4 we provide a brief outlook for
the field.

1.2 Temporal-Logic Model Checking in a Nutshell

We give a brief introduction to the classical view of temporal-logic model checking.

1.2.1 Kripke Structures

Kripke structures [53] are finite directed graphs whose vertices are labeled with
sets of atomic propositions. The vertices and edges of the graph are called “states”
and “transitions,” respectively. In our context, they are used to represent the possi-
ble configurations and configuration changes of a discrete dynamical system. For a
simple illustration, consider the two Kripke structures in Fig. 2, which represent
the states and state transitions of traffic lights in the USA and Austria, respec-
tively. Formally, a Kripke structure over a set A of atomic propositions is a triple
K = 〈S,R,L〉 where S is a finite set of states (the “state space”), R ⊆ S × S is a
set of transitions (the “transition relation”), and the labeling function L: S→ 2A

associates each state with a set of atomic propositions. For a state s ∈ S, the set L(s)
represents the set of atomic propositions that are true when the system is in state s,
and the set A \ L(s) contains the propositions that are false in state s. We assume
that the transition relation R is total, i.e., that all states have non-zero outdegree.

The dynamic behavior of the system represented by a Kripke structure cor-
responds to a path through the graph. A path is a finite or infinite sequence
π = s0, s1, s2, . . . of states such that (si , si+1) ∈ R for all i ≥ 0. The totality of
the transition relation ensures that every finite path can be extended to an infinite
path. Given an infinite path π , we write L(π)= L(s0),L(s1),L(s2), . . . for the cor-
responding infinite sequence of sets of atomic propositions. Moreover, we write
πi = si , si+1, si+2, . . . for the infinite path that results from π by removing the first
i states.

Related models that are based on discrete state changes are sometimes called au-
tomata, state machines, state diagrams, labeled transition systems, etc. Throughout
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this book, such models are used in accordance with the traditions of the respective
research areas. In most cases, algorithmic results can be easily transferred between
these models. Later handbook chapters will introduce more advanced frameworks—
e.g., for modeling recursive (Chap. 17), probabilistic (Chap. 28), and real-time
(Chap. 29) behavior—which extend finite state-transition systems in fundamental
ways and require more intricate analysis techniques.

1.2.2 The Temporal Logic CTL�

CTL� [34] is a propositional modal logic with path quantifiers, which are interpreted
over states, and temporal operators, which are interpreted over paths.

Path quantifiers:

A “for every infinite path from this state”
E “there exists an infinite path from this state”

Temporal operators (for atomic propositions p and q):
Xp “p holds at the next state”
Fp “p holds at some state in the future”
Gq “q holds at all states in the future”
qUp “p holds at some state in the future, and q holds at all states until p holds”

For instance, Fp holds on path π iff π contains a state with label p, and Aϕ holds
at state s iff ϕ holds on all infinite paths that start from state s.

Given a set of atomic propositions A, the syntax of CTL� is defined recursively
as follows:

– If p ∈A, then p is a formula of CTL�.
– If ϕ and ψ are formulas of CTL�, then ϕ ∨ψ , ϕ ∧ψ , ¬ϕ, Aϕ, Eϕ, Xϕ, Fϕ, Gψ ,

and ψUϕ are formulas of CTL�.

To reflect the distinction between path quantifiers and temporal operators, we dis-
tinguish a syntactic subset of CTL� called state formulas. State formulas are boolean
combinations of atomic propositions and CTL� formulas whose outermost operator
is a path quantifier, i.e., they start with A or E. As in the example of Aϕ above, the
truth value of a state formula can be asserted over a state in a Kripke structure. For
all other formulas of CTL�, we need a path to determine the truth value. The formal
semantics of CTL� is based on this syntactic distinction, and presented in Table 1.

An easy exercise on the semantics defined in Table 1 shows that the syntactic
restriction of CTL� to one of the path quantifiers and the two temporal operators
X and U yields the full expressive power of CTL�, i.e., all other operators can be
defined from these three operators.

Given a Kripke structure K , state s, and state formula f , a model-checking al-
gorithm is a decision procedure for K,s |� f . In case of K,s �|� f , many model-
checking algorithms provide evidence of the violation of the satisfaction relation,
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Table 1 Semantics of CTL�. Here, K is a Kripke structure, π is a path, s is a state, p is an atomic
proposition, f and g are state formulas, and ϕ and ψ are CTL� formulas

K,s |� p iff p ∈ L(s)
K, s |� ¬f iff K,s �|� f
K, s |� f ∨ g iff K,s |� f or K,s |� g
K, s |� f ∧ g iff K,s |� f and K,s |� g
K, s |� Eϕ iff there is an infinite path π starting from s such that K,π |� ϕ
K, s |�Aϕ iff for every infinite path π starting from s we have K,π |� ϕ
K,π |� f iff K,s |� f for the first state s of π

K,π |� ¬ϕ iff K,π �|� ϕ
K,π |� ϕ ∨ψ iff K,π |� ϕ or K,π |�ψ
K,π |� ϕ ∧ψ iff K,π |� ϕ and K,π |�ψ
K,π |�Xϕ iff K,π1 |� ϕ
K,π |� Fϕ iff there exists an i ≥ 0 such that K,πi |� ϕ
K,π |�Gψ iff for all j ≥ 0 we have K,πj |�ψ
K,π |�ψUϕ iff there exists an i ≥ 0 such that K,πi |� ϕ and for all

0≤ j < i we have K, πj |�ψ

when possible in the form of a counterexample. If f has the form Aϕ, then a finite
or infinite path of K violating ϕ serves as a counterexample.

Table 2 gives common examples of CTL� formulas. For each formula, the ta-
ble describes the semantics of the formula and the structure of possible counterex-
amples, which are illustrated in Fig. 3. Note that a counterexample is a witness
for the negated formula. For instance, a counterexample for AGp is a witness for
the satisfaction of ¬AGp, and, thus, for EF¬p. As line 3 in Table 2 illustrates,
a model checker may not be able to give practical counterexamples for formulas
with unnegated E quantifiers. The situation is better for ACTL�, the fragment of
CTL� where E does not occur and negation is restricted to atomic propositions:
ACTL� has tree-like counterexamples [27] and plays an important role in abstrac-
tion; cf. Chap. 13.

When the specification is satisfied by the structure, the situation is dual: for for-
mulas involving only unnegated E, a model checker can output a witness for the
satisfaction of the formula, but for most formulas with unnegated A this is unre-
alistic. In the latter situation, vacuity detection can be used as a “sanity check,” to
check whether the positive verification result may be based on a faulty specifica-
tion [10]. A classical example of vacuity is antecedent failure, where a specification
A(Gp→ Fq) holds because AG¬p is true.

The example formulas in Table 2 belong to the temporal logics CTL or LTL,
which are useful syntactic fragments of CTL�. Intuitively, CTL is a logic based on
state formulas, and LTL is a logic avoiding state formulas. While CTL can be model
checked particularly efficiently, LTL allows the natural specification of properties
of dynamic behaviors, which correspond to paths.
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Fig. 3 Graphical illustrations of counterexamples for the formulas from Table 2

1.2.3 The Temporal Logic CTL

CTL (Computation Tree Logic) [22] is the syntactic fragment of CTL� in which
every path quantifier is immediately followed by a temporal operator:

– If p ∈A, then p is a CTL formula.
– If ϕ and ψ are CTL formulas, then ϕ ∨ψ , ϕ ∧ψ , ¬ϕ, AXϕ, EXϕ, AFϕ, EFϕ,

AGψ , EGψ , AψUϕ, and EψUϕ are CTL formulas.

In other words, CTL can be viewed as a propositional modal logic based on the
compound operators AX, EX, AF, EF, AG, EG, AU, and EU; cf. Fig. 4.

Every CTL formula, and hence also each subformula of a CTL formula, is a
state formula. Given a Kripke structure K and a CTL formula ϕ, we can compute
the set [[ϕ]]K = {s :K,s |� ϕ} of states that satisfy ϕ by a recursive algorithm that
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Fig. 4 Examples of CTL operators

first computes [[ψ]]K for all subformulas ψ of ϕ. The sets [[ψ]]K can be seen as
a labeling of each state s by subformulas ψ that are true at s; these labelings can
be computed in time O(|K| × |ϕ|). This observation leads directly to the following
seminal algorithmic result on CTL model checking.

Theorem 1 ([24]) There is a CTL model-checking algorithm whose running time
depends linearly on the size of the Kripke structure and on the length of the CTL
formula (if the other parameter is fixed).

CTL labeling algorithms have a natural formulation as fixed-point computations.
For example, the state set T = [[EFϕ]]K can be defined inductively as follows:

• If K,s |� ϕ, then s ∈ T .
• If s ∈ T and there exists a state s′ ∈ S such that (s′, s) ∈R, then s′ ∈ T .
• Nothing else is in T .

In other words, T is the smallest set that contains all states labeled by ϕ and is closed
under the EX operator. This gives rise to the fixed-point characterization

EFϕ = (μT : ϕ ∨EXT )

where μ is the least-fixed-point operator. It is easy to see that all of CTL can be de-
fined as an extension of propositional logic using alternation-free least and greatest
fixed points over the temporal operator EX. Many advanced CTL model-checking
algorithms are based on this fixed-point formulation of CTL; cf. Chap. 8. They typ-
ically exploit special data structures and logics for representing and manipulating
state sets [[ψ]]K , and use decision procedures for computing EX and fixed points
(by iteration and subset check). All of CTL∗ can still be expressed using fixed points
over EX, but requires the alternation of least and greatest fixed points; the general
fixed-point logic called the μ-calculus [52] is discussed in depth in Chap. 26.

Counterexamples for CTL formulas can be very complex. As illustrated in line 3
of Table 2, the simplest counterexample to K,s |� EFp (reachability of a state la-
beled p) must include all states that are reachable from state s—often, the whole
Kripke structure K .
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1.2.4 The Temporal Logic LTL

LTL (Linear-time Temporal Logic) [72] is the syntactic fragment of CTL� that con-
tains no path quantifiers except a leading A:

– If p ∈A, then p is an LTL− formula.
– If ϕ and ψ are LTL− formulas, then ϕ ∨ψ , ϕ ∧ψ , ¬ϕ, Xϕ, Fϕ, Gψ , and ψUϕ

are LTL− formulas.
– If ψ is an LTL− formula, then Aψ is an LTL formula.

LTL is also called the linear-time fragment of the branching-time logic CTL�. This
is because the LTL− formulas are interpreted over paths, i.e., over linear sequences
of states.

It follows that LTL specifications have simple counterexamples. For a Kripke
structure K and LTL− formula ψ , a counterexample of ψ in K is an infinite path
π of K such that K,π �|�ψ . Then K,s �|�Aψ for the initial state s of π , and, thus,
the infinite path π is also a counterexample for the LTL formula Aψ . Moreover, an
inductive proof shows that the counterexample π can w.l.o.g. be restricted to have
a “lasso” shape v ·wω, i.e., an initial finite path (prefix) v followed by an infinitely
repeated finite path (cycle) w [86].

Certain LTL properties have even simpler counterexamples. The LTL− formula
ψ specifies a safety property iff for every Kripke structure K there is a (possibly
infinite) set�K(ψ) of finite paths such that the counterexamples of ψ in K are pre-
cisely the infinite extensions of the paths in �K(ψ). In other words, safety proper-
ties always have finite paths as counterexamples: they specify a finite, “bad” series
of events that must never happen [56]. The simplest safety properties are invari-
ants, that is, LTL formulas of the form AGf , where f is a boolean combination
of atomic propositions. This invariant specifies that the state property f must hold
at all reachable states, and a counterexample for AGf is a finite path whose last
state violates f . A more complicated safety property specifies that f must not be
followed by g: AG(f → XG¬g); in this case, the “bad” series of events that must
not happen is an f followed later by a g.

Most LTL properties specify a combination of safety and so-called liveness prop-
erties [2], and thus may require infinite paths (lassos) as counterexamples. For a de-
tailed discussion of safety versus liveness, see Chaps. 2 and 3. Here we give only two
important examples of liveness properties. The LTL− formula GFf specifies that,
along an infinite path, the state property f holds infinitely often. Obviously, this re-
quirement does not have a finite path as counterexample. The requirement is useful,
for instance, for defining a weakly fair scheduler. Let p be an atomic proposition
that signals that a process is ready to be scheduled, and let q signal that the process is
being scheduled. A scheduler is weakly fair if it does not forever neglect scheduling
a process that is continuously ready to be scheduled: GF(¬p ∨ q). By contrast, the
LTL− formula (GFp)→GFq specifies that, along an infinite path, if the process is
ready infinitely often, then it is scheduled infinitely often. This requirement defines
a strongly fair scheduler, which must not forever neglect scheduling a process that
is ready infinitely often (but not necessarily continuously) [64].
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Fig. 5 Basic temporal logics
and their relationships. All
inclusions are strict. ACTL is
the intersection of ACTL∗
and CTL

The simple structure of counterexamples can be exploited by model-checking
algorithms for LTL. The key insight reveals a close relationship between LTL− for-
mulas and finite automata over infinite words [84]. Using a tableau construction for
modal logics, it is possible to translate an LTL− specification ψ into a Büchi au-
tomaton Bψ over the alphabet 2A (where A is the set of atomic propositions) such
that for all Kripke structures K and infinite paths π , the infinite word L(π) is ac-
cepted by the automaton Bψ iff π is a counterexample of ψ in K . The size of the
automaton Bψ is exponential in the length of the formula ψ . From this construction
we obtain the following seminal model-checking algorithm for LTL.

Theorem 2 ([61, 65, 86]) There is an LTL model-checking algorithm whose run-
ning time depends linearly on the size of the Kripke structure and exponentially on
the length of the LTL formula.

Technically, the LTL model-checking problem is complete for PSPACE. While
this complexity is worse than the complexity of CTL model checking, one should
keep in mind that in practice the limiting factor is usually the size of the state space,
not the length of the temporal specification.

Chapters 4 and 5 will describe advanced LTL model-checking algorithms, which
are based on automata theory and the systematic search for counterexamples. Chap-
ter 10 will present SAT-based model checking, where LTL counterexamples are
specified and found by boolean constraint solving.

Figure 5 gives an overview of the temporal logics covered in this section and
compares their expressive powers. While this section gave only the briefest intro-
duction to temporal logics, the interested reader should continue with Chap. 2 for
more depth.

1.3 A Very Brief Guide Through the Chapters of the Handbook

Over the span of more than three decades, model checking has developed from
a niche subject in theoretical computer science into a large family of formalisms,
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Table 3 Handbook chapters Introduction to Model Checking

Temporal Logic and Fair Discrete Systems

Modeling for Verification

Automata Theory and Model Checking

Explicit-State Model Checking

Partial-Order Reduction

Binary Decision Diagrams

BDD-Based Symbolic Model Checking

Propositional SAT Solving

SAT-Based Model Checking

Satisfiability Modulo Theories

Compositional Reasoning

Abstraction and Abstraction Refinement

Interpolation and Model Checking

Predicate Abstraction for Program Verification

Combining Model Checking and Data-Flow Analysis

Model Checking Procedural Programs

Model Checking Concurrent Programs

Combining Model Checking and Testing

Combining Model Checking and Deduction

Model Checking Parameterized Systems

Model Checking Security Protocols

Transfer of Model Checking to Industrial Practice

Functional Specification of Hardware via Temporal Logic

Symbolic Trajectory Evaluation

The mu-Calculus and Model Checking

Graph Games and Reactive Synthesis

Model Checking Probabilistic Systems

Model Checking Real-Time Systems

Verification of Hybrid Systems

Symbolic Model Checking in Non-Boolean Domains

Process Algebra and Model Checking

methods, tools, subcommunities, and application areas. Thus, each chapter of this
handbook is a survey in its own right, and reflects the viewpoint, the notation, and
the terminology used by the specialists in the respective research area. The hand-
book chapters are intended as independent introductions to the state-of-the-art re-
search literature on specific topics rather than as chapters of a monograph. Having
said this, the order of the chapters was chosen so that the handbook can, in principle,
be read cover to cover as if it were a monograph. We have tried to order the chapters



1 Introduction to Model Checking 15

so that the prerequisite background of each chapter occurs in earlier chapters, thus
avoiding dependencies on later chapters as much as possible. We also encourage the
browsing of neighboring chapters, which often discuss related topics.

The first few chapters of the handbook cover the basics of model checking. Chap-
ter 2 introduces the temporal logics that are commonly used as specification lan-
guages in model checking and were outlined in Sect. 1.2. Chapter 3 shows how
Kripke structures can be used to model a wide variety of different software and hard-
ware systems. Chapters 4–5 constitute a mini-course in explicit-state LTL model
checking or, more generally, the automata-theoretic approach to model checking. As
was argued in Sect. 1.2.4, the simple structure of LTL counterexamples motivates
model-checking algorithms that search for counterexamples. Explicit-state model
checking can be understood as a graph-theoretic search procedure for counterexam-
ples that uses a finite automaton which monitors the truth of the specification.

In the rest of this section, we give a brief preview of the remaining chapters
through the lens of the classification “Algorithmic Challenge” versus “Modeling
Challenge,” which was put forward in Sect. 1.1. The two categories are not exclu-
sive, as many chapters address both challenges. Due to the breadth of the covered
material, we refrain in this section from references to the literature, leaving all cita-
tions to the individual chapters.

1.3.1 The Algorithmic Challenge

A significant part of model-checking research has focused on algorithmic meth-
ods to deal with state explosion. These methods avoid the explicit construction of
the complete Kripke structure. We can roughly classify these methods into three
groups:

Structural methods for model checking exploit the structure of the syntactic expres-
sion (the “code”) that defines the system. Large hardware and software systems
are described modularly using, for example, subroutines (procedure and method
calls) for sequential structuring, and interacting parallel hardware components
and software processes (threads, actors) for concurrent structuring. While the
state space may be finite, it can be extremely large, and “flattening” the system
description—i.e., constructing and exploring the Kripke structure which repre-
sents the entire state space—would sacrifice any advantages, such as symmetries,
that can be obtained from studying the definition of the system. Moreover, in
many cases, such as recursive procedure calls or the concurrent composition of a
parametric number of processes, the number of states is unbounded and the full
Kripke structure cannot be computed. Techniques such as symmetry reduction,
on-the-fly state-space exploration, partial-order reduction, assume-guarantee rea-
soning, and parametric verification avoid mindless flattening and, in one way or
another, make use of the system structure for better performance.
The limiting factor for exhaustive state-space exploration (Chap. 5) is usually
memory space, even if new system states are generated during the search from
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the system definition only as needed (“on the fly”). Chapter 6 presents a search
optimization technique for concurrent software systems, whose complexity stems
from the large number of possible interleavings of concurrent processes. The so-
called partial-order reduction exploits the fact that the ordering of independent
events from different processes is not important for the result of a computation.
Compositional reasoning (Chap. 12) exploits the modular definition of complex
systems through a divide-and-conquer approach that puts together a proof of over-
all system correctness from (generally simpler) correctness proofs about system
parts. Often the proofs about system parts cannot be entirely independent, though,
and a proof about one component of the system may make assumptions about the
behavior of other components; this is called “assume-guarantee reasoning.” Chap-
ter 17 discusses the verification of software with procedure calls, which draws
on the theory of push-down systems. Chapter 18 discusses the verification of
software with multiple concurrent processes that synchronize on shared memory
(e.g., through locks) or through message passing. Chapter 21 discusses the ver-
ification of systems with an unknown number of identical concurrent processes
(“parametric verification”).

Symbolic methods represent state sets and the transition relation of a Kripke struc-
ture by an expression in a symbolic logic, rather than by an explicit enumer-
ation of states or transitions. Symbolic encodings—be it through binary deci-
sion diagrams, propositional formulas, or quantifier-free first-order constraints—
can result in a dramatic compression of the data structures for representing
state sets and, if the necessary operations can be performed efficiently, in order-
of-magnitude improvements in the practical performance of verification tools.
Chapters 7 and 8 are devoted to model checking with binary decision diagrams
(BDDs). As a data structure for boolean functions, BDDs have the advantage over
boolean formulas and circuits that satisfiability and equivalence can be checked
in constant time. When used in the fixed-point algorithms for CTL that were dis-
cussed in Sect. 1.2.3, BDD-based encodings of state sets often achieve in practice
an exponential reduction in the size of the data structures. The dramatic perfor-
mance improvements obtained by BDD-based model checking in the 1990s were
essential for the success of model checking in the hardware industry.
While originally the term “symbolic model checking” was used synonymously
with BDD-based model checking, more recently other symbolic encodings of
state sets and paths—both in the boolean and more general cases—have proved
useful in different circumstances. Chapters 9 and 10 present SAT-based model
checking, a symbolic model-checking method for LTL. As was discussed in
Sect. 1.2.4, LTL has lasso-shaped counterexamples, and boolean formulas can
be used to specify the constraints for the existence of a counterexample in terms
of propositional logic. By solving these constraints, a boolean satisfiability solver
can compute the constituting parts of the counterexample, or disprove the ex-
istence of a counterexample. In this way, SAT-based model checkers can profit
from recent improvements in SAT solving. While in its original formulation, SAT-
based model checking was incomplete, because it could find only counterexample
paths of bounded length (“bounded model checking”), Chap. 10 discusses meth-
ods to achieve completeness. Today, SAT-based model checking is a standard tool
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Fig. 6 Counterexample-guided abstraction refinement

in the hardware industry and is also used in bit-precise software model checking.
For expressing states over non-boolean domains, boolean logic can be replaced by
decidable theories of quantifier-free first-order logic, a.k.a. SAT modulo theories
(SMT). SMT solvers (Chap. 11) are powerful decision procedures which have
evolved rapidly and underlie many modern software model checkers. General
fixed-point algorithms for model checking in boolean and non-boolean domains
are discussed in Chaps. 26 and 31.

Abstraction (Chapters 13–15) is a more aggressive approach to state explosion. Ab-
straction reduces a Kripke structure K to a smaller homomorphic image K̂—the
abstract model—which preserves certain properties of the original structure and
can be analyzed more efficiently. In other words, the abstract model is a princi-
pled overapproximation of the system. For example, the existence of a simulation
relation between the original and abstract structures guarantees that tree-shaped
counterexamples on the original structure are not lost in the abstraction, although
there may be “spurious counterexamples” which occur only in the abstraction.
Formally, if K̂ simulates K , then for all ACTL� specifications ϕ, if K̂ |� ϕ then
K |� ϕ, but not vice versa. Other relationships between the original and abstract
structures preserve different specification logics; see Chap. 13.
A key ingredient of many modern model checkers is counterexample-guided ab-
straction refinement—an algorithmic method for verifying a system by construct-
ing iterated abstractions of increasing precision. To this end, spurious counterex-
amples are analyzed and eliminated by adding to the abstract model previously
neglected details from the system description, in order to improve the abstraction
until either a real counterexample—i.e., a bug—is found, or no more spurious
counterexamples occur and the system is verified; see Fig. 6. Chapter 14 discusses
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interpolation, a paradigmatic logical method for localizing within paths assertions
made in proofs, which can be used to identify and eliminate spurious counterex-
amples. Chapter 15 presents a modern introduction to software verification based
on predicate abstraction, where states of the abstract model are described using
constraints (“predicates”) on the program counter and program variables.

As was discussed in Sect. 1.1, model checking is closely related to other algo-
rithmic and semi-algorithmic approaches for system correctness, such as testing,
program analysis, and theorem proving. All of these methods have cross-fertilized
each other and are often combined; this is explained in the three chapters that dis-
cuss combinations of model checking and data-flow analysis (Chap. 16), testing
(Chap. 19), and deduction (Chap. 20).

1.3.2 The Modeling Challenge

While Chap. 3 illustrates a broad range of systems that can be modeled using Kripke
structures, for some critical applications the basic state-transition system model
must be augmented with additional features. The chapters of this handbook discuss
several such extensions. Besides non-boolean data (Chap. 16), recursion (Chap. 17),
and an unbounded number of parallel processes (Chap. 21) for modeling software,
there are four paradigmatic extensions of finite state-transition systems that are es-
sential for modeling certain important classes of systems.

Security protocols provide a perfect application domain for formal methods: they
are often small but difficult to get right, and their correctness is critical. How-
ever, any method for security protocols must handle non-finite-state concepts
such as nonces and keys, encryption and decryption, and unknown attackers; see
Chap. 22.

Graph games are an extension of state-transition systems with multiple actors. In
each state, one or more of the actors choose actions that, taken together, deter-
mine the next state of the system. Graph games are needed to model systems
with multiple components, processes, actors, or agents that have different, some-
times conflicting objectives. Even if the system is monolithic, its environment
must sometimes be considered independently, as an adversary in a two-player
game. The theory of graph games, which is presented in Chap. 27, studies the
strategies that the players can employ to reach their objectives, which also pro-
vides the mathematical foundation for synthesizing systems that realize a desired
input/output behavior (“reactive synthesis”).

Probabilistic systems are state-transition systems, such as discrete-time Markov
chains or Markov decision processes, where from certain states the next state
is chosen according to a probability distribution. Probabilistic systems can
model uncertainty. The model checking of probabilistic systems is discussed in
Chap. 28.
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Real-time and hybrid systems are extensions of discrete state-transition systems
with continuous components. In real-time systems, the continuous components
are clocks, which measure and constrain the times at which state transitions may
happen; the extension of finite automata with such clocks and clock constraints
is called “timed automata.” In hybrid systems, finite automata can be extended
with more general continuous variables, representing, for example, the location
or temperature of a physical system. While timed automata have become a stan-
dard model for continuous-time state-transition systems, hybrid automata are
needed for modeling physical systems that are controlled by hardware and soft-
ware (“cyber-physical systems”). Certain properties of timed and hybrid automata
remain decidable; in other cases we have semi-algorithms for model checking,
which compute the answer to a verification question but in some cases may fail
to terminate. The model checking of real-time systems is discussed in Chap. 29;
of hybrid systems, in Chap. 30.

Combinations of these extensions are needed for certain modeling tasks, such as
stochastic games or continuous-time Markov systems.

Three of the handbook chapters discuss the special needs of hardware verifica-
tion—the application area in which model checking, as a close relative of equiva-
lence checking, made its first inroads into industry. Chapter 23 provides the history
and special challenges of formal verification in hardware, and thus explains a suc-
cessful example of technology transfer from academia to industry. Chapter 24 dis-
cusses the special requirements on specification languages for hardware verification.
Chapter 25 presents symbolic trajectory evaluation—a symbolic method specific to
hardware validation which is based on abstraction in three-valued logic.

The final chapter of the handbook (Chap. 32) presents process algebra, a formal
expression framework for modeling interacting concurrent processes. While origi-
nally developed for operational, algebraic, and axiomatic reasoning about concur-
rent processes, and later extended to cope with constructs for process creation and
mobility, model checking quickly became the analysis method of choice for finite-
state fragments of process algebra. This pattern has been typical for the practical
use of model checking: it can provide a powerful tool for rapid prototyping and
debugging, even when full-fledged correctness proofs may require more expressive
formalisms.

1.4 The Future of Model Checking

The ubiquity and complexity of hardware- and software-based systems continue to
grow. We see ever-increasing levels of concurrency, from multi-core processors to
data centers, sensor networks, and the cloud. In addition, hardware- and software-
based systems are increasingly deployed in safety-critical situations, to control and
connect physical systems from cardiac pacemakers to aircraft. With this dramatic
growth in systems complexity and criticality grows also the need for effective ver-
ification techniques. In other words, the opportunities for model checking abound.
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We expect the corresponding research efforts to continue to make progress with re-
gard to both the scalability and the modeling challenges, to bring ever larger and
more varied verification problems within the reach of model-checking technology.
Model checking has already been integrated into the design process for hardware;
see Chap. 23. In the near future we expect model checking to make similar in-
roads into the practice of software development, especially in error-prone control-
centric—as opposed to data-centric—software domains, including systems software
(kernels, schedulers, device drivers, memory and communication protocols, etc.),
distributed algorithms and concurrent data structures, and the rapidly growing areas
of software-defined networking [17, 70] and cyber-physical systems [3, 57, 81].

Second, while in the past new technology was driven largely by gains in perfor-
mance (Moore’s law) and functionality (new features), we suggest that in the fu-
ture the correctness, reliability, security, and overall robustness of systems will play
an ever-increasing role, also as a differentiating factor for software and hardware
products. We see this trend already in modern software systems research, where
performance used to be the dominant criterion: correctness has moved recently to
center stage in compilers [59], operating systems [51, 87], and distributed systems
research [31]. This trend will further increase the impact of formal verification tech-
niques such as model checking.

We suggest that there is a third, even more basic underlying reason for the
growing importance of model checking, which stems from the emergence of state-
transition systems as a universal model for the design and study of computer-
controlled dynamical systems. The state-transition system is the discrete analogue to
the continuous dynamical system. With the rise of digital technology, models based
on state-transition systems (or “discrete-event systems” [18]) have become ubiqui-
tous in systems engineering. They are equally well suited for formalizing other dy-
namic processes designed by humans, including all kinds of charts, diagrams, and
rules for workflows, interactions, and adaptive structures that occur in organizations
[9, 30, 41, 49, 83], and for defining discrete abstractions of continuous processes
that occur in the physical world [5]. Model checking—as the central paradigm for
analyzing state-transition systems—is therefore only at the beginning of its appli-
cation to a wide range of different domains, from engineering to science, business,
law, etc.

In the following, we highlight, as examples, two of the many currently active
directions of model-checking research, as well as two of the many potential new
application areas for model checking.

In a first trend, much current research is devoted to moving beyond verification
to synthesis. Verification is the task of checking whether a given system satisfies
a given specification; synthesis is the task of constructing a system that satisfies a
given specification. While fully automatic functional synthesis is practical only in
constrained situations—such as compilation from a high-level language, or circuit
synthesis from given building blocks—the general synthesis task has seen much re-
cent progress in settings where it is required to refine or complete a given, partial
system description in order to satisfy certain properties. Often the synthesized prop-
erties are non-functional; for example, a sequential program can be automatically
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equipped with synchronization constructs such as locks or atomic regions in order
to make the program safe for concurrent execution without changing its sequential
semantics [19]. More generally, the goal of “computer-aided programming” [80] is
to relieve the programmer from tedious but error-prone implementation details so
that they can focus on the functionality of the design, while automating the fulfill-
ment of other requirements on the code such as security and fault tolerance. Reactive
(or sequential) synthesis refers to the synthesis of state-transition systems that sat-
isfy a given temporal specification, which constrains the input/output behavior of
the desired system; this problem has parallel histories in mathematical logic, con-
trol theory, game theory, and reactive programming [73, 76, 77], and is discussed
in detail in Chap. 27. More recently, much effort has been devoted to template- and
syntax-guided approaches to synthesis [4], and to the use of inductive and learning
techniques in synthesis [39, 42, 78].

A second important trend that receives much current attention generalizes the
classical boolean setting of model checking towards a quantitative setting of model
measuring. Model checking answers the boolean question of whether a system does
or does not satisfy a specification; model measuring quantifies the quality of a sys-
tem, e.g., by computing a distance between the system and the specification [43, 44].
Quantitative measures can be used to distinguish different systems that satisfy the
same functional specification: they may measure the performance of the system, its
resource consumption, its cost, or other non-functional properties such as different
notions of robustness. Quantitative measures can also be used to distinguish dif-
ferent systems that do not satisfy a given specification; for instance, a system that
violates the specification only in rare circumstances, or infrequently, or far in the
future is usually preferred to a system that violates the specification in all cases,
all the time. While absolute correctness is required in certain situations, “best ef-
fort” may be acceptable in others. Since logics with a boolean semantics cannot
distinguish between different “degrees” of violation of the satisfaction relation, the
classical model-checking framework needs to be extended in order to capture quan-
titative nuances. Several such extensions have been proposed, including quantitative
temporal logics [15]. Statistical model checking [58] replaces absolute guarantees
with probabilistic guarantees. Quantitative distance measures between systems [20]
generalize the boolean paradigms of system equivalences and refinement preorders,
which have been central to many theoretical and practical developments in formal
methods: combinational and sequential equivalence checking for hardware, step-
wise refinement for systems development, and abstraction refinement for systems
analysis. For example, quantitative abstraction refinement can be used to approx-
imate the worst-case execution time of a system to any desired degree of preci-
sion [21].

A recent, perhaps unexpected application scenario for model checking is
the modeling and analysis of biological phenomena using state-transition sys-
tems [35, 74]. On a molecular level, biochemical reactions can be modeled faithfully
as continuous-time stochastic processes. Yet on a higher level, some mechanistic
and organizing principles of biology may be better captured and explained using
interacting discrete events, i.e., state-transition abstractions. In fact, it is tempting to
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postulate a tower of biological abstraction layers, from molecular pathways to cells
to organs and organisms, in analogy to the tower of abstraction layers that tame the
design and understanding of complex digital systems: the net-list of boolean gates,
the register-transfer level, the instruction set architecture, the high-level program-
ming language. While much work in this direction remains speculative, it is time
for scientists to become familiar with the power of discrete state-transition models
and the model-checking paradigm, in the same way in which differential-equation
models and numerical simulation have become standard tools of the sciences.

An equally speculative and perhaps even more important new application do-
main for model checking is the analysis of learning-based software and other sys-
tems built on modern artificial intelligence. While traditional, logic-based AI had
a direct link to formal verification based on the common foundation of mathemati-
cal logic, many of the successes of modern AI seem to escape rational explanation
and quantitative analysis. While there are quantitative methods based on probabilis-
tic models, mathematical statistics, and optimization for attempting to explain and
quantify machine-learning systems, the guarantee of properties of such systems will
require a more formal approach. As many learning-based systems—such as those
used for computer vision in self-driving cars—are safety-critical, even limited for-
mal guarantees would have immense value. A demand for verifiability may guide
the design of such systems, for example, by incorporating monitoring mechanisms
that ensure that the system does not leave a safe envelope of operation [14]. Dually,
learning-based techniques have already started to enter model-checking technol-
ogy [16]. Once again, this shows that model checking is a vibrant, expanding field
of research with no lack of challenges and impact for many years to come.
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Chapter 2
Temporal Logic and Fair Discrete Systems

Nir Piterman and Amir Pnueli

Abstract Temporal logic has been used by philosophers to reason about the way the
world changes over time. Its modern use in specification and verification of systems
describes the evolution of states of a program/design giving rise to descriptions of
executions. Temporal logics can be classified by their view of the evolution of time
as either linear or branching. In the linear-time view, we see time ranging over a
linear total order and executions are sequences of states. When the system has mul-
tiple possible executions (due to nondeterminism or reading input) we view them
as separate possible evolutions and the system has a set of possible behaviors. In
the branching-time view, a point in time may have multiple possible successors and
accordingly executions are tree-like structures. According to this view, a system has
exactly one execution, which takes the form of a tree. We start this chapter by intro-
ducing Fair Discrete Structures, the model on which we evaluate the truth and falsity
of temporal logic formulas. Fair Discrete Structures describe the states of a system
and their possible evolution. We then proceed with the linear-time view and intro-
duce Propositional Linear Temporal Logic (LTL). We explain the distinction be-
tween safety and liveness properties and introduce a hierarchy of liveness properties
of increasing expressiveness. We study the expressive power of full LTL and cover
extensions that increase its expressive power. We introduce algorithms for checking
the satisfiability of LTL and model checking LTL. We turn to the branching-time
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framework and introduce Computation Tree Logic (CTL). As before, we discuss its
expressive power, consider extensions, and cover satisfiability and model checking.
We then dedicate some time to examples of formulas in both LTL and CTL and
stress the differences between the two. We end with a formal comparison of LTL
and CTL and, in view of this comparison, introduce CTL*, a hybrid of LTL and
CTL that combines the linear and branching views into one logic.

2.1 Introduction

For many years, philosophers, theologians, and linguists have been using logic in
order to reason about the world, freedom of choice, and the meaning of spoken
language. In the middle of the twentieth century research on its foundations led to
two complementary breakthroughs. In the late 1950s Arthur Prior introduced what
we call today tense logic; essentially, introducing the operators Fp meaning “it will
be the case that p” and its dual Gp meaning “it will always be the case that p”
[44]. This work was done in the context of modal logic, where operators G and F
meant “it must be” and “it is possible”. Roughly at the same time, working on modal
logic, Saul Kripke introduced a semantics, which we call today Kripke semantics, to
interpret modal logic [28]. His suggestion was to interpret modal logic over a set of
possible worlds and an accessibility relation between worlds. The modal operators
are then interpreted over the accessibility relation of the worlds.

About 20 years later, these ideas penetrated the verification community. In a land-
mark paper, Pnueli introduced Prior’s tense operators to verification and suggested
that they can be used for checking the correctness of programs [42]. In particular,
Pnueli’s ideas considered ongoing and non-terminating computations of programs.
The existing paradigm of verification was that of pre- and post-conditions matching
programs that get an input and produce an output upon termination. Instead, what
were later termed as reactive systems [23] continuously interact with their environ-
ment, receive inputs, send outputs, and importantly do not terminate. In order to
describe the behaviors of such programs one needs to describe, for example, causal-
ity of interactions and their order. Temporal logic proved a convenient way to do
this. It can be used to capture the specification of programs in a formal notation that
can then be checked on programs.

Linear Temporal Logic (abbreviated LTL), the logic introduced by Pnueli, is lin-
ear in the sense that at every moment in time there is only one possible future. In
the linear view an execution is a sequence of states. Multiple possible executions
(e.g., due to different inputs) are treated separately as independent sequences. Logi-
cians also had another possible option, to view time as branching: at every moment
in time there may be multiple possible futures. An alternative view, that of branch-
ing time, was introduced to verification in [5]. In the branching-time approach, the
program itself provides a branching structure, in which every possible snapshot of
the program may have multiple options to continue. Then, the program is one logi-
cal structure that encompasses all possible behaviors. This was shortly followed by
a second revolution. Clarke and Emerson [17] and Queille and Sifakis [45] intro-
duced a more elaborate branching-time logic, Computation Tree Logic (abbreviated
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CTL), and the idea of model checking: Model checking is the algorithmic analysis
for determining whether a program satisfies a given temporal logic specification.

The linear–branching dichotomy, originating in a religious debate regarding free-
dom of choice and determinacy of fate, led to an ideological debate regarding the
usage of temporal logic in verification (see [53]). Various studies compared the
linear-time and branching-time approaches, which led also to the invention of CTL∗,
a logic that combines linear temporal logic and computation tree logic [19].

Over the years, extensive knowledge about all aspects of temporal logic and its
usage in model checking and verification has been gathered: what properties can
and cannot be expressed in various logics, how to extend the expressive power of
logics, and algorithmic aspects of different questions. In particular, effective model-
checking algorithms scaled to huge systems and established model checking as a
successful technique in both industry and academia.

In this chapter, we cover the basics of temporal logic, the specification language
used for model checking. In Sect. 2.2 we introduce Kripke semantics and a variant
of it that we are going to use as a mathematical model for representing programs;
we then present fair discrete systems and explain how to use them for representing
programs. In Sect. 2.3 we present LTL, the basic linear temporal logic; we give the
basic definition of the logic, discuss several possible extensions of it, and, finally,
define and show how to perform model checking for LTL formulas. In Sect. 2.4 we
present CTL, the basic branching temporal logic, including its definition, extensions
to it, and model checking. Then, in Sect. 2.5 we cover examples for the usage of both
logics. Finally, in Sect. 2.6, we compare the expressive power of the linear-time and
branching-time variants and introduce the logic CTL∗, a powerful branching-time
logic that combines both LTL and CTL.

2.2 Fair Discrete Systems

In order to be able to formally reason about systems and programs, we have to
agree on a formal mathematical model in which reasoning can be applied. Tran-
sition systems are, by now, a standard tool in computer science for representing
programs. Transition systems are essentially labeled graphs, where labels appear ei-
ther on states, edges, or both. There are many different variants of transition systems
supplying many different flavors and supporting different needs. We define Kripke
structures, one of the most popular versions of transition systems used in modeling.
Then, we present a symbolic version of transition systems, which we call fair dis-
crete systems or FDS for short, where the states arise as interpretations of variables
and transitions correspond to changes in variables’ values. As their name suggests,
variables range over discrete domains, such as integers, Booleans, or other finite-
range domains. Continuous variables will be considered later in this Handbook in [8]
(Bouyer et al., Model Checking Real-Time Systems) and [14] (Doyen et al., Veri-
fication of Hybrid Systems). One of the most important features of programs and
systems is concurrency, or the ability to communicate with other programs. Here,
communication is by reading and writing the values of shared variables. In order to
reason about multiple communicating programs (and also about temporal logic) our
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systems include weak and strong fairness. Fairness requirements restrict our atten-
tion to certain paths in the system that “have some good qualities” when considering
interaction and communication.

2.2.1 Kripke Structures

We give a short exposition of Kripke structures [28], one of the most popular for-
malisms for representing transition systems in the context of model checking. These
are transition systems where states are elements of an abstract set, and initial states
and transitions are defined over this explicit set. In addition, states are labeled with
propositions (or observations about the state).

Definition 1 (Kripke structure) A Kripke structure is of the form K = 〈AP,S,S0,

R,L〉, where AP is a finite set of atomic propositions, S is a set of states, S0 ⊆ S
is a set of initial states, R ⊆ S × S is a transition relation, and L : S→ 2AP is a
labeling function.

Kripke structures are state-labeled transition systems. We specify in advance a
set of labels (propositions), which are the basic facts that might be known about the
world. The labeling function associates every state with the set of atomic proposi-
tions that are true in it. The set of initial states and the transition relation allow us to
add a notion of executions to Kripke structures.

Definition 2 (Paths and runs) A path of a Kripke structure K starting at state
s ∈ S is a maximal sequence of states σ = s0, s1, . . . such that s0 = s and for every
j ≥ 0 we have (si , si+1) ∈ R. A sequence σ is maximal if either σ is infinite or
σ = s0, . . . , sk and sk has no successor, i.e., for all s ∈ S we have (sk, s) /∈R.

A path starting in a state s0 ∈ S0 is called a run. We denote by Runs(K ) the set
of runs of K .

The direct representation of states and transitions makes Kripke structures con-
venient for certain needs. However, in model checking, higher-level representations
of transition systems provide a more direct relation to programs and enable us to
reason about systems using sets of states rather than individual states. We now in-
troduce one such modeling framework, called Fair Discrete Systems. The idea is
that states are obtained by interpreting the values of variables of the system. In ad-
dition, in the context of model checking it is sometimes necessary to ignore some
“not interesting” runs of the system. For this we introduce the notion of fairness,
which is usually not considered with Kripke structures.

2.2.2 Definition of Fair Discrete System

Definition 3 (Fair discrete system) An FDS is of the form D = 〈V , θ, ρ,J ,C 〉,
where V is a finite set of typed variables, θ is an initial condition, ρ is a transition
relation, J a set of justice requirements, and C a set of compassion requirements.
Further details about these components are given below.
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• V = {v1, . . . , vn}: A finite set of typed variables. Variables range over discrete
domains, such as Booleans or integers. Although variables ranging over finite
domains can be represented by multiple Boolean variables, sometimes it is con-
venient to use variables with a larger range. Program counters, ranging over the
domain of program locations, are a prominent example.

A state s is an interpretation of V , i.e., if Dv is the domain of v, then s is
an element in

∏
vi∈V Dvi . We denote the set of possible states by ΣV . Given a

subset V1 of V , we denote by s ⇓V1 the projection of s on the variables in V1.
That is, the assignment to variables in V1 that agrees with s.

When all variables range over finite domains, the system has a finite number of
states, and is called a finite-state system. Otherwise, it is an infinite-state system.

We assume some underlying first-order language over V that includes (i) ex-
pressions constructed from the variables in V , (ii) atomic formulas, which are
either Boolean variables or the application of different predicates to expressions,
and (iii) assertions, which are first-order formulas constructed from atomic for-
mulas using Boolean connectives or quantification of variables. Assertions, also
sometimes called state formulas, characterize states through restriction of the pos-
sible variable values in them. For example, for a variable x ranging over inte-
gers, x + 1> 5 is an atomic formula, and for a Boolean variable b, the assertion
¬b ∧ x + 1> 5 characterizes the set of states where b is false and x is at least 5.

• θ : The initial condition. This is an assertion over V characterizing all the initial
states of the FDS. A state is called initial if it satisfies θ .

• ρ: A transition relation. This is an assertion ρ(V ∪ V ′), where V ′ is a primed
copy of the variables in V . The transition relation ρ relates a state s ∈ Σ to its
D -successors s′ ∈Σ , i.e., (s, s′) |= ρ, where s supplies the interpretation to the
variables in V and s′ supplies the interpretation to the variables in V ′.

For example, the assignment x = x + 1 is written x′ = x + 1, stating that the
next value of x is equal to the current value of x plus one. Given a set of variables
X ⊆ V , we denote by keep(X ) the formula

∧
x∈X x = x′, which preserves the

values of all variables in X .
• J = {J1, . . . , Jm}: A set of justice requirements (weak fairness). Each require-

ment J ∈J is an assertion over V that is intended to hold infinitely many times
in every computation.

• C = {(P1,Q1), . . . , (Pn,Qn)}: A set of compassion requirements (strong fair-
ness). Each requirement (P,Q) ∈ C consists of a pair of assertions, such that if
a computation contains infinitely many P -states, it should also contain infinitely
many Q-states.

Definition 4 (Paths, runs, and computations) A path of an FDS D starting in state
s is a maximal sequence of states σ = s0, s1, . . . such that s0 = s and for every
i ≥ 0 we have (si , s′i+1) |= ρ, where s′i+1 is a primed copy of si+1, i.e., it is an
assignment to V ′ such that for every v ∈ V we have si+1(v)= s′i+1(v

′). A sequence
σ is maximal if either σ is infinite or σ = s0, . . . , sk and sk has no D -successor, i.e.,
for all sk+1 ∈Σ , (sk, s′k+1) �|= ρ. We denote by |σ | the length of σ , that is |σ | = ω if
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σ is infinite and |σ | = k + 1 if σ = s0, . . . , sk is finite. Given a path σ = s0, s1, . . .,
we denote by σ ⇓V1 the path s0 ⇓V1 , s1 ⇓V1 , . . ..

A path σ is fair if it is infinite and satisfies the following additional requirements:
(i) justice (or weak fairness), i.e., for each J ∈J , σ contains infinitely many J -
positions, i.e., positions j ≥ 0, such that sj |= J , and (ii) compassion (or strong
fairness), i.e., for each (P,Q) ∈ C , if σ contains infinitely many P -positions, it
must also contain infinitely many Q-positions.

A path starting in a state s such that s |= θ is called a run. A fair path that is a
run is called a computation. We denote by Runs(D) the set of runs of D and by
Comp(D) the set of computations of D .

A state s is said to be reachable if it appears in some run. It is reachable from
t if it appears on some path starting in t . A state s is viable if it appears in some
computation. An FDS is called viable if it has some computation.

An FDS is said to be fairness-free if J = C = ∅. It is called a just discrete
system (JDS) if C = ∅. When J = ∅ or C = ∅ we simply omit them from the
description of D . Note that for most reactive systems, it is sufficient to use a JDS
(i.e., compassion-free) model. Compassion is only needed in cases in which the
system uses built-in synchronization constructs such as semaphores or synchronous
communication.

A fairness-free FDS can be converted to a Kripke structure. Given an FDS D =
〈V , θ, ρ〉 and a set of basic assertions over its variables {a1, . . . , ak} the Kripke
structure obtained from it is KD = 〈AP,S,S0,R,L〉, where the components of
KD are as follows. The set of states S is the set of possible interpretations of the
variables in V , namely ΣV . The set of initial states S0 is the set of states s such
that s |= θ , i.e., S0 = {s |= θ}. The transition relation R contains the pairs (s, t)
such that (s, t ′) |= ρ. Notice that t ′ is a primed copy of t and is interpreted over
the primed variables V ′. Finally, the set of propositions is AP = {a1, . . . , ak} and
ai ∈ L(s) iff s |= ai . We note that the number of states of the Kripke structure may
be exponentially larger than the description of the FDS. We state without proof that
this translation maintains the notion of a run. We note that one can add fairness to
Kripke structures and define a notion of computation that is similar to that of FDSs.

Lemma 1 Given an FDS D , the sets of runs of D and KD are equivalent, namely,
Runs(D)= Runs(KD ).

Sometimes it will be convenient to construct larger FDSs from smaller FDSs.
Consider two FDSs D1 = 〈V1, θ1, ρ1,J1,C1〉 and D2 = 〈V2, θ2, ρ2,J2,C2〉,
where V1 and V2 are not necessarily disjoint. The synchronous parallel composi-
tion, written D1 |||D2, of D1 and D2 is the FDS defined as follows.

D1 |||D2 = 〈V1 ∪ V2, θ1 ∧ θ2, ρ1 ∧ ρ2,J1 ∪J2,C1 ∪C2〉
A transition of the synchronous parallel composition is a joint transition of the two
systems. A computation of the synchronous parallel composition when restricted to
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Fig. 1 A simple loop Var n:Integer initially n= 10
l0 : while (n > 0) {
l1 : n= n− 1;
l2 : }
l3 :

the variables in one of the systems is a computation of that system. Formally, we
have the following.

Lemma 2 A sequence σ ∈ (ΣV1∪V2)
ω is a computation of D1 |||D2 iff σ ⇓V1 is a

computation of D1 and σ ⇓V2 is a computation of D2.

The proof is omitted.
The asynchronous parallel composition D1‖D2 of D1 and D2 is the FDS defined

as follows.

D1‖D2 = 〈V1 ∪ V2, θ1 ∧ θ2, ρ,J1 ∪J2,C1 ∪C2〉,
where ρ = (ρ1 ∧ keep(V2 \ V1)) ∨ (ρ2 ∧ keep(V1 \ V2)). A transition of the asyn-
chronous parallel composition is a transition of one of the systems preserving un-
changed the variables of the other. A computation of the asynchronous parallel com-
position, when restricted to the variables in one of the systems is not necessarily a
computation of that system. For example, if the sets of variables of the two systems
intersect and system one modifies the variables of system two, the projection of the
computation on the variables of system two could include changes not allowed by
the transition of system two.

2.2.3 Representing Programs

We show how FDSs can represent programs. We do not formally define a program-
ming language, however, the meaning of commands and constructs will be clear
from the translation to FDSs. A more thorough discussion of representation of pro-
grams is given elsewhere in this Handbook in [47] (Seshia et al., Modeling for Ver-
ification). FDSs are a simple variant of the State Transition Systems (STSs) defined
in that chapter.

Consider for example the program in Fig. 1. It can be represented as an FDS
with the variables π and n, where π is the program location variable ranging over
{l0, . . . , l3} and n is an integer that starts as 10. Formally, D = 〈{π,n}, θ, ρ,J ,C 〉,
where J = ∅, C = ∅, and θ and ρ are as follows.

θ : π = l0 ∧ n= 10,
ρ : (π = l0 ∧ n > 0∧ π ′ = l1 ∧ n′ = n) ∨ (π = l0 ∧ n≤ 0∧ π ′ = l3 ∧ n′ = n) ∨
(π = l1 ∧ π ′ = l2 ∧ n′ = n− 1) ∨ (π = l2 ∧ π ′ = l0 ∧ n′ = n) ∨
(π ′ = π ∧ n′ = n).
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For software programs, we always assume that the transition relation ρ includes
as a disjunct the option to stutter, that is, do nothing. This allows us to model the
environment of a single processor that devotes attention to one of many threads.
Given a program counter variable, we denote by atli the formula π = li . In case of
multiple program counters, we assume that their ranges are disjoint and identify the
right variable by its range, e.g., one program counter ranges over li and the other
over mi making π =mi unambiguous. Similarly, at′li is π ′ = li

The following sequence of states is a run of the simple loop in Fig. 1.

σ = 〈π : l0, n : 10〉, 〈π : l1, n : 10〉, 〈π : l2, n : 9〉, 〈π : l0, n : 9〉, 〈π : l1, n : 9〉,
〈π : l2, n : 8〉, 〈π : l0, n : 8〉, . . . , 〈π : l0, n : 1〉, 〈π : l1, n : 1〉, 〈π : l2, n : 0〉,
〈π : l0, n : 0〉, 〈π : l3, n : 0〉, . . .

Indeed, it starts in an initial state, where π = l0 and n= 10, and every two adjacent
states satisfy the transition relation. For example, the two states 〈π : l1, n : 9〉 and
〈π : l2, n : 8〉 satisfy the disjunct atl1 ∧ at′l2 ∧ n′ = n− 1 where π and n range over
the first state and π ′ and n′ range over the second state.

Consider the two processes in Fig. 2, depicting Peterson’s mutual exclusion al-
gorithm [41]. Consider the process on the left. It can be represented as an FDS with
Boolean variables x, y, and t and a location variable π1 ranging over {l0, . . . , l7}.
Formally, D1 = 〈{π1, x, y, t}, θ1, ρ1,J ,C 〉, where the components of D1 are as
follows.

θ1 : atl0 ∧ x = 0,
ρ1 : (atl0 ∧ at′l1 ∧ keep(x, y, t)) ∨ (atl1 ∧ at′l2 ∧ keep(x, y, t)) ∨

(atl2 ∧ at′l3 ∧ x′ = 1∧ keep(y, t)) ∨ (atl3 ∧ at′l4 ∧ t ′ = 1∧ keep(x, y)) ∨
(atl4 ∧ (t = 0∨ y = 0)∧ at′l5 ∧ keep(x, y, t)) ∨
(atl5 ∧ at′l6 ∧ keep(x, y, t)) ∨ (atl6 ∧ x′ = 0∧ at′l7 ∧ keep(y, t)) ∨
(atl7 ∧ at′l0 ∧ keep(x, y, t)) ∨ keep(π1, x, y, t).

Notice that the disjunct keep(π1, x, y, t) allows this process to stutter, but also
includes the transition from l4 to l4 in case t �= 0 and y �= 0. Dually, the
process on the right can be represented as an FDS with Boolean variables
{x, y, t} and location variable π2 ranging over {m0, . . . ,m7}. Formally D2 =
〈{π2, x, y, t}, θ2, ρ2,J ,C 〉, where the components of D2 are as follows.

θ2 : atm0 ∧ y = 0,
ρ2 : (atm0 ∧ at′m1

∧ keep(x, y, t)) ∨ (atm1 ∧ at′m2
∧ keep(x, y, t)) ∨

(atm2 ∧ at′m3
∧ y′ = 1∧ keep(x, t)) ∨ (atm3 ∧ at′m4

∧ t ′ = 0∧ keep(x, y)) ∨
(atm4 ∧ (t = 1∨ x = 0)∧ at′m5

∧ keep(x, y, t)) ∨
(atm5 ∧ at′m6

∧ keep(x, y, t)) ∨ (atm6 ∧ y′ = 0∧ at′m7
∧ keep(x, t)) ∨

(atm7 ∧ at′m0
∧ keep(x, y, t)) ∨ keep(π2, x, y, t).

In addition we add an FDS T that sets t = 0 initially. Let T = 〈{t}, t = 0, t = t ′,
∅,∅〉.
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Var t,x,y: Boolean initially t = 0, x = 0, y = 0

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

l0 : while (true) {
l1 : Non Critical;
l2 : x = 1;
l3 : t = 1;
l4 : await (t == 0∨ y == 0);
l5 : Critical;
l6 : x = 0;
l7 : }

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

‖

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

m0 : while (true) {
m1 : Non Critical;
m2 : y = 1;
m3 : t = 0;
m4 : await (t == 1∨ x == 0);
m5 : Critical;
m6 : y = 0;
m7 : }

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Fig. 2 Peterson’s mutual exclusion algorithm

In order to obtain an FDS that represents the entire behavior of the two pro-
cesses together, we construct the asynchronous parallel composition of D1, D2,
and T . That is, the FDS representing Peterson’s mutual exclusion protocol is
D =D1‖D2‖T .

The following sequence of states is a run of the processes in Fig. 2. Between
every two states we write the location from which a transition is applied.

σ : 〈π1 : l0, x : 0,π2 :m0, y : 0, t : 0〉 m0−→ 〈π1 : l0, x : 0,π2 :m1, y : 0, t : 0〉 m1−→
〈π1 : l0, x : 0,π2 :m2, y : 0, t : 0〉 m2−→ 〈π1 : l0, x : 0,π2 :m3, y : 1, t : 0〉 l0−→
〈π1 : l1, x : 0,π2 :m3, y : 1, t : 0〉 l1−→ 〈π1 : l2, x : 0,π2 :m3, y : 1, t : 0〉 l2−→
〈π1 : l3, x : 1,π2 :m3, y : 1, t : 0〉 l3−→ 〈π1 : l4, x : 1,π2 :m3, y : 1, t : 1〉 l4−→
〈π1 : l4, x : 1,π2 :m3, y : 1, t : 1〉 l4−→ · · · l4−→ · · · l4−→ · · · l4−→ · · · l4−→ · · ·

However, this run seems to violate our basic intuition regarding scheduling of differ-
ent threads. Indeed, from some point onwards the processor gives attention only to
the first thread. In order to remove such behaviors we add the following two justice
requirements.

J1 :
{¬atli ,¬atl4 ∨ (t = 1∧ y = 1)

∣
∣ i ∈ {0,2,3,5,6,7}},

J2 :
{¬atmi ,¬atm4 ∨ (t = 0∧ x = 1)

∣
∣ i ∈ {0,2,3,5,6,7}}.

The justice requirement for their composition D is J =J1 ∪J2. Notice that it is
fine for the processes to remain forever in their non-critical sections. Now, the run
above violates the justice requirement. Indeed, the requirement ¬atm3 does not hold
on the last state. Thus, in this run there are only finitely many positions satisfying
¬atm3 . In order to constitute a computation the following suffix, for example, could
be added.

〈π1 : l4, x : 1,π2 :m3, y : 1, t : 1〉 m3−→ 〈π1 : l4, x : 1,π2 :m4, y : 1, t : 0〉 l4−→
〈π1 : l5, x : 1,π2 :m4, y : 1, t : 0〉 l5−→ 〈π1 : l6, x : 1,π2 :m4, y : 1, t : 0〉 l6−→
〈π1 : l7, x : 0,π2 :m4, y : 1, t : 0〉 m4−→ 〈π1 : l7, x : 0,π2 :m5, y : 1, t : 0〉 · · ·
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Var x: Boolean initially x = 1

⎡

⎢
⎢
⎢
⎢
⎢
⎣

l0 : while (true) {
l1 : Non Critical;
l2 : request (x);
l3 : Critical;
l4 : release (x);
l5 : }

⎤

⎥
⎥
⎥
⎥
⎥
⎦

‖

⎡

⎢
⎢
⎢
⎢
⎢
⎣

m0 : while (true) {
m1 : Non Critical;
m2 : request (x);
m3 : Critical;
m4 : release (x);
m5 : }

⎤

⎥
⎥
⎥
⎥
⎥
⎦

Fig. 3 Mutual exclusion using semaphores

We now turn to an example eliciting the need for compassion. Consider the
two processes in Fig. 3. Here, the command request(x) is an atomic statement
equivalent to await(x == 1);x = 0; Thus, at locations l2 and m2 the respective
process proceeds only if x is 1 and it sets x to 0. The command release(x)
sets x to 1 again. The process on the left can be represented as an FDS with a
Boolean variable x and a location variable π1 ranging over {l0, . . . , l5}. Formally
D1 = 〈{π1, x}, θ1, ρ1,J ,C 〉, where the components of D1 are as follows.

θ1 : atl0 ∧ x = 1
ρ1 : (atl0 ∧ at′l1 ∧ keep(x)) ∨ (atl1 ∧ at′l2 ∧ keep(x)) ∨

(atl2 ∧ at′l3 ∧ x = 1∧ x′ = 0) ∨ (atl3 ∧ at′l4 ∧ keep(x)) ∨
(atl4 ∧ at′l5 ∧ x′ = 1) ∨ (atl5 ∧ at′l0 ∧ keep(x)) ∨ keep(π1, x)

The system D2 is obtained from D1 by replacing every reference to l by a reference
to m. It is clear that we also have to include requirements from a scheduler. This
time, location l2 is problematic. Suppose that we try, as before, the following sets.

J1 :
{¬atli ,¬atl2 ∨ x = 0

∣
∣ i ∈ {0,3,4,5}},

J2 :
{¬atmi ,¬atm2 ∨ x = 0

∣
∣ i ∈ {0,3,4,5}}.

However, it is simple to see that this is not strong enough. Consider the following
computation.

σ : 〈π1 : l0,π2 :m0, x : 1〉 m0−→ 〈π1 : l0,π2 :m1, x : 1〉 m1−→
〈π1 : l0,π2 :m2, x : 1〉 m2−→ 〈π1 : l0,π2 :m3, x : 0〉 l0−→
〈π1 : l1,π2 :m3, x : 0〉 l1−→ 〈π1 : l2,π2 :m3, x : 0〉 l2−→
〈π1 : l2,π2 :m3, x : 0〉 m3−→ 〈π1 : l2,π2 :m4, x : 0〉 m4−→
〈π1 : l2,π2 :m5, x : 1〉 m5−→ · · · m0−→ · · · m1−→ · · · m2−→ · · · l2−→ · · · m3−→ · · · m4−→ · · ·

This computation keeps D1 in location 2 forever. This is indeed a computation as
there are infinitely many positions where the transition from l2 is not enabled and
¬atl2 ∨ x = 0 holds. Clearly, this does not seem acceptable. One could ask why not
replace the justice requirement related to location 2 by ¬atl2 . However, this is too
strong. If we replace D2 by an FDS that sets x to 0 and never resets it to 1, clearly,
we cannot expect a computation that fulfils the justice requirement ¬atl2 .
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In order to solve this problem we replace the justice requirements relating to
location 2 by the following compassion.

C1 :
{〈atl2 ∧ x = 1,¬atl2〉

}
,

C2 :
{〈atm2 ∧ x = 1,¬atm2〉

}
.

Namely, if there are enough opportunities where D1 is at location 2 and x is free,
we expect D1 to get an option to move when x is free; and similarly for D2.

2.2.4 Algorithms

We now consider the algorithms that show whether a given FDS has some com-
putation. For infinite-state systems the question is in general undecidable, as an
infinite-state system can easily represent the halting problem or its dual. For var-
ious kinds of infinite-state systems this question is discussed in later chapters of
this Handbook [25] (Jhala et al., Predicate Abstraction for Program Verification),
[8], and [14]. Here, we concentrate on the case of finite-state systems, where all
variables range over finite domains. For such systems, simple algorithms establish
whether an FDS is viable. We start with the simple case of a fairness-free FDS. We
then show how to solve the same problem for JDSs and for general FDSs. Here,
we concentrate on symbolic algorithms that handle sets of states. We assume that
we have some efficient way to represent, manipulate, and compare assertions. One
such system is discussed elsewhere in this Handbook [9] (Bryant, Binary Decision
Diagrams). Enumerative algorithms, which consider individual states, are discussed
in this Handbook in [24] (Holzmann, Explicit-State Model Checking).

We fix an FDS D = 〈V , θ, ρ,J ,C 〉. In the algorithm we use the operators
post() and pre(). The operator post(S,ρ) returns the set {t | ∃s ∈ S . (s, t ′) |= ρ} of
successors of the states in S according to ρ. Similarly, the operator pre(S,ρ) returns
the set {s | ∃t ∈ S . (s, t ′) |= ρ} of predecessors of the states in S. For an assertion τ
characterizing the set of states S, we use the following operators.

prime(τ )=∃V . (τ ∧ (∧v∈V v = v′)) unprime(τ )=∃V ′ . (τ ∧ (∧v∈V v = v′))
post(τ, ρ)=unprime(∃V . (τ ∧ ρ)) pre(τ, ρ)=∃V ′ . (prime(τ )∧ ρ)

For example, given an assertion τ , the operator post(τ, ρ) produces an assertion
describing the successors of the states satisfying τ . Indeed, the assertion τ ∧ ρ de-
scribes the pairs of states satisfying the transition relation ρ such that the first (un-
primed) satisfies τ . Then, ∃V . (τ ∧ρ) quantifies out the first state leaving us with a
description over the set of variables V ′ of the set of successors of states in τ . Finally,
unprime(∃V . (τ ∧ρ)) converts it to an assertion over the variables in V . The opera-
tor pre(τ, ρ) first converts the assertion τ to an assertion over V ′ using the operator
prime(τ ), then the conjunction with ρ creates a description of pairs that satisfy the
transition such that the second state (primed) satisfies τ . Finally, quantifying the
primed variables creates an assertion describing the predecessors of τ .
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Algorithm 1 Reachable states
1: new := θ ;
2: old := ¬new;
3: while (new �= old)
4: old := new;
5: new := new∨ post(new, ρ)
6: end while

We are now ready to present the first algorithm. Algorithm 1 computes an asser-
tion characterizing the reachable states. All variables range over assertions.

As the system has a finite number of states, it is clear that this algorithm termi-
nates. Indeed, each time the loop body is run the assertion new characterizes more
and more states. As the number of states is finite, at some point, old is equivalent
to new. It is also simple to see that when the loop terminates, the assertion new
characterizes the set of reachable states. Indeed, the algorithm starts with all ini-
tial states and gradually adds states that are reachable with an increasing number of
steps. We do not prove this formally. To simplify future algorithms, we introduce the
operators reach(τ, ρ) and backreach(τ, ρ) that compute the set of states reachable
from τ using the transition relation ρ and the set of states that can reach τ using the
transition relation ρ, respectively. The operator reach(τ, ρ) is the result of running
the algorithm for reachability initializing new to τ . The operator backreach(τ, ρ) is
the result of running the algorithm obtained from the algorithm for reachability by
replacing the usage of post() by pre() and initializing new to τ .

Algorithm 1 computes the fixpoint of the operator new := new ∨ post(new, ρ)
in the loop body. We introduce a shorthand for this type of while loop. The loop
header fix(new:= τ ), initializes the variable new to τ , initializes the variable old to
¬τ , terminates when old and new represent the same assertion, and updates old to
new whenever it starts the loop body. We denote by new0 the initial value of the
loop variable and by newi the value at the end of the ith iteration. Generally, as for
some j ≥ 0 we have newj+1 = newj , we consider the value of newi for i ≥ j to be
newj . Let newfix denote the value of the variable new when exiting the loop.

We now turn our attention to the question of viability, starting in the case of
fairness-free FDSs.

For finite-state FDS, viability is essentially reduced to finding the set of reachable
states from which infinite paths can start.

Again, like the reachability algorithm, it is clear that this algorithm terminates.
The set of states represented by new is non-increasing when recomputed by the loop
body. As the system is finite-state, at some point, this set either becomes empty or
does not change, leading to termination.

Lemma 3 For a fairness free FDS D Algorithm 2 computes the set of viable states.

Proof We show that for every i and for every s such that s |= newi there is a path
of length at least i + 1 starting from s. For i = 0 this clearly holds as from every
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Algorithm 2 Viability (no fairness)
1: reach := reach(θ, ρ);
2: fix (new := reach)
3: ρf := ρ ∧ new∧ prime(new);
4: new := new∧ pre(new, ρf);

13: end fix

state there is a path of length 1. Suppose that for s |= newi there is a path of length
at least i + 1 starting at s. Then clearly, newi+1 = newi ∧ pre(newi , ρ) includes the
set of states from which there is a path of length at least i + 2. It follows that for
every s |= newfix for every i ≥ 0 there is a path of length i + 1 starting at s. Arrange
all the paths starting in s in the form of a tree such that a path of length i + 1 is a
descendant of a path of length i. The tree has finite branching degree and an infinite
number of nodes. It follows from König’s lemma that the tree contains an infinite
path. Hence, from s there is an infinite path.

Let inf denote the set of reachable states s that have an infinite path starting from
them. Then, inf → newfix. Indeed, for every i ≥ 0 we have inf → newi . Clearly,
inf→ new0. Suppose that inf→ newi . But for every state s such that s |= inf there
is a successor t such that t |= inf. Indeed, this state t is the first state after s in the
infinite path starting from s. Then, for every s |= inf we have s |= newi+1.

Finally, as new starts from the set of reachable states, if new is not empty the
FDS has some infinite run. �

If a system contains the stuttering clause, i.e., every state is allowed to stutter, Al-
gorithm 2 returns all reachable states. Indeed, for every state s we have (s, s) |= ρ.
We start with new including all reachable states. Then, pre(new, ρf) is new again. So
the fixpoint terminates immediately with all states. This is because in such system
every state has a computation that remains forever in that state. In order to restrict
attention to “interesting” infinite computations, we could replace the transition re-
lation ρ in Algorithm 2 by ρ ∧∨

v∈V v �= v′ that removes stuttering steps from
ρ.

We now turn to consider JDSs. For such systems, it is not enough to just find
infinite paths in the system. We have to ensure in addition that we can find an infinite
path that visits each J ∈J infinitely often. For that, we extend Algorithm 2 by
adding the lines 5–8.

Lemma 4 For a JDS D Algorithm 3 computes the set of viable states.

Proof Every state s such that s |= newfix is reachable. Furthermore, for every s such
that s |= newfix and for every J ∈J we have that there is some state t reachable
from s such that t |= newfix, t |= J and t has a successor in newfix. It is possible now
to construct paths of increasing length that visit all J ∈J . Let J = {J1, . . . , Jm}.
Start from some state s0 in newfix. Then, there is a state t1 in newfix reachable from s
that satisfies J1 with a successor s1 in newfix. Similarly, extend this path from s0 to
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Algorithm 3 Viability (justice)
1: reach := reach(θ, ρ);
2: fix (new := reach)
3: ρf := ρ ∧ new∧ prime(new);
4: new := new∧ pre(new, ρf);
5: for all (J ∈J )
6: reachJ := backreach(new∧ J,ρf);
7: new := new∧ reachJ ;
8: end for {all (J ∈J )}

13: end fix

Algorithm 4 Viability (compassion)
1: reach := reach(θ, ρ);
2: fix (new := reach)
3: ρf := ρ ∧ new∧ prime(new);
4: new := new∧ pre(new, ρf);
5: for all (J ∈J )
6: reachJ := backreach(new∧ J,ρf);
7: new := new∧ reachJ ;
8: end for {all (J ∈J )}
9: for all ((P,Q) ∈ C )

10: reachQ := backreach(new∧Q,ρf);
11: new := new∧ (¬P ∨ reachQ);
12: end for {all ((P,Q) ∈ C )}
13: end fix {(new)}

s1 to a path that visits also J2 and ends in s2 and so on. As before, we organize these
paths in the form of a tree. An infinite path in this tree visits all J ∈J infinitely
often. Indeed, such an infinite path is the limit of paths that visit all J ∈J an
increasing number of times.

In the other direction we show that every viable state appears in newfix. Similarly
to the previous proof, a computation that starts from state s is used to show that s
can reach all J ∈J . The suffix of this path is used to show that it is possible to
continue from s to some successor in the fixpoint. �

Finally, we consider a general FDS. We extend Algorithm 3 by adding the lines
9–12. These lines ensure, in addition, that every compassion requirement is satisfied.
This algorithm is due to [27].

Lemma 5 For an FDS D Algorithm 4 computes the set of viable states.

The proof is similar to that of Lemma 4.
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Theorem 1 Viability of a finite-state FDS can be checked in time polynomial in the
number of states of the FDS and space logarithmic in the number of states.

The polynomial upper bound follows from the analysis of termination of the
algorithm. The space complexity follows from the algorithms in [54].

We note that the number of states of the system may be exponential in the size of
its description. Indeed, a system with n Boolean variables potentially has 2n states.
Thus, if we consider the size of the description of the FDS, these algorithms can be
considered to run in exponential time and polynomial space, respectively.

The reliance of these algorithms on computing the set of reachable states makes
it problematic to apply them to infinite-state systems. Indeed, for such systems the
iterative search for new states may never terminate. For some infinite-state systems,
other techniques for the computation of the reachable and back-reachable states are
available. In such cases, viability algorithms may be available. See elsewhere in this
Handbook [8], [14], and [2] (Alur et al., Model Checking Procedural Programs) for
treatment of infinite-state systems.

In what follows we use FDSs as a formal model of systems. We now turn our
attention to a way to describe properties of such systems. We start with a description
of linear temporal logic.

2.3 Linear Temporal Logic

We use logic to specify computations of FDS. Specifications that tell us what com-
putations should and should not do are written formally as logic formulas. The tem-
poral operators of the logic connect different stages of the computation and talk
about dependencies and relations between them. Then, correctness of computations
can be checked by checking whether they satisfy logical specifications. Here, we
present linear temporal logic (abbreviated LTL). As its name suggests, it takes the
linear-time view. That is, every point in time has a unique successor and models are
infinite sequences of “worlds”. Systems, as defined in Sect. 2.2, may have multiple
successors for a given state. From LTL’s point of view, a branching from some state
would result in two different computations that are considered separately (though
they share a prefix). We start with a definition of LTL, viewing infinite sequences
as models of the logic and a logical formula as defining a set of models. We then
discuss several extensions of LTL and what properties it can (and cannot) express.
Finally, we connect the discussion to the FDSs defined in Sect. 2.2, define model
checking, and show how to perform it.

We note that the discussion of LTL is restricted to infinite models. When consid-
ering FDS D , we assume that Runs(D) contains only infinite paths. If this is not
the case, some modifications need to be made either to the definition of LTL or the
FDS itself in order to handle finite paths, see later in this Handbook [15] (Eisner and
Fisman, Functional Specification of Hardware via Temporal Logic).
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2.3.1 Definition of Linear Temporal Logic

We assume a countable set of Boolean propositions P . A model σ for a formula ϕ
is an infinite sequence of truth assignments to propositions. Namely, if P̂ is the set
of propositions appearing in ϕ, then for every finite set P such that P̂ ⊆ P , a word
in (2P )ω is a model. Given a model σ = σ0, σ1, . . ., we denote by σi the set of
propositions at position i. We also refer to sets of models as languages.

LTL formulas are constructed using the normal Boolean connectives for disjunc-
tion and negation and introduce the temporal operators next, previous, until, and
since.

ϕ ::= p | ¬ϕ | ϕ1 ∨ ϕ2 | Xϕ | Yϕ | ϕ1 U ϕ2 | ϕ1 S ϕ2. (1)

As mentioned, a model for an LTL formula is an infinite sequence. While Boolean
connectives have their ‘normal roles’, the temporal connectives go between the dif-
ferent locations in the model. Intuitively, the unary next operator X indicates that
the rest of the formula is true in the next location in the sequence; the unary previ-
ous operator Y indicates that the rest of the formula is true in the previous location;
the binary until operator U indicates that its first operand holds at all points in the
future until some future point where its second operand holds; and dually (with re-
spect to time) the binary since operator S indicates that its first operand holds at
all points in the past until some past point where its second operand holds. Formu-
las that do not use Y or S are pure future formulas. Formulas that do not use X
or U are pure past formulas. In many cases (in practice and in this Handbook),
attention is restricted to pure future LTL and the past is omitted.

In general, as we will see below the satisfaction of a formula is considered at a
certain position of a model. If we are interested in satisfaction of a formula in the first
position of a model, then, as there is no past from the first position, a formula with
past can be converted to a pure future formula [22, 26]. The conversion, however,
can be exponential [34].

Formally, for a formula ϕ and a position i ≥ 0, we say that ϕ holds at position i
of σ , written σ, i |= ϕ, and define it inductively as follows:

• For p ∈ P we have σ, i |= p iff p ∈ σi .
• σ, i |= ¬ϕ iff σ, i �|= ϕ.
• σ, i |= ϕ ∨ψ iff σ, i |= ϕ or σ, i |=ψ .
• σ, i |=Xϕ iff σ, i + 1 |= ϕ.
• σ, i |= ϕU ψ iff there exists k ≥ i such that σ, k |= ψ and σ, j |= ϕ for all j ,
i ≤ j < k.

• σ, i |=Yϕ iff i > 0 and σ, i − 1 |= ϕ.
• σ, i |= ϕS ψ iff there exists k,0≤ k ≤ i such that σ, k |= ψ and σ, j |= ϕ for all
j , k < j ≤ i.

We note that the interpretation of future and past is non-strict. The until operator
interpreted in location i characterizes the locations greater than i as well as i itself;
and similarly for the past. If σ,0 |= ϕ, then we say that ϕ holds on σ and denote
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it by σ |= ϕ. A set of models M satisfies ϕ, denoted M |= ϕ, if every model in M
satisfies ϕ.

We use the usual abbreviations of the Boolean connectives ∧,→ and↔ and the
usual definitions for true and false. We introduce the following temporal abbrevia-
tions F (eventually), G (globally), W (weak-until), and for the past fragment H
(historically), P (once), and B (back-to) which are defined as follows.

• Fφ ≡ true U φ,
• Gψ ≡¬F¬ψ ,
• ϕW ψ ≡ (ϕU ψ)∨Gϕ,
• Pφ ≡ true S φ,
• Hψ ≡¬P¬ϕ, and
• ϕBψ ≡ (ϕS ψ)∨Hϕ.

For example, the formula ϕ1 ≡G(p→Fq) holds in models in which every
location where p is true is followed later (or concurrently) by a location where q
holds. A location where p happened in the past but no q happened since satisfies
¬qS (¬q ∧ p). Thus, ϕ2 ≡GF(¬(¬qS (¬q ∧ p))) means that there is no lo-
cation where p holds and no q occurs after it, i.e., when checked in the beginning
of a model it is the same as G(p→Fq).

Another common notation for the temporal operators is X for next, Y for previ-
ous, F for eventually (or future), G for globally, H for historically, and P for once
(past). Using this notation G(p→Fq) becomes G(p→ Fq) and G(p→Xq)

becomes G(p→Xq).
For an LTL formula ϕ, we denote by L (ϕ) the set of models that satisfies ϕ.

That is,

L (ϕ)= {σ | σ |= ϕ}.
We are mostly interested in when an LTL formula is satisfied in the first location in
a sequence. However, generally, the satisfaction is related to a location. This duality
gives rise to two notions of equivalence for LTL formulas. We say that two LTL
formulas ϕ and ψ are equivalent if L (ϕ)=L (ψ). We say that two LTL formulas
ϕ and ψ are globally equivalent if for every model σ and every location i ≥ 0
we have σ, i |= ϕ iff σ, i |= ψ . For example, the two formulas mentioned above,
ϕ1 and ϕ2, are equivalent but not globally equivalent. Indeed, consider a model
where p holds in the first location and both p and q are false forever after that. In
the second location in this sequence the formula ϕ1 holds. However, the formula ϕ2
does not hold in the second location as it notices the p in the first location is never
followed by a q .

2.3.2 Safety Versus Liveness and the Temporal Hierarchy

A very important distinction in LTL formulas is between safety and liveness. Intu-
itively, a safety property says that bad things will never happen. A liveness property
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says that the system will also do good things. Algorithmically, safety is much easier
to check than liveness and this is the most prevalent form of specification that is
encountered in practice. Nevertheless, we further refine the properties expressible
in LTL to a temporal hierarchy that relates to expressiveness, the topology of sets
of models characterized by them, and the types of deterministic FDSs (or automata)
that accept them. Formally, we have the following.

A property ϕ is a safety property for a set of models if for every model σ that
violates ϕ, i.e., σ �|= ϕ, there exists an i such that for every σ ′ that agrees with σ
up to position i, i.e., ∀0 ≤ j ≤ i, σ ′i = σi , σ ′ also violates ϕ. As mentioned, safety
properties specify bad things that should never happen. Thus, once an error has
occurred (in location i), it is impossible to undo it. Every possible extension also
includes the same error and is unsafe.

A property ϕ is a liveness property for a set of models if for every prefix of a
model w0, . . . ,wi there exists an infinite model σ that starts with w0, . . . ,wi and
σ |= ϕ. As mentioned liveness properties specify good things that should occur.
Thus, regardless of the history of the computation, it is still possible to find an
extension that will fulfill the specification.

One prevalent form of safety is the invariant, a formula of the form Gp where
p is propositional. In general, safety properties are easier to check than liveness
properties. As we are interested in violations of safety, we may restrict attention to
finite paths and hence to reachability of violations. In particular, for every safety
property ϕ and an FDS D , it is possible to construct an FDS D1 and an invariant
Gp such that there is no initial path in D that violates ϕ iff all reachable states
of D1 satisfy p. Checking p over D1 is much easier to do and this is indeed the
way safety properties are checked in practice. Compare this with the more complex
algorithm for viability in the presence of justice in Sect. 2.2 (in the next subsection
we see that this is required for LTL model checking even if the model is fairness
free).

More theoretically, Alpern and Schneider [1] show that every language can be
described as the intersection of a liveness and a safety property (not restricted to
properties expressed in LTL).

Theorem 2 Every language L⊆ (2P )ω is expressible as the intersection Ls ∩Ll ,
where Ls is a safety property and Ll is a liveness property.

Proof Consider a language L⊆ (2P )ω . We have the following definitions.

pref (L) = {w0, . . . ,wn | w0, . . . ,wn is a prefix of some w ∈ L},
Ls =

{
w0,w1, . . .

∣
∣ for every i, w0, . . . ,wi ∈ pref (L)

}
,

Ll = L∪ {
w0,w1, . . .

∣
∣ there exists i such that w0, . . . ,wi /∈ pref (L)

}
.

It is simple to see that Ls is a safety property. In order to see that Ll is a liveness
property consider some prefix w0, . . . ,wi . If w0, . . . ,wi ∈ pref (L), then clearly
there is some extension σ of w0, . . . ,wi such that σ ∈ L ⊆ Ll . Otherwise, if
w0, . . . ,wi /∈ pref (L) then all extensions σ of w0, . . . ,wi are in Ll .
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Fig. 4 The temporal hierarchy, where β , γ , βi , and γi are pure past temporal properties

Finally, it is simple to see that L ⊆ Ls and L ⊆ Ll hence L ⊆ Ls ∩ Ll . In the
other direction, consider a word σ ∈ Ls ∩ Ll . It follows that either σ ∈ Ls ∩ L or
σ ∈ Ls ∩ {w0,w1, . . . | there is i such that w0, . . . ,wi /∈ pref (L)}. In the first case,
clearly σ ∈ L. The second intersection must be empty as σ cannot at the same time
have all its prefixes in pref (L) and some prefix not in pref (L). �

We now discuss a more refined classification of temporal properties. Although
Safety, as appearing in this classification, seems different from the description of
safety above, Theorem 3 shows that they are actually the same. This classification
is important, for example and as described later in this Handbook, in synthesis ([6]
(Bloem et al., Graph Games and Reactive Synthesis)) and deductive verification
([48] (Shankar, Combining Model Checking and Deduction)). In Fig. 4 we define six
different classes of properties. In both synthesis and deductive verification, formulas
in one of these classes have a better (i.e., more efficient or simpler) treatment than
formulas in higher classes. Furthermore, this classification is related to the ability
to convert such properties to deterministic ω-automata, see later in this Handbook
[30] (Kupferman, Automata Theory and Model Checking), and to the topological
complexity of properties.

We do not state formally most properties of this hierarchy. As shown in Fig. 4, all
containments are strict. Furthermore, there are Safety properties that are not Guar-
antee properties and vice versa. Similarly, there are Recurrence properties that are
not Persistence properties and vice versa. Each of Obligation and Reactivity form a
strict hierarchy according to the number of conjuncts. The lowest in the Obligation
and Reactivity hierarchies (i.e., one conjunct) contain all the classes below them.
Then, all classes are closed under disjunction and conjunction and Obligation and
Reactivity are also closed under negation. The complement of every Safety property
is a Guarantee property and vice versa. Similarly, the complement of every Recur-
rence property is a Persistence property and vice versa.

We state formally that the classification is exhaustive.

Theorem 3 Every Safety property expressible in LTL can be expressed as a for-
mula of the form Gβ , where β is a pure past formula. Every LTL formula can be
expressed as a Reactivity formula.

We note that the translation to this normal form causes an explosion in the size
of the formula. The translation uses as subroutines translations between LTL, au-
tomata, and regular expressions [22]. A characterization of safety and liveness in
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terms of pure-future LTL and decision procedures for whether a formula is a safety
or liveness property are given in [49].

Further details about these classes, formal statement of the claims above, their
proofs, and the relation of these classes to topology and to automata on infinite
words are available in [39]. The intersection of Safety and Guarantee is studied in
[32]. Exhaustiveness of the hierarchy is covered in [37].

2.3.3 Extensions of LTL

For many years logicians have been studying the first-order logic and second-order
logic of infinite sequences, denoted FOL1 and S1S, respectively. In our context,
these logics are restricted to use the relations < and =, and the function +1. Nat-
urally, LTL was compared with these logics. It was shown that LTL and FOL1 are
equally expressive [26]. That is, for every FOL1 formula there is an LTL formula
that characterizes the same models. As the semantics of LTL is expressed in FOL1,
it is quite clear that it cannot be more expressive that FOL1. Showing that LTL is
as expressive as FOL1 is more complicated and is not covered here. This observa-
tion led to the declaration that “LTL is expressively complete” [22]. However, very
natural properties that are required for specifying programs cannot be expressed in
LTL [55]. Following this realization different studies of how to extend the expres-
sive power of LTL so that it becomes equivalent to S1S followed, culminating in the
definition of PSL (see [15] in this Handbook).

S1S formulas extend Boolean connectives by using location and predicate vari-
ables. We assume a countable set of location variables var = {x, y, . . .} and a count-
able set of predicate variables VAR = {X,Y, . . .}. We define the set of terms (τ ),
atomic formulas (α), and formulas (ϕ) of S1S.

τ ::= x | τ + 1,
α ::= X(τ) | p(τ) | τ1 < τ2 | τ1 = τ2,

ϕ ::= α | ¬ϕ | ϕ1 ∨ ϕ2 | ∃x.ϕ | ∃X.ϕ.
(2)

FOL1 is obtained by allowing only the use of location variables.
We evaluate the truth of formulas over models (as before) augmented with valua-

tions v : var→N and V : VAR→ 2N. Given a valuation v we denote by v[x �→ i]
the valuation that assigns v(y) to every y �= x and assigns i to x. Similarly, we de-
note by V [X �→ I ] the valuation that assigns V (Y ) for every Y �= X and assigns I
to X. For uniformity of notation, given a model σ =w0,w1, . . . we treat a proposi-
tion p as a subset of N, where i ∈ p iff p ∈wi . Given a model σ =w0,w1, . . . over
a set of propositions P , and valuations v and V the semantics of an S1S formula is
defined as follows (Boolean connectives omitted).

• For a term τ , we define v(τ) as expected: for a variable x, v(x) is given by the
valuation v and v(τ + 1)= v(τ)+ 1.

• σ, v,V |=X(τ) iff v(τ) ∈ V (X).
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• σ, v,V |= p(τ) iff v(τ) ∈ p.
• σ, v,V |= τ1 < τ2 iff v(τ1) < v(τ2).
• σ, v,V |= τ1 = τ2 iff v(τ1)= v(τ2).
• σ, v,V |= ∃x.ϕ iff there is some i ∈N such that σ, v[x �→ i],V |= ϕ.
• σ, v,V |= ∃X.ϕ iff there is some I ⊆N such that σ, v,V [X �→ I ] |= ϕ.

If all variables in ϕ are bound by quantifiers, then the initial valuations v and V
are not important and we may write σ |= ϕ. We introduce the shorthands ∀x.ϕ ≡
¬∃x.¬ϕ, ∀X.ϕ ≡ ¬∃X.¬ϕ, and the formula τ1 ≤ τ2 ≡ τ1 < τ2 ∨ τ1 = τ2. Finally,
using the formula ∃z.∀y.z ≤ y we can easily express the term 0. We can now show
that LTL is less expressive than S1S.

Lemma 6 The property “p holds only in even positions” is expressible in S1S but
not in LTL.

Proof The following S1S formula expresses this property.

∃T .(T (0)∧ (∀x.T (x)↔¬T (x + 1)
)∧ (∀x.p(x)→ T (x)

))
.

That is, T must be assigned the set of even numbers, indeed, T must include 0 and
exactly one of every two consecutive numbers. Then, whenever p is true, it must be
the case that T is true as well, implying that the location is even.

We show that this cannot be expressed in LTL. Here we consider LTL restricted
to future operators. We omit the longer proof (of a very similar flavor).

Consider the family of models ri = wi0,wi1, . . . over the proposition p, where
wii = {p} and wij = ∅ for j �= i. That is, in the i-th model, the proposition p is true
exactly at the i-th location and nowhere else. We show that for every future LTL
formula ϕ there is some n large enough so that ϕ cannot distinguish rn from rn+1.

For a future LTL formula ϕ, let n(ϕ) denote the number of next operators used
in ϕ. We show by induction on the structure of the formula that for every i > n(ϕ)
we have ri |= ϕ iff ri+1 |= ϕ. For propositions, Boolean operators, and formulas of
the form Xψ the proof is simple.

Consider the case that ϕ = ψ1 U ψ2. By assumption, for ψk , k = 1,2, and for
every i > n(ψk) we have ri |=ψk↔ri+1 |= ψk . Clearly, n(ϕ)≥max(n(ψ1), n(ψ2)).
Consider some i > n(ϕ). Suppose that ri |= ϕ, then there is some k ≥ 0 such that
ri , k |=ψ2 and for every 0≤ j < k we have ri , j |=ψ1. If k = 0, then by assumption
ri |= ψ2 iff ri+1 |= ψ2 and we are done. Otherwise, the first suffix of ri+1 is ri and
hence ri+1,1 |= ϕ. However, ri and ri+1 agree on the satisfaction of ψ1 implying
that ri+1,0 |= ψ1. Thus, ri+1 |= ϕ. As ¬ϕ is (¬ψ2)W (¬ψ1 ∧ ¬ψ2) the proof in
the case that ϕ does not hold is similar. �

Corollary 1 LTL is less expressive than S1S.

The question now arises, what needs to be added to LTL in order to increase
its expressive power. The original solution suggested in [55] was to add left-linear
grammars, i.e., regular languages. This was later revised and extended by using
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finite automata connectives [54]. An alternative solution was to add to LTL quan-
tification over predicates [51]. The resulting logic, QPTL, has a similar flavor to
S1S.

Here, in order to increase the expressive power of LTL we are going to add au-
tomata connectives to it. The resulting logic, called ETL, is defined as follows. As
before, we consider a countable set of propositions.

ϕ ::= p | ¬ϕ | ϕ1 ∨ ϕ2 | A(ϕ1, . . . , ϕn). (3)

That is, an automaton A over alphabet {a1, . . . , an} can be used as an n-ary operator
A(ψa1 , . . . ,ψan).

For an automaton operator ϕ = A(ψa1 , . . . ,ψan) we define the satisfaction rela-
tion σ, i |= ϕ as follows.

• σ, i |= A(ψa1 , . . . ,ψan) iff there is a word b0b1 · · ·bm−1 accepted by A and for
every 0≤ j < m we have σ, i + j |=ψbj .

It is simple enough to see that future LTL can be easily expressed in ETL. Indeed,
Xψ is A(true,ψ), where A is an automaton with alphabet {a1, a2} accepting ex-
actly the word a1a2. Similarly, ψ1 U ψ2 is A(ψ1,ψ2), where A is an automaton
with alphabet {a1, a2} accepting the regular expression a∗1a2. Also, the problematic
property “p holds only in even positions” can be expressed by ¬A(true,p), where
A is the automaton accepting a1(a1a1)

∗a2. That is, it cannot be the case that the
distance to a location where p holds is an odd number. The proof that ETL is as ex-
pressive as S1S is quite complex. It uses the proof that S1S is equally expressive as
nondeterministic Büchi automata (see elsewhere in this Handbook in [30] (Kupfer-
man, Automata Theory and Model Checking)) and a proof that the language of a
nondeterministic Büchi automaton can be expressed in ETL. The interested reader
is referred to [54].

Theorem 4 ETL and S1S are equally expressive.

We now turn our attention to a different extension of LTL. So far, we have re-
stricted our attention to atomic formulas that are propositions, i.e., Boolean vari-
ables. However, the FDSs defined in Sect. 2.2 were more general; we allowed vari-
ables ranging over other discrete domains. In order to reason about such FDSs, we
introduce first-order elements into LTL. In general, incorporating a first-order part
into LTL results in a very expressive language. Here, we concentrate on a fragment
that is expressive enough to reason about FDS. This will be particularly useful later
in this Handbook in [25] and [3] (Barrett, Satisfiability Modulo Theories). Even
more general definitions of FOLTL are described, e.g., in [16, 29].

In order to reason about general FDS we consider models with more general
letters. Namely, instead of letters that are truth assignments to propositions we con-
sider letters that are first-order models. We generalize the set of propositions to a set
of n-ary predicates for n ≥ 0, where propositions are 0-ary predicates. We denote
by R the set of predicates and use r, s, . . . to range over individual predicates. We
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use the symbols f,g, . . . to denote n-ary functions for n≥ 1 and c, d, . . . to denote
constants (or 0-ary functions). For example, ∗ and + are now two binary functions
with the expected meanings. Let var = {x, y, . . .} be a countable set of variables.
We define the set of terms (τ ), atomic formulas (α), and formulas (ϕ) of FOLTL.

τ ::= c | x | Xx | f (τ, . . . , τ ),
α ::= r(τ1, . . . , τn) | ¬α | α1 ∨ α2 | ∃x.α,
ϕ ::= α | ϕ1 ∨ ϕ2 | ¬ϕ | Xϕ | Yϕ | ϕ1 U ϕ2 | ϕ1 S ϕ2.

(4)

A model for FOLTL is σ :w0,w1, . . ., where wi gives an interpretation for the pred-
icate, function, constant, and variable symbols used in the formula. Given a model
σ =w0,w1, . . . over propositions P , variables var , functions F , and predicates R,
the semantics of an FOLTL formula is defined as follows (for cases that were not
previously defined).

• For a term τ and a letter wi we define wi(τ) as expected; for a variable x, wi(x)
is the interpretation of x in wi , wi(Xx) is wi+1(x), wi(c) is the interpretation of
c in wi , and wi(f (τ1, . . . , τn)) is wi(f )(wi(τ1), . . . ,wi(τn)).

• For an atomic formula α and a model σ , we define when σ satisfies α in location i,
denoted σ, i |= α, as follows.

– σ, i |= r(τ1, . . . , τn) iff wi(r)(wi(τ1), . . . ,wi(τn))= true.
– σ, i |= ¬α iff σ, i �|= α.
– σ, i |= α1 ∨ α2 iff σ, i |= α1 or σ, i |= α2.
– σ, i |= ∃x.α iff there is a model σ̃ such that σ̃ agrees with σ on all locations

different from i and w̃i agrees with wi on the interpretation of all functions,
predicates, constants, and variables different from x such that σ̃ , i |= α.

Notice that the relations < or = can now be defined as binary predicates. This
definition is quite general. In particular, it allows every letter in the model to interpret
a predicate in a different way. For the purpose of this book it is mostly enough to
assume that predicates will be interpreted in the natural way and will not change
their meaning between different states. Notice that quantification is local to one
location, this can be made more general.

Given this definition of FOLTL, for every FDS D , there exists an FOLTL for-
mula ϕD , called the temporal semantics of D , which characterizes the computations
of D . It is given by:

ϕD : θ ∧G(ρ(V ,XV ))∧
∧

J∈J
GFJ ∧

∧

(P,Q)∈C
(GFP →GFQ),

where ρ(V ,XV ) is the formula obtained from ρ by replacing each instance of
the primed variable v′ by the LTL formula Xv. Note that we assume some fixed
definition of relations (such as < and =) and functions (such as +, +1, or ∗) that
may be used in the definition of D .
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2.3.4 Temporal Testers, Satisfiability, and Model Checking

Given an LTL formula we convert it to an FDS that recognizes its truth or falsity. We
start with construction of a temporal tester, an FDS that merely monitors the truth
value of the formula in a computation. That is, the temporal tester has a computation
for every possible sequence of truth assignments to propositions. It then annotates
this sequence of truth assignments with the value of the formula in every location.
A temporal tester can be thought of as adding a new proposition that marks the truth
value of the formula. We then use these FDSs to check the satisfiability of a formula
or for model checking.

Definition 5 (Temporal tester) A temporal tester for a formula ϕ is a JDS Tϕ that
has a distinguished Boolean variable xϕ such that the following hold. Let P be the
set of propositions appearing in ϕ.

For every computation σ : s0, s1, . . . of Tϕ we have si[xϕ] = 1 iff (σ, i) |= ϕ.
For every sequence of states π : t0, t1, . . . in (ΣP )ω there is a computation σ :

s0, s1, . . . of Tϕ such that for every i we have si ⇓P= ti .

We show how to construct testers by induction on the structure of the formula.
Thus, we construct a small FDS for each formula ψ using Boolean variables that
signal the truth values of the subformulas of ψ . We then take the synchronous par-
allel composition of these FDS for all the subformulas of ϕ.

• For a proposition p, we have Tp = 〈{p}, true, true〉.
• For a formula ψ =¬ψ1, we have Tψ = 〈{xψ, xψ1}, true, xψ =¬xψ1〉.
• For a formula ψ = ψ1 ∨ ψ2, we have Tψ = 〈{xψ, xψ1 , xψ2}, true, (xψ = (xψ1 ∨
xψ2))〉.

• For a formula ψ =Xψ1, we have Tψ = 〈{xψ, xψ1}, true, (xψ = x′ψ1
)〉.

• For a formula ψ =ψ1 U ψ2, we have

Tψ =
〈{xψ, xψ1 , xψ2}, true, xψ =

(
xψ2 ∨

(
xψ1 ∧ x′ψ

))
, {¬xψ ∨ xψ2}

〉
.

• For a formula ψ =Yψ1, we have Tψ = 〈{xψ, xψ1},¬xψ, x′ψ = xψ1〉.
• For a formula ψ =ψ1 S ψ2, we have

Tψ =
〈{xψ, xψ1, xψ2}, xψ = xψ2 , x

′
ψ =

(
x′ψ2

∨ (
x′ψ1

∧ xψ
))〉
.

Notice that the only case that the temporal tester requires fairness (justice) is the
case of until. Also the temporal testers for past operators are set to a definite value.
This is due to the knowledge of the (nonexistent) past. For an LTL formula ϕ let
sub(ϕ) denote the set of subformulas of ϕ, according to the grammar in Eq. (1).
Consider an LTL formula ϕ, let sub(ϕ) = {ψ1, . . . ,ψn}. Then, the temporal tester
for ϕ is Tϕ = Tψ1 ||| · · · |||Tψn .

Theorem 5 The JDS Tϕ is a temporal tester for ϕ.
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While a tester signals the truth value of every subformula in every location in
a computation, we are sometimes interested in an FDS all of whose computations
satisfy the formula. For that, we specialize the tester into an acceptor.

Definition 6 (Acceptor) An acceptor for a formula ϕ is a JDS Aϕ such that the
following hold. Let P be the set of propositions appearing in ϕ.

For every computation σ : s0, s1, . . . of Aϕ we have σ |= ϕ.
For every model π : t0, t1, . . . in (ΣP )ω such that π |= ϕ there is a computation

σ : s0, s1, . . . of Aϕ such that for every i we have si ⇓P= ti .

An acceptor is a mild variant of a temporal tester. Indeed, all we have to do is
to add an initial condition demanding that the variable xϕ is true in the initial state.
Formally, for a formula ϕ let Aϕ = 〈{xϕ}, xϕ, true〉. Then, Aϕ =Aϕ |||Tϕ .

Theorem 6 The JDS Aϕ is an acceptor for ϕ.

For further details on temporal testers and proofs of Theorems 5 and 6 we refer
the reader to [43].

We are finally ready to define the notion of linear-time model checking. While
satisfiability calls for finding a model that satisfies a logical formula, model check-
ing in fact seeks the validity of a formula over the set of models produced by an
FDS. Algorithmically, as we show below, we check validity by reducing it to non-
satisfiability of the complement. So both validity and model checking are reduced to
satisfiability, the first by considering the satisfiability of the complement, the second
by considering the satisfiability of the complement over the FDS representing the
system.

Definition 7 (Satisfiability) An LTL formula ϕ is satisfiable if its set of models is
non-empty. That is, ϕ is satisfiable if L (ϕ) �= ∅.

Theorem 7 LTL satisfiability is decidable in polynomial space.

Proof Consider an acceptor Aϕ for ϕ. Clearly, if Comp(Aϕ) �= ∅ we can conclude
that ϕ has some model. As Aϕ is a JDS, Algorithm 3 can check whether Aϕ has
some computation. The number of Boolean variables used in the acceptor Aϕ is
proportional to the size of the formula ϕ. Thus, in the worst case, the number of
states of Aϕ is exponential in the size of ϕ and the polynomial space upper bound
follows from the logarithmic space algorithm for checking viability. �

Definition 8 (Validity) An LTL formula ϕ is valid if every sequence in (ΣP ′)ω is
a model of ϕ, where Pϕ ⊆ P ′ is the set of propositions appearing in ϕ.

Theorem 8 LTL validity is decidable in polynomial space.

Theorem 8 follows from the fact that an LTL formula ϕ is valid iff ¬ϕ is not
satisfiable.
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Definition 9 (Implementation) We say that an FDS D implements specification ϕ,
denoted D |= ϕ, if every computation of D satisfies ϕ.

Definition 10 (Model checking) Given an FDS D and an LTL formula ϕ, the
model-checking problem for D and ϕ is to decide whether D implements ϕ.

Theorem 9 LTL model checking is decidable in polynomial space.

In the proof below, the model-checking problem for an FDS D and an LTL for-
mula ϕ is solved by trying to find a single computation of D that does not satisfy ϕ.
For that, we use the acceptor for ¬ϕ.

Proof Consider the acceptor A¬ϕ and the synchronous composition K =A¬ϕ |||D .
Suppose that K is viable. That is, there is some computation σ of K . By Lemma 2
the projection of σ on the variables of D is a computation of D and the projection of
σ on the variables of A¬ϕ is a computation of A¬ϕ . By Theorem 6, a computation
of A¬ϕ is a model of ¬ϕ. It follows that σ is a computation of D that does not
satisfy ϕ.

In the other direction, suppose that σ is a computation of D that does not sat-
isfy ϕ. Then, by Theorem 6, there is a computation σ ′ of A¬ϕ that agrees with σ
on all the propositions. It follows that σ |||σ ′, where in every position σ |||σ ′ agrees
with σ on the variables of D and with σ ′ on the variables of A¬ϕ , is a computation
of D |||A¬ϕ . �

We note that the complexity results for satisfiability and model checking were
obtained initially with different techniques from those described here [50].

We now turn our attention to a different approach to specifying properties of
programs.

2.4 Computation Tree Logic

In this section we present branching-time logic and computation tree logic (abbre-
viated CTL). In the branching-time view there may be multiple possible futures in
a given state, corresponding to its different successors. A computation, then, is a
single structure that captures the branching of the entire program. Originally, CTL
would view a program as a generator of a computation tree—a tree structure in
which every node is labeled by states of the program and the same state may la-
bel different nodes on the same branch of the tree (corresponding to a loop in the
program). Here, we choose to define CTL satisfaction directly over FDSs and not
over their computation trees. Thus, a CTL formula characterizes a set of possible
systems. We define CTL and study some extensions of it. We then connect this back
to model checking and show how to solve the model checking problem for CTL.
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2.4.1 Definition of Computation Tree Logic

We assume a countable set of Boolean propositions P . Here, we choose to define
fairness-free FDSs as the models of CTL formulas. We view an FDS as giving truth
assignments to propositions by demanding that the propositions are Boolean vari-
ables of the FDS. Namely, if P̂ is the set of propositions appearing in ϕ, then every
FDS D such that P̂ ⊆ V is a model for ϕ.

CTL formulas use the Boolean connectives and augment the temporal connec-
tives from LTL with path quantification. Each temporal connective is combined with
either “for all” or “for some” paths, giving rise to interpretation over the states of
the FDS.

ϕ ::= p | ¬ϕ | ϕ1 ∨ ϕ2 | AX(ϕ) | A(ϕ1 U ϕ2) | A(ϕ1 W ϕ2). (5)

The intuitive meaning of A is that the temporal formula nested within should hold
for all paths that start in a state.

Formally, for a formula ϕ and an FDS D = 〈V , θ, ρ〉, we say that ϕ holds in
state s of D , written D, s |= ϕ, and define it inductively as follows:

• For p ∈ P we have D, s |= p iff s |= p.
• D, s |= ¬ϕ iff D, s �|= ϕ.
• D, s |= ϕ1 ∨ ϕ2 iff D, s |= ϕ1 or D, s |= ϕ2.
• D, s |=AX(ϕ) if for every t such that (s, t ′) |= ρ we have D, t |= ϕ.
• D, s |= A(ϕ1 U ϕ2) if for every path σ = s0, s1, . . . starting in s there is some

0≤ i < |σ | such that D, si |= ϕ2 and for every 0≤ j < i we have D, sj |= ϕ1.
• D, s |= A(ϕ1 W ϕ2) if for every path σ = s0, s1, . . . starting in s and for every

0≤ j < |σ | either D, sj |= ϕ1 or there is 0≤ i ≤ j such that D, si |= ϕ2.

We use the usual abbreviations of the Boolean connectives and the temporal con-
nectives F and G as in LTL. We introduce the path quantifier E as an abbreviation,
as follows.

• EX(ϕ)≡¬AX(¬ϕ),
• E(ϕ1 U ϕ2)≡¬A(¬ϕ2 W (¬ϕ1 ∧¬ϕ2)),
• E(ϕ1 W ϕ2)≡¬A(¬ϕ2 U (¬ϕ1 ∧¬ϕ2)).

For example, the formula EX(p) holds in a state that has some successor in
which proposition p holds. The formula E(pU q) holds in a state from which there
is a path over which pU q holds. We note that FDSs are assumed to be fairness-free
and, in general, CTL does not use the concept of runs and computations.

Also here, sometimes letters replace the symbols and AX becomes AX, AF
becomes AF, and AG becomes AG, and similarly for the existential path quantifi-
cation.

For a CTL formula ϕ and an FDS D , we denote by [[D, ϕ]] the set of states for
which D, s |= ϕ. Formally, [[D, ϕ]] = {s ∈ΣV | D, s |= ϕ}.

Definition 11 (Implementation) We say that an FDS D implements specification ϕ,
denoted D |= ϕ, if every initial state of D satisfies the formula.
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2.4.2 Extensions

We consider extensions of CTL that are similar to those considered for LTL. Due to
the branching nature of CTL, the definition of past is more involved and we treat it
here. We then proceed to consider FOCTL. These are presented more briefly than
the case for LTL as they are used less often in practical model checking.

When coming to extend CTL with past we have to make several decisions. Firstly,
we need to decide whether the past is branching or linear. In the first interpretation,
every state has all its predecessors as possible pasts. In the second interpretation
we consider an unwinding of the system to a tree (from a certain state) and every
node in this tree has a unique past. Secondly, we need to decide whether the past
may be infinite. Here, we choose to define a branching but finite past. This decision
somewhat simplifies the treatment of CTL with past. For an in-depth treatment of
all options we refer the reader to [31].

Past CTL formulas augment the definition of CTL by including the following
clauses in the grammar in Eq. (5).

ϕ ::=AY(ϕ) | A(ϕ1 S ϕ2) | A(ϕ1 Bϕ2). (6)

The definition of D, s |= ϕ is augmented as follows.

• D, s |=AY(ψ) if for every t such that (t, s′) |= ρ we have D, t |=ψ .
• D, s |= A(ψ1 S ψ2) iff for every run s0, s1, . . . and for every i such that s = si

there exists some j ≤ i such that D, sj |= ψ2 and for all j < k ≤ i we have
D, sk |=ψ1.

• D, s |= A(ψ1 Bψ2) iff for every run s0, s1, . . . and for every i such that s = si
then for every j ≤ i we have D, sj |= ψ1 or there is some j < k ≤ i such that
D, sk |=ψ2.

As before, and similar to LTL, we introduce the following abbreviations.

• EY(ϕ)≡¬AY(¬ϕ),
• E(ϕ1 S ϕ2)≡¬A(¬ϕ2 B(¬ϕ1 ∧¬ϕ2)),
• E(ϕ1 Bϕ2)≡¬A(¬ϕ2 S (¬ϕ1 ∧¬ϕ2)).

Notice, that unlike in LTL, where the formula ¬(Y true) identifies the initial loca-
tion, the formula EY(true) holds in initial states that have predecessors in D . This
is different from the treatment in [31], where it is assumed that initial states have no
incoming transitions.

Our choice to have a branching past induces some strange consequences. For
example, the formula AG(grant→ EP(request)) says that every reachable state
where grant is supplied is also reachable from a state where request is supplied and
not necessarily on its actual past. On the other hand, AG(grant→AP(request))
says that all ways to reach grant must have a request on them. We note that choos-
ing a linear past increases the complexity of CTL model checking to that of LTL.
Additional studies of CTL with past are available in [35, 36].
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We turn now to FOCTL, the extension of CTL to a logic that can reason about
FDS with discrete variables that are not necessarily Boolean. As before, we gener-
alize the set of propositions to a set of n-ary predicates for n ≥ 0, denoted R. We
use f,g, . . . to denote n-ary functions for n ≥ 0 and c, d, . . . to denote constants.
Let var = {x, y, . . .} be a countable set of variables. We define the set of terms (τ ),
atomic formulas (α), and formulas (ϕ).

τ ::= c | x | f (τ, . . . , τ )
α ::= r(τ1, . . . , τn) | ¬α | α1 ∨ α2 | ∃x.α
ϕ ::= α | ϕ1 ∨ ϕ2 | ¬ϕ | AX(ϕ) | A(ϕ1 U ϕ2) | A(ϕ1 W ϕ2).

(7)

Notice that the term Xx that was included in the definition of FOLTL is removed
here. As there may be multiple next states, it is not clear how to define the value of
Xx.

A model for such a formula is an FDS D = 〈V , θ, ρ〉, where every state s ∈ΣV
has an interpretation for functions, constants, and variable symbols. Given such a
model the semantics is defined as follows.

• For a term τ and a state s we define s(τ ) as expected; for a variable x, s(x) is
given by the valuation in state s, for a constant c, s(c) is given by the valuation in
state s, and s(f (τ1, . . . , τn)) is s(f )(s(τ1), . . . , s(τn)).

• For an atomic formula α and a state s, we define when s satisfies α, denoted
s |= α, as follows.

– s |= r(τ1, . . . , τn) iff s(r)(s(τ1), . . . , s(τn))= true.
– s |= ¬α iff s �|= α.
– s |= α1 ∨ α2 iff s |= α1 or s |= α2.
– s |= ∃x.α iff there exists a model s̃ such that s̃ agrees with s on the interpreta-

tion of all functions, predicates, constants, and variables different from x such
that s̃ |= α.

As in LTL, the main intention is to include references to variables ranging over
discrete and infinite domains within a temporal context.

We mention informally CTL with past regular expressions. In this language, reg-
ular expressions are used to identify states that are reachable from an initial state
with a computation that satisfies a given regular expression. This is the basis of the
industrial specification language SUGAR that was succeeded by PSL (see [15] in
this Handbook). We avoid defining this extension of CTL as it requires us to change
the treatment of satisfaction from FDS to their computation trees, which we have
not defined.

Finally, we discuss an extension of CTL that has to do with the ability to ex-
press fairness. The justice requirement can be stated in CTL as AG(AF(p)) (if
every state has some successor). However, compassion cannot be expressed in CTL
and CTL is not strong enough to demand that liveness properties hold only on fair
paths. In order to solve this deficiency we add the path quantifiers Af and Ef ,
which range over fair paths. Formally, we extend the grammar in Eq. (5) by includ-
ing Af (ϕ1 U ϕ2) and Af (ϕ1 W ϕ2) and consider FDS with fairness as models. The
satisfaction of these formulas is defined over fair paths only:
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• D, s |=Af (ϕ1 U ϕ2) iff for every fair path s0, s1, . . . starting in s there is some i
such that si |= ϕ2 and for all 0≤ j < i we have sj |= ϕ1.

• D, s |= Af (ϕ1 W ϕ2) iff for every fair path s0, s1, . . . starting in s and for every
j ≥ 0 either D, sj |= ϕ1 or there is i ≤ j such that D, si |= ϕ2.

As usual, we introduce the abbreviations Ef (ϕ1 U ϕ2) for ¬Af (¬ϕ2 W (¬ϕ1 ∧
¬ϕ2)) and Ef (ϕ1 W ϕ2) for¬Af (¬ϕ2 U (¬ϕ1∧¬ϕ2)). We note that there are some
complications when the FDS has some runs that are not computations, i.e., if there
are reachable states that have no successors. Further details are available in [13, 20].
This issue is revisited in the next section, where we consider various examples of
the usage of LTL and CTL.

2.4.3 Model Checking and Satisfiability

When handling LTL, model checking and satisfiability are similar and indeed use
almost the same techniques. Here, handling CTL, satisfiability is more complex than
model checking and will use model checking as a subroutine. Thus, we start with
studying model checking and then turn to satisfiability. Here we consider fairness-
free FDSs as we do not discuss the extension to fair CTL.

Definition 12 (Model checking) Given an FDS D and a CTL formula ϕ, the model-
checking problem for D and ϕ is to decide whether D implements ϕ.

Theorem 10 CTL model checking is decidable in polynomial time.

As before, the stated polynomial bound is in terms of the number of states of the
FDS, which could be exponential in its representation. In order to solve the model-
checking problem for a model D and a CTL formula ϕ we recursively compute the
set of states that satisfy subformulas of ϕ.

Proof Consider an FDS D = 〈V , θ, ρ〉 and a CTL formula ϕ. For every subformula
ψ of ϕ we compute the set of states [[D,ψ]]. As before, we assume an efficient way
to represent, manipulate, and compare assertions.

For a proposition p we have [[D,p]] = p.
For ψ =ψ1 ∨ψ2 we have [[D,ψ]] = [[D,ψ1]] ∨ [[D,ψ2]].
For ψ =¬ψ1 we have [[D,ψ]] = ¬[[D,ψ1]].
For ψ =AX(ψ1) we have [[D,ψ]] = ¬pre(¬[[D,ψ1]], ρ). That is, it is not the

case that there is some successor that is not in [[D,ψ1]].
For ψ = A(ψ1 U ψ2) Algorithm 5 computes [[D,ψ]] (using fixpoints). When

the fixpoint terminates, its value characterizes [[D,ψ]]. Intuitively, a state that is in
[[D,ψ2]] definitely satisfies A(ψ1 U ψ2). Otherwise, we gradually add states all of
whose successors we know already satisfy A(ψ1 U ψ2) and are also in [[D,ψ1]].
We are careful not to include states in [[D,ψ1]] that have no successors.
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Algorithm 5 Model check A(ψ1 U ψ2)

fix (new := [[D,ψ2]])
new := new∨ ([[D,ψ1]] ∧ ¬pre(¬new, ρ)∧ pre(true, ρ));

end fix

Algorithm 6 Model check A(ψ1 W ψ2)

fix (new := true)
new := new∧ ([[D,ψ2]] ∨ ([[D,ψ1]] ∧ ¬pre(¬new, ρ)));

end fix

For ψ = A(ψ1 W ψ2) Algorithm 6 computes [[D,ψ]]. When the fixpoint ter-
minates, its value characterizes [[D,ψ]]. Intuitively, a state that is included in the
fixpoint is either in [[D,ψ2]], in which case it clearly satisfies ψ , or it is in [[D,ψ1]]
and all its successors are in the fixpoint as well. It follows that a maximal path start-
ing at such a state either remains in the fixpoint forever (i.e., all states on the path
satisfy ψ1), or at some point reaches ψ2 passing through states that satisfy ψ1.

Finally, once the formula characterizing [[D, ϕ]] is computed, we check whether
θ→[[D, ϕ]] to ensure that all initial states satisfy ϕ.

The number of stages of computation is related to the size of ϕ. Each and every
one of the fixpoints is computed in time that is linear in the number of transitions
of the given FDS. As before, the algorithm may be exponential in the size of the
representation of the FDS. �

We now proceed to check satisfiability of CTL formulas. Given a CTL formula
we construct a canonical FDS that checks whether it is satisfiable or not. This is
called the tableau for ϕ. Essentially, we add Boolean variables for every subfor-
mula of ϕ and ensure that the transition relation satisfies the requirements of the
subformulas. Unfortunately, this does not capture well the existential path formu-
las (negation of universal path formulas) and the fulfillment of until formulas (i.e.,
getting to a point where the second operand holds). So after building an initial FDS
(referred to as a pre-tableau) we refine it (using Algorithm 7) to ensure that all for-
mulas indeed hold. Algorithm 7 uses Algorithms 5 and 6 for model checking.

Assume that ϕ is converted to a formula that is syntactically derived from the
grammar in Eq. (5). Let cl(ϕ) denote the set of subformulas of ϕ. Let V be the set
of Boolean variables {vψ |ψ ∈ cl(ϕ)}. We define the following essential consistency
rules for these variables.

cons≡
∧

¬ψ∈cl(ϕ)

(v¬ψ ↔¬vψ)∧
∧

ψ1∨ψ2∈cl(ϕ)

(
vψ1∨ψ2 ↔ (vψ1 ∨ vψ2)

)
.
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Algorithm 7 Refine Pre-tableau
1: fix (new := true)
2: ρf := ρ ∧ new∧ prime(new);
3: new := new∧

∧

AX(ψ)∈cl(ϕ)

(¬vAX(ψ)→ pre(¬v′ψ,ρf));

4: for all (A(ψ1 U ψ2) ∈ cl(ϕ))
5: fix (until := new)
6: until := until∧¬vψ2 ∧ (¬vψ1 ∨ pre(until, ρf)∨¬pre(true, ρf));
7: end fix
8: new := new∧ (¬vA(ψ1 U ψ2)

→ until);
9: fix (until := new∧ vψ2 )

10: until := until∨ (vψ1 ∧ new∧¬pre(¬until, ρf)∧ pre(true, ρf));
11: end fix
12: new := new∧ (vA(ψ1 U ψ2)

→ until);
13: end for
14: for all (A(ψ1 W ψ2) ∈ cl(ϕ))
15: wuntil := backreach(new∧¬vψ1,¬vψ2 ∧ ρf);
16: new := new∧ (¬vA(ψ1 W ψ2)

→wuntil);
17: end for
18: end fix

Then a pre-tableau for ϕ is the FDS Dϕ = 〈V , θ, ρ〉, where θ and ρ are defined as
follows.

θ = vϕ ∧ cons,
ρ = cons∧ prime(cons) ∧∧

AX(ψ)∈cl(ϕ)

vAX(ψ)→ v′ψ ∧
∧

A(ϕ1 U ϕ2)∈cl(ϕ)

vA(ϕ1 U ϕ2)
→ (vϕ2 ∨ (vϕ1 ∧ v′A(ϕ1 U ϕ2)

)) ∧
∧

A(ϕ1 W ϕ2)∈cl(ϕ)

vA(ϕ1 W ϕ2)
→ (vϕ2 ∨ (vϕ1 ∧ v′A(ϕ1 W ϕ2)

)) .

We are now going to restrict the pre-tableau so that it respects the truth of ex-
istential formulas and delivery of until (so far until and weak-until are treated the
same). Essentially, we compute the set of states that do not satisfy such formulas
and effectively add conjuncts to θ and ρ (much like cons) that remove such states.
Formally, we apply Algorithm 7 on the pre-tableau Dϕ .

The algorithm handles all existential path formulas and eventualities as follows.
In line 3 we add the requirement that every subformula of the form AX(ψ) behaves
consistently. That is, if vAX(ψ) is false in a state, then some successor must have
vψ false. In lines 5–8 we similarly handle consistency for subformulas of the form
A(ψ1 U ψ2). We compute the set of states that satisfy E(¬ψ2 W (¬ψ1 ∧¬ψ2)) by
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computing the fixpoint of new ∧ ((¬ψ1 ∧ ¬ψ2) ∨ (¬ψ2 ∧ pre(new)) ∨ (¬ψ2 ∧
¬pre(true))), which is simplified as above. Then, we require that if vA(ψ1 U ψ2)

does not hold, then the state satisfies the computed assertion new. A similar consis-
tency requirement is added for subformulas of the form A(ψ1 W ψ2) in lines 15–16.
Finally, lines 9–12 compute the set of states that satisfy A(ψ1 U ψ2) and add a
positive guarantee that when vA(ψ1 U ψ2)

holds then it is the case that A(ψ1 U ψ2)

indeed holds. The external fixpoint ensures that the effect of removed states and
transitions is further propagated backward until stabilization. This ensures that all
eventualities and existential path properties are indeed fulfilled. Finally, a tableau
for ϕ is Tϕ = 〈V , θ ∧ new, ρf〉. We are now ready to define and decide satisfiability.

Definition 13 (Satisfiability) A CTL formula ϕ is satisfiable if some FDS imple-
ments it. That is, ϕ is satisfiable if there is an FDS D such that D |= ϕ.

Theorem 11 CTL satisfiability is decidable in exponential time.

Proof If in Tϕ the initial condition is not equivalent to false we conclude that ϕ is
satisfiable.

It is simple to see by construction of Tϕ that if vψ holds in a state s of Tϕ
then Tϕ, s |=ψ . In particular, the initial condition requires that vϕ holds, thus if the
initial condition is not false we have found an FDS that satisfies ϕ.

Showing that if ϕ is satisfiable then the above construction will supply an FDS
that satisfies ϕ is more complicated. The proof proceeds by taking an arbitrary FDS
D implementing ϕ (including infinite state) and constructing a quotient D/≡. Two
states, s and t , are considered equivalent s ≡ t iff they agree on the truth value
of all formulas in cl(ϕ). Then, D/≡ is obtained from D by considering equiva-
lence classes as new states. Two equivalence classes [s] and [t] are connected if
ρ(s, t) in D . Unfortunately, the quotient operation may introduce loops that inter-
fere with satisfaction of until formulas (either of the type A(ψ1 U ψ2) or of the
type ¬A(ψ1 W ψ2)). So the quotient structure needs to be pruned to ensure that all
eventualities are fulfilled. For a full account we refer the reader to [18].

We note that the number of states of the pre-tableau is exponential in the size
of ϕ. Thus, checking that until subformulas hold on the pre-tableau may require
exponential time and lead to the stated time bound. �

2.5 Examples for LTL and CTL

In this section we explore the usage of LTL and CTL. We give examples of specifi-
cations and discuss their meaning. We also start hinting at the differences between
LTL and CTL and their respective advantages and disadvantages. As our definition
of LTL considers only infinite paths we assume that FDSs considered in this section
have no finite paths.
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2.5.1 Invariance and Safety

We start with the simplest type of property. An invariance simply says that there
is an assertion that holds over all reachable states of the program. Consider Peter-
son’s mutual exclusion algorithm represented in Fig. 2. We would like to estab-
lish that no matter what, the two processes will not visit their respective critical
sections at the same time. The assertion that characterizes states where both sys-
tems are in their critical section is atl5 ∧ atm5 . Then, G¬(atl5 ∧ atm5) in LTL and
AG(¬(atl5 ∧ atm5)) in CTL say exactly that: it globally holds, i.e., in every reach-
able state, that the two programs are not both in their critical sections. The same
property for the semaphore example in Fig. 3 is written G¬(atl3 ∧ atm3) in LTL
and AG(¬(atl3 ∧ atm3)) in CTL.

Invariants can also be used to specify that some locations in a program are never
reached. Consider for example the case of a software program that includes an as-
sertion. Then, we can replace this assertion by a conditional statement and check
an invariant saying that the location inside the condition is never reached. Invariants
are relatively easy to check as they just require the computation of the set of reach-
able states. Furthermore, if exploring the states walking forward (using reach and
not backreach) then the exploration can be stopped as soon as a violation is found.

An interesting property is a transition invariant. While invariants must hold for
all reachable states, transition invariants must hold for all reachable transitions. In
general, they can be written as G(α) or AG(α), where α allows Boolean operators
and at most one level of nesting of the X (or AX) operator. For example, the
unless property of unity [11] is such a transition invariant. Whenever assertion p
holds and q does not hold, then the next state must satisfy p or q . Formally, G((p∧
¬q)→X(p ∨ q)) in LTL and AG((p ∧¬q)→AX(p ∨ q)) in CTL. We note
that the same property can be written as G(p→ pW q), which may be clearer,
and similarly in CTL. Another transition invariant is the property of stabilization.
Whenever assertion p becomes true it remains true forever. Formally, G(p→Gp)

or AG(p→AG(p)) can be written also as G(p→Xp) or AG(p→AX(p)).
Transition invariants are important as they are relatively easy to check. Computation
of reachable states inevitably has to take transitions into account. Thus, checking of
transition invariants can be easily integrated into reachability analysis.

The formula G(grant →P request) states the precedence in time of request
over grant. It is equivalent to (¬grant)W request and can be expressed in CTL
as A(¬grant W request). The stronger property G(grant→Y(¬grant S request))
states that every grant comes after a previous request and that once a grant has been
given no additional grant can be given without a new request. The property

G
(
grant2 ∧Pgrant1 →

(¬request1 S (request2 ∧P request1)
))

states that whenever grant2 comes after grant1, the respective requests happened in
the same order.

Similarly, the property G(light→ light S call) [4], taken from a specification of
a lift system, says that if the light is on it has been on continuously since a call
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was made. The same property can be stated without usage of past operators as
G(X light → (light ∨ call)). Here we assume that light and call cannot occur to-
gether.

Finally, we mention that the two properties pW (qW r) and (pW q)W r are
not equivalent. Indeed, the first requires that p holds continuously either forever
or up to a point where qW r starts holding. The second requires that pW q hold
continuously either forever or until r . In particular, the satisfaction of pW q may
need to be checked after the occurrence of r , which may be slightly less clear. For
example, a sequence of p’s followed by an r (and neither p nor q) satisfies the first
but not the second.

2.5.2 Liveness

We now proceed to present some liveness properties. The simplest liveness property
is Fp for some atomic proposition p. For example, consider the program in Fig. 1.
Termination of this program is expressed as Fatl3 . We note that this property does
not hold for the program as presented as an FDS in Sect. 2.2. Indeed, the program
includes the stuttering clause allowing the program to stay in every one of its states
forever. If we add the justice requirements J = {¬atli | i ∈ {0,1,2}} then every
computation does satisfy the property. The same property in CTL is AF(atl3). As
in LTL, it does not hold over this system. As this program runs in isolation, we
can “factor in” the effects of justice. By removing the stuttering clause from the
transitions of the system we get a system that does satisfy this property. Another
option is to use fairness and replace AF(atl3) by Af F(atl3).

We turn our attention to Peterson’s mutual exclusion algorithm (Fig. 2). Here,
we would like to establish that each process can access the critical section. Without
loss of generality, we consider only the left-hand process. The case of the other pro-
cess is identical. In LTL this is expressed as G(atl2 →Fatl5). Namely, whenever
the left-hand-side process leaves the non-critical section and starts the process of
reaching the critical section it will eventually get there. As before, to express the
same in CTL we have to either remove all stuttering—leaving the option to stay
in the noncritical section—or use fair path quantification. Here, we could use ei-
ther Af G(atl2 → Af F(atl5)) or AG(atl2 →Af F(atl5)). Accessibility in the
program using semaphores in Fig. 3 is G(atl2 →Fatl3). The same property in
CTL is AG(atl2 →AF(atl3)). This time, as the program uses compassion, the
only way to reason about this property is by using fair path quantification as in
AG(atl2 →Af F(atl3)).

In general the property of justice—that an assertion is true infinitely often along a
computation—is expressible in both LTL and CTL. Given a justice requirement J ,
writing GFJ in LTL or AG(AF(J )) in CTL has exactly the same meaning.
However, this property checks whether all paths of the program are fair. When
checking liveness properties, we often rely on fairness to make progress. Thus, the
property is only going to hold on fair paths. This is easily expressed in LTL by writ-
ing GFJ → ϕ, where ϕ is the liveness property we are interested in. However,
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AG(AF(J ))→ ψ , even if ψ is the CTL equivalent of ϕ, says that only if all
paths of the program are fair do we expect ψ to hold. This is the reason to introduce
the fair path quantifier.

A similar issue arises when we consider assumptions about the behavior of the
program. In many cases, model checking is applied to part of a program, or a pro-
gram that is expected to be used in a given environment. This is very similar to
fairness, where we assume that some scheduler is going to handle the many pro-
cesses in some fair way but do not model this scheduler explicitly. In LTL such a
situation is easily handled by using implication. Indeed, ϕ→ ψ says exactly that
only computations that satisfy ϕ should satisfy ψ . If ϕ is some environment as-
sumption, then we get that ψ should hold only on paths where the environment
is well behaved. Consider for example Peterson’s mutual exclusion algorithm in
Fig. 2. Using assume-guarantee we could analyze just one of the components of
the program. Indeed, if we add the assumption that G(t = 1→F t = 0) or that
GF(y = 0), then every environment that changes y and t arbitrarily but ensures
either of these properties will guarantee accessibility. Thus, the left-hand-side pro-
cess fulfills G(t = 1→F t = 0)→G(atl2 →Fatl5). Notice, however, that we
have to add an environment that changes t and y arbitrarily when the system is
not changing them. Similarly, for the semaphores example in Fig. 3 it is enough to
assume that the environment releases x infinitely often. Thus, the left-hand-side sys-
tem satisfies (GFx = 1)→G(atl2 →Fatl3). Notice, that the environment can
increase the value of x even when the process owns x. This will obviously violate
the safety of the protocol but will guarantee its liveness. Notice, that the assump-
tions have to be discharged in an acyclic way. For example, in order to complete
the proof of accessibility for Peterson we have to show that the environment guar-
antees G(t = 1 →F t = 0) and do that without relying on accessibility of the
left-hand-side process. Circular reasoning in the context of liveness usually does
not work. One simple strategy to avoid cyclic reasoning is by having an order on the
components of the system that supply assumptions. CTL does not support a simple
implementation of assume-guarantee.

2.5.3 Additional Examples

So far most examples were equally easily expressed in LTL and CTL. We now
explore a few specifications that show the differences between the two.

We start with an example that presents the exact meaning of the tight pairing of
path quantifiers and temporal operators in CTL. Consider the two CTL properties,
AF(AX(p)) and AX(AF(p)). The two are different. Indeed, in the first, every
path of the system must reach a state all of whose successors satisfy p. On the other
hand in the second, it is enough that every path of the system reaches a state that
satisfies p. Thus, the first requires the p’s to be all successors of the same state
and the second does not. Interestingly, the second property is expressible in LTL
as either XFp or FXp. The property AF(AX(p)) cannot be expressed in
LTL.
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Consider the property AG(withdrawal→ (AX(success)∨AX(¬success)))
[10]. It states that following a withdrawal request either in all possible futures the
request is successful or in all possible futures the request is unsuccessful. Clearly,
this property is not expressible in LTL.

The problem of deadlock, when all processes in a system are stuck, or rather
its avoidance, is a very important property of concurrent systems. This can be ex-
pressed in CTL as AG(EX(true)). That is, every state has some successor. Clearly,
we have to disallow stuttering in order for the check of this property to be mean-
ingful. In LTL we restrict attention to infinite computations and avoid the issue of
deadlocks. It is simple to incorporate search for deadlocks when computing the set
of reachable states. However, the LTL model-checking algorithm calls for the com-
position of an FDS with a temporal tester. Even if the FDS does not have deadlocks,
its composition with the temporal tester may have deadlocks (due to nondetermin-
ism and deadlocks of the temporal tester). Thus, in order to check for deadlocks in
the LTL framework we have to implement it separately.

An interesting property, of a similar flavor, showing the power of CTL is that of
recovery. Essentially, it says that a system can always recover. Suppose that start is
an assertion characterizing some states in which the system can start again. A prop-
erty like AG(EF(start)) states that from every reachable state of the program,
it is possible to get to a state satisfying start. Having a reset sequence that gets a
program to a safe initial state is important in hardware design. Recovery is also an
assumption of black-box checking [40]. Clearly, this combination of universal and
existential path quantification is impossible to express in LTL.

2.6 CTL∗

As demonstrated in Sect. 2.5, LTL and CTL are different. However, in order to
compare them formally, we have to reason about the same sets of models. In order
to do that, we think about both LTL and CTL as characterizing sets of FDSs. We then
show that LTL and CTL are incomparable. We exhibit families of models that can
be distinguished by LTL formulas but cannot be distinguished by CTL formulas and
vice versa. This leads to the definition of CTL∗, an expressive logic that combines
both LTL and CTL. Effectively, it combines the full LTL with the path quantifiers
introduced in CTL.

2.6.1 Branching vs. Linear Time

As explained, models of LTL formulas are infinite sequences and models of CTL
formulas are FDSs. In order to be able to compare the two, we consider the definition
of implementation for both logics. We show that some formulas in LTL cannot be
expressed in CTL and some formulas in CTL cannot be expressed in LTL. That is,
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Fig. 5 Systems Mi that
satisfy FGp

for an LTL/CTL formula ϕ let Imp(ϕ) denote the set of implementations of ϕ. Then,
there is an LTL formula ϕ such that for every CTL formula ψ we have Imp(ϕ) �=
Imp(ψ), and vice versa.

We start by showing that LTL can express properties that cannot be expressed in
CTL. Specifically, the formula FGp cannot be expressed in CTL. As we explain
below, the natural CTL candidate to express the same property is AF(AG(p)).
However, the latter requires that p starts holding in all futures simultaneously, which
is more than the LTL formula stipulates. We define a family of systems M such that
FGp holds over M . We show that every CTL formula that holds over all the
systems in M must hold also over a system that falsifies FGp. The system is
depicted in Fig. 5. For convenience, we depict all the family M as one infinite-state
system, however, every instance in the family includes a finite number of states.
Formally, using a

.−b ≡ max(0, a − b) we set Mi = 〈{p,y},p ∧ y = i, ρi〉, where
p is a Boolean variable and y ranges over {0, . . . , i} and ρi is defined as follows.

ρi ≡
(
p→ y = y′)∧ (¬p→ y′ = y .−1

)∧ (
(p ∧ y > 0)∨ p′).

It is simple to see that for j ≥ 1 state s2j−1 corresponds to the valuation y = j and
¬p and for j ≥ 0 state s2j corresponds to the valuation y = j and p. Also, every
infinite path eventually remains in state s2j for some j . Hence, every infinite path
satisfies FGp and every system Mi satisfies the LTL formula FGp.

We now show that this cannot be the case for a CTL formula.

Lemma 7 For every CTL formula ϕ such that for all i ≥ 0 we have Mi , t2i |= ϕ
there is a system N such that N |= ϕ and N �|=FGp.

Proof Let n be the number of subformulas of ϕ and let m denote 2n. Consider the
system Mm. We are going to identify two states t2i and t2j for i < j ≤m such that
the sets of subformulas of ϕ that hold in t2i and t2j are identical. Furthermore, we
are going to identify a path between t2i and t2j such that all universal eventualities
that should be true in t2i are fulfilled before arriving at t2j and all existential eventu-
alities that should be true in t2i are fulfilled on paths that diverge from this identified
path. Then, we create a modified system where this specific path between t2i and
t2j is closed to form a loop. Clearly, this path falsifies the LTL formula FGp.
However, from the construction of this path, all subformulas of ϕ that hold in t2m
still hold in the modified system. In particular, ϕ holds in t2m showing that ϕ cannot
be equivalent to FGp.

We modify the system Mm as follows. Consider the state t2m and let Cm be
the set of subformulas of ϕ that hold in t2m. Consider a subformula ψ ∈ Cm of
the form ψ = A(ψ1 U ψ2). As ψ holds in t2m it must be the case that ψ2 holds
in t2m, otherwise ψ does not hold on the path t2m, t2m, t2m, . . .. Consider the set of
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Fig. 6 Systems Mi that
satisfy AF(AG(p)) and
system N that does not

subformulas of the form EX(ψ1) or E(ψ1 U ψ2) that hold in t2m. There is a finite
set of paths that start in t2m and show satisfaction of all existential path formulas.
Of all these paths, there is a maximal number km of repetitions of the state t2m on
a path. Let Nm denote the system that is obtained from Mm by replacing the state
t2m by a chain of states t12m, . . . , t

km
2m such that tj2m is connected to tj−1

2m and to a copy
of Mm−1. Clearly, all formulas of Cm still hold over Nm and all eventualities that
are promised in t12m are fulfilled before arriving at tkm2m.

We now modify Nm by changing the copy of t2m−2 that is connected to tkm2m to
create Nm−1 by the same process. We repeat this process until at some point, we
find that the set of subformulas of ϕ that hold in t2i is equivalent to Cm. Then, we
simply connect t12m instead of t2i and create a loop.

The modified system still satisfies all CTL formulas that are promised to hold in
Cm and in particular ϕ. �

Our proof is based on Rabin’s result about expressiveness of tree automata [46].
An alternative proof based on systems with fairness constraints is available in [12].

Corollary 2 CTL is not as expressive as LTL.

We now show that LTL is not as expressive as CTL, establishing the two as
incomparable. It is simple to find a formula that combines universal and existen-
tial path quantification, such as AG(EF(p)), that cannot be expressed in LTL.
It is more interesting to find a formula that uses only universal path quantifiers
and is not expressible in LTL. We prove the dual of Lemma 7 and show that
AF(AG(p)) cannot be expressed in LTL. We define a family of systems that
satisfy AF(AG(p)) and a system that does not satisfy AF(AG(p)). Con-
sider the family of systems M and the system N depicted in Fig. 6. For conve-
nience, we depict all the family M as one infinite-state system. Formally, we set
Mi = 〈{p,y}, θi, ρi〉, where p is a Boolean variable and y ranges over {0, . . . , i}
and θi and ρi are defined as follows.

θi ≡ (y = i)∧ (p↔ i �= 1),

ρi ≡
(
p′ ↔ i �= 2

)∧ (
y′ = y −̇1

)
.

For j ≥ 1 state sj corresponds to the valuation y = j . It is simple to see that for
1≤ j ≤ i we have Mi , sj |=AF(AG(p)). We set N = 〈{p,x}, ρ,p ∧ x〉, where
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p and x are Boolean variables and ρ is defined as follows.

ρ ≡ (
p→ (

x′ = x))∧ (¬p→¬x′)∧ (
(p ∧ x)∨ p′)

State t2 corresponds to x∧p, state t1 corresponds to x∧¬p, and state t0 corresponds
to ¬x ∧p. The figure does not depict the unreachable state ¬x ∧¬p. It is simple to
see that N , t2 �|=AF(AG(p)).

Lemma 8 For every LTL formula ϕ such that for all i ≥ 0 we have Mi , ti |= ϕ it
holds that N , t2 |= ϕ.

Proof By assumption ϕ holds over Mi , ti . For every i > 0, the label of the unique
computation of Mi that starts in ti is {p}i∅{p}ω and the computation of M0 that
starts in t0 is {p}ω. Let W be the set of all such models. That is,

W = {{p}ω, {p}i∅{p}ω ∣
∣ i > 0

}
.

It follows that for every word w ∈W we have w |= ϕ.
However, the set of paths of N is exactly W . Hence, it must be the case that

N |= ϕ. �

Corollary 3 LTL is not as expressive as CTL.

The differences between model checking CTL and LTL justify further studies
into which formulas are expressible in both. An initial result analyzed which CTL
formulas are expressible in LTL. It established that a CTL formula is expressible in
LTL if and only if it can be expressed in LTL by removing all path quantifiers [12].
Formally, given a CTL formula ϕ let ϕd denote the LTL formula that is obtained
from ϕ by removing (syntactically) all the path quantifiers.

Theorem 12 The formula ϕ is expressible in LTL iff ϕ = ϕd .

Given this correspondence and the interpretation of LTL as holding over all paths
in an FDS, it makes sense to concentrate on universal path quantification in CTL.
This motivates the introduction of the sub-logic ACTL. Formally, ACTL is the logic
obtained from CTL by disallowing the use of universal path quantifiers under an
odd number of negations. Equivalently, we can add ∧ to the syntax of CTL and
allow negation only to be applied to propositions. There is a good characterization
of ACTL formulas that can be expressed in LTL [38]. Such ACTL formulas are
called deterministic. Formally, propositional formulas and ACTLdet formulas are
defined by the following grammar:

α ::= p | ¬α | α1 ∨ α2,

ϕ ::= α | (α ∧ ϕ1)∨ (¬α ∧ ϕ2) | ϕ1 ∧ ϕ2 | AX(ϕ) |
A
(
(α ∧ ϕ1)U (¬α ∧ ϕ2)

) | A
(
(α ∧ ϕ1)W (¬α ∧ ϕ2)

)
.

(8)
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Intuitively, ACTLdet has no “real” choices. Operators that display choice are ∨, U ,
and W . In these operators the same propositional formula is conjuncted positively
on one side and negatively on the other. So the valuation of propositions in a state
dictates which branch of the choice applies.

Theorem 13 An ACTL formula is expressible in LTL iff it is in ACTLdet.

Furthermore, the language of the equivalent LTL formula (which according to
Theorem 12 is obtained by removing the path quantifiers) can be expressed as the
complement of a finite union of sets of the following form.

Σ∗1 ·w1 ·Σ∗2 ·w2 . . .wn−1 ·Σ∗n−1 ·wn ·Σωn ,
where wi is a letter over the propositions appearing in the formula and Σi is a set
of letters over the propositions appearing in the formula. For further details we refer
the reader to [38].

However, it turns out that there are CTL formulas that are expressible in LTL
that are not ACTL formulas [7]. Thus, it may be necessary to use existential path
quantification in order to express universal properties expressible in both CTL and
LTL.

Theorem 14 There is an LTL formula expressible in CTL but not in ACTL.

For an example of such an LTL formula and further details we refer the reader
to [7]. We note that a full characterization of which CTL formulas are expressible
in LTL is unknown.

2.6.2 CTL∗ Definition

The mutual deficiencies of LTL and CTL motivated the introduction of a logic that
encompasses both. Essentially, CTL∗ combines LTL’s unrestricted nesting of tem-
poral operators with CTL’s universal and existential path quantification. The result-
ing logic, called CTL∗, is a very expressive temporal logic that includes both. We
now define CTL∗.

As before, we assume a countable set of Boolean propositions P . Models for
CTL∗, as for CTL, are fairness-free FDSs. Here we assume that the FDS has no
dead ends. If P̂ is the set of propositions appearing in ϕ, then every FDS D such
that P̂ ⊆ V is a model for ϕ.

We define state formulas (ϕ) and path formulas (ψ ) as follows. CTL∗ formulas
are state formulas.

ϕ ::= p | ¬ϕ | ϕ1 ∨ ϕ2 | Aψ,
ψ ::= ϕ | ¬ψ | ψ1 ∨ψ2 | Xψ | ψ1 U ψ2.

(9)
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The truth of state formulas is interpreted over states, thus, as in CTL, we define the
set of states that satisfy such a formula. The truth of path formulas is interpreted
over paths, thus, as in LTL, we define the set of paths that satisfy such a formula.

Formally, for a formula ϕ and an FDS D = 〈V , θ, ρ〉, we say that ϕ holds in
state s of D , written D, s |= ϕ and define it inductively as follows (omitting Boolean
connectives).

• For p ∈ P we have D, s |= p iff s |= p.
• D, s |=Aψ iff for every path σ = s0, s1, . . . starting in state s we have σ,0 |=ψ .
• For path formulas we define satisfaction over paths as follows.

– σ, i |= ϕ iff D, si |= ϕ, for a state formula ϕ.
– σ, i |=Xψ iff σ, i + 1 |=ψ .
– σ, i |=ψ1 U ψ2 iff there exists k ≥ i such that σ, k |=ψ2 and σ, j |=ψ1 for all
j , i ≤ j < k.

We can use the same abbreviations as previously for existential path quantification
E and the temporal operators F, G, and W .

As in CTL, given a state formula ϕ and an FDS D , we denote by [[D, ϕ]] =
{s ∈ΣV | D, s |= ϕ}.

Definition 14 (Implementation) We say that an FDS D implements specification
ϕ, denoted D |= ϕ, if every initial state of D satisfies the formula.

We note that, syntactically, CTL∗ includes both CTL and (future) LTL. Here we
have chosen not to include past operators in CTL∗. In order to include past operators,
we would include in the universal path quantification all the possible points in paths
that pass through a state s.

2.6.3 Examples of Usage of CTL∗

One of the main deficiencies of CTL is its inability to express fairness and the lack of
support for assume guarantee. Clearly, CTL∗ solves the two deficiencies. Regarding
fairness, in CTL∗ the path quantifier Af can be expressed within the logic. Given
justice and compassion J and C , the formula

A
(( ∧

J∈J
GFJ ∧

∧

〈P,Q〉∈C
(GFP →GFQ)

)

→ ϕ

)

is equivalent to Af ϕ. Furthermore, ϕ can nest temporal operators freely. This way,
CTL∗ can combine quantification on all paths and on some paths in the same for-
mula. Similarly, the assume-guarantee framework works in CTL∗ just as simply as
it does in LTL. Also, assumptions can be restricted to specific parts of the specifica-
tion.
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CTL∗ is strong enough to act similarly with respect to properties expressed in
CTL. Recall the property of recovery AG(EF(start)). CTL∗ can express the
property that every computation that maintains recoverability will actually recover
A(G(EF(start))→F start), which is not expressible either in LTL or in CTL.

Finally, CTL∗ is strong enough to express the problem of realizability of LTL
specifications (see elsewhere in this Handbook [6] (Bloem et al., Graph Games and
Reactive Synthesis)). A system is called open with respect to a set of variables X if
for every state s and for every valuation t̂ of X there is a successor t of s such that
t̂ = t ⇓X . Realizability is essentially the question of existence of open implementa-
tions. Clearly, this question can be expressed in CTL∗. For every possible valuation
v of X the formula EX(v) requires that a state has a successor with valuation v.
Then open≡AG(

∧
v∈ΣX

EX(v)) requires that a system be open. Finally, given
an LTL formula ϕ, the formula open∧Aϕ is satisfiable exactly iff there is an open
system satisfying ϕ.

2.6.4 Model Checking and Satisfiability

We now turn to model checking of CTL∗, which, like LTL, can be solved in poly-
nomial space [13]. The model-checking algorithm we present is a combination of
the LTL algorithm and the CTL algorithm. Essentially, just like in CTL we com-
pute the set of states satisfying a formula by first starting from simpler formulas.
In order to compute the set of states satisfying the path formula we invoke the LTL
model checking algorithm. Then, using the set of states satisfying a path formula we
treat the computed assertion as a new proposition and continue with the recursive
treatment as in CTL.

Definition 15 (Model checking) Given an FDS D and a CTL∗ formula ϕ, the
model-checking problem for D is to decide whether D implements ϕ.

Theorem 15 CTL∗ model checking is decidable in polynomial space.

Proof Consider an FDS D = 〈V , θ, ρ〉 and a CTL∗ formula ϕ. For every state sub-
formula ψ of ϕ we compute the set of states [[D,ψ]]. As before, we assume an
efficient way to represent, manipulate, and compare assertions.

For a proposition p and Boolean combinations of state formulas the treatment is
no different from the treatment of CTL.

For ψ =Aψ1, where ψ1 is an LTL formula we effectively apply the LTL model-
checking algorithm for ¬ψ1. Let T¬ψ1 be the temporal tester constructed for ¬ψ1
as in Sect. 2.3 and let X be the set of variables of T¬ψ1 . Consider the sys-
tem D |||T¬ψ1 . Consider Algorithm 3 from Sect. 2.2. Recall that the system D is
fairness-free. Thus, the only fairness requirements in the composition D |||T¬ψ1 are
the justice requirements of T¬ψ1 . The algorithm computes the set of viable states of
D |||T¬ψ1 . Consider a viable state (s, d) of D |||T¬ψ1 , where s ∈ΣV and d ∈ΣX .
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If d |= x¬ψ1 , then there is a fair path that starts in (s, d). In particular, the projections
of this fair path on the variables in V and X , respectively, show that there is a path
starting in s that does not satisfy ψ1. Thus, state s of D cannot satisfy Aψ1. Dually,
for a state s that satisfies Aψ1 in D , there cannot be a state d such that d |= x¬ψ1

and (s, d) is viable. Let viable be the assertion characterizing the set of viable states
of D |||T¬ψ1 . Then, sat≡ ∀X .viable→¬x¬ψ1 is the assertion characterizing the
set of states of D that satisfy Aψ1.

We now construct a new system D1 that embeds this information with a new
Boolean variable xψ . Let D1 = 〈V ∪ {xψ }, θ1, ρ1〉, where θ1 ≡ θ ∧ (xψ ↔ sat) and
ρ1 ≡ ρ ∧ (x′ψ ↔ prime(sat)). Furthermore, for every subformula ψ̃ of ϕ that con-

tains ψ , we replace every occurrence of Aψ1 in ψ̃ by the new proposition xψ .
The treatment of formulas of the form Eψ1 is similar. We construct a temporal

tester for ψ1 and compute the set of viable states of D |||Tψ1 . Then, we compute
the assertion viable characterizing the viable states of D |||Tψ1 . The assertion sat≡
∃X .viable ∧ xψ1 characterizes the states of D that satisfy Eψ . We then construct
the system D1 with the additional variable xψ and replace every occurrence of Eψ1
by xψ . �

As in the case of CTL, satisfiability is more complicated than model checking.
Here, the techniques required to prove satisfiability involve the use of automata over
infinite trees and determinization of automata over infinite words (cf. first proof
[21]). We do not cover these techniques here and state the following.

Definition 16 (Satisfiability) A CTL∗ formula ϕ is satisfiable if some FDS imple-
ments it. That is, ϕ is satisfiable if there is an FDS D such that D |= ϕ.

Theorem 16 CTL∗ satisfiability is decidable in doubly exponential time.

The reader interested in the proof is referred to [33] for the construction of au-
tomata on infinite trees that accept the set of models of CTL∗ formulas. The algo-
rithm that then checks whether such an automaton accepts a non-empty language,
corresponding to satisfiability of the original CTL∗ formula, is available, for exam-
ple, in [52].
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Chapter 3
Modeling for Verification

Sanjit A. Seshia, Natasha Sharygina, and Stavros Tripakis

Abstract System modeling is the initial, and often crucial, step in verification. The
right choice of model and modeling language is important for both designers and
users of verification tools. This chapter aims to provide a guide to system modeling
in four stages. First, it provides an overview of the main issues one must consider
in modeling systems for verification. These issues involve both the selection or de-
sign of a modeling language and the steps of model creation. Next, it introduces a
simple modeling language, SML, for illustrating the issues involved in selecting or
designing a modeling language. SML uses an abstract state machine formalism that
captures key features of widely-used languages based on transition system represen-
tations. We introduce the simple modeling language to simplify the connection be-
tween languages used by practitioners (such as Verilog, Simulink, or C) and various
underlying formalisms (e.g., automata or Kripke structures) used in model check-
ing. Third, the chapter demonstrates key steps in model creation using SML with
illustrative examples. Finally, the presented modeling language SML is mapped to
standard formalisms such as Kripke structures.

3.1 Introduction

A model, broadly speaking, can be thought of as the description of a system “on
paper”, or as a “virtual” system. This is in contrast to a “real” system, which can be
thought of as a physical artifact: a car, a medical device, a Java program, or a stock
market. Characterizing Java programs or stock markets as “physical” may seem
strange; however, philosophical considerations aside, most people would agree that
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these systems are concrete and real enough to affect our lives in a direct way. Models
also affect our lives, but in a more indirect way, as we discuss below.

The type of model is defined by its purpose. Models of existing systems are often
referred to simply as “models”, whereas models of systems yet to be built may be
termed “specifications” or “designs”. Some models are written using informal no-
tations that are open to interpretation, whereas others are written in languages with
mathematical semantics and are called “formal models”. Most importantly, models
rarely capture an entire, complete system, since the sheer size and complexity of
most systems make this an impossible task. As a result, models usually focus only
on “relevant” parts of a system and/or only on specific aspects of a system. For ex-
ample, a model of a system that involves both hardware (HW) and software (SW)
may only focus on the SW part; or a model may only focus on the logical aspects of a
communication system, e.g., the communication protocol, and ignore other aspects
such as performance (e.g., throughput, latency) or energy consumption.

Models are essential for our lives. They likely always have been. Humans as
well as many other organisms need to form in their brain internal representations
of how the external world “works”. These representations can be seen as models.
Closer to the focus of this book, engineering and technology heavily rely on mathe-
matical models. In fact, the tasks of designing and building a system are intimately
linked with various modeling tasks. Specification models are used to communicate
the goals and requirements of a system among different engineering teams. De-
tailed design models are built in order to estimate behavior of a system prior to its
construction. This is essential in order to avoid the costs and dangers of building
deficient systems. After a system is built, models are still essential in order to oper-
ate and maintain the system, calibrate and tune it, monitor abnormal behavior, and
ultimately upgrade it.

The goal of this chapter is to illuminate the key issues in modeling systems for
formal verification, in general, and model checking, in particular. Because there are
so many different types of systems and application domains, with varying concerns,
even within the field of formal verification there is a plethora of modeling languages,
formalisms, and tools, as well as modeling techniques, uses, and methodologies. It
is beyond the scope of this chapter to give a thorough account of these; such an
account would probably require an entire book by itself. Rather, this chapter has
three more modest aims. First, we seek to provide an overview of the main issues
one must consider in modeling systems for verification. These issues involve both
the selection or design of a modeling language and the steps of model creation. Sec-
ond, we introduce a simple modeling language, SML, to illustrate the issues involved
in selecting or designing a modeling language. SML uses an abstract state machine
formalism that captures key features of widely used languages based on transition
system representations, and can serve to bind together the modeling languages in-
troduced or used throughout the Handbook. By introducing SML, we seek also to
simplify the connection between real languages (say Verilog, Simulink, or C) used
by practitioners and various underlying formalisms (e.g., automata or Kripke struc-
tures) used in model checking. Finally, the chapter demonstrates key steps in model
creation using SML with illustrative examples drawn from three different domains:
hardware, software, and cyberphysical systems.
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There are at least two possible audiences for the material in this chapter. The first
are users of verification tools who need to make decisions about the right model-
ing language and verification tool for their task, and how best to model the system
so as to get useful results from the chosen tool. The second audience comprises
tool builders who may want to choose the appropriate modeling constructs for their
domain (e.g., a tool for synthetic biology) or for easing the verification of a par-
ticular class of problems (e.g., parameterized systems with large data structures).
Researchers working in related areas, such as program synthesis, may also find the
concepts discussed in this chapter useful for better understanding the characteristics
of verification techniques that they build upon.

We begin this chapter, in Sect. 3.2, by discussing the main issues one must con-
sider in modeling systems for verification. In Sect. 3.3, we present SML, a simple
language that illustrates many of the aspects of formal modeling languages. Three
illustrative examples of system modeling with SML are presented in Sect. 3.4. We
relate SML to the well-known formalism of Kripke structures in Sect. 3.5, and con-
clude in Sect. 3.6.

3.2 Major Considerations in System Modeling

Models are built for different reasons. It is important to emphasize that models are
primarily tools used to achieve a certain purpose. They are means to a goal, rather
than the goal itself. As such, the notion of a model being “good” or “bad” has little
meaning by itself. It is more appropriate to examine whether a model is good or not
with respect to a certain goal. For example, a model may be good for estimating the
throughput of a system but useless for checking whether the system has deadlocks,
or vice versa.

While models are built with many different goals in mind, they generally sup-
port the system design process. Stakeholders in this process must choose the right
modeling formalisms, languages, and tools, to achieve their respective goals. As
in [17], we distinguish between a modeling formalism and a modeling language.
Formalisms are mathematical objects consisting of an abstract syntax and a for-
mal semantics. Languages are concrete implementations of formalisms. A language
has a concrete syntax, may deviate from the formalism in the semantics that it im-
plements, and may implement multiple semantics (e.g., changing the type of the
numerical solver in a simulation tool may change the behavior of a model). Also,
a language may implement more than one formalism. Finally, a language usually
comes together with a tool such as a compiler, simulator, or model checker. As an
example of the distinction between formalisms and languages, timed automata [4] is
a formalism, whereas Uppaal timed automata [47] and Kronos timed automata [31]
are languages.

In this section, we discuss some of the main factors one must consider while
choosing a modeling formalism and the challenges in modeling. We also give a
brief survey of some modeling languages used for model checking.
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3.2.1 Selecting a Modeling Formalism and Language

Here are some of the main factors one typically considers when selecting a good
modeling formalism and language, for formal verification in general and model
checking in particular:

• type of system;
• type of properties;
• relevant information about the environment;
• level of abstraction;
• clarity and modularity;
• form of composition;
• computational engines; and
• practical ease of modeling and expressiveness.

We discuss each of these factors in more detail below.

3.2.1.1 Type of System

Different modeling formalisms have been developed based on the character of the
system being modeled. Some of the more common formalisms include:

• for discrete(-time) systems, formalisms such as finite state machines and push-
down automata [38, 44], extended state machines with discrete variables, hierar-
chical extensions such as Statecharts [35], as well as more declarative formalisms
such as propositional temporal logics [52];

• for continuous(-time) systems, formalisms such as ordinary differential equations
(ODEs) and differential algebraic equations (DAEs);

• for concurrent processes, formalisms such as communicating sequential pro-
cesses (CSP) [36], a calculus of communicating systems (CCS) [53], the pi-
calculus [54], Petri nets [56], marked graphs [26, 43], etc.;

• for compositional modeling, formalisms such as process algebras [33, 36, 53],
and Reactive Modules [6];

• for dataflow systems, formalisms such as Kahn process networks [42] and var-
ious subclasses such as synchronous dataflow (SDF) [48], Boolean dataflow
(BDF) [21], scenario-aware dataflow (SADF) [59], etc.;

• scenario-oriented formalisms such as message sequence charts [40, 41] and live
sequence charts [28];

• for timed and hybrid systems, which combine discrete and continuous dynam-
ics, formalisms such as timed and hybrid automata [3, 4], or real-time temporal
logics [2, 5];

• discrete-event formalisms for timed systems, such as the denotational ones pro-
posed in [9, 18, 50, 62], as well as operational ones inspired by discrete-event
simulation and tools like Ptolemy [58, 61];
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• probabilistic variants of many of the above formalisms, such as Markov chains,
Markov Decision Processes, stochastic timed and hybrid automata, etc., for ex-
ample, see [7, 8, 30, 39, 45];

• game- or cost-theoretic variants of some of the above formalisms, focusing on
optimization and synthesis, instead of analysis, for example, see [12, 23, 24].

In addition to the above formalisms which focus on somewhat specific classes
of systems, the need for modeling heterogeneity, that is, capturing systems that
combine semantically heterogeneous components, such as timed and untimed, dis-
crete and continuous, etc., has resulted in heterogeneous modeling frameworks
such as Focus [18], Ptolemy [32], or Metropolis [10, 29], and corresponding for-
malisms [13, 18, 61].

3.2.1.2 Type of Property

During verification, the system model is coupled with a specification of the property
to be verified. Several classes of properties exist, each supported by corresponding
specification languages. Examples of specification languages for reactive systems
include computation tree logic, regular expressions, Statecharts diagrams, graphical
interval logics, a modal mu-calculus and a linear-time temporal logic just to name a
few (more details can be found in Chap. 2 on temporal logic).

The choice of specification language and system model usually depends on the
type of property one wishes to verify. For example, if one wishes to verify real-
time properties of a system’s execution over time, a real-time temporal logic might
be the right choice of specification, and the system might best be represented as a
timed automaton or timed CSP program. On the other hand, if for the same system
one only wishes to verify Boolean properties such as absence of deadlock, then
propositional temporal logic might suffice as the specification language.

It should be noted that the property specification language is not necessarily sep-
arate from the language used to model the system under verification. Often, the latter
language provides mechanisms such as assertions or monitors that can be used to
specify (usually safety) properties.

3.2.1.3 Modeling the Environment

One of the trickiest aspects of verification, which can both miss bugs and create spu-
rious ones, is the task of modeling the environment of the system. The environment
is usually much larger than the system, essentially incorporating everything other
than the system under verification. On the other hand, it is also likely to be the part
of the system that is least well understood, since often even a complete description
of the environment is not available.

For example, in software model checking, one often needs to model the libraries
that a piece of code uses, which form its environment. If only propositional temporal
properties involving the sequence of system calls are relevant, then environment
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models such as finite automata representing the language of system calls generated
by a library component might be sufficient.

3.2.1.4 Level of Abstraction

The level of abstraction, i.e., the detail or faithfulness of a model, is an essential
consideration in modeling. A highly detailed model may be hard or impossible to
build due to time and cost constraints. Even if it can be built, it may be too large or
complex for it to be amenable to (manual or automated) analysis. State explosion is
a well-known phenomenon that plagues many techniques such as model checking.
Abstraction methods are essential in building simpler and smaller models, by hiding
unnecessary details. The difficulty is in understanding which details are truly irrel-
evant. Errors in this task often result in models that omit critical information. This
may compromise the faithfulness of a model and ultimately render it useless.

As an example of successful use of abstraction, consider the process of modeling
cache coherence protocols. Typically, one models the messages sent by the various
processors as belonging to an abstract enumerated data type rather than represent
the specific data formats actually used in the implementation of the protocol. Such
abstraction is usually appropriate for the verification task, which depends only on
the sequence and type of messages sent, rather than the specific bit-encoding of the
message formats.

Verifiers that build models automatically from code usually rely heavily on au-
tomatic abstraction in the process. Selecting the right modeling formalism for such
tools is usually critical to effective abstraction. Chapters 10 and 13 in this Handbook
provide more detail on techniques for automatic abstraction.

3.2.1.5 Clarity and Modularity

Models are often, although not always, designed to be viewed by humans. In such
cases, the models must be clear and easy to understand. One way to ensure this is to
use a modular approach in constructing the model. Typically a modeling language
will include some notion of a module or process, and provide means to combine
or compose such modules/processes into larger entities. Such notation usually also
includes ways to hide internal details during the composition process, so as to retain
only essential information in the interfaces of modules [60]. In addition to mak-
ing models easier to understand, modularity can sometimes also be exploited to
make the verification task itself easier, e.g., by using compositional techniques (see
Chap. 12 on compositional methods).

A related point is the specific form of composition of modules, which we discuss
next.
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3.2.1.6 Form of Composition

Systems are rarely constructed monolithically. They are usually built by combining
and modifying existing components. The form in which such components interact
can determine the modeling formalism that is suitable for verification.

For example, consider a sequential circuit built up by connecting several mod-
ules, all of which share the same clock. Since all modules step on the same clock
tick, a synchronous composition of these modules is a suitable choice, even when
many of these modules are represented at a very coarse level of abstraction.

Similarly, consider modeling a distributed database that uses a protocol to ensure
that replicated state is consistent. Different nodes connected through the Internet are
unlikely to share a synchronized clock, and hence, for this problem, asynchronous
composition is the appropriate form of composition.

For some systems, a hybrid of synchronous and asynchronous composition might
be suitable; for example, processes might synchronize on certain input actions while
stepping asynchronously otherwise. This is particularly the case in formalisms such
as timed and hybrid automata, where processes synchronize in time (i.e., time
elapses at the same rate for all processes) while their discrete actions may be asyn-
chronous.

Notions such as synchronous/asynchronous composition are particularly relevant
in formalisms with operational semantics, such as transition systems. In formalisms
with denotational semantics, other forms of composition may be better suited. For
instance, in Kahn Process Networks [42] processes are typically viewed as functions
from streams to streams, composition is defined as functional composition, and fix-
point theory is used to give semantics to feedback. In continuous-time formalisms
processes may also be seen as functions manipulating continuous-time signals, and
functional composition may be used here as well.

3.2.1.7 Computational Engines

A final consideration for modeling is the availability of suitable, scalable computa-
tional engines that power the verification tools for that class of models. For finite-
state model checking, these include Binary Decision Diagrams (BDDs) [19] and
Boolean satisfiability (SAT) solvers [51]. For model-checking software and high-
level models of hardware, satisfiability modulo theories (SMT) solvers [11] play a
central role. (See also Chaps. 7, 9, and 11 in this Handbook for further details on
BDDs, SAT, and SMT.)

Even within the realm of SAT and SMT solvers, modeling plays an important
role in ensuring the scalability of verification. For example, hardware designs can
be represented most naturally at the bit-vector level, where signals can take bit-
vector values or be arranged into arrays (memories) of such bit-vector values. One
strategy that has proved highly effective for control-dominated hardware designs is
to “bit-blast” the model to generate a SAT problem whose solution determines the
result of verification. However, for many data-dependent properties, or for proving
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equivalence or refinement of systems, one might need a higher level of abstraction.
It is here that techniques for automatically abstracting designs to a higher “term
level” come in handy—functional blocks can be abstracted using uninterpreted or
partially-interpreted functions, and data words can be represented as abstract terms
without regard to their specific bit-encoding (see, for example, [16, 20]). Such a rep-
resentation then enables the use of SMT solvers in a rich set of theories including
linear and non-linear arithmetic over the integers and reals, arrays, lists, uninter-
preted functions, and bit-vector arithmetic.

3.2.1.8 Practical Ease of Modeling and Expressiveness

Even though theoretically two modeling languages may be equivalent in terms of
expressiveness, in practice one may be much easier to use than another. For exam-
ple, a language which provides no explicit notion of variables but requires users
to encode the values of variables in the control states of an automaton is cumber-
some to use except for toy systems. Also, a language which only provides Boolean
data types is harder to use than a language which offers bounded integers or user-
defined enumerations, even though the two languages are theoretically equivalent in
terms of expressiveness. As a final example, a language which allows declaration
of process types and then creation of multiple process instances, each with different
parameters, is easier to use than a language which requires every process instance
to be created in the model “by hand”.

3.2.2 Modeling Languages

As mentioned earlier, it is useful to distinguish between formalisms, which are
mathematical objects, and concrete modeling languages (and tools) which support
such formalisms. A plethora of modeling languages exist, developed for different
purposes, including:

• Hardware description languages (HDLs). These languages have been developed
for modeling digital, analog, or so-called mixed-signal (combining digital and
analog) circuits. Verilog, VHDL, and SystemC are widespread HDLs. Tools im-
plementing HDLs provide features such as simulation, formal verification in some
cases, and most importantly, automatic implementation such as logic synthesis
and layout.

• General-purpose modeling languages, such as UML and SysML. These lan-
guages aim to capture many different aspects of software and systems in gen-
eral, and offer different sub-languages implementing various formalisms, from
hierarchical state machines to sequence diagrams.

• Architecture Description Languages (ADLs), such as AADL. These languages
aim to be system-level design languages, for software and other domain-specific
systems (e.g., originally avionics systems, in the case of AADL).
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• Simulation-oriented languages and tools, such as Matlab-Simulink or Modelica.
These languages have their origin in modeling and simulation of physical systems
and support ODE and DAE modeling. They have recently evolved, however, to
encompass discrete models such as state machines, and to target the larger do-
main of control, embedded, and cyber-physical systems. Simulink and related
tools provide primarily simulation, but also code generation and even formal ver-
ification in some cases.

• Reactive programming languages, such as the synchronous languages Lustre [22]
and Esterel [14]. These languages were initially conceived as programming lan-
guages for reactive, real-time, and embedded systems. As a result, the tools that
come with these languages are typically compilers and code generators, typically
providing simulation for debugging purposes. However, synchronous languages
and tools sometimes also provide exhaustive verification features, and include
mechanisms for modeling environment assumptions and non-determinism. As a
result, these languages can be used for more general modeling purposes, too.

• Verification languages. These languages have been developed specifically for for-
mal verification purposes, using model-checking or theorem-proving techniques,
including satisfiability solving. This class is the main focus of the present chapter.

It is beyond the scope of this chapter to provide a complete survey of modeling
languages. As the topic of this book is formal verification, we focus on modeling
languages developed specifically for verification purposes. However, even within
this narrower domain, we can only list a small selection of languages, among all
those proposed in the formal verification literature.

The list is presented in Table 1. Each language has been tailored to the particu-
lar kind of verification problem that it was designed to model, and the engines that
underlie the corresponding tool. We have classified the languages along five dimen-
sions: the supported formalism, data types, form of composition, properties (safety
or liveness) and the underlying computational engines. This listing is not meant to
be exhaustive; rather the goal is to give the reader a flavor of the range of languages
used in model checking today. We also note that several languages listed in the table
were inspired by other formalisms; for example, the SAL language listed in Table 1
was inspired, in part, by the Reactive Modules formalism [6]. Further, it is important
to remember that even verification tools that operate “directly” on programming lan-
guages such as C or Verilog extract some sort of formal model first, and this formal
representation is typically very similar to modeling languages such as those listed
in Table 1.

3.2.3 Challenges in Modeling

Beyond the computational difficulties of analyzing the models (e.g., state explosion
during model checking, trace/time explosion during simulation, etc.) there are other
difficulties in modeling that may be viewed as being at a more high level, and thus
harder to address. Some of these difficulties are as follows:
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• Except in cases where the model is generated automatically (e.g., extracted from
code), modeling is a creative process which can be quite difficult to get right.

• The choice of a modeling language/formalism is currently more of an art than
a systematic science. There are few guidelines on how to go about this, and of-
ten the choice is dictated by historical or other reasons (e.g., company tradition,
legacy models, etc.).

• Even after a model is constructed, it can be difficult to know whether the model is
good, complete, or consistent. For specifications, this boils down to the problem
often stated as: “have we specified enough properties?”

• Since models can themselves be incorrect or inconsistent, one must carefully in-
terpret the results of verification. For example, in model checking, when a model
fails to satisfy a property, is the model of the system wrong, or is the property
incorrect? Such analysis usually requires some human insight.

• Constructing models of the environment, in particular, can be extremely tedious
and error-prone. For instance, in automatic synthesis of systems from specifica-
tions (e.g., temporal logic), the process of writing down the specification, includ-
ing constraints on the environment, is usually one of the hardest tasks. Similarly,
for the problem of timing analysis of embedded software, many techniques in-
volve having a human engineer painstakingly construct an abstract timing model
of a microprocessor for use in software timing analysis (e.g., see [57] for a longer
discussion). Automating the construction of environment models is an important
challenge for extending the reach of formal verification and synthesis.

3.2.4 Scope of This Chapter

In the rest of this chapter, we seek to give a flavor of the above issues by introducing
a simple modeling language, SML, and using it to model a small but diverse collec-
tion of systems. SML adopts many of the common features of modeling languages
such as the idea of modeling a system as a transition system or an abstract state
machine [34]. SML may not be the best fit, or even expressive enough, to model all
types of systems and properties. With this in mind, we have chosen to make SML

parametric with respect to its data types and the operations on those data types, il-
lustrating with examples how different types of systems can be captured in the SML

syntax. Some chapters in this Handbook will introduce modeling formalisms of their
own, which are similar to SML, but differ in their emphasis; for example, Chap. 16
on Software Verification introduces a transition system formalism that emphasizes
aspects important in verifying safety properties of programs, such as having a spe-
cial variable to model the program counter, and the notion of an error condition.
Using SML we emphasize the issues that arise across various system types, such as
modularity, types of composition, and abstraction levels.
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Fig. 1 Module Syntax in
SML. A primitive module
does not have the
composition,
sharedvars,
instances, and connect
sections

3.3 Modeling Basics

We define a language for modeling abstract state machines called SML, which stands
for “Simple Modeling Language”. In this section, we present the syntax and seman-
tics of SML.

3.3.1 Syntax

An SML program is made up of modules. Syntactically, an SML program is a list of
module definitions. Each module definition comprises a module name followed by
a module body. A module body, in turn, is made up of a list of definitions:

• a list of input variable declarations, i1 : τ1, i2 : τ2, . . . , ik : τk ;
• a list of output variable declarations, o1 : τ ′1, o2 : τ ′2, . . . , om : τ ′m;
• a list of state variable declarations, v1 : τ ′′1 , v2 : τ ′′2 , . . . , vl : τ ′′l ;
• a list of shared variable declarations, u1 : τ ′′′1 , u2 : τ ′′′2 , . . . , uh : τ ′′′h ; and
• a behavior definition which defines the transition and output relations of the mod-

ule.

Some state variables may also be output variables. Shared variables are used for
communication between asynchronously composed modules.

Declarations of variables may be omitted when the corresponding list is empty,
e.g., a module with no shared variables will have no sharedvars section. Each
variable has an associated type (domain of possible values), indicated above by
the τi variables. We leave the types unspecified in this section; see Sect. 3.4 for
examples.

The syntax of a module is given in Fig. 1. It is useful to make a distinction
between two kinds of modules:

• primitive modules, which are not made up of simpler modules, and thus omit the
composition, instances, and connect sections of the syntax; and

• composite modules, which are compositions of simpler modules, and thus include
these sections.
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A behavior definition of a primitive module comprises an initial state definition
followed by a transition relation definition.

An initial state definition is a formula on state variables. A transition relation def-
inition is a formula on input, output, state, and “next-state” variables of the module.
A next-state variable is of the form next(v) where v is a state variable.

A composite module, in addition to the initial state and transition relation defini-
tions, also includes:

• a composition-instances declaration, which declares the module instances that
comprise the composite module, and the form of composition, either synchronous
or asynchronous; and

• a connections definition, which is a list (denoting conjunction) of binary equalities
between two variables of the instances and of the composite module, or between
a variable and a constant.

For a composite module, the transition relation section defines how variables
defined locally in this module (i.e., not in sub-modules) evolve.

Given two instances m1 and m2 of a moduleM containing a variable x, we refer
to the instances of x in m1 and m2 as m1.x and m2.x.

For examples of primitive modules, see the Constant, Scale, Difference, and Dis-
creteIntegrator modules in Fig. 11. For examples of composite modules, see the
Helicopter and System modules in Fig. 11.

3.3.2 Dynamics

We give semantics to an SML program by viewing it as a symbolic transition system
(STS). In Sect. 3.5, we will relate STSs to one of the classical modeling formalisms,
Kripke structures.

An STS is a tuple (I,O,V,U,α, δ) where:

• I,O,V,U are finite sets of input, output, state and shared variables, each variable
also having an associated type;

• α is a formula over V ∪U (the initial states predicate);
• δ is a formula over I ∪ O ∪ V ∪ U ∪ V ′ ∪ U ′ (the transition relation), where
V ′ = {s′ | s ∈ V } is a set of primed state variables representing the “next-state
variables”, and similarly with U ′.

Given an SML module M as in Fig. 1, we define the STS for it as follows.
If M is primitive, its syntax directly defines the tuple (I,O,V,∅, α, δ) (the set
of shared variables is empty). If M is composite, then we define its STS in
terms of the STSs for its constituent module instances. Suppose M is a composi-
tion of module instances M1,M2, . . . ,Mn, with corresponding STSs of the form
(Ii,Oi,Vi,Ui,αi, δi), for i = 1, . . . , n. Let β be the predicate derived from the ini-
tial state declaration of M (not its constituent modules). Let γ be the predicate
derived from the connections declarations of M as a conjunction of each of the
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equations making up those declarations. Then, the STS for M is (I,O,V,U,α, δ),
where:

• I is (
⋃n
i=1 Ii) \ I0, where I0 is the set of those input variables that are connected

to an output variable in the connections declarations of M ;
• O is

⋃n
i=1Oi ;• V is

⋃n
i=1 Vi ;• U is

⋃n
i=1Ui ;• α is β ∧∧n

i=1 αi ;• δ depends on the form of composition:

– For synchronous composition, δ is defined as γ ∧∧n
i=1 δi .

– For asynchronous composition there are a couple of choices. We will de-
fine here the choice of interleaving semantics, where a transition of the
composition involves one module taking a transition while all others stut-
ter with their state variables remaining unchanged. Under this choice, δ is
γ ∧∨n

i=1(δi ∧
∧
j �=i σj ), where σj =∧

v∈Vj v = v′ defines stuttering of mod-
ule Mj .

3.3.3 Modeling Concepts

Open and Closed Systems. A closed system is one that has no inputs. Any sys-
tem with one or more inputs is open. In verification, we typically deal with closed
systems, obtained by composing the system under verification with (a model of)
its environment. In SML, we typically model interacting open systems as individual
SML modules, and their composition, which is to be verified, is a closed system.
Safety and Liveness. Modeling formalisms for verification must be designed for
the class of properties to be verified. In this regard, the most general categorization
of properties is into safety and liveness. Formally, a property φ is a safety property
if, for any infinite trace (execution) of the system, it does not satisfy φ if and only
if there exists a finite prefix of that trace that cannot be extended to an infinite trace
satisfying φ. We say that φ is a liveness property if every finite-length execution
trace can be extended to an infinite trace that satisfies φ.1 Chapter 2 gives several
examples of safety and liveness properties, expressed in temporal logic.

Models encode safety or liveness concerns in different ways. Safety properties
are defined by the transition relation of the model. With suitable encoding, the vio-
lation of a safety condition can be viewed as taking one of a set of “bad” transitions.
Thus, by allowing certain transitions and disallowing others, a model can restrict
its permitted executions to those adhering to a safety property. On the other hand,
liveness properties are usually represented using fairness conditions on infinite ex-
ecution paths of a model. We discuss fairness in more depth below, but, in essence,

1See papers by Lamport [46] and Alpern and Schneider [1] for a detailed treatment of safety and
liveness.
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fairness constraints can be used to rule out ways in which a finite-length execution
of the model can be extended to an infinite execution violating the desired liveness
condition.
Fairness. An important concept in execution of composed modules is fairness. Fair-
ness constraints block infinite executions that are not realistic for concurrent sys-
tems, and are often required to demonstrate liveness properties. In other words, the
fairness constraints are needed to ensure a proper resolution of the nondetermin-
istic decisions taken during the execution of a concurrent system: no module gets
neglected and each module always makes progress.

There are two major types of fairness: strong and weak. Weak (Buchi) fairness
establishes that a step in the module execution cannot be enabled forever without be-
ing taken. Strong (Streett) fairness guarantees that a step cannot be enabled infinitely
often without being taken.

Fairness can be useful in many different verification settings. For instance, con-
sider the asynchronous (interleaved) composition of modules (considered above).
One usually requires (weak) fairness in this setting: no module should be enabled
forever without proceeding. Operationally, this could be modeled using a Boolean
variable that indicates whether or not a module is enabled to make a transition, and
then specifying that this variable must be true infinitely often.

Definition 1 An execution of a composite system is fair, if all modules progress
infinitely often.

Fairness can be useful for modeling behavior even within a single module. An
example of this setting is presented in Sect. 3.4.1.5.
Encapsulation. The module interface is defined in terms of its inputs and outputs,
i.e., the environment communicates with the module by updating its input variables,
which in response reacts by updating its output variables. A good model will expose
all internal state that can (should) be accessed by its environment and only that
state: this is important for ensuring that the verifier does not miss bugs or generate
spurious error reports.
Moore and Mealy machines. The SML notation can be easily used both for Mealy
and Moore machines, the standard modeling formalisms. For Moore machines, the
output relation simply takes the form

∧m
j=1 oj = fj (V ), where fj denotes the out-

put function for output variable oj . Similarly, for Mealy machines, the output rela-
tion would take the form

∧m
j=1 oj = fj (V, I ).

3.4 Examples

In order to illustrate modeling with SML, we present three examples from three dif-
ferent problem domains: digital circuits (Sect. 3.4.1), control systems (Sect. 3.4.2),
and concurrent software (Sect. 3.4.3). Each example is a simplified version of a de-
sign artifact arising in practice. In each case, we begin by presenting this design, its
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Fig. 2 Anatomy of a flit. A flit contains a 24-bit data payload, a 6-bit destination address, and a
2-bit type

simplification, and the corresponding SML model. We then describe how the SML

model might need to be transformed in order to succeed at various verification tasks
associated with the model. Our goal is to illustrate the various modeling considera-
tions discussed in Sect. 3.2.1 in the particular context of each example.

3.4.1 Synchronous Circuits

Our representative example of digital circuits is a simple chip multiprocessor (CMP)
router. First, we present a brief description of this example, and then describe it in
SML notation.

3.4.1.1 Router Design

Network-on-chip (NoC) architectures are the backbone of modern, multicore pro-
cessors and system-on-chip (SoC) designs, serving as the communication fabric be-
tween processor cores and other on-chip devices such as controllers for memory and
input-output devices. It is important to prove that individual routers and networks
of interconnected routers operate as per specification. The CMP router design [55]
we focus on is part of an on-chip interconnection network that connects processor
cores with memory and with each other. The main function of the router is to di-
rect incoming packets to the correct output port. Each packet is made up of smaller
components called flits. There are three kinds of flits: a head flit, which reserves an
output channel, one or more body flits, which contain the data payload, and a tail flit,
which signals the end of the packet. The typical data layout of a flit is depicted in
Fig. 2. The two least significant bits represent the flit type, the next six bits represent
the destination address, and the 24 most significant bits contain the data payload.

The CMP router consists of four main modules, as shown in Fig. 3. The input
controller buffers incoming flits and interacts with the arbiter. Upon receipt of a
head flit, the input controller requests access to an output port based on the des-
tination address contained in the head flit. The arbiter grants access to the output
ports in a fair manner, using a simple round-robin arbitration scheme. The remain-
ing modules are the encoder and crossbar. When the arbiter grants access to a par-
ticular output port, a signal is sent to the input controller to release the flits from the
buffers, and at the same time, an allocation signal is sent to the encoder which in
turn configures the crossbar to route the flits to the appropriate output port.
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Fig. 3 Chip-Multiprocessor
(CMP) Router. There are
four main modules: the input
controller, the arbiter, the
encoder, and the crossbar

3.4.1.2 Simplifications and SML Model

Since the original router design is quite large, we make several simplifications to
create a small example for this introductory chapter. First, we assume that each
flit that makes up the packet raises a request to the arbiter, not just the head flit;
this eliminates some logic tracking the type of flit. Second, we assume that the
destination address, which indicates the output port to which a flit must be directed,
is exactly two bits. Specifically, bits 2 and 3 of each flit encode the address, with 01
encoding output port 0 (bit 2 is 1 and bit 3 is 0), and 10 encoding output port 1. The
destination address is directly copied to the request lines of the arbiter; the encoding
00 for a request line indicates the absence of a request. Finally, we eliminate the
Encoder module, directly using the alloc signals to route flits through the crossbar
to the output ports of the router.

Figure 4 shows the SML representation of the router. We use the usual short form
of declarations where variables of the same type are grouped together in the same
declaration statement. The top-level module is termed System. Note that it has
two inputs, and therefore is an open system. The top-level module is a synchronous
composition of three modules: the input controller, the arbiter, and the crossbar. The
input controller module in turn is a synchronous composition of two instances of
the module modeling a FIFO buffer, plus some additional control logic to request
access to an output port from the arbiter. Note how the buffers are defined as arrays
mapping bitvectors to bitvectors, and implemented as circular queues. The arbiter
uses a single priority bit to mediate access to an output port when both input ports
request that same output port; if there is no conflict between output port requests,
both can be granted simultaneously. The alloc signals generated by the arbiter are
used in the crossbar to direct the flit at the head of the input buffers to the corre-
sponding output port, if one is granted. If no flit is directed to an output port, the
value of that output is set to a default invalid value NAF (standing for “not a flit”).

3.4.1.3 Verification Task: Progress Through the Router

Consider the following verification problem stated in English below:

Any incoming flit on an input port is routed to its correct output port, as specified by its
destination address, within L clock cycles.
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Fig. 4 A simplified chip multiprocessor router modeled in SML. NAF stands for “not a flit”, and
is implemented as the bitvector value 0x00000003. We use a wires declaration to introduce
new names for expressions. SZ is a parameter denoting the size of queues

This is a typical latency bound property that every router must satisfy. The bound L
on the latency is left parametric for now.

A latency bound property with a fixed bound L falls within a broader class of
properties known as quality-of-service properties.

It is common, however, to use an abstraction of this property that only requires L
to be finite, but places no other requirement on its value. In essence, such a property
specifies that any incoming flit is to be eventually routed to the correct output port.

Both forms of the latency bound property can be expressed in temporal logic,
a specification formalism that is explored in greater depth in Chap. 2 on temporal
logic.
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Fig. 5 A simple environment model for the chip multiprocessor router modeled in Fig. 4. PKT_SZ
is a parameter denoting the size of the packet (i.e., the number of flits per packet)

3.4.1.4 Data Type Abstraction

Consider a simple environment that injects exactly one packet into each input port,
with the destination of the packets modeled by symbolic destination field in the re-
spective head flit. Each packet comprises a head flit, several body flits, and a tail flit.
By making the destination field symbolic, we can model both interesting scenarios:
the case where the two injected packets are destined for different output ports as well
as the case where they are headed for the same output port (resulting in contention
to be resolved by the arbiter).

Figure 5 gives the SML code for the above environment model. Note that the out-
puts generated by this environment are the inputs to the top-level module System
in the router design. These outputs are modeled as bit-vector variables.

The choice of how to model the data type of the flit can have a big impact on the
scalability of verification. In work by Brady et al. [15], a router design almost iden-
tical to the one given in this chapter was considered for verification.2 Two types of
verification tasks were performed. In both cases, bounded model checking (BMC)
(covered in Chap. 10) was used to check that starting from a reset state, the router
correctly forwards both packets to their respective output ports within a fixed num-
ber of cycles that depends on the length of the packet (PKT_SZ). The difference was
in how the data component of flits in all modules of the design were represented.
In one case, the data component of each flit was modeled as a bit-vector 28 bits
wide (as in Fig. 5), while in the second case this was modeled as an abstract term,

2The differences have to do with modeling the crossbar and routing logic more accurately than we
have in this chapter, and are not significant for the discussion herein.
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Fig. 6 Runtime comparison
for increasing packet size in
CMP router model. The
runtimes for the
bitvector-level and term-level
designs are compared for
increasing packet size.
Runtimes for the underlying
decision procedure are broken
up into that required for
generating a SAT solver
encoding (“DP”) and that
taken for the SAT solving
(“SAT”)

which can be encoded with fewer bits by an underlying decision procedure for a
combination of uninterpreted functions and equality and bit-vector arithmetic (see
Chap. 11). In Fig. 6, we see that indeed the runtime of the verifier scales much better
with increasing PKT_SZ in the case where such term-level modeling is employed
than in the case where pure bitvector-level modeling is used.

This example illustrates the points in Sect. 3.2.1 related to the right level of ab-
straction required to ensure that the underlying computational engine (a SAT-based
decision procedure—also known as an SMT solver—in this case) can efficiently
verify the problem at hand.

3.4.1.5 Environment Modeling

In the previous section, we considered the verification of a router with a rather con-
trived environment model that simply injects one packet into the router’s input ports.
In reality, such a router will be interconnected with other network elements in a spec-
ified topology. For example, consider an 8×8 grid of interconnected nodes shown in
Fig. 7(a), where each node typically represents a router and network interface logic
(e.g., connecting the router with a core or memory element). For this section, we
will assume that each node is simply a router design similar to that given in Fig. 4,
but with five input and output ports—four of these can be connected to neighboring
nodes on the grid, and one can be connected to the processor or memory element
associated with that node.

Next, consider a specific node in the grid labeled A. Suppose that we want to
verify the property that every packet traveling through A spends no more than 15
cycles within A. One approach is to model the overall network as a synchronous
composition of 64 routers, one for each node. However, this results in a model with
tens of thousands of Boolean state variables, which is beyond the capacity of the
best current formal verification tools.

An obvious alternative approach involves abstraction and modeling with non-
determinism. Specifically, as depicted in Fig. 7(b), one can abstract all nodes in the
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Fig. 7 Verifying latency through a router in an on-chip network. We wish to verify a bound
on the latency through node A

network other than A into an environment model E, where E is a transition system
which, at each cycle, non-deterministically selects a port to send an input packet to
A, sets the destination port for that packet, and chooses a data payload. If we apply
this technique to the problem of verifying a latency bound of 15 through the router,
it fails to prove the latency bound using a sequence of input packets that causes
contention for the same output port within the router. The question is, however,
whether such a pattern can arise in this particular network for the traffic patterns
that the architect has in mind. Purely non-deterministic modeling of traffic sources
does not permit us to model traffic sources in a more precise manner.

Thus, as mentioned in Sect. 3.2.1, the environment model must be tailored to the
type of property to be verified. In this case, in order to prove a particular latency
bound, we must come up with a suitable model of traffic sources (and sinks).

One formalism for more fine-grained modeling of any channel of NoC traffic (in-
cluding sources and sinks) is a bounded channel regulator, introduced by Holcomb
et al. [37] based on the regulator model described by Cruz [27]. A channel in an
NoC is any link between components in the network. A bounded channel regulator
TR is a monitor on a channel that checks three constraints: the rate ρ, burstiness σ ,
and bound B on the traffic that traverses the channel. Figure 8 illustrates a bounded
channel regulator. The buffer of size σ begins filled with tokens, and one token is re-
moved whenever a head flit passes through the channel being monitored. Srcρ adds
a token to the buffer once every ρ cycles, unless the buffer is already full. During
a simulation, Srcρ becomes inactive once it has produced a total of B − σ tokens.
If a head flit ever passes through the channel when the regulator queue is empty,
then a Boolean flag ai is set to signal that the channel traffic does not conform to
the constraints of regulator i. We refer to a regulator with rate ρ, burstiness σ , and
bound B as TR(ρ,σ,B). It is easy to model a bounded regulator in SML using non-
deterministic assignment for generating packets, a FIFO buffer for storing tokens,
and a counter for enforcing the rate of the traffic regulator.

The regulator can be applied to any channel in a network that is viewed as a gen-
erator of packets, such as a neighboring router, a processing element, or a memory
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Fig. 8 Traffic regulator.
The bounded channel
regulator TR(ρ,σ,B) models
all traffic patterns with
average rate constrained by ρ,
burstiness by σ , and total
number of packets bounded
by B

element. Such packet generators can be modeled as a completely non-deterministic
source SrcND (as shown in Fig. 8). Combining SrcND with the regulator provides a
way to restrict behaviors of the non-deterministic source that are overly adversarial
compared to the actual design that this model abstracts away. It is also possible to
model traffic sinks in a similar fashion.

Since router A in Fig. 7(b) is at a corner of the grid, it sees less incoming traf-
fic than other routers in the center. With suitable parameters ρ, σ , and B for the
bounded regulator model, one can verify the latency bound of 15 through the router
A, as reported by Holcomb et al. [37]. The parameters can be generated manually or
inferred automatically from traces generated from program executions.

3.4.1.6 Summary

In this section, we discussed the latency bound verification problem for a CMP
router. Several of the considerations outlined in Sect. 3.2.1 arose. First, since the
system was a digital circuit with a single clock, a discrete state machine formalism
based on synchronous composition was suitable. Next, additional data type abstrac-
tion was necessary to reduce the search space for the underlying SAT-based compu-
tational engines. A suitable environment model had to be created to reason about a
latency bound property. We started with a simplistic environment model, but then,
in order to consider the more realistic whole-network scenario, had to formulate
suitable models for sources (and sinks) of network traffic. This environment model
also incorporates relevant abstractions to reduce the search space for verification.

3.4.2 Synchronous Control Systems

In the previous section we presented an example of a synchronous digital circuit
modeled in SML. Synchronous digital circuits are an important class of systems that
can be modeled using the synchronous model of computation. Another important
class of systems which can often be viewed as synchronous systems are control
systems, implemented either in hardware or software. Control systems typically
consist of a controller which interacts with a plant, that is, a physical process to
be controlled, in a closed-loop manner. The controller typically samples certain ob-
servable variables of the plant periodically through sensors, and issues commands
to the plant through actuators.
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Fig. 9 A simple feedback
control system.
A proportional controller for
a helicopter model (taken
from [49])

Fig. 10 A simple helicopter
model. The Helicopter block
of Fig. 9 (from [49])

In this section we present a toy feedback control system consisting of a simple
proportional controller for a helicopter model. The example is an adapted version of
the one described in Sect. 2.4 of [49]. There, the model is a continuous-time model.
Here, we present a discrete-time (synchronous) version with the aim of illustrating
how it could be captured in SML.

The system is shown graphically in a block-diagram notation in Fig. 9. It con-
tains, at the top level, the Controller and Helicopter modules connected in feedback.
The input of the Helicopter module is torque, denoted by Ty , and its output is an-
gular velocity, which is the time derivative θ̇y of the angle θy . The input of the
Controller is the error e, that is, the difference between the target angular velocity ψ
(which we will take to be constant) and the actual angular velocity.

In this toy example the Controller is a simple proportional controller which mul-
tiplies the error by a constant K , that is, the controller implements Ty = K · e.
The Helicopter consists of two sub-modules, a Scale and an Integrator, as shown in
Fig. 10.

The entire system, modeled in SML, is shown in Fig. 11. The top-level System
module instantiates and connects four sub-modules, a Helicopter, a Proportional-
Controller, a Constant (modeling the target angular velocity ψ ) and a Difference
module (computing the error e). The Helicopter module consists of a Scale and a
DiscreteIntegrator (replacing the continuous integrator of Fig. 10). The Proportion-
alController consists simply of a Scale. The Constant, Scale, Difference and Dis-
creteIntegrator modules are primitive modules, while the rest are composite mod-
ules.

Properties of interest in control systems are stability, robustness, and control per-
formance. Such properties can sometimes be expressed in formal specification lan-
guages such as temporal logic. For instance, in the helicopter example above, we
may wish the error e to eventually become almost zero, and remain close to zero
forever after. We may also want e to become almost zero within a certain deadline.
Finally, we may also want e not to exceed certain upper and lower bounds as it con-
verges to zero (i.e., bounded “overshoot” and “undershoot”). All these properties
can be formalized in temporal logic.
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Fig. 11 A toy synchronous control system modeled in SML

3.4.3 Concurrent Software

Concurrent software has long been a key application domain for model checking.
In this section, we show how modeling a concurrent program for verification can
require subtlety, even for small programs with limited concurrency.
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Fig. 12 Modeling a program that does something for two seconds and then continues to do some-
thing else (figure from [49])

Consider the program outlined in Fig. 12.3 The main function seeks to perform
some action (at the program location denoted B) for two seconds and then do some-
thing else (at location C). To keep track of time, the program uses a timer interrupt.
The function ISR is registered as the interrupt service routine for this timer inter-
rupt. The interrupt is raised every millisecond, so ISR will be invoked 2000 times
in two seconds. The program seeks to track the number of invocations of ISR by
using the shared variable timerCount.

Consider verifying the following property:

The main function of the program will always reach position C.

In other words, will the program eventually move beyond whatever computation it
was to perform for two seconds?

A natural approach to answer this question is to model both the main and ISR
functions as state machines. In Fig. 12, we show two finite state machines that model
ISR and main. The states of the FSMs correspond to positions in the execution
labeled A through E, as shown in the program listing. Let us further assume that the
main function loops in location C.

Note that these state machine models incorporate some important assumptions.
One of these is on the atomicity of operations in the program. The program locations
A through E are between C statements, so implicitly we are assuming that each C
statement is an atomic operation—a questionable assumption in general. However,
for simplicity, we will make this assumption here.

Another modeling assumption concerns the frequency with which interrupts can
be raised. The raising of an interrupt is modeled in Fig. 12 using the input assert,

3This example is taken from a textbook on Embedded Systems [49].
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which is a “pure” signal meaning that it is an event that is either present or absent at
any time step (this can be modeled in SML as a Boolean). Assuming that interrupts
can occur infinitely often, we can model the environment that raises interrupts as a
state machine that non-deterministically raises an interrupt (sets assert) at each
step.

The next question becomes how to compose these state machines to correctly
model the interaction between the two pieces of sequential code in the procedures
ISR and main. As first glance, one might think of asynchronous composition as
a suitable choice. However, that choice is incorrect in this context because the in-
terleavings are not arbitrary. In particular, main can be interrupted by ISR, but
ISR cannot be interrupted by main. Asynchronous composition fails to capture
this asymmetry.

Synchronous composition is also not a good fit. When ISR is running, the main
function is not, and vice versa, unlike synchronous composition where the transition
systems move in lock step.

Therefore, to accurately compose main and ISR, we need to combine them with
a scheduler state machine. The scheduler has two modes: one in which main is exe-
cuting, and one in which ISR is executing after it pre-empts main. This model also
requires minor modifications to the state machines main and ISR. All three state
machines are then composed together hierarchically and synchronously. Figure 13
shows the SML model for the combination.

The resulting machine is composed with its environment state machine, which
models the raising of an interrupt. This final composition is asynchronous, reflecting
the modeling assumption that the environment and the concurrent program do not
share a common clock. However, we probably want to rule out the interleaving
in which only the environment steps without ever giving the concurrent program
a chance to execute. A fairness specification allows us to impose this modeling
constraint.

With this model, we are able to verify that, in fact, the program does not satisfy
the desired property. One counterexample involves an interrupt being repeatedly
raised by Env and the program spends all its time in invocations of ISR with main
unable to make any progress.

To summarize this example, we note that even the simplest concurrent programs,
such as the interrupt-driven program of this section, can be tricky to model. Al-
though conventional wisdom holds that asynchronous composition is the “right”
choice for concurrent software verification, one must be careful to take into consid-
eration relative priorities of tasks/processes and scheduling policies.

3.5 Kripke Structures

This section introduces Kripke Structures, perhaps the most common formalism for
specifying system models. It then defines the mapping between the constructs of the
modeling language defined in Sect. 3.3 and the elements of the Kripke Structures.
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Fig. 13 A simple interrupt-driven program modeled in SML

3.5.1 Transition Systems

Transition systems are the most common formalism used in formal verification since
they naturally capture the dynamics of a discrete system. Transition systems are di-
rected graphs where nodes model states, and the edges represent transitions denot-
ing the state changes. A state encapsulates information of the system (i.e., values
of the system variables) at a particular moment in time during its execution. For
instance, a state of the mutual exclusion protocol can indicate the critical or noncrit-
ical sections of the system processes. Similarily, for example in hardware circuits
executing synchronously, a state can represent the register values in addition to the
values of the input bits. Transitions encapsulate the gradual changes that the system
parameters exhibit at each execution step of the system. In the case of the mutual ex-
clusion protocol a transition may indicate that a process moves from its non-critical
section to a waiting or critical section state. In software, on the other hand, the tran-
sition may correspond to the execution of a program statement (say, an assignment
operation) which may result in a change of the values of some program variables to-
gether with a program counter. Correspondingly in hardware a transition models the
update of the registers and the output bits in response to the updated set of inputs.
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There exist many classes of transition systems. The choice of a particular tran-
sition system depends on the nature of the system being modeled. This chapter
presents the most common formalism, called Kripke Structures, which is suitable for
modeling most hardware and software systems. Kripke structures are transition sys-
tems which are specified by constructs called atomic propositions. Atomic proposi-
tions express facts about the states of the system, for example, “Heli.coeff = 10.0”
for variable Heli.coeff from the helicopter control system example.

Definition 2 (Kripke Structure) (cf. [25]) Let AP be a non-empty set of atomic
propositions. A Kripke structure is a transition system defined as a four-tuple M =
(S;S0;R;L), where S is a finite set of states, S0 ∈ S is a finite set of initial states
(S0 ⊆ S), R ⊆ S× S is a transition relation, for which it holds that ∀s ∈ S : ∃s′ ∈ S :
(s; s′) ∈ R, and L : S→ 2AP is the labeling function which labels each state with
the atomic propositions which hold in that state.

A path of the Kripke structure is a sequence of states s0, s1, s2, . . . such that
s0 ∈ S0 and for each i ≥ 0, si+1 =R(si).

The word on the path is a sequence of sets of the atomic propositions ω =
L(s1),L(s2),L(s3), . . ., which is an ω-word over alphabet 2AP .

The program semantics is defined by its language which is the set of finite (infi-
nite) words of all possible paths which the system can take during its execution.

Kripke structures are the models defining the semantics (definition of when a
specified property holds) of the most widely used specification languages for reac-
tive systems, namely temporal logics.

Kripke structures can be seen as describing the behavior of the modeled system
in a modeling-language-independent manner. Therefore, temporal logics are really
modeling-formalism independent. The definition of atomic propositions is the only
thing that needs to be adjusted for each formalism.

A fair execution of the program modeled by a Kripke structure is ensured by
fairness constraints which rule out the unrealistic paths. A fair path ensures that cer-
tain fairness constraints hold. In general, a strong fairness constraint can be defined
as a temporal logic formula of the following form: GF AP �⇒ F AP, where AP
is a set of atomic propositions of interest. The formula states that if some atomic
propositions are true periodically (corresponding to the fact that a process is ready
to execute or transition to a new state) then they will be true infinitely often in the
future as well (the transitions will be taken). The weak fairness constraint is similar-
ily defined as G AP�⇒ F AP, stating that every process that is continuously ready
to execute from some time point gets its turn infinitely often.

3.5.2 From SML Programs to Kripke Structures

For purposes of verification, we must close the model of the system under verifica-
tion with the model of its environment. For such a closed SML program, suppose that
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the corresponding STS is (∅,O,V,α, δ). From this STS, we obtain the correspond-
ing Kripke structure as (S,S0,R,L), where S = 2V∪O , S0 = {s ∈ S |α(s)= true},
R = δ, and L is such that L(s) is the value of variables in V ∪O in state s.

3.6 Summary

This chapter has reviewed some of the fundamental issues in system modeling for
verification. We introduced SML, a simple modeling language for abstract state ma-
chines or transition systems, and illustrated its use on three examples from different
domains. We also gave semantics to SML using the well-known formalism of Kripke
structures. Other chapters in this Handbook will cover several concepts in model
checking, many of which are based on domain-specific modeling formalisms. SML

captures the essential features of those formalisms and potentially provides a basis
for better understanding the connections between chapters and even creating new
connections.
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Chapter 4
Automata Theory and Model Checking

Orna Kupferman

Abstract We study automata on infinite words and their applications in system
specification and verification. We first introduce Büchi automata and survey their
closure properties, expressive power, and determinization. We then introduce addi-
tional acceptance conditions and the model of alternating automata. We compare
the different classes of automata in terms of expressive power and succinctness, and
describe decision problems for them. Finally, we describe the automata-theoretic
approach to system specification and verification.

4.1 Introduction

Finite automata on infinite objects were first introduced in the 1960s. Motivated by
decision problems in mathematics and logic, Büchi, McNaughton, and Rabin devel-
oped a framework for reasoning about infinite words and infinite trees [6, 52, 61].
The framework has proved to be very powerful. Automata and their tight relation
to second-order monadic logics were the key to the solution of several fundamental
decision problems in mathematics and logic [62, 74]. Today, automata on infinite
objects are used for specification and verification of nonterminating systems. The
idea is simple: when a system is defined with respect to a finite set AP of proposi-
tions, each of the system’s states can be associated with a set of propositions that
hold in this state. Then, each of the system’s computations induces an infinite word
over the alphabet 2AP, and the system itself induces a language of infinite words
over this alphabet. This language can be defined by an automaton. Similarly, a sys-
tem specification, which describes all the allowed computations, can be viewed as a
language of infinite words over 2AP, and can therefore be defined by an automaton.
In the automata-theoretic approach to verification, we reduce questions about sys-
tems and their specifications to questions about automata. More specifically, ques-
tions such as satisfiability of specifications and correctness of systems with respect
to their specifications are reduced to questions such as non-emptiness and language
containment [48, 77, 79].
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The automata-theoretic approach separates the logical and the combinatorial as-
pects of reasoning about systems. The translation of specifications to automata han-
dles the logic and shifts all the combinatorial difficulties to automata-theoretic prob-
lems, yielding clean and asymptotically optimal algorithms, as well as better under-
standing of the complexity of the problems. Beyond leading to tight complexity
bounds, automata have proven to be very helpful in practice. Automata are the key
to techniques such as on-the-fly model checking [11, 21], and they are useful also for
modular model checking [41], partial-order model checking [23, 31, 75, 78], model
checking of real-time and hybrid systems [26], open systems [1], and infinite-state
systems [40, 43]. Automata also serve as expressive specification formalisms [2, 39]
and in algorithms for sanity checks [37]. Automata-based methods have been imple-
mented in both academic and industrial automated-verification tools (e.g., COSPAN
[24], SPIN [27], ForSpec [72], and NuSMV [9]).

This chapter studies automata on infinite words and their applications in sys-
tem specification and verification. We first introduce Büchi automata, survey their
closure properties, expressive power, and determinization. We then introduce addi-
tional acceptance conditions and the model of alternating automata. We compare
the different classes of automata in terms of expressive power and succinctness, and
describe decision problems for them. Finally, we describe the automata-theoretic
approach to system specification and verification.

4.2 Nondeterministic Büchi Automata on Infinite Words

4.2.1 Definitions

For a finite alphabetΣ , an infinite word w = σ1 ·σ2 ·σ3 · · · is an infinite sequence of
letters fromΣ . We useΣω to denote the set of all infinite words over the alphabetΣ .
A language L⊆Σω is a set of words. We sometimes refer also to finite words, and
to languages L⊆Σ∗ of finite words overΣ . A prefix ofw = σ1 ·σ2 · · · is a (possibly
empty) finite word σ1 · σ2 · σ3 · · ·σi , for some i ≥ 0. A suffix of w is an infinite
word σi · σi+1 · · ·, for some i ≥ 1. A property of a system with a set AP of atomic
propositions can be viewed as a language over the alphabet 2AP. We have seen in
Chap. 2 that languages over this alphabet can be defined by linear temporal-logic
(LTL, for short) formulas. Another way to define languages is by automata.

A nondeterministic finite automaton is a tuple A = 〈Σ,Q,Q0, δ,α〉, where Σ
is a finite non-empty alphabet, Q is a finite non-empty set of states, Q0 ⊆Q is a
non-empty set of initial states, δ :Q×Σ→ 2Q is a transition function, and α is an
acceptance condition, to be defined below.

Intuitively, when the automaton A runs on an input word over Σ , it starts in
one of the initial states, and it proceeds along the word according to the transition
function. Thus, δ(q, σ ) is the set of states that A can move into when it is in state
q and it reads the letter σ . Note that the automaton may be nondeterministic, since
it may have several initial states and the transition function may specify several
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Fig. 1 A DBW for {w :w has infinitely many a’s}

possible transitions for each state and letter. The automaton A is deterministic if
|Q0| = 1 and |δ(q, σ )| = 1 for all states q ∈ Q and symbols σ ∈ Σ . Specifying
deterministic automata, we sometimes describe the single initial state or destination
state, rather than a singleton set.

Formally, a run r of A on a finite word w = σ1 ·σ2 · · ·σn ∈Σ∗ is a sequence r =
q0, q1, . . . , qn of n+ 1 states in Q such that q0 ∈Q0, and for all 0≤ i < n we have
qi+1 ∈ δ(qi, σi+1). Note that a nondeterministic automaton may have several runs
on a given input word. In contrast, a deterministic automaton has exactly one run on
a given input word. When the input word is infinite, thus w = σ1 · σ2 · σ3 · · · ∈Σω,
then a run of A on it is an infinite sequence of states r = q0, q1, q2, . . . such that
q0 ∈ Q0, and for all i ≥ 0, we have qi+1 ∈ δ(qi, σi+1). For an infinite run r , let
inf (r) = {q : qi = q for infinitely many i’s }. Thus, inf (r) is the set of states that r
visits infinitely often.

The acceptance condition α determines which runs are “good”. For automata on
finite words, α ⊆ Q and a run r is accepting if qn ∈ α. For automata on infinite
words, one can consider several acceptance conditions. Let us start with the Büchi
acceptance condition [6]. There, α ⊆Q, and a run r is accepting if it visits some
state in α infinitely often. Formally, r is accepting iff inf (r) ∩ α �= ∅. A run that is
not accepting is rejecting. A word w is accepted by an automaton A if there is an
accepting run of A on w. The language recognized by A , denoted L (A ), is the
set of words that A accepts. We sometimes refer to L (A ) also as the language
of A .

We use NBW and DBW to abbreviate nondeterministic and deterministic Büchi
automata, respectively.1 For a class γ of automata (so far, we have introduced γ ∈
{NBW,DBW}), we say that a language L ⊆ Σω is γ -recognizable iff there is an
automaton in the class γ that recognizes L. A language is ω-regular iff it is NBW-
recognizable.

Example 1 Consider the DBW A1 appearing in Fig. 1. When we draw automata,
states are denoted by circles. Directed edges between states are labeled with letters
and describe the transitions. Initial states (q0, in the figure) have an edge entering
them with no source, and accepting states (q1, in the figure) are identified by double
circles. The DBW moves to the accepting state whenever it reads the letter a, and
it moves to the non-accepting state whenever it reads the letter b. Accordingly, the
single run r on a word w visits the accepting state infinitely often iff w has infinitely
many a’s. Hence, L (A1)= {w :w has infinitely many a’s}.

1The letter W indicates that the automata run on words (rather than, say, trees).
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Fig. 2 An NBW for {w :w has only finitely many a’s}

Example 2 Consider the NBW A2 appearing in Fig. 2. The automaton is non-
deterministic, and in order for a run to be accepting it has to eventually move to
the accepting state, where it has to stay forever while reading b. Note that if A2
reads a from the accepting state it gets stuck. Accordingly, A2 has an accepting run
on a word w iff w has a position from which an infinite tail of b’s starts. Hence,
L (A2)= {w :w has only finitely many a’s}.

Consider a directed graph G= 〈V,E〉. A strongly connected set of G (SCS) is a
set C ⊆ V of vertices such that for every two vertices v, v′ ∈ C, there is a path from
v to v′. An SCS C is maximal if it cannot be extended to a larger SCS. Formally,
for every nonempty C′ ⊆ V \ C, we have that C ∪ C′ is not an SCS. The maximal
strongly connected sets are also termed strongly connected components (SCC). An
automaton A = 〈Σ,Q,Q0, δ,α〉 induces a directed graph GA = 〈Q,E〉 in which
〈q, q ′〉 ∈E iff there is a letter σ such that q ′ ∈ δ(q, σ ). When we talk about the SCSs
and SCCs of A , we refer to those of GA . Consider a run r of an automaton A . It
is not hard to see that the set inf (r) is an SCS. Indeed, since every two states q and
q ′ in inf (r) are visited infinitely often, the state q ′ must be reachable from q .

4.2.2 Closure Properties

Automata on finite words are closed under union, intersection, and complemen-
tation. In this section we study closure properties for nondeterministic Büchi au-
tomata.

4.2.2.1 Closure Under Union and Intersection

We start with closure under union, where the construction that works for nondeter-
ministic automata on finite words, namely putting the two automata “one next to
the other”, works also for nondeterministic Büchi automata. Formally, we have the
following.

Theorem 1 ([8]) Let A1 and A2 be NBWs with n1 and n2 states, respectively.
There is an NBW A such that L (A ) = L (A1) ∪ L (A2) and A has n1 + n2
states.

Proof Let A1 = 〈Σ,Q1,Q
0
1, δ1, α1〉 and A2 = 〈Σ,Q2,Q

0
2, δ2, α2〉. We assume,

without loss of generality, that Q1 and Q2 are disjoint. Since nondeterministic au-
tomata may have several initial states, we can define A as the NBW obtained by
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Fig. 3 Two Büchi automata accepting the language {aω}, and their empty product

taking the union of A1 and A2. Thus, A = 〈Σ,Q1 ∪Q2,Q
0
1 ∪Q0

2, δ,α1 ∪ α2〉,
where for every state q ∈Q1 ∪Q2, we have that δ(q, σ ) = δi(q, σ ), for the index
i ∈ {1,2} such that q ∈Qi . It is easy to see that for every wordw ∈Σω, the NBW A
has an accepting run on w iff at least one of the NBWs A1 and A2 has an accepting
run on w. �

We proceed to closure under intersection. For the case of finite words, one proves
closure under intersection by constructing, given A1 and A2, a “product automaton”
that hasQ1×Q2 as its state space and simulates the runs of both A1 and A2 on the
input words. A word is then accepted by both A1 and A2 iff the product automaton
has a run that leads to a state in α1 × α2. As the example below demonstrates, this
construction does not work for Büchi automata.

Example 3 Consider the two DBWs A1 and A2 on the left of Fig. 3. The product
automaton A1 ×A2 is shown on the right. Clearly, L (A1)=L (A2) = {aω}, but
L (A1 ×A2)= ∅.

As demonstrated in Example 3, the problem with the product automaton is that
the definition of the set of accepting states to be α1 × α2 forces the accepting runs
of A1 and A2 to visit α1 and α2 simultaneously. This requirement is too strong, as
an input word may still be accepted by both A1 and A2, but the accepting runs on it
visit α1 and α2 in different positions. As we show below, the product automaton is a
good basis for proving closure under intersection, but one needs to take two copies
of it: one that waits for visits of runs of A1 to α1 (and moves to the second copy
when such a visit is detected) and one that waits for visits of runs of A2 to α2 (and
returns to the first copy when such a visit is detected). The acceptance condition
then requires the run to alternate between the two copies infinitely often, which is
possible exactly when both the run of A1 visits α1 infinitely often, and the run of
A2 visits α2 infinitely often. Note that A2 may visit α2 when the run is in the first
copy, in which case the visit to α2 is ignored, and in fact this may happen infinitely
many times. Still, if there are infinitely many visits to α1 and α2, then eventually the
run moves to the second copy, where it eventually comes across a visit to α2 that is
not ignored. Formally, we have the following.

Theorem 2 ([8]) Let A1 and A2 be NBWs with n1 and n2 states, respectively.
There is an NBW A such that L (A )=L (A1)∩L (A2) and A has 2n1n2 states.

Proof Let A1 = 〈Σ,Q1,Q
0
1, δ1, α1〉 and A2 = 〈Σ,Q2,Q

0
2, δ2, α2〉. We define

A = 〈Σ,Q,Q0, δ,α〉, where

• Q = Q1 × Q2 × {1,2}. That is, the state space consists of two copies of the
product automaton.



112 O. Kupferman

• Q0 =Q0
1 ×Q0

2 × {1}. That is, the initial states are triples 〈s1, s2,1〉 such that s1
and s2 are initial in A1 and A2, respectively. The run starts in the first copy.

• For all q1 ∈ Q1, q2 ∈ Q2, c ∈ {1,2}, and σ ∈ Σ , we define δ(〈s1, s2, c〉, σ ) =
δ1(s1, σ )× δ2(s2, σ )× {next(s1, s2, c)}, where

next(s1, s2, c)=
[

1 if (c= 1 and s1 /∈ α1) or (c= 2 and s2 ∈ α2),
2 if (c= 1 and s1 ∈ α1) or (c= 2 and s2 /∈ α2).

That is, A proceeds according to the product automaton, and it moves from the
first copy to the second copy when s1 ∈ α1, and from the second copy to the first
copy when s2 ∈ α2. In all other cases it stays in the current copy.

• α = α1 ×Q2 × {1}. That is, a run of A is accepting if it visits infinitely many
states in the first copy in which the Q1-component is in α1. Note that after such
a visit, A moves to the second copy, from which it returns to the first copy after
visiting a state in which theQ2-component is in α2. Accordingly, there must be a
visit to a state in which theQ2-component is in α2 between every two successive
visits to states in α. This is why a run visits α infinitely often iff itsQ1-component
visits α1 infinitely often and its Q2-component visits α2 infinitely often. �

Note that the product construction retains determinism; i.e., starting with deter-
ministic A1 and A2, the product A is deterministic. Thus, DBWs are also closed
under intersection. Also, while the union construction we have described does not
retain determinism, DBWs are closed also under union. Indeed, if we take the prod-
uct construction (one copy of it is sufficient), which retains determinism, and define
the set of accepting states to be (α1×Q2)∪ (Q1×α2), we get a DBW for the union.
Note, however, that unlike the n1 + n2 blow-up in Theorem 1, the blow-up now is
n1n2.

4.2.2.2 Closure Under Complementation

For deterministic automata on finite words, complementation is easy: the single run
is rejecting iff its last state is not accepting, thus complementing a deterministic
automaton can proceed by dualizing its acceptance condition: for an automaton
with state space Q and set α of accepting states, the dual acceptance condition
is α̃ =Q \ α, and it is easy to see that dualizing the acceptance condition of a de-
terministic automaton on finite words results in a deterministic automaton for the
complement language. It is also easy to see that such a simple dualization does not
work for DBWs. Indeed, a run of a Büchi automaton is rejecting iff it visits α only
finitely often, which is different from requiring it to visit α̃ infinitely often. As a
concrete example, consider the DBW A1 from Fig. 1. Recall that L (A1)= {w :w
has infinitely many a’s}. An attempt to complement it by defining the set of ac-
cepting states to be {q0} results in a DBW whose language is {w : w has infinitely
many b’s}, which does not complement L (A1). For example, the word (a · b)ω be-
longs to both languages. In this section we study the complementation problem for
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Büchi automata. We start with deterministic automata and show that while dualiza-
tion does not work, their complementation is quite simple, but results in a nondeter-
ministic automaton. We then move on to nondeterministic automata, and describe a
complementation procedure for them.

Theorem 3 ([47]) Let A be a DBW with n states. There is an NBW A ′ such that
L (A ′)=Σω \L (A ), and A ′ has at most 2n states.

Proof Let A = 〈Σ,Q,q0, δ,α〉. The NBW A ′ should accept exactly all words w
for which the single run of A onw visits α only finitely often. It does so by guessing
a position from which no more visits of A to α take place. For that, A ′ consists
of two copies of A : one that includes all the states and transitions of A , and one
that excludes the accepting states of A , and to which A ′ moves when it guesses
that no more states in α are going to be visited. All the states in the second copy are
accepting. Formally, A ′ = 〈Σ,Q′,Q′0, δ′, α′〉, where

• Q′ = (Q× {0})∪ ((Q \ α)× {1}).
• Q′0 = {〈q0,0〉}.
• For every q ∈Q, c ∈ {0,1}, and σ ∈Σ with δ(q, σ )= q ′, we have

δ′(〈q, c〉, σ )=

⎡

⎢
⎢
⎣

{〈q ′,0〉, 〈q ′,1〉} if c= 0 and q ′ /∈ α,
{〈q ′,0〉} if c= 0 and q ′ ∈ α,
{〈q ′,1〉} if c= 1 and q ′ /∈ α,
∅ if c= 1 and q ′ ∈ α.

• α′ = (Q \ α)× {1}.
Thus, A ′ can stay in the first copy forever, but in order for a run of A ′ to be ac-
cepting, it must eventually move to the second copy, from where it cannot go back
to the first copy and must avoid states in α. �

The construction described in the proof of Theorem 3 can be applied also to non-
deterministic automata. Since, however, A ′ accepts a word w iff there exists a run
of A on w that visits α only finitely often, whereas a complementing automaton
should accept a word w iff all the runs of A on w visit α only finitely often, the
construction has a one-sided error when applied to nondeterministic automata. This
is not surprising, as the same difficulty exists when we complement nondeterminis-
tic automata on finite words. By restricting attention to deterministic automata, we
guarantee that the existential and universal quantification on the runs of A coincide.

We now turn to consider complementation for nondeterministic Büchi automata.
In the case of finite words, one first determinizes the automaton and then comple-
ments the result. An attempt to follow a similar plan for NBWs, namely a translation
to a DBW and then an application of Theorem 3, does not work: as we shall see in
Sect. 4.2.3, DBWs are strictly less expressive than NBWs, thus not all NBWs can
be determinized. Nevertheless, NBWs are closed under complementation.

Efforts to develop a complementation construction for NBWs started in the early
1960s, motivated by decision problems for second-order logics. Büchi introduced
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a complementation construction that involved a complicated Ramsey-based combi-
natorial argument and a doubly-exponential blow-up in the state space [6]. Thus,
complementing an NBW with n states resulted in an NBW with 22O(n) states. In
[70], Sistla et al. suggested an improved implementation of Büchi’s construction,
with only 2O(n

2) states, which is still not optimal.2 Only in [64], Safra introduced a
determinization construction that involves an acceptance condition that is stronger
than Büchi, and used it in order to present a 2O(n logn) complementation construc-
tion, matching the known lower bound [54]. The use of complementation in practice
has led to a resurgent interest in the exact blow-up that complementation involves
and the feasibility of the complementation construction (e.g., issues like whether
the construction can be implemented symbolically, whether it is amenable to opti-
mizations or heuristics—these are all important criteria that complementation con-
structions that involve determinization do not satisfy). In [33], Klarlund introduced
an optimal complementation construction that avoids determinization. Rather, the
states of the complementing automaton utilize progress measures—a generic con-
cept for quantifying how each step of a system contributes to bringing a compu-
tation closer to its specification. In [44], Kupferman and Vardi used ranks, which
are similar to progress measures, in a complementation construction that goes via
intermediate alternating co-Büchi automata. Below we describe the construction of
[44] circumventing the intermediate alternating automata.

Let A = 〈Σ,Q,Q0, δ,α〉 be an NBW with n states. Let w = σ1 · σ2 · σ3 · · · be a
word in Σω. We define an infinite DAG G that embodies all the possible runs of A
on w. Formally, G= 〈V,E〉, where

• V ⊆Q× N is the union
⋃
l≥0(Ql × {l}), where for all l ≥ 0, we have Ql+1 =⋃

q∈Ql δ(q, σl+1).
• E ⊆ ⋃

l≥0(Ql × {l}) × (Ql+1 × {l + 1}) is such that for all l ≥ 0, we have
E(〈q, l〉, 〈q ′, l + 1〉) iff q ′ ∈ δ(q, σl+1).

We refer toG as the run DAG of A on w. We say that a vertex 〈q ′, l′〉 is a successor
of a vertex 〈q, l〉 iff E(〈q, l〉, 〈q ′, l′〉). We say that 〈q ′, l′〉 is reachable from 〈q, l〉
iff there exists a sequence 〈q0, l0〉, 〈q1, l1〉, 〈q2, l2〉, . . . of successive vertices such
that 〈q, l〉 = 〈q0, l0〉, and there exists i ≥ 0 such that 〈q ′, l′〉 = 〈qi, li〉. We say that
a vertex 〈q, l〉 is an α-vertex iff q ∈ α. Finally, we say that G is an accepting run
DAG if G has a path with infinitely many α-vertices. Otherwise, we say that G is
rejecting. It is easy to see that A accepts w iff G is accepting.

For k ∈ N, let [k] denote the set {0,1, . . . , k}. A ranking for G is a function
f : V →[2n] that satisfies the following two conditions:

1. For all vertices 〈q, l〉 ∈ V , if f (〈q, l〉) is odd, then q /∈ α.
2. For all edges 〈〈q, l〉, 〈q ′, l′〉〉 ∈E, we have f (〈q ′, l′〉)≤ f (〈q, l〉).

2Interestingly, by carrying out some simple optimizations, the Ramsey-based approach in the con-
structions in [6] and [70] can be improved to produce complementing NBWs with the optimal
2O(n logn) blow-up [5].
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Thus, a ranking associates with each vertex in G a rank in [2n] so that the ranks
along paths decrease monotonically, and α-vertices get only even ranks. Note that
each path in G eventually gets trapped in some rank. We say that the ranking f is
an odd ranking if all the paths ofG eventually get trapped in an odd rank. Formally,
f is odd iff for all paths 〈q0,0〉, 〈q1,1〉, 〈q2,2〉, . . . in G, there is j ≥ 0 such that
f (〈qj , j 〉) is odd, and for all i ≥ 1, we have f (〈qj+i , j + i〉)= f (〈qj , j 〉).

We are going to prove that G is rejecting iff it has an odd ranking. The difficult
direction is to show that if G is rejecting, then it has an odd ranking. Below we
make some observations on rejecting run DAGs that help us with this direction. We
say that a vertex 〈q, l〉 is finite in a DAG G′ ⊆G iff only finitely many vertices inG′
are reachable from 〈q, l〉. The vertex 〈q, l〉 is α-free in G′ iff all the vertices in G′
that are reachable from 〈q, l〉 are not α-vertices. Note that, in particular, an α-free
vertex is not an α-vertex. We define an infinite sequence G0 ⊇ G1 ⊇ G2 ⊇ . . . of
DAGs inductively as follows.

• G0 =G.
• For i ≥ 0, we have G2i+1 =G2i \ {〈q, l〉 : 〈q, l〉 is finite in G2i}.
• For i ≥ 0, we have G2i+2 =G2i+1 \ {〈q, l〉 : 〈q, l〉 is α-free in G2i+1}.

Lemma 1 If G is rejecting, then for every i ≥ 0, there exists li such that for all
l ≥ li , there are at most n− i vertices of the form 〈q, l〉 in G2i .

Proof We prove the lemma by an induction on i. The case where i = 0 follows from
the definition of G0 = G. Indeed, in G all levels l ≥ 0 have at most n vertices of
the form 〈q, l〉. Assume that the lemma’s requirement holds for i; we prove it for
i + 1. Consider the DAG G2i . We distinguish between two cases. First, if G2i is
finite, thenG2i+1 is empty,G2i+2 is empty as well, and we are done. Otherwise, we
claim that there must be some α-free vertex in G2i+1. To see this, assume, by way
of contradiction, that G2i is infinite and no vertex in G2i+1 is α-free. Since G2i is
infinite,G2i+1 is also infinite. Also, each vertex in G2i+1 has at least one successor.
Consider some vertex 〈q0, l0〉 in G2i+1. Since, by the assumption, it is not α-free,
there exists an α-vertex 〈q ′0, l′0〉 reachable from 〈q0, l0〉. Let 〈q1, l1〉 be a successor
of 〈q ′0, l′0〉. By the assumption, 〈q1, l1〉 is also not α-free. Hence, there exists an α-
vertex 〈q ′1, l′1〉 reachable from 〈q1, l1〉. Let 〈q2, l2〉 be a successor of 〈q ′1, j ′1〉. By the
assumption, 〈q2, l2〉 is also not α-free. Thus, we can continue similarly and con-
struct an infinite sequence of vertices 〈qj , lj 〉, 〈q ′j , l′j 〉 such that for all j , the vertex
〈q ′j , l′j 〉 is an α-vertex reachable from 〈qj , lj 〉, and 〈qj+1, lj+1〉 is a successor of
〈q ′j , l′j 〉. Such a sequence, however, corresponds to a path in G with infinitely many
α-vertices, contradicting the assumption that G is rejecting.

So, let 〈q, l〉 be an α-free vertex in G2i+1. We claim that taking li+1 =max{l, li}
satisfies the requirement of the lemma. That is, we claim that for all j ≥max{l, li},
there are at most n − (i + 1) vertices of the form 〈q, j 〉 in G2i+2. Since 〈q, l〉 is
in G2i+1, it is not finite in G2i . Thus, there are infinitely many vertices in G2i that
are reachable from 〈q, l〉. Hence, by König’s Lemma, G2i contains an infinite path
〈q, l〉, 〈q1, l + 1〉, 〈q2, l + 2〉, . . .. For all k ≥ 1, the vertex 〈qk, l + k〉 has infinitely



116 O. Kupferman

many vertices reachable from it in G2i and thus, it is not finite in G2i . Therefore,
the path 〈q, l〉, 〈q1, l + 1〉, 〈q2, l + 2〉, . . . exists also in G2i+1. Recall that 〈q, l〉 is
α-free. Hence, being reachable from 〈q, l〉, all the vertices 〈qk, l + k〉 in the path
are α-free as well. Therefore, they are not in G2i+2. It follows that for all j ≥ l, the
number of vertices of the form 〈q, j 〉 in G2i+2 is strictly smaller than their number
in G2i . Hence, by the induction hypothesis, we are done. �

Note that, in particular, by Lemma 1, if G is rejecting then G2n is finite. Hence
the following corollary.

Corollary 1 If G is rejecting then G2n+1 is empty.

We can now prove the main lemma required for complementation, which reduces
the fact that all the runs of A on w are rejecting to the existence of an odd ranking
for the run DAG of A on w.

Lemma 2 An NBW A rejects a word w iff there is an odd ranking for the run DAG

of A on w.

Proof LetG be the run DAG of A onw. We first claim that if there is an odd ranking
for G, then A rejects w. To see this, recall that in an odd ranking, every path in G
eventually gets trapped in an odd rank. Hence, as α-vertices get only even ranks, it
follows that all the paths ofG, and thus all the possible runs of A on w, visit α only
finitely often.

Assume now that A rejects w. We describe an odd ranking for G. Recall that if
A rejects w, then G is rejecting and thus, by Corollary 1, each vertex 〈q, l〉 in G is
removed from Gj , for some 0≤ j ≤ 2n. Thus, there is 0≤ i ≤ n such that 〈q, l〉 is
finite in G2i or α-free in G2i+1. Given a vertex 〈q, l〉, we define the rank of 〈q, l〉,
denoted f (q, l), as follows.

f (q, l)=
[

2i if 〈q, l〉 is finite in G2i .
2i + 1 if 〈q, l〉 is α-free in G2i+1.

We claim that f is an odd ranking for G. First, by Lemma 1, the subgraph G2n
is finite. Hence, the maximal rank that a vertex can get is 2n. Also, since an α-free
vertex cannot be an α-vertex and f (〈q, l〉) is odd only for α-free 〈q, l〉, the first
condition for f being a ranking holds. We proceed to the second condition. We
first argue (and a proof proceeds easily by an induction on i) that for every vertex
〈q, l〉 in G and rank i ∈ [2n], if 〈q, l〉 /∈ Gi , then f (q, l) < i. Now, we prove that
for every two vertices 〈q, l〉 and 〈q ′, l′〉 in G, if 〈q ′, l′〉 is reachable from 〈q, l〉 (in
particular, if 〈〈q, l〉, 〈q ′, l′〉〉 ∈E), then f (q ′, l′)≤ f (q, l). Assume that f (q, l)= i.
We distinguish between two cases. If i is even, in which case 〈q, l〉 is finite in Gi ,
then either 〈q ′, l′〉 is not in Gi , in which case, by the above claim, its rank is at most
i− 1, or 〈q ′, l′〉 is inGi , in which case, being reachable from 〈q, l〉, it must be finite
in Gi and have rank i. If i is odd, in which case 〈q, l〉 is α-free in Gi , then either
〈q ′, l′〉 is not in Gi , in which case, by the above claim, its rank is at most i − 1, or
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〈q ′, l′〉 is in Gi , in which case, being reachable from 〈q, l〉, it must by α-free in Gi
and have rank i.

It remains to be proved that f is an odd ranking. By the above, in every infinite
path in G, there exists a vertex 〈q, l〉 such that all the vertices 〈q ′, l′〉 in the path
that are reachable from 〈q, l〉 have f (q ′, l′) = f (q, l). We need to prove that the
rank of 〈q, l〉 is odd. Assume, by way of contradiction, that the rank of 〈q, l〉 is
some even i. Thus, 〈q, l〉 is finite in Gi . Then, the rank of all the vertices in the path
that are reachable from 〈q, l〉 is also i, so they all belong to Gi . Since the path is
infinite, there are infinitely many such vertices, contradicting the fact that 〈q, l〉 is
finite in Gi . �

By Lemma 2, an NBW A ′ that complements A can proceed on an input word
w by guessing an odd ranking for the run DAG of A on w. We now define such an
NBW A ′ formally. We first need some definitions and notations.

A level ranking for A is a function g : Q→ [2n] ∪ {⊥}, such that if g(q) is
odd, then q /∈ α. For two level rankings g and g′, we say that g′ covers g if for all
q and q ′ in Q, if g(q) ≥ 0 and q ′ ∈ δ(q, σ ), then 0 ≤ g′(q ′) ≤ g(q). For a level
ranking g, let even(g) be the set of states that g maps to an even rank. Formally,
even(g)= {q : g(q) is even}.

Theorem 4 Let A be an NBW with n states. There is an NBW A ′ such that
L (A ′)=Σω \L (A ), and A ′ has at most 2O(n logn) states.

Proof Let A = 〈Σ,Q,Q0, δ,α〉. Let R be the set of all level rankings for A .
When A ′ runs on a word w, it guesses an odd ranking for the run DAG of A on w.
Each state of A ′ is a pair 〈g,P 〉 ∈R×2Q. The level ranking g maintains the states
in the current level of the DAG (those that are not mapped to⊥) and the guessed rank
for them. The set P is a subset of these states, used for ensuring that all paths visit
odd ranks infinitely often, which, by the definition of odd rankings, implies that all
paths get stuck in some odd rank.

Formally, A ′ = 〈Σ,R × 2Q,Q′0, δ′,R × {∅}〉, where

• Q′0 = {〈g0,∅〉}, where g0(q)= 2n for q ∈Q0, and g0(q)=⊥ for q /∈Q0. Thus,
the odd ranking that A ′ guesses maps the vertices 〈q,0〉 of the run DAG to 2n.

• For a state 〈g,P 〉 ∈R × 2Q and a letter σ ∈Σ , we define δ′(〈g,P 〉, σ ) as fol-
lows.

– If P �= ∅, then δ′(〈g,P 〉, σ )= {〈g′, δ(P,σ )∩ even(g′)〉 : g′ covers g}.
– If P = ∅, then δ′(〈g,P 〉, σ )= {〈g′, even(g′)〉 : g′ covers g}.
Thus, when A ′ reads the l-th letter in the input, for l ≥ 1, it guesses the level
ranking for level l in the run DAG. This level ranking should cover the level rank-
ing of level l−1. In addition, in the P component, A ′ keeps track of states whose
corresponding vertices in the DAG have even ranks. Paths that traverse such ver-
tices should eventually reach a vertex with an odd rank. When all the paths of the
DAG have visited a vertex with an odd rank, the set P becomes empty (a formal
proof of the latter requires the use of König’s Lemma, showing that if P does



118 O. Kupferman

Fig. 4 The NBW An

not become empty we can point to an infinite path that visits only even ranks).
The set P is then initiated by new obligations for visits to vertices with odd ranks
according to the current level ranking. The acceptance condition R × {∅} then
checks that there are infinitely many levels in which all the obligations have been
fulfilled.

Since there are (2n + 1)n level rankings and 2n subsets of Q, the automaton A ′
indeed has 2O(n logn) states. �

The blow-up of NBW complementation is thus 2O(n logn) and goes beyond the
2n blow-up of the subset construction used in determinization and complementation
of nondeterministic automata on finite words. As we see below, this blow-up cannot
be avoided.

Theorem 5 ([54]) There is a family of languages L1,L2, . . . such that Ln ⊆ Σωn
can be recognized by an NBW with n + 1 states but an NBW for Σωn \ Ln has at
least n! states.

Proof For n ≥ 1, we define Ln as the language of the NBW An = 〈Σn,Qn,Q0
n,

δn,α〉, where (see Fig. 4)

• Σn = {1, . . . , n,#},
• Qn = {q0, q1, . . . , qn},
• Q0

n = {q1, . . . , qn},
• δn is defined as follows:

δn(qi, σ )=

⎡

⎢
⎢
⎣

∅ if i = 0 and σ = #,
{qσ } if i = 0 and σ ∈ {1, . . . , n},
{qi} if i /∈ {0, σ },
{q0, qi} if σ = i.

• α = {q0}.
Note that a run of An is accepting if it contains infinitely many segments of the

form q+i1 q0q
+
i2
q0 · · ·q0q

+
ik
q0q

+
i1

for some distinct i1, . . . , ik ≥ 1. Accordingly, a word
w is accepted by An iff there are k letters σ1, σ2, . . . , σk ∈ {1, . . . , n}, such that all
the pairs σ1σ2, σ2σ3, . . . , σkσ1 appear inw infinitely many times. A good intuition to
keep in mind is that a wordw ∈Σωn induces a directed graphGw = 〈{1, . . . , n},Ew〉
such that Ew(i, j) iff the subword i · j appears in w infinitely often. Then, Ln
accepts exactly all words w such that Gw contains a cycle.
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Consider an NBW A ′
n = 〈Σn,Q′n,Q′0n, δ′n,α′n〉 that complements An, and con-

sider a permutation π = 〈σ1, . . . , σn〉 of {1, . . . , n}. Note that the word wπ =
(σ1 · · ·σn · #)ω is not in Ln. Thus, wπ is accepted by A ′

n . Let rπ be an accepting run
of A ′

n on wπ , and let Sπ ⊆Q′n be the set of states that are visited infinitely often
in rπ . We prove that for every two different permutations π1 and π2 of {1, . . . , n},
it must be that Sπ1 ∩ Sπ2 = ∅. Since there are n! different permutations, this implies
that A ′

n must have at least n! states.
Assume by way of contradiction that π1 and π2 are such that Sπ1 ∩ Sπ2 �= ∅. Let

q ∈Q′n be a state in Sπ1 ∩ Sπ2 . We define three finite words in Σ∗n :

• a prefix h of wπ1 with which rπ1 moves from an initial state of A ′
n to q ,

• an infix u1 of wπ1 that includes the permutation π1 and with which rπ1 moves
from q back to q and visits α′n at least once when it does so, and

• an infix u2 of wπ2 that includes the permutation π2 and with which rπ2 moves
from q back to q .

Note that since A ′
n accepts wπ1 and wπ2 , the words h, u1, and u2 exist. In particular,

since rπ1 is accepting and q is visited infinitely often in rπ1 , there is at least one (in
fact, there are infinitely many) infix in rπ1 that leads from q to itself and visits α′n.

Consider the word w = h · (u1 · u2)
ω . We claim that w ∈ Ln and w ∈L (A ′

n),
contradicting the fact that A ′

n complements An. We first point to an accepting run
r of A ′

n on w. The run r first follows rπ1 and gets to q while reading h. Then, the
run r repeatedly follows the run rπ1 when it moves from q via α′n back to q while
reading u1, and the run rπ2 when it moves from q back to q while reading u2. It is
easy to see that r is a run on w that visits α′n infinitely often, thus w ∈L (A ′

n).
Now, let π1 = 〈σ 1

1 , . . . , σ
1
n 〉 and π2 = 〈σ 2

1 , . . . , σ
2
n 〉, and let j be the mini-

mal index for which σ 1
j �= σ 2

j . There must exist j < k, l ≤ n such that σ 1
j =

σ 2
k , and σ 2

j = σ 1
l . Since u1 includes the permutation π1 and u2 includes the

permutation π2, the pairs σ 1
j σ

1
j+1, σ 1

j+1σ
1
j+2, . . . , σ

1
l−1σ

1
l , σ 1

l σ
2
j+1(= σ 2

j σ
2
j+1),

σ 2
j+1σ

2
j+2, . . . , σ

2
k−1σ

2
k , σ 2

k σ
1
j+1(= σ 1

j σ
1
j+1) repeat infinitely often. Hence, w ∈ Ln

and we are done. �

Remark 1 Note that the alphabets of the languages Ln used in the proof of Theo-
rem 5 depend on n. As shown in [50], it is possible to encode the languages and
prove a 2Ω(n logn) lower bound with a fixed alphabet.

We note that the upper and lower bounds here are based on classical and relatively
simple constructions and proofs, but are still not tight. A tighter upper bound, based
on a restriction and a more precise counting of the required level rankings has been
suggested in [18], and tightened further in [66]. An alternative approach, yielding a
similar bound, is based on tracking levels of “split trees”—run trees in which only
essential information about the history of each run is maintained [17, 30]. A tighter
lower bound, based on the notion of full automata, is described in [80].
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Fig. 5 The DBW obtained by applying the subset construction to A2

4.2.3 Determinization

Nondeterministic automata on finite words can be determinized by applying
the subset construction [63]. Starting with a nondeterministic automaton A =
〈Σ,Q,Q0, δ,α〉, the subset construction generates a deterministic automaton A ′
with state space 2Q. The intuition is that the single run of A ′ is in state S ∈ 2Q after
reading a word w ∈Σ∗ iff S is the set of states that A could have been at, in one of
its runs, after reading w. Accordingly, the single initial state of A ′ is the setQ0, and
the transition of A ′ from a state S ∈ 2Q and a letter σ ∈Σ is the set

⋃
s∈S δ(s, σ ).

Since A ′ accepts exactly all words on which there is a run of A that ends in α,
the set of accepting states of A ′ consists of these sets S such that S ∩ α �= ∅. The
exponential blow-up that the subset construction involves is justified by a matching
lower bound.

It is not hard to see that the subset construction does not result in an equivalent
automaton when applied to an NBW. For example, applying the subset construction
to the NBW A2 from Example 2 results in the DBW A ′

2 in Fig. 5. Recall that A2
recognizes the language of all words with finitely many a’s. On the other hand,
A ′

2 recognizes the language of all words with infinitely many b’s. Thus, L (A ′
2) �=

L (A2). For example, the word (a · b)ω is in L (A ′
2) \L (A2).

Note that not only L (A ′
2) �=L (A2), there is no way to define a Büchi accep-

tance condition on top of the structure of A ′
2 and obtain a DBW that would be

equivalent to A2. In fact, as we shall see now, there is no DBW that is equivalent
to A2.

Theorem 6 ([49]) There is a language L that is NBW-recognizable but not DBW-
recognizable.

Proof Consider the language L described in Example 2. I.e., L is over the alphabet
{a, b} and it consists of all infinite words in which a occurs only finitely many times.
The language L is recognized by the NBW A2 appearing in Fig. 2. We prove that L
is not DBW-recognizable. Assume by way of contradiction that A is a DBW such
that L (A ) = L. Let A = 〈{a, b},Q,q0, δ,α〉. Recall that δ can be viewed as a
partial mapping from Q× {a, b}∗ to Q.

Consider the infinite word w0 = bω. Clearly, w0 is in L, so the run of A on w0 is
accepting. Thus, there is i1 ≥ 0 such that the prefix bi1 ofw0 is such that δ(q0, b

i1) ∈
α. Consider now the infinite word w1 = bi1 · a · bω. Clearly, w1 is also in L, so the
run of A on w1 is accepting. Thus, there is i2 ≥ 0 such that the prefix bi1 · a · bi2 of
w1 is such that δ(q0, b

i1 · a · bi2) ∈ α. In a similar fashion we can continue to find
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indices i1, i2, . . . such that δ(q0, b
i1 · a · bi2 · a · · ·abij ) ∈ α for all j ≥ 1. SinceQ is

finite, there are iterations j and k, such that 1≤ j < k ≤ |α| + 1 and there is a state
q such that q = δ(q0, b

i1 · a · bi2 · a · · ·a · bij )= δ(q0, b
i1 · a · bi2 · a · · ·a · bik ). Since

j < k, the extension abij+1 · · ·bik−1 · a · bik is not empty and at least one state in α
is visited when A loops in q while running through it. It follows that the run of A
on the word

w = bi1 · a · bi2 · a · · ·abij · (abij+1 · · ·bik−1 · a · bik )ω
is accepting. But w has infinitely many occurrences of a, so it is not in L, and we
have reached a contradiction. �

Note that the complementary language (a+ b)ω \L, which is the language of in-
finite words in which a occurs infinitely often, is recognized by the DBW described
in Example 1. It follows that DBWs are not closed under complementation.

A good way to understand why the subset construction does not work for deter-
minization on NBWs is to note that the DBW A ′

2 discussed above accepts exactly all
words that have infinitely many prefixes on which there is a run of A2 that reaches
an accepting state. Since A2 is nondeterministic, the different runs need not extend
each other, and thus they need not induce a single run of A2 that visits the accepting
state infinitely often. In Sect. 4.3.2, we are going to return to this example and study
NBW determinization in general. Here, we use the “extend each other” intuition for
the following characterization of languages that are DBW-recognizable.

For a language R ⊆ Σ∗, let lim(R) ⊆ Σω be the set of infinite words
that have infinitely many prefixes in R. Formally, lim(R) = {w = σ1 · σ2 · · · :
σ1 · · ·σi ∈ R for infinitely many i ≥ 0}. Thus, lim is an operator that takes a lan-
guage of finite words and turns it into a language of infinite words. For example,
if R is the language of words ending with a, then lim(R) is the language of words
with infinitely many a’s.

Theorem 7 ([49]) A language L⊆Σω is DBW-recognizable iff there is a regular
language R ⊆Σ∗ such that L= lim(R).

Proof Assume first that L is DBW-recognizable. Let A be a DBW that recog-
nizes L, let AF be A when viewed as an automaton on finite words, and let
R =L (AF ). It is easy to see that since A , and therefore also AF , are determin-
istic, we have that L (A ) = lim(R). Assume now that there is a regular language
R ⊆Σ∗ such that L= lim(R). Let A be a deterministic automaton on finite words
that recognizes R, and let AB be A when viewed as a DBW. Again, since A is
deterministic, and thus runs on different prefixes of a word extend each other, it is
easy to see that L (AB)= lim(L (A )). Hence, L is DBW-recognizable. �

Note that a DBW-recognizable language may be the limit of several different
regular languages. As we demonstrate in Theorem 8 below, this explains why, unlike
the case of automata on finite words, a language may have different minimal DBWs.
In fact, while minimization of automata on finite words can be done in polynomial
time, the problem of DBW minimization in NP-complete [68].
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Fig. 6 Two minimal DBWs for L

Theorem 8 A DBW-recognizable language L may not have a unique minimal
DBW.

Proof Let Σ = {a, b}. Consider the language L of all words that contain infinitely
many a’s and infinitely many b’s. It is not hard to prove that L cannot be recognized
by a DBW with two states. Figure 6 describes two three-state, and thus minimal,
DBWs for the language. In fact, each of the states in the automata may be the initial
state, so the figure describes six such (non-isomorphic) automata. �

Theorem 6 implies that we cannot hope to develop a determinization construction
for NBWs. Suppose, however, that we have changed the definition of acceptance,
and work with a definition in which a run is accepting iff it visits the set of accept-
ing states only finitely often; i.e., inf (r) ∩ α = ∅. It is not hard to see that using
such a definition, termed co-Büchi, we could have a deterministic automaton that
recognizes the language L used in the proof of Theorem 6. In particular, the lan-
guage is recognized by the deterministic automaton A1 from Fig. 1 when we view
it as a co-Büchi automaton. While the co-Büchi condition enables us to recognize
the language L with a deterministic automaton, it is not expressive enough to rec-
ognize all languages that are recognizable by NBWs. In Sect. 4.3, we are going to
introduce and study several acceptance conditions, and see how NBWs can be deter-
minized using acceptance conditions that are stronger than the Büchi and co-Büchi
conditions.

4.3 Additional Acceptance Conditions

The Büchi acceptance condition suggests one possible way to refer to inf (r) for
defining when a run r is accepting. The fact that DBWs are strictly less expressive
than NBWs motivates the introduction of other acceptance conditions. In this sec-
tion we review some acceptance conditions and discuss the expressive power and
succinctness of the corresponding automata.

Consider an automaton with state space Q. We define the following acceptance
conditions.

• Co-Büchi, where α ⊆Q, and a run r is accepting iff inf (r)∩ α = ∅.
• Generalized Büchi, where α = {α1, . . . , αk}, with αi ⊆Q, and a run r is accepting

if inf (r)∩ αi �= ∅ for all 1≤ i ≤ k.
• Rabin, where α = {〈α1, β1〉, 〈α2, β2〉, . . . , 〈αk,βk〉}, with αi,βi ⊆Q, and a run
r is accepting if for some 1 ≤ i ≤ k, we have that inf (r) ∩ αi �= ∅ and inf (r) ∩
βi = ∅.
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• Streett, where α = {〈α1, β1〉, 〈α2, β2〉, . . . , 〈αk,βk〉}, with αi,βi ⊆Q and a run r
is accepting if for all 1≤ i ≤ k, we have that inf (r)∩ αi = ∅ or inf (r)∩ βi �= ∅.

• Parity, where α = {α1, α2, . . . , αk} with α1 ⊆ α2 ⊆ · · · ⊆ αk =Q, and a run r is
accepting if the minimal index i for which inf (r)∩ αi �= ∅ is even.

• Muller, where α = {α1, α2, . . . , αk}, with αi ⊆Q and a run r is accepting if for
some 1≤ i ≤ k, we have that inf (r)= αi .

The number of sets in the generalized Büchi, parity, and Muller acceptance con-
ditions or pairs in the Rabin and Streett acceptance conditions is called the index of
the automaton. We extend our NBW and DBW notations to the above classes of au-
tomata, and we use the letters C, R, S, P, and M to denote co-Büchi, Rabin, Streett,
parity, and Muller automata, respectively. Thus, for example, DPW stands for de-
terministic parity automata. We sometimes talk about satisfaction of an acceptance
condition α by a set S of states. As expected, S satisfies α iff a run r with inf (r)= S
is accepting. For example, a set S satisfies a Büchi condition α iff S ∩ α �= ∅.

It is easy to see that the co-Büchi acceptance condition is dual to the Büchi
acceptance condition in the sense that a run r is accepting with a Büchi condi-
tion α iff r is not accepting when α is viewed as a co-Büchi condition, and vice
versa. This implies, for example, that for a deterministic automaton A , we have
that L (AB) = Σω \ L (AC), where AB and AC are the automata obtained by
viewing A as a Büchi and co-Büchi automaton, respectively. Similarly, the Ra-
bin acceptance condition is dual to the Streett acceptance condition. Indeed, if
α = {〈α1, β1〉, 〈α2, β2〉, . . . , 〈αk,βk〉}, then for every run r , there is no 1 ≤ i ≤ k
such that inf (r) ∩ αi �= ∅ and inf (r) ∩ βi = ∅ iff for all 1 ≤ i ≤ k, we have that
inf (r)∩ αi = ∅ or inf (r)∩ βi �= ∅.

For two classes γ and κ of automata, we say that γ is at least as expressive
as κ if for every κ-automaton A , there is a γ -automaton A ′ such that L (A ′) =
L (A ). If both γ is at least as expressive as κ and κ is at least as expressive as γ ,
then γ is as expressive as κ . One way to prove that γ is at least as expressive
as κ is to show a translation of κ-automata to γ -automata. In the next section we
are going to see such translations. As we shall see there, NBWs are as expressive
as NRWs, NSWs, NPWs, and NMWs. On the other hand, NCWs are strictly less
expressive than NBWs. Also, as we shall see in Sect. 4.3.2, nondeterminism does
not add expressive power in automata with the richer acceptance conditions. Thus,
DRWs, DSWs, DPWs, and DMWs recognize all ω-regular languages, and are as
expressive as NBWs. This is in contrast with the Büchi condition, where, as we
have seen in Theorem 6, NBWs are strictly more expressive than DBWs. Finally,
nondeterminism does not add expressive power also in co-Büchi automata, thus
NCWs are as expressive as DCW, where both are weaker than NBW and coincide
with the set of languages whose complement languages are NBW-recognizable (see
Remark 3).
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4.3.1 Translations Among the Different Classes

We distinguish between three types of translations among automata of the different
classes: (1) Translations among the different conditions. This is the simplest case,
where it is possible to translate the acceptance condition itself, regardless of the
automaton on top of which the condition is defined. For example, a Büchi accep-
tance condition α is equivalent to the Rabin condition {〈α,∅〉}. (2) Translations in
which we still do not change the structure of the automaton, yet the definition of
the acceptance condition may depend on its structure. Following the terminology of
[35], we refer to such translations as typed. (3) Translations that manipulate the state
space. This is the most general case, where the translation may involve a blow-up
in the state space of the automaton. Accordingly, here we are interested also in the
succinctness of the different classes, namely the worst-case bound on the blow-up
when we translate. In this section we survey the three types.

4.3.1.1 Translations Among the Different Conditions

Some conditions are special cases of other conditions, making the translation among
the corresponding automata straightforward. We list these cases below. Consider an
automaton with state space Q.

• A Büchi condition α is equivalent to the Rabin condition {〈α,∅〉}, the Streett
condition {〈Q,α〉}, and the parity condition {∅, α,Q}.

• A co-Büchi condition α is equivalent to the Rabin condition {〈Q,α〉}, the Streett
condition {〈α,∅〉}, and the parity condition {α,Q}.

• A generalized Büchi condition {α1, . . . , αk} is equivalent to the Streett condition
{〈Q,α1〉, 〈Q,α2〉, . . . , 〈Q,αk〉}.

• A parity condition {α1, . . . , αk} (for simplicity, assume that k is even; otherwise,
we can duplicate αk) is equivalent to the Rabin condition {〈α2, α1〉, 〈α4, α3〉, . . . ,
〈αk,αk−1〉}, and to the Streett condition {〈α1,∅〉, 〈α3, α2〉, . . . , 〈αk−1, αk−2〉}.
(Recall that αk =Q, so there is no need to include the pair 〈Q,αk〉 in the Streett
condition.)

• A Büchi, co-Büchi, Rabin, Streett, or parity acceptance condition α is equivalent
to the Muller condition {F : F satisfies α}.

4.3.1.2 Typeness

In [35], the authors studied the expressive power of DBWs and introduced the notion
of typeness for automata. For two classes γ and κ of automata, we say that γ is κ-
type if for every γ -automaton A , if L (A ) is κ-recognizable, then it is possible to
define a κ-automaton A ′ such that L (A ′)=L (A ) and A ′ differs from A only
in the definition of the acceptance condition. Clearly, if an acceptance condition can
be translated to another acceptance condition, as discussed in Sect. 4.3.1.1, then
typeness for the corresponding classes follows. Interestingly, typeness may be valid
also when γ is more expressive than κ . We demonstrate this below.
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Theorem 9 ([35]) DRWs are DBW-type.

Proof Consider a DRW A = 〈Σ,Q,q0, δ,α〉. Let α = {〈α1, β1〉, . . . , 〈αk,βk〉}. We
say that a state q ∈Q is good in A if all the cycles C ⊆Q that contain q satisfy the
acceptance condition α. Consider the DBW A ′ = 〈Σ,Q,q0, δ,α

′〉, where α′ = {q :
q is good in A }. We prove that if A is DBW-recognizable, then L (A )=L (A ′).
Hence, if A is DBW-recognizable, then there is a DBW equivalent to A that can
be obtained by only changing the acceptance condition of A .

We first prove that L (A ′)⊆L (A ). In fact, this direction is independent of A
being DBW-recognizable. Consider a word w ∈L (A ′). Let r be the accepting run
of A ′ on w. Since r is accepting, there is a state q ∈ inf (r) ∩ α′. Recall that the
states in inf (r) constitute an SCS and thus also constitute a cycle that contains q .
Therefore, as q is good, inf (r) satisfies α, and r is also an accepting run of A on w.
Hence, w ∈L (A ) and we are done.

We now prove that L (A ) ⊆ L (A ′). Consider a word w ∈ L (A ). Let r be
the accepting run of A on w. We prove that inf (r) ∩ α′ �= ∅. Assume by way of
contradiction that inf (r)∩ α′ = ∅. Thus, no state in inf (r) is good, so for each state
q ∈ inf (r), there is a cycle Cq that contains q and does not satisfy α. By [49],
a deterministic automaton A recognizes a language that is in DBW iff for every
strongly connected component C of A , if C satisfies α, then all the strongly con-
nected components C′ with C′ ⊇ C satisfy α too. Consider the strongly connected
component C′ =⋃

q∈inf (r) Cq . Since C′ contains inf (r), and inf (r) satisfies α, then,
by the above, C′ satisfies α too. Therefore, there is 1≤ i ≤ k such that C′ ∩ αi �= ∅
and C′ ∩βi = ∅. Consider a state s ∈ C′ ∩αi . Let q be such that s ∈ Cq . Observe that
Cq ∩ αi �= ∅ and Cq ∩ βi = ∅, contradicting the fact that Cq does not satisfy α. �

Theorem 10 ([35]) DSWs are not DBW-type.

Proof Consider the automaton A1 appearing in Fig. 1, now with the Streett condi-
tion {〈{q0, q1}, {q0}〉, 〈{q0, q1}, {q1}〉}. The language L of A1 then consists of ex-
actly all words with infinitely many a’s and infinitely many b’s. As we have seen in
the proof of Theorem 8, L is DBW-recognizable. Yet, none of the four possibilities
to define a DBW on top of the structure of A1 result in a DBW that recognizes L. �

Note that, by dualization, we get from Theorems 9 and 10 that DSWs are DCW-
type and DRWs are not DCW-type.

The definition of typeness may be applied to nondeterministic automata too. As
we show below, typeness need not coincide for nondeterministic and deterministic
automata.

Theorem 11 ([38]) DBWs are DCW-type, but NBWs are not NCW-type.

Proof The first claim follows from the fact that DBWs are a special case of DSWs,
and the latter are DCW-type. For the second claim, consider the NBW A appearing
in Fig. 7. The NBW A has two initial states, in two disjoint components. Thus, the
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Fig. 7 An NBW that recognizes an NCW-recognizable language but has no equivalent NCW on
the same structure

language of A is the union of the languages of the two NBWs associated with its
two components. The NBW on the left accepts all words over the alphabet {a, b}
that satisfy “eventually a and infinitely many b’s”. The NBW on the right accepts
all words that satisfy “eventually b and infinitely many a’s”. While each of these
languages is not NCW-recognizable, their union recognizes the language L of all
words satisfying “eventually a and eventually b”, which is NCW-recognizable. It is
not hard to see that none of the four possibilities to define a co-Büchi acceptance
condition on top of A result in an NCW that recognizes L. �

Researchers have considered additional variants of typeness. We mention two
here. Let γ and κ be two acceptance conditions. In powerset typeness, we ask
whether a deterministic κ-automaton can be defined on top of the subset construc-
tion of a nondeterministic γ -automaton. For example, NCWs are DBW-powerset-
type: if the language of an NCW A is DBW-recognizable, then a DBW for L (A )
can be defined on top of the subset construction of A [51]. In combined typeness,
we ask whether the ability to define a certain language on top of the same automa-
ton using two different acceptance conditions implies we can define it using a third,
weaker, condition. For example, DRWs+DSWs are DPW-type: if a language L can
be defined on top of a deterministic automaton A using both a Streett and a Ra-
bin acceptance condition, then L can be defined on top of A also using a parity
acceptance condition [4, 81]. For more results on typeness, see [38].

4.3.1.3 Translations That Require a New State Space

We now turn to the most general type of translations—those that may involve a
blow-up in the state space. We do not specify all the translations, and rather describe
the translation of nondeterministic generalized Büchi, Rabin, and Streett automata
into NBWs. For the case of NSW, where the translation involves a blow-up that is
exponential in the index, we also describe a lower bound.

Theorem 12 Let A be a nondeterministic generalized Büchi automaton with n
states and index k. There is an NBW A ′ with n ·k states such that L (A ′)=L (A ).

Proof Let A = 〈Σ,Q,Q0, δ, {α1, . . . , αk}〉. The idea of the construction of A ′ is
similar to the one used for defining the intersection of NBWs. Informally, A ′ con-
sists of k copies of A , and it stays in the i-th copy until it visits a state in αi , in
which case it moves to the next copy (modulo k). The acceptance condition of A ′
then makes sure that all copies are visited infinitely often.
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Formally, A ′ = 〈Σ,Q′,Q′0, δ′, α〉, where

• Q′ =Q× {1, . . . , k}.
• Q′0 =Q× {1}.• For every q ∈Q, i ∈ {1, . . . , k}, and σ ∈Σ , we have δ(〈q, i〉, σ )= δ(q, σ )×{j},

where j = i if q /∈ αi and j = (i mod k)+ 1 if q ∈ αi .
• α = α1 × {1}. Note that after a visit to α1 in the first copy, the run moves to the

second copy, where it waits for visits to α2, and so on until it visits αk in the
k-th copy, and moves back to the first copy. Therefore, infinitely many visits in
α1 in the first copy indeed ensure that all copies, and thus also all αi ’s are visited
infinitely often. �

Theorem 13 Let A be an NRW with n states and index k. There is an NBW A ′
with at most n(k + 1) states such that L (A ′)=L (A ).

Proof Let A = 〈Σ,Q,Q0, δ, {〈α1, β1〉, . . . , 〈αk,βk〉}〉. It is easy to see that
L (A ) = ⋃k

i=1 L (Ai ), where Ai = (Σ,Q,Q0, δ, {〈αi,βi〉}). By Theorem 1,
NBWs are closed under union. It therefore suffices to show a translation to NBWs
of NRWs with index 1.

Consider an NRW U = 〈Σ,Q,Q0, δ, {〈α,β〉}〉 with index 1. We translate U to
an NBW U ′. The idea of the construction is similar to the one used for complement-
ing DBWs: the NBW U ′ consists of two copies of U , and it nondeterministically
moves to the second copy, which contains only states that are not in β , and in which
it has to visit infinitely many states in α. Formally, U ′ = 〈Σ,Q′,Q′0, δ′, α′〉, where

• Q′ = (Q× {0})∪ ((Q \ β)× {1}).
• Q′0 =Q0 × {0}.
• For all q ∈Q and σ ∈ Σ , we have δ′(〈q,0〉, σ ) = (δ(q, σ )× {0}) ∪ ((δ(q, σ ) \
β)× {1}), and δ′(〈q,1〉, σ )= (δ(q, σ ) \ β)× {1} for q ∈Q \ β .

• α′ = α× {1}.
Since for an NRW U with n states, the NBW U ′ has at most 2n states, the
union NBW has at most 2nk states. Now, in order to reduce the state space to
n(k + 1), we observe that the first copy of U ′ can be shared by all Ai ’s. Thus,
A ′ guesses both the pair αi,βi with which the acceptance condition is satisfied
and the point from which states from βi are no longer visited. Formally, we define
A ′ = 〈Σ,Q′,Q0 × {0}, δ′, α′〉, where

• Q′ = (Q× {0})∪⋃
1≤i≤k((Q \ βi)× {i}).• For all q ∈ Q and σ ∈ Σ , we have δ′(〈q,0〉, σ ) = (δ(q, σ ) × {0}) ∪⋃

1≤i≤k((δ(q, σ )\βi)×{i}), and δ′(〈q, i〉, σ )= (δ(q, σ )\βi)×{i} for 1≤ i ≤ k
and q ∈Q \ βi .

• α′ =⋃
1≤i≤k αi × {i}. �

Translating NRWs to NBWs, we took the union of the NRWs of index 1 that
are obtained by decomposing the acceptance condition. For NSW, it is tempting to
proceed dually, and define the NBW as the intersection of the NSWs of index 1
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that are obtained by decomposing the acceptance condition. Such an intersection,
however, may accept words that are not in the language of the NSW. To see this,
consider an automaton A , a Streett acceptance condition α = {〈α1, β1〉, 〈α2, β2〉},
and a word w. It may be that there is a run r1 of A on w that satisfies the Streett
acceptance condition {〈α1, β1〉} and also a run r2 of A on w that satisfies the Streett
acceptance condition {〈α2, β2〉}. Yet, the runs r1 and r2 may be different, and there
need not be a run of A on w that satisfies both {〈α1, β1〉} and {〈α2, β2〉}. Conse-
quently, the translation of NSWs to NBWs has to consider the relation among the
different pairs in α, giving rise to a blow-up that is exponential in k. Formally, we
have the following.

Theorem 14 Let A be an NSW with n states and index k. There is an NBW A ′
with at most n(1+ k2k) states such that L (A ′)=L (A ).

Proof Let A = 〈Σ,Q,Q0, δ, {〈α1, β1〉, . . . , 〈αk,βk〉}〉. Recall that in an accepting
run r of A , we have that inf (r) ∩ αi = ∅ or inf (r) ∩ βi �= ∅ for all 1 ≤ i ≤ k. For
I ⊆ {1, . . . , k}, we define an NBW AI that accepts exactly all words w such that
there is a run r of A on w for which inf (r)∩αi = ∅ for all i ∈ I and inf (r)∩βi �= ∅
for all i /∈ I . Thus, I indicates how the acceptance condition α is satisfied. It is easy
to see that L (A )=⋃

I⊆{1,...,k}L (AI ).
The idea behind the construction of AI is similar to the “two copies” idea we

have seen above, except that now, in the copy in which AI avoids the states in αi ,
for all i ∈ I , it also has to visit all the states in βi , for i /∈ I . This can be easily
achieved by first defining AI as a nondeterministic generalized Büchi automaton.
Formally, we define AI = 〈Σ,QI ,Q′0, δI , βI 〉 as follows. Let αI =⋃

i∈I αi . Then,

• QI = (Q× {0})∪ ((Q \ αI )× {1}).
• Q′0 =Q0 × {0}.
• For every q ∈Q and σ ∈Σ , we have δI (〈q,0〉, σ )= (δ(q, σ )×{0})∪ ((δ(q, σ )\
αI )× {1}). For q ∈Q \ αI , we also have δI (〈q,1〉, σ )= (δ(q, σ ) \ αI )× {1}.

• βI = {βi × {1} : i /∈ I }.
Since AI has at most 2n states and index k, an equivalent Büchi automaton has

at most 2nk states. A slightly more careful analysis observes that the generalized
Büchi condition applies only to the second copy of AI , thus a translation to NBW
results in an automaton with at most n+ nk states. The automaton A ′ is then the
union of all the 2k NBWs obtained from the different AI and thus has at most
(n+ nk)2k states. Moreover, as in the proof of Theorem 13, the first copy of all the
NBWs in the union can be shared, tightening the bound further to n+ nk2k . �

In Theorem 15 below we show that the exponential blow-up in the translation of
NSWs to NBWs cannot be avoided. In fact, as the theorem shows, the blow-up may
occur even when one starts with a DSW.

Theorem 15 ([65]) There is a family of languages L1,L2, . . . such that Ln can be
recognized by a DSW with 3n states and index 2n, but an NBW for Ln has at least
2n states.
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Proof LetΣ = {0,1,2}. We can view an infinite word overΣ as a wordw ∈ (Σn)ω ,
thus w = u1 · u2 · u3 · · ·, where each uj is a word in Σn. We refer to such words as
blocks. We say that index i ∈ {0, . . . , n− 1} is 0-active in w iff there are infinitely
many j ’s such that the i-th letter in uj is 0. Similarly, i is 1-active in w iff there are
infinitely many j ’s such that the i-th letter in uj is 1. For n≥ 1, let

Ln = {w : for all 0≤ i ≤ n− 1, the index i is 0-active in w iff i is 1-active in w}.

We first describe a DSW An with 3n states such that L (An) = Ln. We define
An = 〈{0,1,2},Qn, {〈0,0〉}, δn,αn〉, where

• Qn = {1, . . . , n} × {0,1,2}. Intuitively, An moves to the state 〈i, σ 〉 after it reads
the (i−1)-th letter in the current block, and this letter is σ . Accordingly, an index
0≤ i ≤ n− 1 is σ -active in w iff the run of An on w visits states in {i+ 1}× {σ }
infinitely often.

• For all 0≤ i ≤ n− 1 and σ,σ ′ ∈ {0,1,2}, we have δn(〈i, σ 〉, σ ′)= 〈(i + 1) mod
n,σ ′〉.

• αn =⋃
1≤i≤n{〈{〈i,0〉}, {〈i,1〉}〉, 〈{〈i,1〉}, {〈i,0〉}〉}.

It is easy to see that An has 3n states and that L (An) = Ln. Now, assume by
way of contradiction that there is an NBW A ′

n that recognizes Ln and has fewer
than 2n states. We say that a position in a word or in a run of A ′

n is relevant if it is
0 mod n. That is, A ′

n starts to read each block in a relevant position. For a set S ⊆
{0, . . . , n−1}, letw0

S ∈ {0,2}n be the word of length n in which for all 0≤ i ≤ n−1,
the i-th letter is 0 iff i ∈ S, and is 2 otherwise. Similarly, letw1

S ∈ {1,2}n be the word
in which the i-th letter is 1 iff i ∈ S, and is 2 otherwise. Note that if w0

S appears in a
word w in infinitely many relevant positions, then all the indices in S are 0-active,
and similarly for w1

S and 1-active. Consider the infinite word wS = ((w0
S)

2n ·w1
S)
ω .

Clearly, for index i ∈ {0, . . . , n − 1}, we have that i is 0-active in wS iff i is 1-
active in wS iff i ∈ S. Hence, wS ∈ Ln. Let rS be an accepting run of A ′

n on wS .
We say that a position p ≥ 0 in rS is important if it is relevant and there is a state
q and a position p′ > p such that q is visited in both positions p and p′ and the
subword read between them is in (w0

S)
∗. We then say that q supports p. Let QS be

the set of states that support infinitely many important positions. Since Q is finite
and there are infinitely many relevant positions, the set QS is not empty. Since A ′

n

has fewer than 2n states, there must be two subsets S and T , such that T �= S and
QS ∩QT �= ∅. Let S and T be two such subsets. Assume without loss of generality
that T \ S �= ∅, and let q be a state in QS ∩QT . By the definition of QT , there is
i ≥ 1 such that A ′

n can move from q back to itself when it reads (w0
T )
i . We claim

that we can then obtain from wS a word w′S that is not in Ln and is accepted by A ′
n .

We obtain w′S by inserting the word (w0
T )
i inside the (w0

S)
2n subwords whenever

the run of A ′
n reaches the state q in important positions. The accepting run of A ′

n is
then similar to rS , except that we pump visits to q in important positions to traverse
the cycle along which (w0

T )
i is read. Since A ′

n is a Büchi automaton, the run stays
accepting, whereas the word it reads has indices (those in T \ S) that are 0-active
but not 1-active, and is therefore not in L′n. �
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4.3.2 Determinization of NBWs

Recall that NBWs are strictly more expressive than DBWs. In this section we de-
scribe the intuition behind a determinization construction that translates a given
NBW to an equivalent DPW. Detailed description of the construction can be found
in [59, 64, 67]. As in the case of NBW complementation, efforts to determinize
NBWs started in the 1960s, and involve several landmarks. In [52], McNaughton
proved that NBWs can be determinized and described a doubly-exponential trans-
lation of NBWs to DMWs. Only in 1988, Safra improved the bound and described
an optimal translation of NBWs to DRWs: given an NBW with n states, the equiv-
alent DRW has 2O(n logn) states and index n. A different construction, with similar
bounds, was given in [58]. The same considerations that hold for NBW comple-
mentation can be used in order to show a matching 2Ω(n logn) lower bound [50, 54].
While Safra’s determinization construction is asymptotically optimal, efforts to im-
prove it have continued, aiming at reducing the state space and generating automata
with the parity acceptance condition. Indeed, the parity acceptance condition has
important advantages: it is easy to complement, and when used as a winning con-
dition in a two-player game, both players can proceed according to memoryless
strategies. Also, solving parity games is easier than solving Rabin games [12, 29]
(see Chap. 27). In [59], Piterman described a direct translation of NBW to DPW,
which also reduces the state blow-up in Safra’s determinization. Piterman’s con-
struction has been further tightened in [67]. The translation is a variant of Safra’s
determinization construction, and we present the intuition behind it here. It is im-
portant to note that in addition to efforts to improve Safra’s determinization con-
struction, there have been efforts to develop algorithms that avoid determinization
in constructions and methodologies that traditionally involve determinization; e.g.,
complementation of NBW [44], LTL synthesis [45], and more [36].

Before we describe the intuition behind the determinization construction, let us
understand why NBW determinization is a difficult problem. Consider the NBW
A2 from Example 2. In Fig. 5 we described the DBW A ′

2 obtained by applying
the subset construction to A2. While A2 recognizes the language of all words with
finitely many a’s, the DBW A ′

2 recognizes the language of all words with infinitely
many b’s. Why does the subset construction work for finite words and fail here?
Consider the word w = (b · a)ω. The fact the run of A ′

2 on w visits the state {q0, q1}
infinitely often implies that there are infinitely many prefixes of w such that A2 has
a run on the prefix that ends in q1. Nothing, however, is guaranteed about our ability
to compose the runs on these prefixes into a single run. In particular, in the case
of w, the run on each of the prefixes visits q1 only once, as the destination of its last
transition, and there is no way to continue and read the suffix of w from q1.

Consider an NBW A = 〈Σ,Q,Q0, δ,α〉 and an input word w = σ1 · σ2 · σ3 · · ·.
As the example above demonstrates, an equivalent deterministic automaton should
not only make sure that w has infinitely many prefixes on which A can reach α,
but also that A does so with runs that can be composed into a single run. Let
S0, S1, S2, . . . ∈ (2Q)ω be the result of applying the subset construction of A
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on w. That is, Si is the set of states that A can be at after reading σ1 · σ2 · · ·σi .
The deterministic automaton that is equivalent to A tries to find a sequence
τ = T0, T1, T2, . . . ∈ (2Q)ω such that T0 ⊆ S0 and for all i ≥ 0, we have that
Ti+1 ⊆ δ(Ti, σi+1). In addition, there are infinitely many positions j1, j2, j3, . . .

such that for all k ≥ 1, each of the states in Tjk+1 is reachable from some state
in Tjk via a run that visits α. We refer to τ as a witness sequence and refer to the
positions j1, j2, j3, . . . as break-points. Note that for all i ≥ 0 we have Ti ⊆ Si , and
that indeed A accepts w iff such a witness sequence exists. First, if A accepts w
with a run q0, q1, . . ., then we can take Ti = {qi}. Also, if τ exists, then we can
generate an accepting run of A on w by reaching some state in Tj1 , then reaching,
via α, some state in Tj2 , then reaching, via α, some state in Tj3 , and so on. The big
challenge in the determinization construction is to detect a witness sequence without
guessing.

One naive way to detect a witness sequence is to maintain full information about
the runs of A on w. In Sect. 4.2.2.2, we defined the run DAG G that embodies all
the possible runs of A on w. The prefix of G up to level i clearly contains all the
information one needs about Si and the history of all the states in it. The prefixes
of G, however, are of increasing and unbounded sizes. A key point in the deter-
minization construction is to extract from each prefix of G a finite presentation that
is sufficiently informative. For the case of finite words, this is easy—the set of states
in the last level of the prefix (that is, Si ) is sufficient. For the case of infinite words,
the presentation is much more complicated, and is based on the data structure of
history trees.

Essentially, the history tree that is reached after reading a prefix of length i of w
maintains subsets of Si that may serve as Ti . One challenge is to maintain these sub-
sets in a compact way. A second challenge is to use the parity acceptance condition
in order to guarantee that one of the maintained subsets can indeed serve as Ti in a
witness sequence. The first challenge is addressed by arranging all candidate subsets
in a tree in which each state in Si is associated with at most one node of the tree. This
bounds the number of history trees by nO(n). The second challenge is addressed by
updating the history trees in each transition in a way that relates the choice of the
subset that would serve as Ti with the choice of the even index that witnesses the
satisfaction of the parity condition: the subsets are ordered, essentially, according to
their seniority—the point at which the deterministic automaton started to take them
into account as a possible Ti . In each update, each subset may be declared as “sta-
ble”, meaning that it continues to serve as a possible Ti , and may also be declared as
“accepting”, meaning that the position i is a break-point in the witness sequence in
which Ti is a member. The parity acceptance condition then uses labels of seniority
in order to look for a subset that is eventually always stable and infinitely often ac-
cepting. The above is only a high-level intuition, and in particular it misses the way
in which the subsets are ordered and how the updates interfere with this order. As
pointed out above, details can be found in the original papers [59, 64, 67].
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4.4 Decision Procedures

Automata define languages, which are sets of words. Natural questions to ask about
sets are whether they are trivial (that is, empty or universal), and whether two sets
contain each other. Note that equivalence between two sets amounts to containment
in both directions. In this section we study the following three problems, which
address the above questions for languages defined by automata.

• The non-emptiness problem is to decide, given an automaton A , whether
L (A ) �= ∅.

• The non-universality problemis to decide, given an automaton A , whether
L (A ) �=Σω.

• The language-containment problem is to decide, given automata A1 and A2,
whether L (A1)⊆L (A2).

It is not hard to see that the non-emptiness and non-universality problems are
dual, in the sense that an automaton is non-empty iff its complement is non-
universal, and that both can be viewed as a special case of the language-containment
problem. Indeed, if A⊥ and A� are such that L (A⊥) = ∅ and L (A�) = Σω,
then an automaton A is empty if L (A ) ⊆L (A⊥) and is universal if L (A�) ⊆
L (A ). As we shall see below, however, the non-emptiness problem is easier than
the other two. We note that the hardness results and proofs described in this section
hold already for automata on finite words. We still present direct proofs for NBWs.
An alternative would be to carry out a reduction from the setting of finite words.

Theorem 16 ([14, 15, 77]) The non-emptiness problem for NBWs is decidable in
linear time and is NLOGSPACE-complete.

Proof Consider an NBW A = 〈Σ,Q,Q0, δ,α〉. Recall that A induces a directed
graph GA = 〈Q,E〉 where 〈q, q ′〉 ∈ E iff there is a letter σ such that q ′ ∈ δ(q, σ ).
We claim that L (A ) is non-empty iff there are states q0 ∈Q0 and qacc ∈ α such that
GA contains a path leading from q0 to qacc and a cycle going though qacc. Assume
first that L (A ) is non-empty. Then, there is an accepting run r = q0, q1, . . . of
A on some input word, which corresponds to an infinite path of GA . Since r is
accepting, some state qacc ∈ α occurs in r infinitely often; in particular, there are
i, j , where 0 ≤ i < j , such that qacc = qi = qj . Thus, q0, . . . , qi corresponds to a
(possibly empty) path from q0 to qacc, and qi, . . . , qj to a cycle going through qacc.

Conversely, assume that GA contains a path leading from q0 to a state qacc ∈ α
and a cycle going though qacc. We can then construct an infinite path ofGA starting
at q0 and visiting qacc infinitely often. This path induces a run on a word accepted
by A .

Thus, NBW non-emptiness is reducible to graph reachability. The algorithm that
proves membership in NLOGSPACE first guesses states q0 ∈Q0 and qacc ∈ α, and
then checks the reachability requirements by guessing a path from q0 to qacc and a
path from qacc to itself. Guessing these paths is done by remembering the current
state on the path and the value of a counter for the length of the path traversed so far,
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and proceeding to a successor state while increasing the counter. When the counter
value exceeds |Q|, the algorithm returns “no” (that is, the guess is not good). Note
that the algorithm has to remember q0, qacc, the current state and counter value, each
requiring logarithmic space.

NLOGSPACE-hardness can be proved by an easy reduction from the reachability
problem in directed graphs [28]. There, one is given a directed graph G = 〈V,E〉
along with two vertices s and t , and the goal is to decide whether there is a path from
s to t . It is easy to see that such a path exists iff the NBW AG = 〈{a},V , {s}, δ, {t}〉
with v′ ∈ δ(v, a) iff E(v, v′) or v′ = v = t is not empty.

To check non-emptiness in linear time, we first find the decomposition of GA
into SCCs [10, 73]. An SCC is nontrivial if it contains an edge, which means, since
it is strongly connected, that it contains a cycle. It is not hard to see that A is non-
empty iff from an SCC whose intersection with Q0 is not empty it is possible to
reach a nontrivial SCC whose intersection with α is not empty. �

Theorem 17 ([70]) The non-universality problem for NBWs is decidable in expo-
nential time and is PSPACE-complete.

Proof Consider an NBW A . Clearly, L (A ) �= Σω iff Σω \L (A ) �= ∅, which
holds iff L (A ′) �= ∅, where A ′ is an NBW that complements A . Thus, to test
A for non-universality, it suffices to test A ′ for non-emptiness. The construction
of A ′ can proceed “on-the-fly” (that is, there is no need to construct and store A ′
and then perform the non-emptiness test, but rather it is possible to construct only
the components required for the non-emptiness test on demand; such a construction
requires only polynomial space). Hence, as A ′ is exponentially bigger than A , the
time and space bounds from Theorem 16 imply the two upper bounds.

For the lower bound, we do a reduction from polynomial-space Turing machines.
The reduction does not use the fact that Büchi automata run on infinite words and
follows the same considerations as the reduction showing that the non-universality
problem is PSPACE-hard for nondeterministic automata on finite words [53]. Note
that we could also have reduced from this latter problem, but preferred to give the
details of the generic reduction.

Given a Turing machine T of space complexity s(n), we construct an NBW AT
of size linear in T and s(n) such that AT is universal iff T does not accept the
empty tape. We assume, without loss of generality, that all the computations of T
eventually reach a final state. Also, once T reaches a final state it loops there forever.
The NBW AT accepts a word w iff w is not an encoding of a legal computation of
T over the empty tape or if w is an encoding of a legal yet rejecting computation
of T over the empty tape. Thus, AT rejects a word w iff w encodes a legal and
accepting computation of T over the empty tape. Hence, AT is universal iff T does
not accept the empty tape.

We now give the details of the construction of AT . Let T = 〈Γ,Q,→, q0,

qacc, qreq〉, where Γ is the alphabet, Q is the set of states, →⊆ Q × Γ ×Q ×
Γ × {L,R} is the transition relation (we use (q, a)→ (q ′, b,�) to indicate that
when T is in state q and it reads the input a in the current tape cell, it moves to
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state q ′, writes b in the current tape cell, and its reading head moves one cell to
the left/right, according to �), and q0, qacc, and qrej are the initial, accepting, and
rejecting states.

We encode a configuration of T by a word #γ1γ2 . . . (q, γi) . . . γs(n). That is, a
configuration starts with #, and all its other letters are in Γ , except for one letter
in Q× Γ . The meaning of such a configuration is that the j -th cell in T , for 1 ≤
j ≤ s(n), is labeled γj , the reading head points at cell i, and T is in state q . For
example, the initial configuration of T is #(q0, b)b . . . b (with s(n)− 1 occurrences
of b) where b stands for an empty cell. We can now encode a computation of T by
a sequence of configurations.

Let Σ = {#} ∪ Γ ∪ (Q × Γ ) and let #σ1 . . . σs(n)#σ ′1 . . . σ ′s(n) be two succes-
sive configurations of T . We also set σ0, σ ′0, and σs(n)+1 to #. For each triple
〈σi−1, σi, σi+1〉 with 1≤ i ≤ s(n), we know, by the transition relation of T , what σ ′i
should be. In addition, the letter # should repeat exactly every s(n)+ 1 letters. Let
next(〈σi−1, σi, σi+1〉) denote our expectation for σ ′i . That is,

• next(〈γi−1, γi, γi+1〉)= next(〈#, γi, γi+1〉)= next(〈γi−1, γi,#〉)= γi .
• next(〈(q, γi−1), γi, γi+1〉)= next(〈(q, γi−1), γi,#〉)=

{
γi if (q, γi−1)→ (q ′, γ ′i−1,L)

(q ′, γi) if (q, γi−1)→ (q ′, γ ′i−1,R)

• next(〈γi−1, (q, γi), γi+1〉) = next(〈#, (q, γi), γi+1〉) = next(〈γi−1, (q, γi),#〉) =
γ ′i where (q, γi)→ (q ′, γ ′i ,�).3• next(〈γi−1, γi, (q, γi+1)〉)= next(〈#, γi, (q, γi+1)〉)=

{
γi if (q, γi+1)→ (q ′, γ ′i+1,R)

(q ′, γi) if (q, γi+1)→ (q ′, γ ′i ,L)

• next(〈σs(n),#, σ ′1〉)= #.

Consistency with next now gives us a necessary condition for a trace to encode a
legal computation. In addition, the computation should start with the initial config-
uration.

In order to check consistency with next, the NBW AT can use its nondeterminism
and guess when there is a violation of next. Thus, AT guesses 〈σi−1, σi, σi+1〉 ∈Σ3,
guesses a position in the trace, checks whether the three letters to be read starting
in this position are σi−1, σi , and σi+1, and checks whether next(〈σi−1, σi, σi+1〉) is
not the letter to come s(n)+ 1 letters later. Once AT sees such a violation, it goes
to an accepting sink. In order to check that the first configuration is not the initial
configuration, AT simply compares the first s(n) + 1 letters with #(q0, b)b . . . b.
Finally, checking whether a legal computation is rejecting is also easy: the compu-
tation should reach a configuration in which T visits qrej . �

3We assume that the reading head of T does not “fall” from the right or the left boundaries of the
tape. Thus, the case where (i = 1) and (q, γi)→ (q ′, γ ′i ,L) and the dual case where (i = s(n))
and (q, γi)→ (q ′, γ ′i ,R) are not possible.
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Theorem 18 ([70]) The containment problem for NBWs is decidable in exponential
time and is PSPACE-complete.

Proof Consider NBWs A1 and A2. Note that L (A1)⊆L (A2) iff L (A1)∩ (Σω \
L (A2))= ∅, which holds iff L (A ′)= ∅, where A ′ is an NBW for the intersection
of A1 with an NBW that complements A2. Thus, to check the containment of A1
in A2 we can test A ′ for emptiness. Since the construction of A ′ can proceed on-
the-fly and its size is linear in the size of A1 and exponential in the size of A2, the
required complexity follows, as in the proof of Theorem 17. Since A2 is universal
iff Σω ⊆L (A2) and Σω can be recognized by an NBW with one state, hardness
in PSPACE follows from hardness of the universality problem. �

Recall that the algorithm for deciding non-emptiness of an NBW A operates
on the graph GA induced by A and thus ignores the alphabet of A . In partic-
ular, the algorithm does not distinguish between deterministic and nondeterminis-
tic automata. In contrast, the algorithms for deciding universality and containment
complement the NBW and thus, can benefit from determinization.

Theorem 19 The non-emptiness, non-universality, and containment problems for
DBWs are NLOGSPACE-complete.

Proof When applied to DBWs, the intermediate automaton A ′ used in the proofs
of Theorems 17 and 18 is polynomial in the size of the input, thus its non-emptiness
can be tested in NLOGSPACE. Hardness in NLOGSPACE follows from the fact
that reachability in directed graphs can be reduced to the three problems. �

Theorems 16, 17, and 18 refer to Büchi automata. For the other types of au-
tomata, one can translate to NBWs and apply the algorithm for them. While in many
cases this results in an optimal algorithm, sometimes it is more efficient to work di-
rectly on the input automaton. In particular, for NSW, the translation to NBW results
in an NBW with O(n22k) states, whereas non-emptiness can be checked in sub-
quadratic time [16, 25]. We note, however, that unlike NBWs and NRWs, for which
the non-emptiness problem is NLOGSPACE-complete, it is PTIME-complete for
NSWs [42]. For NPWs, the translation to NBWs results in an NBW with O(nk)
states, whereas non-emptiness can be checked in time O(n logk) [32].

4.5 Alternating Automata on Infinite Words

In [7], Chandra et al. introduced alternating Turing machines. In the alternating
model, the states of the machine, and accordingly also its configurations, are par-
titioned into existential and universal ones. When the machine is in an existential
configuration, one of its successors should lead to acceptance. When the machine
is in a universal configuration, all its successors should lead to acceptance. In this
section we define alternating Büchi automata [55] and study their properties.
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4.5.1 Definition

For a given set X, let B+(X) be the set of positive Boolean formulas over X (i.e.,
Boolean formulas built from elements inX using ∧ and ∨), where we also allow the
formulas true and false. For Y ⊆X, we say that Y satisfies a formula θ ∈B+(X) iff
the truth assignment that assigns true to the members of Y and assigns false to the
members of X \ Y satisfies θ . We say that Y satisfies θ in a minimal manner if no
strict subset of Y satisfies θ . For example, the sets {q1, q3}, {q2, q3}, and {q1, q2, q3}
all satisfy the formula (q1∨q2)∧q3, yet only the first two sets satisfy it in a minimal
manner. Also, the set {q1, q2} does not satisfy this formula.

Consider an automaton A = 〈Σ,Q,Q0, δ,α〉. We can represent δ using
B+(Q). For example, a transition δ(q, σ )= {q1, q2, q3} of a nondeterministic au-
tomaton A can be written as δ(q, σ )= q1 ∨ q2 ∨ q3. The dual of nondeterminism
is universality. A word w is accepted by a universal automaton A if all the runs of
A on w are accepting. Accordingly, if A is universal, then the transition can be
written as δ(q, σ )= q1 ∧ q2 ∧ q3. While transitions of nondeterministic and univer-
sal automata correspond to disjunctions and conjunctions, respectively, transitions
of alternating automata can be arbitrary formulas in B+(Q). We can have, for in-
stance, a transition δ(q, σ ) = (q1 ∧ q2) ∨ (q3 ∧ q4), meaning that the automaton
accepts a word of the form σ ·w from state q , if it accepts w from both q1 and q2 or
from both q3 and q4. Such a transition combines existential and universal choices.

Formally, an alternating automaton on infinite words is a tuple A = 〈Σ,Q,q0,

δ,α〉, where Σ,Q, and α are as in nondeterministic automata, q0 ∈Q is an initial
state (we will later explain why it is technically easier to assume a single initial
state), and δ : Q × Σ →B+(Q) is a transition function. In order to define runs
of alternating automata, we first have to define trees and labeled trees. A tree is
a prefix-closed set T ⊆ N

∗ (i.e., if x · c ∈ T , where x ∈ N
∗ and c ∈ N, then also

x ∈ T ). The elements of T are called nodes, and the empty word ε is the root of T .
For every x ∈ T , the nodes x · c, for c ∈N, are the successors of x. A node is a leaf
if it has no successors. We sometimes refer to the length |x| of x as its level in the
tree. A path π of a tree T is a set π ⊆ T such that ε ∈ π and for every x ∈ π , either
x is a leaf or there exists a unique c ∈ N such that x · c ∈ π . Given an alphabet Σ ,
a Σ -labeled tree is a pair 〈T ,V 〉 where T is a tree and V : T →Σ maps each node
of T to a letter in Σ .

While a run of a nondeterministic automaton on an infinite word is an infinite
sequence of states, a run of an alternating automaton is a Q-labeled tree. Formally,
given an infinite word w = σ1 · σ2 · · ·, a run of A on w is a Q-labeled tree 〈Tr, r〉
such that the following hold:

• ε ∈ Tr and r(ε)= q0.
• Let x ∈ Tr with r(x) = q and δ(q, σ|x|+1) = θ . There is a (possibly empty) set
S = {q1, . . . , qk} such that S satisfies θ in a minimal manner and for all 1≤ c ≤ k,
we have that x · c ∈ Tr and r(x · c)= qc.

For example, if δ(q0, σ1)= (q1∨q2)∧ (q3∨q4), then possible runs of A on w have
a root labeled q0, have one node in level 1 labeled q1 or q2, and have another node
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in level 1 labeled q3 or q4. Note that if θ = true, then x does not have children. This
is the reason why Tr may have leaves. Also, since there exists no set S satisfying θ
for θ = false, we cannot have a run that takes a transition with θ = false.

A run 〈Tr, r〉 is accepting iff all its infinite paths, which are labeled by words
in Qω , satisfy the acceptance condition. A word w is accepted iff there exists an
accepting run on it. Note that while conjunctions in the transition function of A are
reflected in branches of 〈Tr, r〉, disjunctions are reflected in the fact we can have
many runs on the same word. The language of A , denoted L (A ), is the set of
infinite words that A accepts. We use ABW to abbreviate alternating Büchi word
automata.

Example 4 For n ≥ 1, let Σn = {1,2, . . . , n}. We describe an ABW An such that
An accepts exactly all words w ∈Σωn such that w contains the subword i · i · i for
all letters i ∈Σn.

We define An = 〈Σn,Qn,q0, δ,∅〉, where

• Qn = {q0} ∪ (Σ × {3,2,1}). Thus, in addition to an initial state, An contains
three states for each letter i ∈Σn, where state 〈i, c〉, for c ∈ {1,2,3}, waits for a
subword ic .

• In its first transition, An spawns into n copies, with copy i waiting for the subword
i3 (or i2, in case the first letter read is i). Thus, for all i ∈Σn, we have δn(q0, i)=
〈i,2〉 ∧∧

j �=i 〈j,3〉. In addition, for all i ∈Σn and c ∈ {3,2,1}, we have

δn(〈i, c〉, j)=
⎡

⎣
〈i, c− 1〉 if j = i and c ∈ {3,2},
true if j = i and c= 1,
〈i,3〉 if j �= i.

Note that no state in Qn is accepting. Thus, all copies have to eventually take the
transition to true, guaranteeing that i · i · i is indeed read, for all i ∈Σn. Note also
that while An has 3n+1 states, it is not hard to prove that an NBW for the language
is exponential in n, as it has to remember the subsets of letters for which the subword
i · i · i has already appeared.

A slightly more general definition of alternating automata could replace the sin-
gle initial state by an initial transition in B+(Q), describing possible subsets of
states from which the word should be accepted. Staying with the definition of a set
of initial states used in nondeterministic automata would have broken the symmetry
between the existential and universal components of alternation.

4.5.2 Closure Properties

The rich structure of alternating automata makes it easy to define the union and
intersection of ABWs. Indeed, the same way union is easy for automata with non-
determinism, intersection is easy for automata with universal branches.
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Theorem 20 Let A1 and A2 be ABWs with n1 and n2 states, respectively. There
are ABWs A∪ and A∩ such that L (A∪)=L (A1)∪L (A2), L (A∩)=L (A1)∩
L (A2), and A∪ and A∩ have n1 + n2 + 1 states.

Proof Let A1 = 〈Σ,Q1, q
0
1 , δ1, α1〉 and A2 = 〈Σ,Q2, q

0
2 , δ2, α2〉. We assume,

without loss of generality, that Q1 and Q2 are disjoint. We define A∪ as the union
of A1 and A2, with an additional initial state that proceeds like the union of the
initial states of A1 and A2. Thus, A∪ = 〈Σ,Q1 ∪Q2 ∪ {q0}, q0, δ,α1 ∪ α2〉, where
δ(q0, σ ) = δ1(q

0
1 , σ ) ∨ δ2(q

0
2 , σ ), and for every state q ∈ Q1 ∪Q2, we have that

δ(q, σ )= δi(q, σ ), for the index i ∈ {1,2} such that q ∈Qi . It is easy to see that for
every word w ∈Σω, the ABW A has an accepting run on w iff at least one of the
ABWs A1 and A2 has an accepting run onw. The definition of A∩ is similar, except
that from q0 we proceed with the conjunction of the transitions from q0

1 and q0
2 . �

We note that with a definition of ABWs in which an initial transition in B+(Q)
is allowed, closing ABWs under union and intersection can be done by applying the
corresponding operation on the initial transitions. We proceed to closure of ABWs
under complementation. Given a transition function δ, let δ̃ denote the function dual
to δ. That is, for every q and σ with δ(q, σ )= θ , we have that δ̃(q, σ )= θ̃ , where θ̃
is obtained from θ by switching ∨ and ∧ and switching true and false. If, for exam-
ple, θ = p∨ (true∧ q), then θ̃ = p∧ (false∨ q). Given an acceptance condition α,
let α̃ be an acceptance condition that dualizes α. Thus, a set of states S satisfies α
iff S does not satisfy α̃. In particular, if α is a Büchi condition, then α̃ is a co-Büchi
condition. For deterministic automata, it is easy to complement an automaton A by
dualizing the acceptance condition. In particular, given a DBW A , viewing A as
a DCW complements its language. For an NBW A , the situation is more involved
as we have to make sure that all runs satisfy the dual condition. This can be done
by viewing A as a universal co-Büchi automaton. As Lemma 3 below argues, this
approach can be generalized to all alternating automata and acceptance conditions.

Lemma 3 ([58]) Given an alternating automaton A = 〈Σ,Q,q0, δ,α〉, the alter-
nating automaton ˜A = 〈Σ,Q,q0, δ̃, α̃〉 is such that L ( ˜A )=Σω \L (A ).

Lemma 3 suggests a straightforward translation of an ABW A to a complement-
ing ACW ˜A , and vice versa. In order to end up with an ABW, one has to translate
˜A to an ABW [44], which uses the ranking method described in the context of

NBW complementation and involves a quadratic blow-up:

Theorem 21 ([44]) Given an ABW A with n states, there is an ABW A ′ with
O(n2) states such that L (A ′)=Σω \L (A ).

We note that the ABW constructed in the proof of Theorem 21 is a weak alter-
nating automaton [56]. In a weak automaton, each SCC of the automaton is either
contained in α or is disjoint from α. Every infinite path of a run ultimately gets
“trapped” within some SCC. The path then satisfies the acceptance condition iff this
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component is contained in α. It is easy to see that weak automata are a special case
of both Büchi and co-Büchi alternating automata. A run gets trapped in a component
contained in α iff it visits α infinitely often iff it visitsQ \α only finitely often. The
study of weak alternating automata is motivated by the fact that the translation of
formulas in several temporal logics to alternating automata results in weak automata
[46, 56]. Another motivation is the fact that dualizing a weak automaton is straight-
forward: taking α̃ =Q \ α amounts to switching the classification of accepting and
rejecting sets, and thus dualizes the acceptance condition.

Remark 2 In the non-elementary translation of monadic second-order logic for-
mulas to NBWs [6], an exponential blow-up occurs with each negation. While a
blow-up that is non-elementary in the quantifier alternation depth is unavoidable,
the fact that complementation is easy for alternating automata raises the question
whether ABWs may be used in a simpler decision procedure. The negative answer
follows from the fact that the existential projection operator, which is easy for non-
deterministic automata, involves an exponential blow-up when applied to alternat-
ing automata. For a language L⊆ (Σ1 ×Σ2)

ω , we define the existential projection
of L on Σ1 as the language L1 of all words w1 ∈ Σω1 such that there is a word
w2 ∈ Σω2 for which w1 ⊗ w2 ∈ L, where w1 ⊗ w2 is the word over Σ1 ×Σ2 ob-
tained by “merging” the letters of w1 and w2 in the expected way. For example,
abba ⊗ 0010 = 〈a0〉〈b0〉〈b1〉〈a0〉. Given an NBW for L, it is easy to see that an
NBW for L1 can be obtained by replacing a letter 〈σ1, σ2〉 by the letter σ1. Such
a simple replacement, however, would not work for alternating automata. Indeed,
there, one has to ensure that different copies of the automaton proceed according
to the same word over Σ2. Consequently, existential projection requires alterna-
tion removal. In the context of translations of formulas to automata, the exponential
blow-up with each negation when working with NBWs is traded for an exponential
blow-up with each existential quantifier when working with ABWs. It is easy to
see, say by pushing negations inside, that negations and existential quantifiers can
be traded also at the syntactic level of the formula.

4.5.3 Decision Procedures

The rich structure of alternating automata makes them exponentially more suc-
cinct than nondeterministic automata. On the other hand, reasoning about alter-
nating automata is complicated. For example, while the algorithm for testing the
non-emptiness of a nondeterministic automaton can ignore the alphabet and be re-
duced to reachability questions in the underlying graph of the automaton, ignoring
the alphabet in an alternating automaton leads to an algorithm with a one-sided
error. Indeed, as noted in the context of existential projection in Remark 2, the al-
gorithm should make sure that the different copies it spawns into follow the same
word. Consequently, many algorithms for alternating automata involve alternation
removal—a translation to an equivalent nondeterministic automaton. Below we de-
scribe such a translation for the case of Büchi automata.
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Theorem 22 ([55]) Consider an ABW A with n states. There is an NBW A ′ with
3n states such that L (A ′)=L (A ).

Proof The automaton A ′ guesses a run of A . At a given point of a run of A ′, it
keeps in its memory the states in a whole level of the run tree of A . As it reads
the next input letter, it guesses the states in the next level of the run tree of A .
In order to make sure that every infinite path visits states in α infinitely often, A ′
keeps track of states that “owe” a visit to α. Let A = 〈Σ,Q,q0, δ,α〉. Then A ′ =
〈Σ,2Q × 2Q, 〈{q0},∅〉, δ′,2Q × {∅}〉, where δ′ is defined, for all 〈S,O〉 ∈ 2Q× 2Q

and σ ∈Σ , as follows.

• IfO �= ∅, then δ′(〈S,O〉, σ )= {〈S′,O ′ \ α〉 : S′ satisfies
∧
q∈S δ(q, σ ),O ′ ⊆ S′,

and O ′ satisfies
∧
q∈O δ(q,σ )}.

• If O = ∅, then δ′(〈S,O〉, σ )= {〈S′, S′ \ α〉 : S′ satisfies ∧q∈S δ(q, σ )}.
Note that all the reachable states 〈S,O〉 in A ′ satisfy O ⊆ S. Accordingly, if the

number of states in A is n, then the number of states in A ′ is at most 3n. �

Note that the construction has the flavor of the subset construction [63], but in a
dual interpretation: a set of states is interpreted conjunctively: the suffix of the word
has to be accepted from all the states in S. While such a dual subset construction is
sufficient for automata on finite words, the case of Büchi requires also the mainte-
nance of a subsetO of S, leading to a 3O(n), rather than a 2O(n), blow-up. As shown
in [3], this additional blow-up cannot be avoided.

Remark 3 It is not hard to see that if A is a universal automaton (that is, the tran-
sition function δ only has conjunctions), then the automaton A ′ constructed in the
proof of Theorem 22 is deterministic. Indeed, in the definition of δ′(〈S,O〉, σ ),
there is a single set S′ that satisfies ∧q∈Sδ(q, σ ) in a minimal manner. It follows that
universal Büchi automata are not more expressive than DBWs. Dually, NCWs are
not more expressive than DCW: Given an NCW A , we can apply the construction
above on the dual universal Büchi automaton ˜A (see Lemma 3), and then dualize
the obtained DBW. We end up with a DCW equivalent to A .

We can now use alternation removal in order to solve decision problems for al-
ternating automata.

Theorem 23 The non-emptiness, non-universality, and containment problems for
ABW are PSPACE-complete.

Proof We describe the proof for the non-emptiness problem. Since ABWs are easily
closed for negation and intersection, the proof for non-universality and containment
is similar. Consider an ABW A . In order to check A for non-emptiness, we trans-
late it into an NBW A ′ and check the non-emptiness of A ′. By Theorem 22, the
size of A ′ is exponential in the size of A . Since the construction of A ′ can proceed
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on-the-fly, and, by Theorem 16, its non-emptiness can be checked in NLOGSPACE,
membership in PSPACE follows.

In order to prove hardness in PSPACE, we do a reduction from NBW non-
universality. Given an NBW A , we have that L (A ) �= Σω iff Σω \L (A ) �= ∅.
Thus, non-universality of A can be reduced to non-emptiness of an automaton A ′
that complements A . Since we can define A ′ as an ABW with quadratically many
states, hardness in PSPACE follows. �

4.6 Automata-Based Algorithms

In this section we describe the application of automata theory in formal verification.
Recall that the logic LTL is used for specifying properties of reactive systems. The
syntax and semantics of LTL are described in Chap. 2. For completeness, we de-
scribe them here briefly. Formulas of LTL are constructed from a set AP of atomic
propositions using the usual Boolean operators and the temporal operators X (“next
time”) and U (“until”). Formally, an LTL formula over AP is defined as follows:

• true, false, or p, for p ∈ AP.
• ¬ψ1, ψ1 ∧ψ2, Xψ1, or ψ1Uψ2, where ψ1 and ψ2 are LTL formulas.

The semantics of LTL is defined with respect to infinite computations π =
σ1, σ2, σ3, . . ., where for every j ≥ 1, the set σj ⊆ AP is the set of atomic propo-
sitions that hold in the j -th position of π . Systems that generate computations
are modeled by Kripke structures. A (finite) Kripke structure is a tuple K =
〈AP,W,W0,R, �〉, where AP is a finite set of atomic propositions, W is a finite
set of states, W0 ⊆W is a set of initial states, R ⊆W ×W is a transition relation,
and � : W → 2AP maps each state w to the set of atomic propositions that hold
in w. We require that each state has at least one successor. That is, for each state
w ∈W there is at least one state w′ such that R(w,w′). A path in K is an infinite
sequence ρ =w0,w1,w2, . . . of states such that w0 ∈W0 and for all i ≥ 0, we have
R(wi,wi+1). The path ρ induces the computation �(w0), �(w1), �(w2), . . ..

Consider a computation π = σ1, σ2, σ3, . . .. We denote the suffix σj , σj+1, . . . of
π by πj . We use π |� ψ to indicate that an LTL formula ψ holds in the computa-
tion π . The relation |� is inductively defined as follows:

• For all π , we have that π |� true and π �|� false.
• For an atomic proposition p ∈ AP, we have that π |� p iff p ∈ σ1.
• π |� ¬ψ1 iff π �|�ψ1.
• π |�ψ1 ∧ψ2 iff π |�ψ1 and π |�ψ2.
• π |�Xψ1 iff π2 |�ψ1.
• π |� ψ1Uψ2 iff there exists k ≥ 1 such that πk |� ψ2 and πi |� ψ1 for all

1≤ i < k.

Writing LTL formulas, it is convenient to use the abbreviations G (“always”),
F (“eventually”), and R (“release”). Formally, the abbreviations follow the follow-
ing semantics.
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• Fψ1 = trueUψ1. That is, π |� Fψ1 iff there exists k ≥ 1 such that πk |�ψ1.
• Gψ1 =¬F¬ψ1. That is, π |�Gψ1 iff for all k ≥ 1 we have that πk |�ψ1.
• ψ1Rψ2 =¬((¬ψ1)U(¬ψ2)). That is, π |� ψ1Rψ2 iff for all k ≥ 1, if πk �|� ψ2,

then there is 1≤ i < k such that πi |�ψ1.

Each LTL formula ψ over AP defines a language L (ψ)⊆ (2AP)ω of the compu-
tations that satisfy ψ , Formally,

L (ψ)= {
π ∈ (

2AP)ω : π |�ψ}
.

Two natural problems arise in the context of systems and their specifications:

• Satisfiability: given an LTL formula ψ , is there a computation π such that
π |�ψ?

• Model Checking: given a Kripke structure K and an LTL formula ψ , do all the
computations of K satisfy ψ?

We describe a translation of LTL formulas into Büchi automata and discuss how
such a translation is used for solving the above two problems.

4.6.1 Translating LTL to Büchi Automata

In this section we describe a translation of LTL formulas to NBW. We start with
a translation that goes via ABWs. For completeness, we also present the original
translation of [77], which directly generates NBWs. The translation involves an ex-
ponential blow-up, which we show to be tight.

4.6.1.1 A Translation via ABWs

Consider an LTL formula ψ . For simplicity, we assume that ψ is given in positive
normal form. Thus, negation is applied only to atomic propositions. Formally, given
a set AP of atomic propositions, an LTL formula in positive normal form is defined
as follows:

• true, false, p, or ¬p, for p ∈ AP.
• ψ1, ψ1 ∧ ψ2, ψ1 ∨ ψ2, Xψ1, ψ1Uψ2, or ψ1Rψ2, where ψ1 and ψ2 are LTL

formulas in positive normal form.

Note that the fact negation is restricted to atomic propositions has forced us to
add not only the Boolean operator ∨ but also the temporal operator R. Still, it is
easy to see that transforming an LTL formula to a formula in positive normal form
involves no blow-up. The closure of an LTL formula ψ , denoted cl(ψ), is the set of
all its subformulas. Formally, cl(ψ) is the smallest set of formulas that satisfy the
following.

• ψ ∈ cl(ψ).
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{p} ∅
GFp GFp GFp ∧ Fp
Fp true Fp

Fig. 8 The transition function of an ABW for GFp

• If ψ1 ∧ ψ2, ψ1 ∨ ψ2, ψ1Uψ2 or ψ1Rψ2 is in cl(ψ), then ψ1 ∈ cl(ψ) and ψ2 ∈
cl(ψ).

• If Xψ1 is in cl(ψ), then ψ1 ∈ cl(ψ).
For example, cl(p ∧ ((Xp)Uq)) is {p ∧ ((Xp)Uq),p, (Xp)Uq,Xp,q}. It is easy
to see that the size of cl(ψ) is linear in |ψ |.

Theorem 24 For every LTL formula ψ , there is an ABW Aψ with O(|ψ |) states
such that L (Aψ)=L (ψ).

Proof We define Aψ = 〈2AP, cl(ψ),ψ, δ,α〉, where

• The transition δ(ϕ,σ ) is defined according to the form of ϕ as follows.

– δ(p,σ )=
[ true if p ∈ σ ,

false if p /∈ σ .

– δ(¬p,σ)=
[ true if p /∈ σ ,

false if p ∈ σ .
– δ(ϕ1 ∧ ϕ2, σ )= δ(ϕ1, σ )∧ δ(ϕ2, σ ).
– δ(ϕ1 ∨ ϕ2, σ )= δ(ϕ1, σ )∨ δ(ϕ2, σ ).
– δ(Xϕ,σ )= ϕ.
– δ(ϕ1Uϕ2, σ )= δ(ϕ2, σ )∨ (δ(ϕ1, σ )∧ ϕ1Uϕ2).
– δ(ϕ1Rϕ2, σ )= δ(ϕ2, σ )∧ (δ(ϕ1, σ )∨ ϕ1Rϕ2).

• The set α of accepting states consists of all the formulas in cl(ψ) of the form
ϕ1Rϕ2.

The proof of the correctness of the construction proceeds by induction on the struc-
ture of ψ . For a formula ϕ ∈ cl(ψ), we prove that when Aψ is in state ϕ, it accepts
exactly all words that satisfy ϕ. The base case, when ϕ is an atomic proposition or
its negation, follows from the definition of the transition function. The other cases
follow from the semantics of LTL and the induction hypothesis. In particular, the
definition of α guarantees that in order for a word to satisfy ϕ1Uϕ2, it must have
a suffix that satisfies ϕ2. Indeed, otherwise, the run of Aψ has an infinite path that
remains forever in the state ϕ1Uϕ2, and thus does not satisfy α. �

Example 5 We describe an ABW Aψ for the LTL formula ψ = GFp. Note that
ψ = falseR(trueUp). In the example, we use the F and G abbreviations. The al-
phabet of Aψ consists of the two letters in 2{p}. The set of accepting states is {GFp},
and the states and transitions are described in the table in Fig. 8.

Example 6 We describe an ABW Aψ for the LTL formula ψ = p∧ ((Xp)Uq). The
alphabet of Aψ consists of the four letters in 2{p,q}. The states and transitions are
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{p,q} {p} {q} ∅
p ∧ ((Xp)Uq)) true p ∧ ((Xp)Uq) false false
p true true false false
(Xp)Uq true p ∧ ((Xp)Uq)) true p ∧ ((Xp)Uq))

Fig. 9 The transition function of an ABW for p ∧ ((Xp)Uq))

described in the table in Fig. 9. No state is accepting. Note that only the initial state
is reachable.

Combining Theorems 24 and 22, we get the following.

Theorem 25 For every LTL formula ψ , there is an NBW Aψ such that L (Aψ)=
L (ψ) and the size of Aψ is exponential in |ψ |.

In Sect. 4.6.1.3 we show a matching exponential lower bound. Let us note here
that while the 3n blow-up in Theorem 22 refers to general ABWs, the ABWs ob-
tained from LTL in the proof of Theorem 24 have a special structure: all the cycles
in the automata are self-loops. For such automata (termed very-weak alternating au-
tomata, as they are weak alternating automata in which all SCCs are singletons),
alternation can be removed with only an n2n blow-up [3, 20].

4.6.1.2 A Direct Translation to NBWs

The original translation of LTL to NBW [77] does not go via intermediate alternat-
ing automata. For completeness, we detail it here. The translation does not assume
a positive normal form, and uses the extended closure of the given formula: For an
LTL formula ψ , the extended closure of ψ , denoted ecl(ψ), is the set of ψ ’s sub-
formulas and their negations (¬¬ψ is identified with ψ ). Formally, ecl(ψ) is the
smallest set of formulas that satisfy the following.

• ψ ∈ ecl(ψ).
• If ψ1 ∈ ecl(ψ) then ¬ψ1 ∈ ecl(ψ).
• If ¬ψ1 ∈ ecl(ψ) then ψ1 ∈ ecl(ψ).
• If ψ1 ∧ψ2 ∈ ecl(ψ) then ψ1 ∈ ecl(ψ) and ψ2 ∈ ecl(ψ).
• If Xψ1 ∈ ecl(ψ) then ψ1 ∈ ecl(ψ).
• If ψ1Uψ2 ∈ ecl(ψ) then ψ1 ∈ ecl(ψ) and ψ2 ∈ ecl(ψ).

For example, ecl(p ∧ ((Xp)Uq)) is {p ∧ ((Xp)Uq),¬(p ∧ ((Xp)Uq)),p,¬p,
(Xp)Uq , ¬((Xp)Uq),Xp,¬Xp,q,¬q}.

The translation is based on the observation that the question of satisfaction of an
LTL formula ψ in a computation π can be reduced to questions about the satisfac-
tion of formulas in ecl(ψ) in the suffixes of π . More formally, given a computa-
tion π , it is possible to (uniquely) label each suffix of π by the subset of formulas in
ecl(ψ) that are satisfied in this suffix. The correctness of this labeling can be verified
by local consistency checks, which relate the labeling of successive suffixes, and by
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a global consistency check, which takes care of satisfaction of eventualities. Since
it is easier to check the satisfaction of each eventuality in isolation, we describe
a translation to nondeterministic automata with the generalized Büchi acceptance
condition. One can then use Theorem 12 in order to obtain an NBW.

Formally, given an LTL formula ψ over AP, we define Aψ = 〈2AP,Q,Q0, δ,α〉,
as follows.

• We say that a set S ⊆ ecl(ψ) is good in ecl(ψ) if S is a maximal set of formulas
in ecl(ψ) that does not have propositional inconsistency. Thus, S satisfies the
following conditions.

1. For all ψ1 ∈ ecl(ψ), we have ψ1 ∈ S iff ¬ψ1 /∈ S, and
2. For all ψ1 ∧ψ2 ∈ ecl(ψ), we have ψ1 ∧ψ2 ∈ S iff ψ1 ∈ S and ψ2 ∈ S.

The state space Q⊆ 2ecl(ψ) is the set of all the good sets in ecl(ψ).
• Let S and S′ be two good sets in ecl(ψ), and let σ ⊆ AP be a letter. Then S′ ∈
δ(S,σ ) if the following hold.

1. σ = S ∩ AP,
2. For all Xψ1 ∈ ecl(ψ), we have Xψ1 ∈ S iff ψ1 ∈ S′, and
3. For all ψ1Uψ2 ∈ ecl(ψ), we have ψ1Uψ2 ∈ S iff either ψ2 ∈ S or both ψ1 ∈ S

and ψ1Uψ2 ∈ S′.
Note that the last condition also means that for all ¬(ψ1Uψ2) ∈ ecl(ψ), we

have that ¬(ψ1Uψ2) ∈ S iff ¬ψ2 ∈ S and either ¬ψ1 ∈ S or ¬(ψ1Uψ2) ∈ S′.
• Q0 ⊆Q is the set of all states S ∈Q for which ψ ∈ S.
• Every formula ψ1Uψ2 contributes to the generalized Büchi condition α the set

αψ1Uψ2 =
{
S ∈Q :ψ2 ∈ S or ¬(ψ1Uψ2) ∈ S

}
.

We now turn to discuss the size of Aψ . It is easy to see that the size of ecl(ψ) is
O(|ψ |), so Aψ has 2O(|ψ |) states. Note that since ψ has at most |ψ | subformulas of
the form ψ1Uψ2, the index of α is at most |ψ |. It follows from Theorem 12 that ψ
can also be translated into an NBW with 2O(|ψ |) states.

Remark 4 Note that the construction of Aψ can proceed on-the-fly. Thus, given a
state S of Aψ and a letter σ ∈ 2AP, it is possible to compute the set δ(S,σ ) based
on the formulas in S. As we shall see in Sect. 4.6.2, this fact is very helpful, as it
implies that reasoning about Aψ need not construct the whole state space of Aψ but
can rather proceed in an on-demand fashion.

4.6.1.3 The Blow-up in the LTL to NBW Translation

In this section we describe an exponential lower bound for the translation of LTL
to NBW, implying that the blow-up that both translations above involve cannot in
general be avoided. We do so by describing a doubly-exponential lower bound for
the translation of LTL to DBW. Recall that NBWs are strictly more expressive than
DBWs. The expressiveness gap carries over to languages that can be specified in
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LTL. For example, the formula FGb (“eventually always b”, which is similar to the
language used in the proof of Theorem 6), cannot be translated into a DBW. We now
show that when a translation exists, it is doubly-exponential. Thus, the exponential
blow-ups in Theorem 25 and determinization (when possible) are additive:

Theorem 26 When possible, the translation of LTL formulas to deterministic Büchi
automata is doubly-exponential.

Proof Let ψ be an LTL formula of length n and let Aψ be an NBW that recog-
nizes ψ . By Theorem 25, the automaton Aψ has 2O(n) states. By determinizing Aψ ,

we get a DPW Uψ with 22O(n) states [59, 64]. By Büchi typeness of DPWs [35] (see
also Theorem 9), if Uψ has an equivalent DBW, it can be translated into a DBW
with the same state space. Hence the upper bound.

For the lower bound, consider the following ω-regular language Ln over the al-
phabet {0,1,#,$}:4

Ln =
{{0,1,#}∗ · # ·w · # · {0,1,#}∗ · $ ·w · #ω :w ∈ {0,1}n}.

A word τ is in Ln iff the suffix of length n that comes after the single $ in τ
appears somewhere before the $. By [7], the smallest deterministic automaton that
accepts Ln has at least 22n states. (The proof in [7] considers the language of the
finite words obtained from Ln by omitting the #ω suffix. The proof, however, is in-
dependent of this technical detail: reaching the $, the automaton should remember
the possible set of words in {0,1}n that have appeared before.) We can specify Ln
with an LTL formula of length quadratic in n. The formula is a conjunction of two
formulas. The first conjunct, ψ1, makes sure that there is only one $ in the word,
followed by a word in {0,1}n, which is followed by an infinite tail of #’s. The sec-
ond conjunct, ψ2, states that eventually there exists a position with # and for all
1≤ i ≤ n, the i-th letter from this position is 0 or 1 and it agrees with the i-th letter
after the $. Also, the (n+ 1)-th letter from this position is #. Formally,

• ψ1 = (¬$)U($∧X((0∨ 1)∧X(0∨ 1)∧ n· · ·X((0∨ 1)∧XG#))) · · ·).
• ψ2 = F(#∧Xn+1#∧ ∧

1≤i≤n((Xi0∧G($→Xi0))∨ (Xi1∧G($→Xi1)))).

Note that the argument about the size of the smallest deterministic automaton that
recognizes Ln is independent of the automaton’s acceptance condition. Thus, the
theorem holds for deterministic Rabin, Streett, and Muller automata as well. �

4.6.2 Model Checking and Satisfiability

In this section we describe the automata-theoretic approach to LTL satisfiability
and model checking. We show how, using the translation of LTL into NBW, these
problems can be reduced to problems about automata and their languages.

4Note that, for technical convenience, the alphabet of Ln is not of the form 2AP. It is easy to adjust
the proof to this setting, say by encoding {0,1,#,$} by two atomic propositions.
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Theorem 27 The LTL satisfiability problem is PSPACE-complete.

Proof An LTL formula ψ is satisfiable iff the automaton Aψ is not empty. Indeed,
Aψ accepts exactly all the computations that satisfy ψ . By Theorem 16, the non-
emptiness problem for NBWs is in NLOGSPACE. Since the size of Aψ is expo-
nential in |ψ |, and its construction can be done on-the-fly, membership in PSPACE
follows. Hardness in PSPACE is proved in [69], and the proof is similar to the hard-
ness proof we detailed for NBW non-universality in Theorem 17. Indeed, as there,
given a polynomial-space Turing machine T , we can construct an LTL formula ψT
of polynomial size that describes exactly all words that either do not encode a le-
gal computation of T on the empty tape, or encode a rejecting computation. The
formula ¬ψ is then satisfiable iff T accepts the empty tape. �

Theorem 28 The LTL model-checking problem is PSPACE-complete.

Proof Consider a Kripke structure K = 〈AP,W,W0,R, �〉. We construct an NBW
AK such that AK accepts a computation π ∈ (2AP)ω iff π is a computation of K .
The construction of AK essentially moves the labels of K from the states to the
transitions. Thus, AK = 〈2AP,W,W0, δ,W 〉, where for all w ∈W and σ ∈ 2AP, we
have

δ(w,σ )=
{ {w′ :R(w,w′)} if σ = �(w),
∅ if σ �= �(w).

Now,K satisfies ψ iff all the computations ofK satisfy ψ , thus L (AK)⊆L (Aψ).
A naive check of the above would construct Aψ and complement it. Complementa-
tion, however, involves an exponential blow-up, on top of the exponential blow-up
in the translation of ψ to Aψ . Instead, we exploit the fact that LTL formulas are easy
to complement and check that L (AK)∩L (A¬ψ)= ∅, where A¬ψ is the NBW for
¬ψ . Accordingly, the model-checking problem can be reduced to the non-emptiness
problem of the intersection of AK and A¬ψ . Let AK,¬ψ be an NBW accepting the
intersection of the languages of AK and A¬ψ . Since AK has no acceptance condi-
tion, the construction of AK,¬ψ can proceed by simply taking the product of AK
with A¬ψ . Then,K satisfies ψ iff AK,¬ψ is empty. By Theorem 25, the size of A¬ψ
is exponential in |ψ |. Also, the size of AK is linear in |K|. Thus, the size of AK,¬ψ
is |K| · 2O(|ψ |). Since the construction of A¬ψ , and hence also AK,¬ψ , can be done
on-the-fly, membership in PSPACE follows from the membership in NLOGSPACE
of the non-emptiness problem for NBW. Hardness in PSPACE is proved in [69], and
again, proceeds by a generic reduction from polynomial-space Turing machines. �

As described in the proof of Theorem 28, the PSPACE complexity of the LTL
model-checking problem follows from the exponential size of the product automa-
ton AK,¬ψ . Note that AK,¬ψ is exponential only in |ψ |, and is linear in |K|. Nev-
ertheless, as K is typically much bigger than ψ , and the exponential blow-up of the
translation of ψ to A¬ψ rarely appears in practice, it is the linear dependency in |K|,
rather than the exponential dependency in |ψ |, that makes LTL model checking so
challenging in practice.
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We note that the translations described in Sect. 4.6.1 are the classic ones. Since
their introduction, researchers have suggested many heuristics and optimizations,
with rapidly changing state of the art. Prominent ideas involve a reduction of the
state space by associating states with smaller subsets of the closure [21], possibly as
a result of starting with alternating automata [20, 46], reductions based on relations
between the states, in either the alternating or nondeterministic automaton [19, 71],
working with acceptance conditions that are defined with respect to edges rather
than states [22], and a study of easy fragments [34]. In addition, variants of NBWs
are used for particular applications, such as testers in the context of composition
reasoning [60]. Finally, the automata-theoretic approach has been extended also to
branching temporal logics. There, formulas are interpreted over branching struc-
tures, and the techniques are based on automata on infinite trees [12, 13, 46, 57, 76].

Acknowledgement I thank Javier Esparza and Moshe Y. Vardi for many helpful comments and
discussions.
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Chapter 5
Explicit-State Model Checking

Gerard J. Holzmann

Abstract In this chapter we discuss the methodology used in explicit-state logic
model checking, specifically as applied to asynchronous software systems. As the
name indicates, in an explicit-state model checker the state descriptor for a system is
maintained in explicit, and not symbolic, form, as are all state transitions. Abstrac-
tion techniques and partial-order reduction algorithms are used to reduce the search
space to a minimum, and advanced storage techniques can be used to extend the
reach of this form of verification to very large system sizes. The basic algorithms
for explicit-state model checking date from the late 1970s and early 1980s. More
advanced versions of these algorithms remain an active area of research.

5.1 Introduction

There are many different approaches that can be used for the implementation of a
model-checking procedure. One of the first methods, the origins of which we can
trace back to basic reachability analysis techniques that were explored as early as
in the 1970s, is explicit-state model checking. Explicit-state model checking turns
out to be well suited for applications in software verification, specifically the veri-
fication of systems of interacting asynchronous processes. Explicit-state techniques
have gained much of their power from their integration with partial-order reduction
techniques (discussed in more detail in Chap. 6 of this Handbook [25]), which make
it possible to limit the number of states that must be explored to prove or disprove a
property by up to an exponential factor. This has made the use of explicit-state ap-
proaches with partial-order reduction for asynchronous software systems extremely
competitive when compared with the use of symbolic model-checking techniques
in the verification of, for instance, synchronous circuits [2, 7, 15].

A basic reachability analysis lends itself most easily to the verification of safety
properties, such as the validity of invariants, assertions, or the absence of deadlock
in a multi-process system. As we shall see though, explicit-state model-checking
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algorithms can also be used to prove liveness properties, including all properties
that can be formalized in Linear Temporal Logic (LTL) and more broadly the class
of all ω-regular properties.

An explicit-state model-checking procedure is only possible if a few important
assumptions are satisfied. First, the system that is the target of the verification must
be finite state. The state of the system is a, possibly abstracted, finite tuple of values,
which can be chosen from any finite domain. The system can change state by execut-
ing state transitions. This means that we assume that the system can be represented
as (a set of) finite state automata. A second assumption is that system execution can
be modeled as a sequence of separate state transitions. This means that even when
we describe systems with multiple processes, each modeled as a finite state automa-
ton, the effect of a system execution can be modeled by an arbitrary interleaving of
individual process actions. With this approach we can accurately represent process
scheduling on a single CPU in a multi-threaded system, where the main CPU exe-
cutes one instruction at a time, interleaving the actions of different processes based
on scheduling decisions. It can, however, also represent process execution on multi-
ple CPUs, e.g., in a multi-core system, or in a networked system. Note, for instance,
that also in a multi-core system it is not possible for multiple processes to access
a shared memory location truly simultaneously. Although the precise ordering of
read and write operations cannot always be known, at some level of granularity it is
always possible to determine an interleaving order that represents the actual execu-
tion sequence. The same is not necessarily true in asynchronous hardware circuits,
which therefore require a different approach to model checking.

The first attempts to build automated tools for reachability analysis targeted
simple finite-state descriptions of communication protocols. In 1979, Jan Hajek
used a graph exploration tool [12] to verify properties of the protocols in Tanen-
baum’s primer on computer networks [27]. Around the same time, Colin West
and Pitro Zafiropulo developed a reachability analysis procedure for the verifica-
tion of another protocol, CCITT recommendation X.21, and identified a series of
flaws [29, 30]. In 1980, the first version of what later became the logic model
checker Spin was developed at Bell Labs. This tool, called pan, was successfully
used in subsequent years to expose violations of safety properties in finite-state
models of telephone switching systems and communication protocols [13].

5.1.1 The Importance of Abstraction

Clearly, if we model the executions of a software system in full detail, it will gen-
erally not be feasible to perform an exhaustive verification with an explicit-state
method. As a very simple example to illustrate this, consider two asynchronously
executing processes each containing a single 32-bit counter. If all the two processes
do is to increment their counters, executing in a simple loop, then a fully detailed
model would need to represent and explore 2(32+32) or more than 1019 system states.
Clearly, not all those 1019 states are relevant to specific correctness properties that
we may be interested in proving about this system. We may, for instance, want to
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prove that the system does or does not terminate, or that the counter-values can wrap
around the maximum. For none of these properties will it be necessary to compute
all possible combinations of values held by the two counters.

The early applications to protocol verification were successful because they could
be focused on the control-aspects of a protocol and they could abstract from the
data-aspects. By focusing on control, one can effectively prove correctness of data
transmission across unreliable channels in a way that is independent of the actual
data being transmitted. An elegant example of the use of this principle is known
as Wolper’s data independence theorem [31]. Similarly, if we model a mutual-
exclusion algorithm, the detailed computations that may be performed both outside
and inside the critical section that is to be protected from multiple access are ir-
relevant to the correctness of the algorithm itself, and can be abstracted during the
verification.

The verification process begins with the identification of the smallest sufficient
model that allows us to prove a property of a system. What the smallest sufficient
model is will generally depend on the specific property to be proven. The smallest
sufficient model is generally an abstraction of the real system, which we refer to as
the concrete system in what follows. There are of course requirements on the type
of abstractions that can be used in this step. It should, for instance, be impossible
to prove a property about the abstract system that does not hold for the correspond-
ing concrete system, that is: the abstraction should be logically sound. In addition
to abstraction, a frequently used technique in the verification of complex systems
is that of restriction or specialization. A restriction reduces the abstract system to a
subset of behaviors in such a way that a counter-example to a correctness claim that
is generated for the restricted system is also a counter-example of the non-restricted
system, but the absence of a counter-example does not logically imply the absence
of a counter-example also in the non-restricted system. In practice, both abstraction
(generalization) and restriction (specialization) can play a critical role in manag-
ing the complexity of software verification with explicit-state model-checking tech-
niques. We will return to this shortly, after we discuss the basic automata-theoretic
framework and the main search algorithms that are used for explicit-state model
checking. More on the use of abstraction techniques in applications of logic model
checking can also be found in Chap. 13 of this Handbook [9].

5.2 Basic Search Algorithms

A basic reachability analysis algorithm, sufficient for proving safety properties, is
readily implemented as either a breadth-first or depth-first search. The search can be
done as a basic check on all system states that are reachable from a given initial state.
System states then, can be thought of as the control-flow states and variable values of
a program. When we apply a model-checking algorithm to a multi-threaded system,
the system state is given as a combination of local process states, and the reachability
graph is the interleaving product of process actions. We start by describing this
interleaving product in a little more detail.



156 G.J. Holzmann

1 Open D = {}; // typically an ordered set
2 Visited V = {};
3
4 start()
5 { V!s0; D!s0;
6 bfs();
7 }
8
9 bfs()
10 { while (D != {})
11 { D?s;
12 check_validity(s);
13 foreach (s, e, s’) in T
14 { if !(s’ ∈ V) { V!s’; D!s’; }
15 } } }

Fig. 1 Breadth-first search

Let A = {S, s0,L,T ,F } be a finite state automaton, where S is a finite set of
states, s0 is an element of S called the initial state, L is a set of symbols called the
label set or also the alphabet, T ⊆ S × L× S is a set of transitions, and F ⊆ S is
the set of final states. Automaton A is said to accept any finite execution that ends
in any state s ∈ F .

The interleaving product of finite state automata A0, . . . ,AN is another finite
state automaton A′ = {S′, s′0,L′, T ′,F ′}, with

• S′ =A0.S ×A1.S × · · · ×AN.S,
• s′0 = (A0.s0,A1.s0, . . . ,AN .s0),
• L′ =A0.L∪A1.L∪ · · · ∪AN.L,
• T ′ ⊆ S′ × L′ × S′ such that for each transition ((A0.s0,A1.s1, . . . ,AN .sN), e,

(A0.t0,A1.t1, . . . ,AN .tN )) ∈ T ′, we have ∃i, 0≤ i ≤N , (Ai.si , e,Ai.ti) ∈Ai.T ,
with e ∈Ai.L and ∀j �= i, Aj .sj =Aj .tj , and

• F ′ =A0.F ×A1.F × · · · ×AN.F .

A basic reachability algorithm can now be constructed as shown in Fig. 1, exploring
and checking all states that are reachable from the initial state s0 of a finite automa-
ton as defined above. The algorithm uses two data structures, a set of open states D
and a set of visited states V . Open states are states that are currently being explored,
with not all of their successor states visited yet. We use the following notation for
operations on sets:

• X!y adds y to set X; if X is ordered then it adds y as the last element of X,
• X!!y adds y to set X; if X is ordered then it adds y as the first element in X,
• X?y removes an element from set X and names it y; if X is ordered then the

element removed is the first element inX, ifX is empty then the operation returns
the null element Ø.

The search procedure illustrated in Fig. 1 generates all states reachable from
initial state s0, while checking for violations of safety properties by calling function
check_validity() at each state, including s0. Set V is an unordered set. For
the correctness of the basic search procedure, it does not matter if the set of open
states D is ordered or not. To get a breadth-first search discipline, though, D has to
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1 Open D = {}; // an ordered set
2 Visited V = {};
3
4 start()
5 { V!s0; D!s0;
6 dfs();
7 }
8
9 dfs()
10 { if (D != {})
11 { D?s;
12 check_validity(s);
13 foreach (s, e, s’) in T
14 { if !(s’ ∈ V) { V!s’; D!!s’; dfs(); }
15 } } }

Fig. 2 Depth-first search

be ordered and used as a queue: the retrieval operation on line 11 removes the first
(and oldest) element, and the add operation on line 14 adds new elements at the end.

To make it possible to generate an example execution for any state that is found
to violate the property (called a counter-example), we can extend set V to store
a pointer back to the parent state whenever a new state is added. To generate the
counter-example, we then only have to follow these back-pointers to find a path
from the initial state to the violating state.

At the end of the breadth-first search, setD is empty, and set V contains all states
reachable in a finite number of steps from initial state s0.

The dual of breadth-first search is depth-first search. Depth-first search is most
naturally written as a recursive procedure. It is illustrated in Fig. 2. There are two
key changes in this version of the algorithm compared to breadth-first search. The
first change is the recursive call that is placed in the inner loop, on line 14, after a
newly generated state is added to the open and visited sets, and the matching change
of the surrounding while-loop into an if-statement, on line 10. The second change
is the change from D!s′ to D!!s′, on line 14, which means that instead of using D
as a queue, we now use it as a stack. Generating a counter-example when a safety
violation is found is now simple and requires no addition to the information stored
in stack D: the execution is given by the contents of stack D at the point in the
search that the safety violation is detected.

Although the change looks minor, and both algorithms have the same computa-
tional complexity (both are linear in the number of reachable states) the two algo-
rithms behave very differently. In favor of depth-first search is that the amount of
information that must be stored in set D to enable counter-example generation is
smaller. In favor of breadth-first search is that any counter-example generated tends
to be smaller than it is for depth-first search. In fact, it is easy to show that the
counter-examples generated with a breadth-first search are the shortest possible. In
this case then, we have to make a tradeoff between minimizing memory use, and
thus being able to handle larger problem sizes, or shortening counter-examples, and
thus making it easier to understand errors found.

Note that both algorithms can work on the fly, which means that the reacha-
bility graph (the automaton describing the global state space as a product of the
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smaller automata that formalize individual process behaviors) need not be known a
priori, provided that the state transition relations are given. Both breadth-first and
depth-first search can generate the product automaton on the fly, and both may be
terminated as soon as a counter-example is discovered.

An important advantage of depth-first search is that it can fairly easily be ex-
tended to support not only the verification of safety but also liveness properties,
without increasing the computational complexity of the search, which remains lin-
ear in the number of reachable states. Before we can discuss this extension, though,
we have to discuss the extension from finite automata to ω-automata, and the fun-
damental relation between ω-automata and temporal logic. Both topics are covered
in greater detail in other chapters of this Handbook, so a general description will
suffice here.

5.3 Linear Temporal Logic

A formula in linear temporal logic (LTL) is formally defined as follows. Let f and
g be arbitrary LTL formulas and let p by an arbitrary state formula: a Boolean
expression that can be evaluated to yield a truth value for any given system state.

f ::= p | true | false | (f) | f binop f | unop f
unop ::= � | ♦ | !
binop ::= U | ∧ | ∨ | ⇒ | ⇔

In this grammar we have used three temporal operators: the box operator �
(which is pronounced always), the diamond operator ♦ (pronounced eventually),
and the U operator until. The symbol ⇒ stands for logical implication and ⇔ for
logical equivalence.

The semantics of temporal logic formulas is defined over infinite sequences [26].
For simplicity, we restrict ourselves here to execution sequences that start in initial
state s0.

Let σ be an infinite execution sequence, defined as the sequence of states σ =
s0, s1, . . . , si , . . . .

� f holds at state si if and only if
f holds at all states sj ∈ σ with j ≥ i,

♦ f holds at state si if and only if
f holds for at least one state sj ∈ σ with j ≥ i,

f U g holds at state si if and only if
either g holds at si, or f holds at si and f U g holds at si+1
(informally: f is true at least until g becomes true).

5.4 Omega Automata

Any LTL formula can be mechanically converted into a Büchi automaton that
accepts precisely those execution sequences for which the LTL formula is satis-
fied [26, 28]. The algorithm that the Spin model checker uses to convert LTL for-
mula into Büchi automata is described in [10, 11].
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The definition of a Büchi automaton B = {S, s0,L,T ,F } is similar to the defi-
nition of a finite automaton that we presented earlier, but has a different definition
of acceptance. Büchi automaton B accepts execution sequence σ if and only σ
contains infinitely many states from set F . This means that acceptance for Büchi
automata is defined for infinite sequences only.

A real system model may of course have both finite and infinite executions. To
allow us to reason about both infinite and finite executions within the same theoreti-
cal framework we can consider any finite sequence to be a special case of an infinite
sequence by extending it with an infinite repetition of its final state. This infinite
repetition then corresponds to what is commonly called a stuttering step (a no-op)
that is repeated ad infinitum, without leaving the final state. Clearly then, a finite
sequence can only qualify for Büchi acceptance if the final state being stuttered is
itself from set F , which matches the notion of finite acceptance from before.

Given a system A, formalized as a finite automaton, and a Büchi automaton B ,
formalizing all the executions of A that satisfy an LTL formula, the model-checking
problem can now be phrased as the problem of finding an accepting run in the in-
tersection of the languages accepted by the two automata. The intersection of A
and B is obtained by computing the synchronous product A×B , which is a Büchi
automaton.

The synchronous product of finite state automata A and B is finite state au-
tomaton P = {S′, s′0,L′, T ′,F ′}, where S′ = A.S × B.S, s′0 = (A.s0,B.s0), L′ =
A.L×B.L, and T ′ ∈ S′ ×L′ × S′ such that for each transition ((A.s,B.t), (e, f ),
(A.s′,B.t ′))⊆ T ′ we have (A.s, e,A.s′) ∈A.T , and (B.t, f,B.t ′) ∈ B.T .

The set of final states F ′ ⊆ A.S × B.S such that for each pair (e, f ) ∈ F ′ we
have e ∈ A.F ∧ f ∈ B.F , i.e., each component state is a final state in its original
automaton.

Since the synchronous product of two finite state automata is also finite state, an
infinite execution of the product is necessarily cyclic.

Given a set of finite automata A0, . . . ,AN and an LTL formula f , the model-
checking problem can now be formalized as follows.

1. Convert LTL formula f into the corresponding Büchi automaton B .
2. Compute the interleaving product A of A0, . . . ,AN .
3. Compute the synchronous product P of A×B .
4. Find accepting runs of automaton P , using the Büchi acceptance rule.

Any runs accepted by automaton P correspond to executions of A that satisfy
formula f . If we are interested in finding the potential violations of f , all we have
to do is to begin this procedure by replacing f with ¬f , using logical negation.

In practice, instead of performing steps 2, 3, and 4 one at a time, it is more
efficient to perform them in a single step, again adopting an on-the-fly procedure
for computing and checking P until a counter-example is found.

The model checker Spin deviates on one important point from the standard defi-
nition of the synchronous product of two Büchi automata given above. To determine
the set of final states, Spin considers a state in the product A× B to be final if at
least one of A or B is in a final state. This conforms to the standard definition in
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the (standard) case where the use of final state labels (called accept state labels in
Spin) is restricted to the property automaton B , and all states in the interleaving
product A are considered to be final. Using the alternative definition allows Spin to
use a slightly more general framework that allows also the definition of accept state
labels within any of the component automata A0, . . . ,AN (and thus A). We can
then also use the model-checking procedure to find accepting runs within A itself,
without requiring the definition of a separate property automaton B .

5.5 Nested Depth-First Search

The challenge is then to find infinite accepting runs in finite state automaton P .
Because the accepting run must contain at least one final state, the search problem
can be phrased as follows: does there exist at least one reachable final state in P that
is also reachable from itself? This problem can be solved efficiently with a nested
depth-first search algorithm.

The first part of this search serves to identify all final states in P that are reachable
from the initial system state, and the second (nested) part of the search serves to
identify those final states from this set that are also reachable from themselves. The
nested search can be performed in such a way that the cost in runtime increases only
by a factor of maximally two. In the worst case, each reachable state is now visited
twice, but they of course only need to be stored once, which means that the memory
requirements of a nested depth-first search are no different than those of a standard
depth-first search. The basic procedure is illustrated in Fig. 3. The algorithm was
implemented in the Spin model checker in 1989 [8], and revised to support partial
order reduction in 1995 [22].

The correctness of the algorithm follows from the following theorem [8].

Theorem 1 If acceptance cycles exist, the nested depth-first search algorithm will
report at least one such cycle.

Proof Let r be the first accepting state encountered in the depth-first search that is
also reachable from itself. The nested part of the search is initiated from this state
after all its successor states have been explored.

First note that state r itself cannot be reachable from any other state that was
previously entered into the second state space. Suppose there was such a state w. To
be in the second state space w either is itself an accepting state, or it is reachable
from an accepting state. Call that accepting state v. If r is reachable from w in the
second state space then r is also reachable from v. But, if r is reachable from v in
the second state space, it is also reachable from v in the first state space. There are
now two cases to consider:

1. The path from v to r in the first state space does not contain states that appear on
the depth-first search stack when v is first reached.
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1 Open D = {}; // ordered set
2 Visited V = {};
3
4 State seed = nil;
5
6 start()
7 { V!s0,0; D!s0,0;
8 ndfs(); // start the first search
9 }
10
11 ndfs()
12 { Bit b; // b=0: first search, b=1: nested search
13 D?s,b;
14
15 foreach (s,e,s’) in T
16 { if (s’ == seed) // seed reachable from itself
17 { liveness_violation(); return;
18 }
19 if !(s’,b ∈ V) // if s’ not reached before
20 { V!s’,b; D!!s’,b; ndfs(); // continue search
21 } }
22
23 // in post-order, in first search only
24
25 if (s ∈ F && b == 0)
26 { seed = s; // a reachable final state
27 D!!s,1; // push s on stack D
28 ndfs(); // start the nested search
29 seed = nil; // nested search completed
30 } }

Fig. 3 Nested depth-first search

2. The path from v to r in the first state space does contain at least one state x that
appears on the depth-first search stack when v is first reached.

In the first case, r would have been entered into the second state space before v,
due to the post-order discipline, contradicting the assumption that v is entered be-
fore r . (Remember that both r and v are assumed to be accepting states.)

In the second case, v is necessarily an accepting state that is reachable from itself,
which contradicts the assumption that r is the first such state entered into the second
state space.

State r is reachable from all states on the path from r back to itself, and there-
fore none of those states can already be in the second state space when this search
begins. The path therefore cannot be truncated and r is guaranteed to find itself in
the successor tree that is explored in the nested part of the search. �

It should be noted that even though the nested depth-first search algorithm visits
states up to two times, each state needs to be stored just once. The states can be
labeled with two bits to indicate the state space where they were first encountered,
so there is virtually no increase in memory use. Another advantage of this method
is that the algorithm still works on the fly: errors are detected during the exploration
of the state space, and the search process can be cut short as soon as the first error
is found.

It is clear that the computational complexity of the nested depth-first search algo-
rithm is strictly linear in the size of P (measured as the number of reachable states
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in P ). The size of P itself is at most equal to the Cartesian product of the state sets
of A and B . The size of A, in turn, is at most equal to the product of the sizes of
all component automata A0, . . . ,AN . Finally, in the worst case the size of B can be
exponential in the number of temporal operators in formula f .

In most cases of practical interest, the size of B is not a major factor: it typically
contains fewer than ten states. This is in part due to the fact that most LTL formula of
practical interest have very few temporal operators: the meaning of longer formulas
can be notoriously hard to determine. It is also due to the fact that LTL to Büchi
automata conversion algorithms very rarely exhibit worst-case behavior, although
it is certainly possible to find exceptions. The real bottleneck in explicit-state logic
model checking is the potential size of A.

There are two main strategies to cope with this complexity. The first is the use
of partial-order reduction theory in the computation of the interleaving product A.
The use of this strategy can, in the best case, achieve an exponential reduction in
the size of A. If implemented well, the strategy has no down side; even in the worst
case where no reduction can be achieved it will then not introduce noticeable over-
head. The partial-order reduction algorithm that was implemented in the Spin model
checker is described in [21, 22]. Partial-order reduction strategies are discussed in
Chap. 6 of this Handbook [25]. The second main strategy is the use of abstraction,
which we will discuss later in this chapter. There is also a range of coding techniques
that can be used for explicit-state verification to reduce the amount of information
that is stored during the verification process, thus enabling the verification of very
large problems. We will also discuss some of these strategies later in this chapter.

5.6 Abstraction

To support abstraction methods (cf. Chap. 13), we can make one final change to
nested depth-first search. The revised algorithm is shown in Fig. 4. The abstraction
function used in this context can define a symmetry reduction [5, 6, 23], or any other
abstraction, provided that it preserves logical soundness (i.e., it does not allow us to
prove anything that is not true, or to disprove something that is).

Let w, x, y, and z denote states, σ and τ denote sequences of states (paths), and
σi be the i-th state in σ . Further, let → denote the transition relation, i.e., x→ y

means that there exists an e such that (x, e, y) ∈ T .
A symmetric relation ∼ on states is a bisimulation relation if it satisfies the fol-

lowing condition [24]:

∀w,y, z : (w ∼ y ∧ y→ z)⇒ (∃x :w→ x ∧ x ∼ z) (1)

This means that states w and y are bisimilar if, whenever there is a transition from
y to z, there is also a successor x of w such that x and z are bisimilar. We say that
paths σ and τ correspond when ∀i: σi ∼ τi .
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1 Open D = {}; // ordered set
2 Visited V = {};
3
4 State seed = nil;
5
6 start()
7 { V!f(s0),0; D!s0,0; // f is the abstraction function
8 ndfs_abstract(); // start the first search
9 }
10
11 ndfs_abstract()
12 { Bit b; // b=0: first search, b=1: nested search
13
14 D?s,b; // s is a concrete (not abstract) state
15
16 foreach (s,e,s’) in T
17 { if (f(s’) == seed) // seed reachable from itself
18 { liveness_violation(); return;
19 }
20 if !(f(s’),b ∈ V) // f(s’) not reached before
21 { V!f(s’),b; D!!s’,b; ndfs(); // continue
22 } }
23
24 // in post-order, in first search only
25
26 if (s ∈ F && b == 0)
27 { seed = f(s); // a reachable final state
28 D!!s,1; // push s on stack D
29 ndfs_abstract(); // start the nested search
30 seed = nil; // nested search completed
31 } }

Fig. 4 Nested depth-first search with abstraction function f ()

Theorem 2 ([5]) Let ∼ be a bisimulation relation, and let AP be a set of state
formulas such that every P ∈ AP satisfies the condition

∀x, y : (x ∼ y)⇒ (
P(x)⇔ P(y)

)
(2)

then any two bisimilar states satisfy the same LTL formula over the propositions in
AP.

This means that any abstraction that satisfies conditions (1) and (2) preserves the
logical soundness of the LTL model-checking procedure [5]. We can make use of
this by defining powerful abstractions in the verification of implementation-level
code to reduce what otherwise would be an overwhelming amount of computational
complexity.

5.6.1 Tic-Tac-Toe

We will describe an example of the use of this type of abstraction in explicit-state
model checking as it is supported by the Spin model checker. Spin is a broadly
used logic model-checking tool that is based on explicit-state techniques [15]. As
an example we will use the familiar game of tic-tac-toe.
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1 mtype = { cross, circle };
2
3 typedef row { mtype c[3]; }
4 typedef square { row r[3]; }
5 square b;
6
7 #define match(x,y,z) (b.r[x].c[y] == z)
8 #define Row(y,z) (match(0,y,z) && match(1,y,z) && match(2,y,z))
9 #define Column(x,z) (match(x,0,z) && match(x,1,z) && match(x,2,z))
10 #define Up(z) (match(2,0,z) && match(1,1,z) && match(0,2,z))
11 #define Down(z) (match(0,0,z) && match(1,1,z) && match(2,2,z))
12 #define horizontal(z) (Row(0,z) || Row(1,z) || Row(2,z))
13 #define vertical(z) (Column(0,z) || Column(1,z) || Column(2,z))
14 #define diagonal(z) (Up(z) || Down(z))
15 #define try(x,y,z) b.r[x].c[y] == 0 -> b.r[x].c[y] = z
16
17 inline check_win(z) {
18 if
19 :: horizontal(z) || vertical(z) || diagonal(z) -> end_game: 0
20 :: else // continue the game
21 fi
22 }
23
24 inline place(z) {
25 if
26 :: try(0,0,z) :: try(0,1,z) :: try(0,2,z)
27 :: try(1,0,z) :: try(1,1,z) :: try(1,2,z)
28 :: try(2,0,z) :: try(2,1,z) :: try(2,2,z)
29 // if no moves are possible, it is a draw
30 fi
31 }
32
33 init {
34 mtype symbol = cross;
35 end: do
36 :: atomic {
37 place(symbol);
38 check_win(symbol);
39 symbol = (symbol == circle -> cross : circle);
40 }
41 od
42 }

Fig. 5 Pure Spin model for the game of tic-tac-toe

The game itself is easily modeled. We need to model the game board as a 3×3
square board. Each place can either be empty (represented by the initial value zero),
or it can contain a cross or a circle. The game proceeds by selecting an arbitrary
empty place on the board, placing a symbol (cross or circle) on that place, check-
ing for a win, and then switching sides by alternating the symbol, as shown in
Fig. 5. Spin starts by using the standard C preprocessor to interpret all macro defi-
nitions and include directives. In this example we have used only macro definitions.
Both macros and inlines (two of the latter are used in Fig. 5) define a purely tex-
tual expansion of function names with optional parameter replacement. The inline
place(symbol), for instance, is an inline call where the parameter z from the inline
definition is replaced with the text symbol.

The initial process (named init) contains an infinite loop (do . . . od) that contains
a single indivisibly executed sequence of statements. Inline place defines a non-
deterministic selection (if . . . f i) of the nine possible moves that each player can
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make. The inline check finally checks whether the game is won, and if it is it will
bring the execution to a halt by attempting to execute the unexecutable statement 0.

Placing a symbol on a square is modeled as a non-deterministic selection of a
free space on the board, and checking for a win is simply checking for a completed
row, column, or diagonal involving the last-placed symbol.

Given three possible values for any one of the nine places on the game board
we have maximally 39 = 19,683 possible board states. Not all of these states are
reachable within the game. It is, for instance, not possible to fill all the places on the
board with the same symbol.

The model checker explores 5,528 states for this version of the model. We have
written the model in such a way that only draw or win states are counted for the total,
by grouping all actions that are part of a single move inside an atomic statement.
Clearly, though, there is still a significant amount of redundancy in this set.

For every unique state of the game board there are up to eight variations of what
is essentially the same state that can be obtained by rotating or mirroring the board.
We can define an abstraction function f that captures this equivalence relation on
board states, to reduce the amount of work that the model checker has to do to
just one member of each equivalence class. If we do so, it should be possible to
reduce the number of states explored to a much smaller number, and to increase the
efficiency of the verification process significantly.

We can encode the state of the game board as a nine-place ternary number, by
assigning place values in a fixed order, e.g., but numbering the places on the board
from one to nine starting at the top left, row by row, ending at the bottom right. This
final number uniquely represents the board configuration. This board state is one of
16 equivalent states though, obtained by rotation and mirroring of the board. To ob-
tain all 16 numbers all we have to do is to assign the place values in all 16 possible
ways. The abstraction function can now be defined by simply choosing one canon-
ical representative from each set of 16 board configurations. In our example we’ll
use the smallest of the 16 values for the abstraction. Complexity is not a significant
concern in this small example, but we will also illustrate how the abstraction can be
computed in a C function that can be integrated into the model.

The Spin model checker can define transitions either as statements in the speci-
fication language, or as standard blocks of C code. No special treatment is needed
to support this capability since the C code fragments merely act as state transform-
ers, just like any other type of statements. The extension that supports this is very
powerful though, as we will illustrate.

The extended model for the tic-tac-toe example, using C code for the abstrac-
tion function, is shown in Fig. 6. The changes from Fig. 5 are shown in bold (lines
5–10, and 43). First, after each move we now call the abstraction function to com-
pute the new abstract state. This is done with a call to a C function called ab-
stract_value(), which is placed in an embedded C code statement. The func-
tion returns an integer value, the abstract representation of the game board, which
we assign to a new global integer variable named abstract in the top-level model.
To be able to refer to this variable from within a C code fragment, we have to prefix
this variable with the name of the state-vector (called now.).



166 G.J. Holzmann

1 mtype = { cross, circle };
2
3 typedef row { mtype c[3]; }
4 typedef square { row r[3]; }
5 hidden square b;
6 c_track "&b" "sizeof(struct square)" "UnMatched";
7 int abstract;
8 c_code {
9 \#include "abstraction.c"
10 }
11
12 #define match(x,y,z) (b.r[x].c[y] == z)
13 #define Row(y,z) (match(0,y,z) && match(1,y,z) && match(2,y,z))
14 #define Column(x,z) (match(x,0,z) && match(x,1,z) && match(x,2,z))
15 #define Up(z) (match(2,0,z) && match(1,1,z) && match(0,2,z))
16 #define Down(z) (match(0,0,z) && match(1,1,z) && match(2,2,z))
17 #define horizontal(z) (Row(0,z) || Row(1,z) || Row(2,z))
18 #define vertical(z) (Column(0,z) || Column(1,z) || Column(2,z))
19 #define diagonal(z) (Up(z) || Down(z))
20 #define try(x,y,z) b.r[x].c[y] == 0 -> b.r[x].c[y] = z
21
22 inline check_win(z) {
23 if
24 :: horizontal(z) || vertical(z) || diagonal(z) -> end_game: 0
25 :: else // continue the game
26 fi
27 }
28
29 inline place(z) {
30 if
31 :: try(0,0,z) :: try(0,1,z) :: try(0,2,z)
32 :: try(1,0,z) :: try(1,1,z) :: try(1,2,z)
33 :: try(2,0,z) :: try(2,1,z) :: try(2,2,z)
34 // if no moves are possible, it?s a draw
35 fi
36 }
37
38 init {
39 mtype symbol = cross;
40 end: do
41 :: atomic {
42 place(symbol);
43 c_code { now.abstract = abstract_value(); };
44 check_win(symbol);
45 symbol = (symbol == circle -> cross : circle);
46 }
47 od
48 }

Fig. 6 Spin model for the game of tic-tac-toe using an abstraction function

The only other issue that we now have to address is that with only the change
above the model checker would see two representations of the same state: the con-
crete representation from before and the abstract representation that we just added.
Clearly we will need both, since the concrete state determines at each point which
moves are valid, and we need the abstract state to determine whether we are explor-
ing a previously unseen board state. The method we can use in Spin to accomplish
this exploits the fact that depth-first search uses two different data structures: the set
of open statesD (also known as the search stack) and the set of visited states V (also
known as the state space). The nested depth-first search with abstraction illustrated
in Fig. 4 stores the abstract states in V and the concrete states in D. The only thing
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we need to be able to do, then, is to effect that the concrete state of the game board,
square b in Fig. 5, is not stored in V but in D.

Hiding the concrete state of square b from both the state vector and the stack
is done with declaration primitive hidden. But this accomplishes too much, since
we do want to track the state of square b in search stack D. We can do this with
the help of a c_track statement.

The first argument to c_track is a pointer to the data structure that we want
to track. Because square b is declared hidden, this is a simple reference to b,
without the need for a prefix (i.e., it is not part of the state vector). The second ar-
gument specifies the size of the object being tracked, which in this case is simply
the size of data structure square. For the third argument we use the keyword Un-
Matched, which indicates that indeed the value of this object is not part of the
system state as stored in the state space. The only alternative option for the third
argument would be the keyword Matched, which however would completely undo
the effect of declaration prefix hidden. In this case it seems redundant to have to
use both hidden in the data declaration and UnMatched in the c_track state-
ment, but note that in general c_track statements can be used to track the state
of any data object, including those that are declared in C code external to the model
checker where we often need the capability to consider this external data to be part
of the state as stored in state space V .

We can now complete the model by including the abstraction function itself,
which is written in C here, into the model. We can do this with an embedded
c_code statement, which in Fig. 6 is placed immediately following the declara-
tion of the new variable abstract.

The revised model using the abstraction function reaches 765 states, down from
the original 5,528 states, matching the exact number of uniquely different board
positions [1]. The abstraction we have used is logically sound (satisfying conditions
(1) and (2) above), which means that the abstract model can prove precisely the
same properties as the non-abstract version.

5.7 Model-Driven Verification

In the process of constructing the abstract version of the tic-tac-toe model, we have
also seen how an explicit-state model checker can be used to track data that is de-
clared outside the model itself, in C code, and how it can call an external C function
to perform a state transition (e.g., one that modifies the externally declared tracked
data). This is a powerful concept that makes it possible to use abstraction in full LTL
verification of implementation level code.

In this model-driven verification approach, the non-determinism that is supported
by the model checker can be used to drive an application into all relevant states, as
reflected in the values of the tracked variables. An abstraction function is again
used to compute an abstract representation of the data being tracked and stores it in
canonical form. A linked list data structure, for example, consists of both the data
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that is stored in the list elements and the pointers that connect the list elements. An
abstraction function can collect just the list data elements into a simple array, pre-
serving their order while abstracting from all pointer values. Note that the pointer
values have no significance other than to fix the order of the list elements. Two linked
lists with the same contents stored in two different places in memory would differ as
concrete objects (because the pointer values differ), but they can trivially be recog-
nized as equivalent under this abstraction. Arbitrary LTL properties (both safety and
liveness) can be proven in this way with explicit-state model-checking techniques
for even large applications, while using abstraction. Any counter-example generated
is immediately also a concrete counter-example, because the concrete values for the
full error trace are available on the search stack.

5.8 Incomplete Storage

One of the benefits of the explicit-state model-checking procedure is that we can
store a different representation of system states in state space V than we do on search
stack D. When abstraction is used, the state space can be restricted to storing only
abstract values, which in general take up less space than the concrete values they
represent. But we can also use other storage techniques to exploit this capability.
We can, for instance, use lossless compression techniques. An attractive aspect here
is that the compression need not be reversible.

Given that we have considerable freedom in choosing a storage strategy, it is
natural to ask at this point what would happen if we permitted the state compression
technique to be lossy. If f (s) represents the compression function for state s, then a
lossless compression function has the property that

∀s, s′, f (s)= f (s′)⇒ s = s′. (3)

We lose this property if f () is allowed to be lossy.

5.8.1 Bitstate Hashing and Bloom Filters

Consider the case where we use f to compute an N -bit hash function of the bit-
representation of the state-descriptor. No matter what the size of s is, f (s) then
always returns an N -bit representation of it. To store the state now requires set-
ting just 1 bit in a 2N -bit memory arena. For N = 32, for instance, 232 bits or 512
Mbyte suffices to store all reachable states explicitly after this type of possibly lossy
compression. There are several reasons why this can be attractive. One reason is
that it requires only a fixed amount of memory, independent of the actual problem
size. A second reason is that the storage operation itself is very fast, given that it
takes only one single-bit operation. But what are the possible effects of any hash
collisions?
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A hash collision occurs when two different states (s �= s′) produce the same
compressed value (f (s)= f (s′)). If this happens, the model checker will conclude
(Fig. 4) that the new state was previously visited, when in fact it was not. The search
is truncated and some reachable system states can remain unvisited. The search be-
comes incomplete. Despite this incompleteness, one very important property of the
model-checking procedure is preserved though: when a counter-example is found it
will always be an accurate counter-example to the property being checked. Counter-
examples can be missed, but those that are found are uncorrupted. In considering this
limitation it is important to realize that also a search that performs lossless storage
(with or without abstraction) can become incomplete. A computer always has only
finite memory and when all available memory has been used the search will come
to a stop. If the fraction of all reachable states that can be explored with the hash
method is larger than the fraction that can be explored with a lossless storage tech-
nique, then the lossy technique is clearly preferred. A small example can illustrate
this.

Consider a verification model with a reachable state space of one million states
of 1024 bytes each. Storing all states explicitly would require 1 Gbyte of memory.
If we have only 128 Mbyte of memory available then we can explore no more than
approximately 10% of all states in a single run. We can use the same 128 Mbyte of
available memory, though, as a hash arena and use a hash function that compresses
each state to 27 bits which can be used directly as bit addresses in the 128-Mbyte
arena. This hash arena would have room to store up to 109 states, of which we will
use just 0.1%.

With a good quality hash function we therefore statistically have a good prob-
ability to explore all of the 106 reachable states, giving us full problem coverage
in most cases. Even though this makes this search method (implemented in most
explicit-state model checkers as a bitstate or supertrace search mode) attractive, we
have to trade certainty of problem coverage for a statistical expectation.

The search method we have described was introduced in 1987 as the bitstate
hashing or supertrace method. Over the years, it has proven to be a very effec-
tive tool in handling large verification models in applications of explicit-state model
checking [14]. The theoretical justification for the method turns out to be very simi-
lar to that of a storage method that was first described by Burton Bloom in 1970 [4].
The algorithm, or variations of it, e.g., the hash-compact method [32], have been
implemented in almost all explicit-state model-checking systems.

5.9 Extensions

The basic explicit-state model-checking procedure we have described so far can be
extended in many different ways to support different types of optimizations. The
specific type of optimization to be chosen will generally depend on which critical
resource use needs to be reduced. Two relevant extensions to explicit-state model
checking that have been studied recently are, for instance,
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• Context-bounded model checking: To search for those counter-examples that con-
tain the fewest number of context switches. The enforcement of this constraint in
a model-checking procedure generally increases run-time and memory use [19].

• Multi-core model-checking algorithms: The objective of these search algorithms
is to reduce the run-time requirements of a model-checking run by leveraging the
computational power of larger numbers of processing cores (or CPUs in a grid or
cloud network) [3, 16–18, 20].

5.10 Synopsis

In this chapter we have presented an overview of explicit-state logic model-checking
procedures, specifically those based on an automata-theoretic framework. We have
illustrated how this approach supports the use of powerful abstraction techniques
and, through the use of embedded C code to specify parts of a logic model, how it
can be combined with methods for the direct verification of implementation level
artifacts.
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Chapter 6
Partial-Order Reduction

Doron Peled

Abstract Partial order reduction methods help reduce the time and space required
to automatically verify concurrent asynchronous systems based on commutativity
between concurrently executed transitions. We describe partial order reduction for
various specification formalisms, such as LTL, CTL, and process algebra.

6.1 Introduction

Model checking of concurrent systems is an intractable problem; this is manifested
in the state space explosion problem, where the number of states of a concurrent
system can grow exponentially with the number of processes. However, in some
sense, many of the executions of the system are equivalent, containing the same in-
formation. The main observation in partial order reduction is that often the property
to be checked does not distinguish between executions that only differ from each
other in the order of independent (concurrent) transitions.

Interleaving semantics, which is commonly used in modeling and verifying con-
current systems, distinguishes between executions that differ only in the order of
independent transitions; those transitions appear in different orders. Partial order
semantics [25] puts an order on events, sometimes called “causal order”, when one
event must end before the other can begin, while independently occurring events
appear unordered. The connection between these semantics is that a single partial
order execution can represent multiple interleaving executions, which are the well-
founded1 linearizations of the partial order execution. It is quite natural to expect
that the formal specification of a system often cannot distinguish between interleav-
ing executions that are linearizations of the same partial order execution. Hence, the
idea behind partial order reduction is to construct and use a smaller state space that
includes representatives for the equivalence classes of the executions [20]. In partic-
ular, a counterexample for the checked property must be present in the reduced state

1That is, each event can be preceded by finitely many events.
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space exactly when one exists in the full state space. The reduced state space is con-
structed directly, without first constructing the full one. Ideally, it has a substantially
smaller number of states.

Although the above intuitive explanation stands behind the name partial order
reduction, in practice it is not always the case that this connection, between the
interleaving and the partial order semantics, is precisely the one that is used for
the reduction. In retrospect, commutativity-based reduction is perhaps a better name
than the historical one: partial order reduction.

6.2 Partial Order Reduction

Several methods for reducing the state space used for temporal verification were
developed around the beginning of the 1990s. The versions of the method called
ample sets [20, 29], stubborn sets [33], and persistent sets [13] were developed
independently, but with varying degrees of influence on each other, and sometimes
in collaboration [12, 22]. The notions that will be used here are based on ample sets,
but the other variations will also be described.

A finite transition system is a fivetuple (S, ι, T , AP, L) where

• S is a finite set of states,
• ι ∈ S is an initial state,
• T is a finite set of transitions such that each transition α ∈ T is a partial function
α : S �→ S,

• AP is a finite set of propositions, and
• L : S �→ 2AP is an assignment function.

A transition α ∈ T is enabled from a state s if α(s) is defined. That is, α can be
applied to s, obtaining some successor state s′. Denote by enabled(s) the set of
transitions that are enabled from s.

An execution is a maximal alternating sequence s0α0s1α1 . . . of states and transi-
tions such that s0 = ι, and for each i ≥ 0, si+1 = αi(si). We assume that an execution
is always infinite. If the execution is finite, as there is no enabled transition that can
extend it, we have reached termination or deadlock. The difference between termi-
nation and deadlock depends only on whether the finite sequence is terminated in
a desired state, or prematurely, respectively. To handle just one type of sequence
(infinite), we can convert a finite execution (i.e., either terminated or deadlocked)
into an infinite one by repeating its last state indefinitely, through a new transition
that is enabled when all the others are disabled, and does not change the state. For
each execution ξ we can define the following sequences:

• the states sequence st (ξ)= s0s1s2 . . .;
• the transitions sequence tr(ξ)= α0α1α2 . . .;
• the propositional sequence pr(ξ)= L(s0)L(s1)L(s2) . . ..
A segment is a finite or infinite contiguous part of an execution.
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Explicit states-based model-checking techniques (including automata-based al-
gorithms) perform a search, often a Depth-First Search (DFS), to explore the state
space of the transition system. Then, some algorithms are applied to the state space.
In practice, these algorithms are usually applied to the state space on the fly dur-
ing its construction, rather than first completing the search and then performing the
analysis.

Definition 1 An independence relation I ⊆ T ×T is a symmetric and antireflexive
relation on transitions. For each pair of independent transitions (α, β) ∈ I and state
s ∈ S such that α, β ∈ enabled(s), the following hold:

α ∈ enabled(β(s)). [Independent transitions cannot disable each other.]
α(β(s))= β(α(s)). [Executing two enabled independent transitions in any order

results in the same global state.]

The dependency relation D = (T × T ) \ I is the complement of the independence
relation. For example, two local transitions in different processes (threads) that do
not use any global variables are independent of each other. Asynchronous send and
receive transitions (in different processes) are also independent. A variant of this
definition [21] replaces the fixed independence relation with a relation that is sen-
sitive also to the states from which the transitions are taken. This refinement can
improve the reduction [13, 21].

Definition 2 A transition α ∈ T is invisible if for each s, s′ ∈ S such that s′ = α(s),
L(s)= L(s′).

Definition 3 The stutter removal operator � applied to a propositional sequence ρ
results in the sequence �(ρ) where each maximal block of consecutive repetition of
identical labeling by propositions is replaced with a single occurrence of that label-
ing. Two propositional sequences σ, ρ are equivalent up to stuttering (or stuttering
equivalent) if �(σ )= �(ρ). This is denoted σ ≡� ρ.

For example, if AP={p,q}, the finite sequences σ = (p)(p, q)(p, q)(q)(q)(p, q)
and ρ = (p)(p)(p, q)(p, q)(p, q)(q)(p, q) are stuttering equivalent since �(σ ) =
�(ρ)= (p)(p, q)(q)(p, q).

Typical specification for software (and asynchronous hardware) does not distin-
guish between two executions that are equivalent up to stuttering. In particular, Lin-
ear Temporal Logic (LTL) cannot distinguish between two stuttering equivalent se-
quences when disallowing the nexttime operator (‘©’). Lamport argued that specifi-
cation should be closed under stuttering equivalence [24]. LTL without the nexttime
operator corresponds exactly to stuttering-closed first-order monadic logic [31]. See
also [32] for an algorithm for checking whether an LTL property with the nexttime
operator is stuttering-closed.

The partial order reduction generates a reduced state space such that, for each
execution in the full state space, there is a stuttering equivalent sequence in the
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reduced one. When a pair of independent transitions α, β are enabled at s and at
most one of them is visible, we have one of the following cases:

α is invisible. L(s)= L(α(s)), L(β(s))= L(α(β(s))).
β is invisible. L(s)= L(β(s)), L(α(s))= L(β(α(s))).
α, β are invisible. L(s)= L(α(s))= L(β(s))= L(α(β(s))).
In each of these three cases, there is at most one change in L when going from s to
r = α(β(s)). The difference between executing α before β or β before α in the first
two cases amounts to stuttering.

Reduction for LTL

In this section, the basic ample set partial order reduction, and some other variants,
are described. The basic partial order reduction algorithms are usually described as
variants of the classical DFS algorithm. The procedure hash is a standard hash-
ing of its parameter in a hash table. One can check whether that value was hashed
(hashed(s)), i.e., was visited already. The simple DFS algorithm is as follows.

proc Dfs(s);
local variable s’;
hash(s);
foreach α ∈ enabled(s) do

Let s′ be such that s
α−→ s′

if ¬hashed(s′) then Dfs(s’);
end Dfs;

We later use the fact that during DFS, reaching a state that is already on the search
stack means closing a cycle.

Partial order reduction (and some other reduction techniques such as symme-
try reduction) is based on calculating a subset ample(s) of the enabled transitions
enabled(s) from each state that is expanded. Then, only the transitions in ample(s)
are taken from the current state, instead of all the transitions in enabled(s):

proc Dfs(s);
local variable s’;
hash(s);
Calculate ample(s)
foreach α ∈ ample(s) do

Let s′ be such that s
α−→ s′

if ¬hashed(s′) then Dfs(s’);
end Dfs;

If ample(s) = enabled(s), we say that s is fully expanded. Choosing the subset
ample(s) of enabled transitions is done according to some conditions that are de-
scribed below. These conditions are designed to guarantee that the existence of a
counterexample for the checked property must be preserved between the full state
space and the reduced one. In fact, these conditions guarantee an even stronger prop-
erty, namely that the generated state space includes at least one representative that



6 Partial-Order Reduction 177

is stuttering equivalent to each execution in the full state space. For a formal proof
of that, one can refer to, e.g., [5].

C1 [13, 20, 29, 33] For every finite consecutive segment of an execution, starting
from the state s, a transition that is dependent on a transition in ample(s) cannot
be executed before a transition from ample(s).

To understand condition C1, consider a suffix σ of an execution, starting at s. There
are two cases:

Case 1. For some α ∈ ample(s), α is the first transition from ample(s) that appears
in σ . Then, α is independent of all the transitions that precede it in σ . By applying
Definition 1 repeatedly, all the transitions in σ prior to α can be commuted with α,
obtaining a segment σ ′.

Case 2. Any α ∈ ample(s) is independent of all the transitions in σ . By Defini-
tion 1, one can form a segment σ ′ by executing α and then the transitions in σ in
that order.

Condition C1 is quite abstract. Implementing it needs to take into account the
particular mode of execution, e.g., shared variables, asynchronous, or synchronous
message passing [12, 13, 17, 35]. For example, such a transition α can be local to
some process.

An alternative definition for Condition C1 appeared earlier in the context of de-
ductive verification. This is part of a proof system that is based on using represen-
tatives [20], rather than a model-checking algorithm. There, the set of transitions of
the verified system is decomposed into three parts: (1) a set of transitions that can be
executed to generate the representative successors, (2) a set of disabled transitions
that cannot become enabled without the execution of a transition from the first set,
and (3) the rest of the transitions, which must be independent of all the transitions
in the first set.

A similar definition to the one in [20], applied to model checking rather than a
proof system, appears in [33]: a stubborn set contains a set of currently enabled tran-
sitions (similar to the role of (1) in the previous paragraph), and currently disabled
transitions (similar to the role of (2)) that can become enabled only by the execution
of the enabled transitions in the stubborn set. The rest of the transitions must be in-
dependent with respect to the enabled transitions in the stubborn set. Furthermore,
in order to make the disabled transitions in the stubborn set become enabled, one
needs to identify variables whose value must first be changed by transitions that are
in the stubborn set.

To ensure that pr(σ ) and pr(σ ′) will be stuttering equivalent (for both of the
above cases) we enforce the following condition:

C2 [30] If s is not fully expanded then all of the transitions in ample(s) are invisi-
ble.

To see the combined effect of C1 and C2, consider a suffix of an execu-
tion σ1 = β0β1β2 . . ., which is executed from a state s, where β0 /∈ ample(s).
Then, according to Case 1 above, there is some βj ∈ ample(s) such that σ2 =



178 D. Peled

Fig. 1 Reduction with ample
sets

βjβ0β1 . . . βj−1βj+1 . . . is also a suffix of an execution from s, i.e., σ2 is obtained
from σ1 by commuting βj with all the transitions that precede it. Both sequences,
σ1 and σ2, appended to any transition sequence from ι to s, form an execution of the
checked system. According to C2, βj is invisible, hence the corresponding propo-
sitional sequences are stuttering equivalent. Note that σ1 is not in the reduced state
space since β0 /∈ ample(s). However, σ2 may also be absent from the reduced state
space due to later selections of ample sets; in this case, the same argument can be
iterated starting from βj (s) to form a sequence that is stuttering equivalent to the
original one in the reduced state space.

Handling Case 2 is similar. Suppose no transition in ample(s) appears in the
suffix of an execution σ1 that starts from s. Then any α ∈ ample(s) is independent
of all of the transitions of σ1. Consequently, αβ0β1β2 . . . is a suffix of an execution
starting from s. Due to C2 and the conditions on independence, we again obtain (to-
gether with a prefix from ι to s) a propositional sequence that is stuttering equivalent
to the one not including α. Note that the sequence that starts with α is not a permu-
tation of the original sequence, which is absent from the reduced state space. In this
way, the partial order reduction deviates from providing a representative sequence
for each set of well-founded linearizations of a partial order execution. Furthermore,
we must guarantee that selecting β0 (and subsequently β1, β2, and so forth) is not
deferred indefinitely in the reduced state space in favor of independent transitions
such as α in this case. This is guaranteed by imposing condition C3, which is de-
scribed below.

To illustrate the reduction obtained using Conditions C1 and C2, suppose, for ex-
ample, that we have two parallel processes, one with two local transitions α1 and α2,
executed sequentially, and the other also with two local transitions β1 and β2, also
executed sequentially. The full state space of the system is shown on the left-hand
side of Fig. 1. Applying the partial order reduction, one choice for an ample set from
the initial state consists of the single transition α1. Then, in the next state, we can
select an ample set that consists of only α2. Subsequently, only β1 is enabled, and
afterward β2. This is shown on the right-hand side of Fig. 1.

Expanding ample(s) from s instead of enabled(s) defers the execution of a tran-
sition β ∈ enabled(s) \ ample(s). (Notice that β remains enabled in any state α(s)
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Fig. 2 The problem with
loops

for α ∈ ample(s).) With only Conditions C1 and C2, a transition can be deferred
forever along a cycle. This may result in an execution that is not represented in the
reduced state space by another stuttering equivalent execution, and can consequently
lead to incorrect verification result. Figure 2 describes a full state space of a system
with a loop α1 then α2 in one process, and independently, a transition β in a second
process. Suppose that the ample set from each state consists of either α1 or α2; then
the reduced state space includes only the upper cycle, never taking into account the
execution of β .

The following condition guarantees that no transition is deferred forever.

C3 [29] If s is not fully expanded then no transition α ∈ ample(s) is on the search
stack of the DFS.

This condition is easy to implement ‘on the fly’ during DFS.
There are different alternatives for condition C3, for example, Valmari [33]

presents an algorithm that guarantees the following condition:

C3i For every cycle in the reduced state space there is at least one fully expanded
node.

This is a more general condition, as it can easily be shown that C3 implies C3i. Fur-
thermore, it does not depend on a particular search strategy such as DFS, and hence
can be used, e.g., with other search methods such as Breadth-First Search (BFS),
and hence can be combined with methods that use Binary Decision Diagram (BDD)
representation [1]. However, the algorithm implementing this condition in [33] is
not completely compatible with on-the-fly model checking (see next section), as it
requires storing the graph and correcting it to satisfy this condition.

Another variant of condition C3 is based on the observation that each cycle of
the state space must be the result of a combination of several local cycles of the
separate concurrent processes. As a preparation for implementing this variant, the
local structures of the processes can be analyzed before the global search begins,
and at least one transition from each local cycle is preselected. This can be done
by searching each local process separately, using DFS, and selecting each transition
that causes that search to hit a state in the search stack of the local DFS. The selected
transitions are called sticky transitions. The following condition is imposed:

C3ii [23] If s is not fully expanded then no transition α ∈ ample(s) is sticky.

With this new condition, the need to identify when a cycle is closed during the global
state space exploration is eliminated.



180 D. Peled

Sticky transitions decrease the reduction and thus need to be minimized. To re-
duce the sticky transitions used, observe that there are some dependencies between
local cycles of different processes. If one local cycle includes only local operations
and receiving messages, another local cycle that includes sending messages must
also be included to form a global cycle of the state space. Similarly, if one local cy-
cle only decreases a variable, a local cycle of another process that increases it is also
needed to complete a global cycle. Thus, local cycles that change some variable in a
monotonic way can be exempt from the search for sticky transitions, but at the same
time we must not exempt cycles that change that variable in the opposite polarity.

On-the-Fly Model Checking

In practice, model checking does not include a separate stage where the full or re-
duced state space is first generated before it is analyzed. The analysis of the state
space can be performed during its construction. With the on-the-fly approach, if a
counterexample is found, there is no need to further complete the construction of
the state space. This observation can sometimes considerably reduce the memory
size and time required for the verification. One way of performing on-the-fly model
checking is to represent the state space as an automaton A recognizing the exe-
cutions of the checked system. The checked property ϕ is also represented as an
automaton B. The automaton B accepts the sequences that do not satisfy ϕ (by a
direct translation of ¬ϕ) [10, 36].

The intersection of A and B is an automaton recognizing executions of the
system that do not satisfy the specification. Such executions exist iff the property ϕ
is not satisfied by the system, and can be presented as counterexamples. Specifically,
with on-the-fly model checking one can combine the following [30, 34]:

• the construction of an automaton A that corresponds to the reduced state space,
• the intersecting with the automaton B, and
• checking for the emptiness of the intersection.

The conditions C1–C3 guarantee that there is a counterexample for the checked
property in the reduced state space exactly when there is a counterexample for the
full state space (although the full state space may contain more counterexamples).
The crucial change over the offline reduction presented in Sect. 6.2 is with respect
to the cycle-closing Condition C3. A cycle found during an on-the-fly construction
by returning to a state that is on the search stack is a cycle of the product automaton
for A ∩B, rather than the cycles of the state space automaton A .

Model checking for LTL properties often uses an efficient on-the-fly search strat-
egy for an ultimately periodic sequence through an accepting state called double
depth-first search [6, 18]. It is based on the fact that for finite state spaces, if there
exists a counterexample for a checked LTL property, then there is in particular one
that consists of a finite prefix and a finite iterative sequence. The first search then
looks for the prefix and the second for the iterative part. The two searches are inter-
leaved, where a second search starts each time we backtrack to an accepting state
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found during the first search; this means that the two searches may close a cycle at
different points. At the end of the search, the stack of the first DFS consists of the
finite prefix, while the stack of the second DFS (in [18], combined with part of the
stack of the first DFS) consists of the recurrent part. In addition to the possibility
of the early termination of the search upon finding a counterexample, this search
strategy avoids the need to explicitly keep the edges between the states.

To make the on-the-fly model checking work correctly with the partial order
reduction, we can select a method that guarantees the conditions (in fact, C3ii rather
than C3) for the state space of A . From each current pair (s, q) of states of A
and B, respectively, we select an ample set from s, and pair each transition in it
with the possible transitions of B from q . To do this, we use the sticky transition
construction [23]. In this way, we cannot close a cycle of A without executing
at least one sticky transition, and subsequently, without fully expanding at least
one state on any cycle. This construction allows us to guarantee that the selection
of ample sets is independent of whether s appears with a different B automaton
component q or whether the search happens in the first or second DFS during double
depth-first search.

Reduction for CTL

For branching temporal logics, we require that the partial order reduction generates
a reduced state space that is stuttering bisimilar [3] to the full state space. Such a
stuttering equivalence is defined between states of the full and reduced state spaces.
Two states s and s′ are related if the following conditions hold:

1. L(s)= L(s′),
2. for each infinite sequence σ starting from s there exists an infinite sequence σ ′

starting from s′ such that σ and σ ′ can be partitioned into infinitely many finite
blocks of consecutive states B0B1 . . . and B0

′B1
′ . . ., respectively and the states

in Bi are stuttering bisimilar to the states in Bi ′ for each i ≥ 0, and
3. symmetrically, for each sequence σ ′ from s′ there exists a blockwise matching

path σ from s.

It is shown in [3] that CTL and CTL∗ cannot distinguish between stuttering bisim-
ilar structures. Reduction for CTL and CTL∗ is achieved by adding the following
constraint:

C4 [9] If s is not fully expanded, then ample(s) is a singleton.

Together with the other conditions, C4 guarantees that when s is not fully ex-
panded, s and its single successor, generated by the single transition in ample(s),
are stuttering bisimilar.
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Reduction for Process Algebra

The focus in process algebras is on the branching structure of states and the ex-
ecution of transitions rather than the appearance of states and their labeling with
propositions. The models for various process algebras usually require the transitions
rather than the states to be labeled. A transition labeled with τ is considered invis-
ible, regardless of its effect on the state. Correctness in process algebras is usually
based on simulation relations. Such relations associate corresponding pairs of states
that have similar branching structure. Stuttering bisimulation was discussed above.
Other relations are branching bisimulation [7, 11] and weak bisimulation [27].

The conditions C1–C4 can be applied to produce a reduced structure that is
branching bisimilar [9] and thus also weak bisimilar. One concern is that in pro-
cess algebras transitions are often nondeterministic. For that, one can reformulate
Condition C4 as follows:

C4i [35] If s is not fully expanded, then ample(s) is a singleton containing a deter-
ministic transition.

Reducing Visibility

Experimental results [17] show that the reduction decreases rapidly when the num-
ber of visible transitions is increased. One way to reduce the effect of visibility on
the partial order reduction is to let it dynamically decrease with the checked prop-
erty [22]. We will illustrate this with an example. Suppose that the property to be
checked is ϕ =�(A→�B). The negation of the property is ¬ϕ = ♦(A ∧ ♦¬B).
Let B be an automaton for ¬ϕ. Once the model-checking search has reached a
state of B where A holds, one can concentrate on checking that ♦¬B subsequently
holds.

In this case, one may start with a set of transitions that are visible with respect to
all the propositions that appear in the formula. In this case, the relevant propositions
are {A, B}. Then once the property automaton B is left with a smaller goal, such
as ♦¬B , we can reduce the visible transitions to those that can affect the truth value
of B . Those transitions that can only affect A can now be considered invisible. An
LTL translation algorithm for an automaton B that can be used when reducing the
set of visible transitions appears in [10]. This translation algorithm produces an
automaton in which each state contains information about the subformulas that still
needs to be satisfied.

6.3 Reducing Edges While Preserving States

Another kind of partial order reduction is aimed at reducing the edges traversed dur-
ing a graph search. It may not be necessary to reduce the number of states reached,
and, in fact, we may actually be required to reduce only the edges but not the states.
Again, this is done based on principles of commutativity between transitions.
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Fig. 3 Reduction with sleep sets or with TNF search

Sleep Sets

The sleep sets algorithm [14] keeps for each state s reached in the search a set
sleep(s) of transitions that will not be traversed from that set. The observation is
that if these transitions were discovered from a previous state along the current path
(which is in the search stack in DFS), then executing them from the current state
will commute with the previous occurrences.

The basic algorithm from [14] appears below. We start the execution of the algo-
rithm with the initial state ι and with an empty sleep set. When reaching a new state
s from its predecessor, after each exploration of an edge marked with an enabled
transition α from s, α is added to the sleep set of s. When passing to the successor
state s′ of s, upon executing a transition α, the sleep set of s is passed to s′, except
for all the transitions dependent on α (dep(α)) are removed from the sleep set.

proc SleepSetsDfs(s,sleep);
local variables s’, current;
current:=sleep;

forall α /∈ sleep, s
α−→s’ do

begin
if s’ not hashed then

SleepSetDfs(s’,current \ dep(α));
current := current ∪ {α};

end;
end SleepSetsDfs;

This algorithm explores all the states (but avoids a considerable number of edges)
when the state space is acyclic [2]. Figure 3 shows an execution of the sleep set
method over a system with the same transitions α1;α2 and β1;β2 in the different
processes, as in Fig. 1. The left-hand side is the full state space again, while the
right-hand side is the reduced state space. Assume that given that the transitions of
both processes are enabled, those of the left process are explored first. In the first
state, α1 is explored first, and β1 later (after backtracking from the successors in the
α1 direction). Now, after backtracking from the successors under α1, α1 is added to
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Fig. 4 A state space for which TNF_Dfs does not explore every state

the sleep set. Since α1 and β1 are independent, α1 is not explored further from the
successors under β1.

Suppose now that there is a fixed total order $ among the edges, according to
which they are traversed from each state (when enabled).

Figure 4 provides an example of a state space that is not fully explored by the
sleep sets algorithm. The states, except s6, are numbered in the order in which
they are discovered. The node s6 is not discovered. The transitions are {a, b, c, z},
with the ordering a $ b$ c$ z. The independence relation in this example is
the symmetric closure of b I a, b I c. Thus, z is dependent on every other letter
a, b, c, and a, c are mutually dependent. The sleep sets are: sleep(s0)= sleep(s1)=
sleep(s4) = ∅, sleep(s2) = sleep(s3) = {b}, sleep(s5) = {a}. The state s6 can only
be visited from s3 with the edge b, and from s5 with the edge a. The first case is
eliminated since b ∈ sleep(s3). The second case is eliminated since a ∈ sleep(s5).

One way to increase the coverage is to store with each reached state its sleep set;
then, if a state is reached again with a different sleep set that does not contain the
old one, then the state is revisited [29]. The sleep set becomes the intersection of the
new and the old sleep sets, and enabled transitions that are not in this intersection are
reexplored [15, 29]. This algorithm can also be combined with an ample-set-style
algorithm, to exploit the reductions of both methods. This requires revisiting and
re-expanding already visited states and the storage of the sleep sets together with
each state reached. In [16], reaching all the states is achieved by checking whether
transitions in the sleep sets, explored from the current state, lead to a state on the
search stack. If they do, they are removed from the sleep set. However, this means
in fact that every edge in the full state space is explored in one way or another (but
these latter edges can then be safely removed from the reduced graph).

Trace Normal Form

Let σ, ρ ∈Σ∗. We write σ
1≡ρ if and only if there exist strings u,v ∈Σ∗ and letters

(a, b) ∈ I such that σ = uabv, ρ = ubav. That is, σ
1≡ρ if ρ is obtained from σ
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(or vice versa) by transposing adjacent independent letters. Let ≡ be the transitive

closure of
1≡. It is not hard to see that ≡ is an equivalence relation. It is often called

trace equivalence [25], where a trace is an equivalence class.

For example, for Σ = {a, b} and I = {(a, b), (b, a)} we have abbab
1≡ababb

and abbab≡ bbbaa. Notice that if the system has the diamond property and u≡ v,
then s

u−→ r if and only if s
v−→ r .

We can extend $ to a lexicographic order on words in a standard way, i.e., by
setting v$ vu and vau$ vbw for any v, u, w ∈Σ∗ and any a, b ∈Σ such that
a$ b.

Definition 4 Let w ∈Σ∗. Let w̃ denote the least word under the relation $ that is
equivalent to w. If w = w̃, we say that w is in trace normal form (TNF) [28].

Consider now a DFS where an enabled transition α is allowed only when con-
catenating it to the path currently residing in the search stack results in a string that
is in TNF. In order not to keep and check this entire path, it is sufficient to keep with
each state in the stack a summary, which contains the relative order of the last oc-
currence of each transition. Thus, if an edge a that appears in the summary appears
again, it is removed from its old position, and appended to the end of the summary.
Now, when progressing with the search, we keep in the stack, together with the state,
also the index (position) of the transition that was shifted to the end. In this way, we
do not need to keep the entire summary in the stack. We keep updating the summary
as we progress and can easily recover it (using this index) upon backtracking.

The search obtained in this way progresses exactly like the sleep sets algorithm
that uses the same order $ for selecting transitions. Consequently, this algorithm
will also miss the state s6 in the example of Fig. 4 according to the same inde-
pendence relation and order of transitions. On the other hand, using only traces in
normal form during Breadth-First Search (BFS) would not miss any state [2].

We describe here an algorithm TNF_Dfs(s0) that only explores paths labeled
with words in trace normal form. This algorithm often provides a significant reduc-
tion in the size of stack needed. For acyclic state spaces, TNF_Dfs(s0) explores all
states. However, as explained above, this may not be the case in general.

Definition 5 A summary of a string σ is the total order ≺σ on the letters from α(σ)

such that a ≺σ b iff the last occurrence of a in σ precedes the last occurrence of b
in σ . That is, σ = vaubw, where v ∈Σ∗, u ∈ (Σ \ {a})∗, w ∈ (Σ \ {a, b})∗.

To perform a reduced search that only considers strings in TNF, we store the
summary in a global array summary[1..n], where n= |Σ |. The variable size
stores the number of different letters in the current string σ . We update the summary
as we progress with the DFS, and recover the previous value when backtracking, i.e.,
the value of the summary is calculated on the fly and not stored with the state infor-
mation in the hash table. The value of the summary is calculated on the fly through
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the use of functions normal(), update_sumr(), and recover_sumr() de-
fined later. This means that there is no need to save the value of the summary with
the state information.

size:=0;
TNF_Dfs(ι)

proc TNF_Dfs(s)
local variables s’, i;
hash(s);

forall s
a−→ s′ in increasing order do

if normal(a) and s’ not hashed then
i:=ord(a);
update_sumr(i,a);
TNF_Dfs(s’);
recover_sumr(i,a);

end TNF_Dfs;

In order to perform the update, we need to keep the last transition a that was
executed, and its old location i (0 if it was not introduced yet) in the summary. The
update is performed using the procedure update_sumr. It pushes all the elements
from the ith location to the left, and puts a at the end of the summary. If a did not
occur in the summary, then there is no need for the shift, but in this case the size of
the summary is increased.

proc update_sumr(i, a);
if i=0 then

size:=size+1;
else

for j:=i+1 to size do
summary[j-1]:=summary[j];

summary[size]:=a;
end update_sumr;

The function ord is used to find the position of a letter a in the summary.

func ord(a);
for i:=size backto 1 do

if summary[i]=a then return(i);
return(0);

end ord;

The procedure recover_sumr is used to recover the previous summary upon
backtracking. It reverses the effect of update_sumr by shifting the vector ele-
ments indexed i (the original position of a) and higher to the right, and putting a
in the ith place. If i is zero, then there is no need for shifting, but the size of the
summary needs to be decremented.

proc recover_sumr(i, a);
if i=0 then

summary[size]:=blank;
size:=size-1;

else
for j:=size-1 downto i do
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summary[j+1]:=summary[j];
summary[i]:=a;

end recover_sumr;

The reduced DFS procedure TNF_Dfs(s0) considers all transitions enabled at
the current state. For each of them, it checks whether the current string augmented
with this transition is in TNF. This is done through a call to the function normal,
which checks the summary.

func normal(a);
for j:=size backto 1 do

b:=summary[j];
if ¬ (a I b) then return(true);
if a$b then return(false);

return(true);
end normal;

Edge Lean Algorithm

In order to obtain a reduction that preserves all the states of the original state space,
yet reduces edges, we use the following definition.

Definition 6 Set ubav =⇒1 uabv if and only if a I b and a$ b, and let =⇒ be
the transitive closure of =⇒1. We say that a word w ∈ Σ∗ is irreducible if there
exists no w′ �=w such that w =⇒ w′.

Thus, a word is irreducible if it cannot be transformed into a smaller word with
respect to =⇒ by permutations of adjacent independent letters. We call a path ρ
irreducible if its labeling �(ρ) is an irreducible word. Observe that a prefix of an irre-
ducible path is also irreducible. Note that if w is in TNF, then it is irreducible. How-
ever, the converse does not necessarily hold. Indeed, consider a$ b$ c, a I b, b I c
and aD c. Then x = cab is irreducible, but x̃ = bca ≡ x, and x̃$ x. Hence x is not
in TNF.

The EdgeLeanDfs algorithm [2] is based on depth-first search. It only explores
paths whose labelings are irreducible. For this, it suffices to remember the last letter
x seen along the current path, and not to extend this path with letter y whenever
x I y and y$ x.

EdgeLeanDfs(ι,ε);

proc EdgeLeanDfs(s,prev);
local variable s’;
hash(s);

forall s
a−→s’ where prev= ε or ¬(aIprev) or prev $ a do

if s’ not hashed then EdgeLeanDfs(s’, a);
end EdgeLeanDfs;
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6.4 Conclusions

Partial order reduction methods are aimed at reducing the time and space needed
to check for properties of systems. They are based on the observation that such
systems contain a lot of commutativity, generated by interleaving of concurrently
(independently) executed transitions. As the specification is often insensitive to such
order, one can exploit such a reduced state space to improve the efficiency of model
checking. There are different techniques for achieving the reduction. Ample-set-
type algorithms estimate a subset of transitions that are sufficient from the current
state based on the current state and some structural properties of the system (e.g., the
type of enabled transitions, be it local, asynchronous communication, etc.) and the
nature of the search (e.g., when a cycle is closed during depth-first search). Sleep-
set-type algorithms use some summary information about the history of the search
so far to avoid looking at edges that were explored in executions equivalent up to
commutativity.

Partial order reduction is most successfully applied to verification of software
and asynchronous hardware. It is implemented mostly with state-space-based model
checking. However, it can also be applied to symbolic model checking [19], by
changing the search strategy (most notably, condition C3) to apply to breadth-first
search [1, 4].

Another approach that uses partial order in verification of systems is called un-
folding [26]. This approach, which was suggested by McMillan [26] is based on
building the partial order representing the executions directly, rather than on a re-
duced set of representatives. The structure that is constructed is related to Winskel’s
events structures [37], which represent local events together with the causal order
among them. In addition, the structure explicitly represents branching due to non-
deterministic choice. The unfolding method avoids in the first place constructing
executions (linearizations) that are equivalent up to commutativity. One needs to be
careful about repeated branching, in particular when modeling programs that branch
and later, the executions in the two branches meet, then branch again. A repetition
of this behavior can enlarge the state space, due to duplication of successors that
result from nondeterministic choice, making the unfolding structure much larger
than the full interleaving state space. A solution to this, along with a comprehensive
description of unfolding techniques, appears in [8].
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Chapter 7
Binary Decision Diagrams

Randal E. Bryant

Abstract Binary decision diagrams provide a data structure for representing and
manipulating Boolean functions in symbolic form. They have been especially ef-
fective as the algorithmic basis for symbolic model checkers. A binary decision
diagram represents a Boolean function as a directed acyclic graph, corresponding
to a compressed form of decision tree. Most commonly, an ordering constraint is
imposed among the occurrences of decision variables in the graph, yielding ordered
binary decision diagrams (OBDD). Representing all functions as OBDDs with a
common variable ordering has the advantages that (1) there is a unique, reduced
representation of any function, (2) there is a simple algorithm to reduce any OBDD
to the unique form for that function, and (3) there is an associated set of algorithms
to implement a wide variety of operations on Boolean functions represented as OB-
DDs. Recent work in this area has focused on generalizations to represent larger
classes of functions, as well as on scaling implementations to handle larger and
more complex problems.

7.1 Introduction

Ordered Binary Decision Diagrams (OBDDs) provide a symbolic representation of
Boolean functions. They can serve as the underlying data structure to implement
an abstract data type for creating, manipulating, and analyzing Boolean functions.
OBDDs provide a uniform representation for operations to define simple functions
and then construct representations of more complex functions via the operations of
Boolean algebra, as well as function projection and composition. In the worst case,
the OBDD representation of a function can be of size exponential in the number of
function variables, but in practice they remain of tractable size for many applica-
tions.

OBDDs have been especially effective as a data structure for supporting symbolic
model checking, starting with the very first implementations of tools for symboli-
cally checking the properties of finite-state systems [10, 21, 25, 49]. By encoding
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sets and relations as Boolean functions, the operations of model checking can be ex-
pressed as symbolic operations on Boolean functions, avoiding the need to explicitly
enumerate any states or transitions.

In the spirit of viewing OBDDs as the basis for an abstract data type, we first
define an Application Program Interface (API) for Boolean function manipulation,
then the OBDD representation, and then how the API can be implemented with OB-
DDs. We describe some of the refinements commonly seen in OBDD implementa-
tions. We present some variants of OBDDs that have been devised to improve effi-
ciency for some applications, as well as to extend the expressive power of OBDDs
beyond Boolean functions. The many variants of OBDDs are sometimes referred
to by the more general term decision diagrams (DDs). Many surveys of OBDDs
and their generalizations have been published over the years [17, 18, 31]. Rather
than providing a comprehensive survey, this chapter focuses on those aspects that
are most relevant to model checking. We describe some efforts to improve the per-
formance of OBDD programs, both to make them run faster and to enable them to
handle larger and more complex applications. We conclude with a brief discussion
on some relationships between OBDDs and Boolean satisfiability (SAT) solvers.

7.2 Terminology

Let x denote a vector of Boolean variables x1, x2, . . . , xn. We consider Boolean
functions over these variables, which we write as f (x) or simply f when the
arguments are clear. Let a denote a vector of values a1, a2, . . . , an, where each
ai ∈ {0,1}. Then we write the valuation of function f applied to a as f (a). Note
the distinction between a function and its valuation: f (x) is a function, while f (a)
is either 0 or 1.

Let 1 denote the function that always yields 1, and 0 the function that always
yields 0.

We can define Boolean operations ∧, ∨, ⊕, and ¬ over functions as yielding
functions according to the Boolean operations on the underlying elements. So, for
example, f ∧ g is a function h such that h(a)= f (a)∧ g(a) for all a.

For function f , variable xi and binary value b ∈ {0,1}, define a restriction of f
as the function resulting when xi is set to value b:

f |xi←b(a)= f (a1, . . . , ai−1, b, ai+1, . . . , an).

The two restrictions of a function f with respect to a variable xi are referred to as
the cofactors of f with respect to xi [13].

Given the two cofactors of f with respect to variable xi , the function can be
reconstructed as

f = (xi ∧ f |xi←1)∨ (¬xi ∧ f |xi←0). (1)

This identity is commonly referred to as the Shannon expansion of f with respect
to xi , although it was originally recognized by Boole [14].
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Other useful operations on functions can be defined in terms of the restriction
operation and the algebraic operations ∧, ∨, ⊕, and ¬. Let f and g be functions
over variables x. The composition of f and g with respect to variable xi , denoted
f |xi←g , is defined as the result of evaluating f with variable xi replaced by the
evaluation of g:

f |xi←g(a)= f
(
a1, . . . , ai−1, g(a1, . . . , an), ai+1, . . . , an

)
.

Composition can be expressed based on a variant of the Shannon expansion:

f |xi←g = (g ∧ f |xi←1)∨ (¬g ∧ f |xi←0). (2)

Another class of operations involves eliminating one or more variables from a
function via quantification. That is, we can define the operations ∀xi.f and ∃xi.f
as:

∀xi.f = f |xi←1 ∧ f |xi←0 (3)

∃xi .f = f |xi←1 ∨ f |xi←0. (4)

By way of reference, the resolution step of the original Davis–Putnam (DP) Boolean
satisfiability algorithm [28] can be seen to implement existential quantification for
a function represented in clausal form. Their method is based on the principle that
function f is satisfiable (i.e., f (a)= 1 for some a) if and only if ∃xi.f is satisfiable,
for any variable xi .

Quantification can be generalized to quantify over a set of variablesX ⊆ {x1, . . . ,

xn}. Existential quantification over a set of variables can defined recursively as

∃∅.f = f
∃(xi ∪X).f = ∃xi .(∃X.f ),

and the extension for universal quantification is defined similarly.
The ability of OBDDs to support variable quantification operations with reason-

able efficiency is especially important for model checking, giving them an important
advantage over Boolean satisfiability solvers. While deciding whether or not an or-
dinary Boolean formula is satisfiable is NP-hard, doing so for a quantified Boolean
formula is PSPACE-complete [35].

Finally, we define the relational product operation, defined for functions f (x),
g(x), and variablesX ⊆ {x1, . . . , xn} as ∃X.(f ∧g). As is discussed in Chap. 8 [22],
this operation is of core importance in symbolic model checking as the method to
project a set of possible system states either forward (image) or backward (preim-
age) in time. Hence, it merits a specialized algorithm, as will be described in
Sect. 7.5.

7.3 A Boolean Function API

As a way of defining an abstract interface for an OBDD-based Boolean function
manipulation package, Fig. 1 lists a set of operations for creating and manipulating
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Fig. 1 Basic operations for a
Boolean function abstract
data type

Operation Result
Base functions
CONST(b) 1 (b = 1) or 0 (b = 0)
VAR(i) xi
Algebraic operations
NOT(f ) ¬f
AND(f, g) f ∧ g
OR(f, g) f ∨ g
XOR(f, g) f ⊕ g
Nonalgebraic operations
RESTRICT(f, i, b) f |xi←b
COMPOSE(f, i, g) f |xi←g
EXISTS(f, I ) ∃XI .f
FORALL(f, I ) ∀XI .f
RELPROD(f, g, I ) ∃XI .(f ∧ g)
Examining functions
EQUAL(f, g) f = g
EVAL(f,a) f (a)
SATISFY(f ) some a such that f (a)= 1
SATISFY-ALL(f ) {a | f (a)= 1}

Boolean functions and for examining their properties. In this figure f and g rep-
resent Boolean functions (represented by OBDDs), i is a variable index between
1 and n, b is either 0 or 1, and a is a vector of n 0s and 1s. For a set of indices
I ⊆ {1, . . . , n}, XI denotes the corresponding set of variables {xi | i ∈ I }. This fig-
ure is divided into several sections according to the different classes of operations.

The base operations generate the constant functions and functions corresponding
to the individual variables. The algebraic operations have functions as arguments
and generate new functions as results according to the operations ∧, ∨, ⊕, and ¬.
The nonalgebraic operations also have functions as arguments and as results, but
they extend the functionality beyond those of Boolean algebra, implementing the
operations of restriction, composition, quantification, and relational product.

The operations in the final set provide mechanisms to examine and test the prop-
erties of the generated Boolean functions. The EQUAL operation tests whether two
functions are equivalent, yielding either true or false. As special cases, this opera-
tion can be used to test for tautology (compare to 1) and (un)satisfiability (compare
to 0). The EVAL operation computes the value of a function for a specific set of ar-
gument values. For a satisfiable function, we can ask the program to generate some
arbitrary satisfying solution (SATISFY) or have it enumerate all satisfying solutions
(SATISFY-ALL.) The latter operation must be used with care, of course, since there
can be as many as 2n solutions.

The set of operations listed in Fig. 1 makes it possible to implement a wide vari-
ety of tasks involving the creation and manipulation of Boolean functions, including
symbolic model checking. The overall strategy when working with OBDDs is to
break a task down into a number of steps, where each step involves creating a new
OBDD from previously computed ones. For example, a program can construct the
OBDD representation of the function denoted by a Boolean expression by starting
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with functions representing the expression variables. It then evaluates each opera-
tion in the expression using the corresponding algebraic operation on OBDDs until
the representation of the overall expression is obtained.

As an illustration, suppose we are given the Boolean expression

(x1 ∧ x2 ∧¬x3)∨ (¬x1 ∧ x3). (5)

We can create an OBDD for the function f denoted by this expression using a
sequence of API operations:

f1 = VAR(1)

f2 = VAR(2)

f3 = VAR(3)

f4 = AND(f1, f2)

f5 = NOT(f3)

f6 = AND(f4, f5)

f7 = NOT(f1)

f8 = AND(f7, f3)

f = OR(f6, f8)

Similarly, given a combinational logic circuit, we can generate OBDD represen-
tations of the primary output functions by starting with OBDD representations of
the primary input variables and then stepping through the network in topological
order. Each step involves generating the OBDD for the function at the output of a
gate according to the gate input functions and the gate operation.

7.4 OBDD Representation

A binary decision diagram (BDD) represents a Boolean function as an acyclic di-
rected graph, with the nonterminal vertices labeled by Boolean variables and the leaf
vertices labeled with the values 1 and 0 [1]. For nonterminal vertex v, its associated
variable is denoted var(v), while for leaf vertex v its associated value is denoted
val(v). Each nonterminal vertex v has two outgoing edges: hi(v), corresponding to
the case where its variable has value 1, and lo(v), corresponding to the case where
its variable has value 0. We refer to hi(v) and lo(v) as the hi and lo children of
vertex v. The two leaves are referred to as the 1-leaf and the 0-leaf.

As an illustration, Fig. 2 shows a BDD representation of the function given by the
expression in Eq. (5). In our figures, we show the arcs to the lo children as dashed
lines and to the hi children as solid lines. To see the correspondence between the
BDD and the Boolean expression, observe that there are only two paths from the
root (vertex v1) to the 1-leaf (vertex v6): one through vertices v2 and v4, such that
variables x1, x2, and x3 have values 1, 1, and 0, and one through vertex v3 such that
variables x1 and x3 have values 0 and 1.
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Fig. 2 OBDD representation
of (x1 ∧ x2 ∧¬x3)∨
(¬x1 ∧ x3)

We can define the Boolean function represented by a BDD by associating a func-
tion fv with each vertex v in the graph. For the two leaves, the associated values are
1 (1-leaf) and 0 (0-leaf). For nonterminal vertex v, the associated function is defined
as

fv =
(
var(v)∧ fhi(v)

)∨ (¬var(v)∧ flo(v)
)
. (6)

We see here the close relation between the BDD representation of a function and
the Shannon expansion; the two children of a vertex correspond to its two cofactors
with respect to its associated variable. Every vertex in a BDD represents a Boolean
function, but we designate one or more of these to be root vertices, representing
Boolean functions that are referenced by the application program.

With ordered binary decision diagrams (OBDDs), we enforce an ordering rule
on the variables associated with the graph vertices. For each vertex v having
var(v) = xi , and for vertex u ∈ {hi(v), lo(v)} having var(u) = xj , we must have
i < j . For the rest of this chapter, we assume that all functions are represented as
OBDDs with a common variable ordering. In the example BDD of Fig. 2, we see
that the variable indices along all paths from the root to the leaves are in increasing
order, and thus it is an OBDD.

We can define a reduced OBDD as one satisfying the rules:

1. There can be at most one leaf having a given value.
2. There can be no vertex v such that hi(v)= lo(v).
3. There cannot be distinct nonterminal vertices u and v such that var(u)= var(v),

hi(u)= hi(v), and lo(u)= lo(v).

Given an arbitrary OBDD, we can convert it to reduced form by repeatedly applying
transformations corresponding to these three rules:

1. If leaves u and v have val(u)= val(v), then eliminate one of them and redirect
all incoming edges to the other.

2. If vertex v has lo(v) = hi(v), then eliminate vertex v and redirect all incoming
edges to its child.

3. If vertices u and v have var(u)= var(v), hi(u)= hi(v), and lo(u)= lo(v), then
eliminate one of the vertices and redirect all incoming edges to the other one.
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Fig. 3 OBDD representation
for constant functions and
variable xi

By working from the leaves upward, and by employing sparse labeling techniques,
this reduction can be performed in time linear in the size of the original graph [62].
The example OBDD of Fig. 2 is, in fact, a reduced OBDD.

Bryant showed that reduced OBDDs serve as a canonical form for Boolean func-
tions [15]. That is, for a given variable ordering, every Boolean function over these
variables has a unique (up to isomorphism) representation as a reduced OBDD.

There are two different conventions for representing multiple functions as OB-
DDs. In a split representation, each function has a separate OBDD, and each graph
has a single root. In a shared representation [52], the reduction rules are applied
across the entire set of functions, and so the entire collection of functions is repre-
sented as a single OBDD having multiple roots. The shared representation not only
reduces the space required to represent a set of functions, it has the property that
two represented functions are equal if and only if they are represented by the same
vertex in the OBDD. That is, there cannot be two distinct vertices u and v such that
fu = fv . This is sometimes referred to as a strong canonical form.

7.5 Implementing OBDD Operations

As Fig. 1 indicates, an OBDD software package must implement a number of op-
erations. For those having a Boolean function as an argument or result, we denote
this function by the root vertex in its OBDD representation. Thus, when describing
OBDD algorithms, we define the operations in terms of vertex names, such as u
and v, rather than abstract function names, such as f and g. As mentioned earlier,
we can implement a set of Boolean functions as either a collection of separate OB-
DDs, each having a single root (split form), or as a single OBDD having multiple
roots (shared form). In our presentation, we consider both approaches.

The base functions listed in Fig. 1 have simple representations as OBDDs, as
shown in Fig. 3. Algorithms for the other operations follow a common framework
based on depth-first traversals of the argument graphs. We present the Apply algo-
rithm, a general method for implementing the binary Boolean algebraic operations,
as an illustration.

The Apply algorithm has as arguments an operation op (equal to AND, OR, or
XOR), as well as vertices u and v. The implementation, shown in Fig. 4, performs
a depth-first traversal of the two argument graphs and generates a reduced OBDD
from the bottom up as it returns from the recursive calls. The algorithm makes use
of two data structures storing keys and values. The computed cache stores results
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1. If the computed cache contains an entry with key 〈op, u, v〉, then return the asso-
ciated value.

2. If one of the special cases shown in Fig. 5 applies, then return the specified value.
3. Recursively compute the two cofactors of the result as follows:

a. Let xi = var(u), xj = var(v), and k =min(i, j).
b. Compute u1 and u0 as u1 = hi(u) and u0 = lo(u) when i = k,

and as u1 = u0 = u when i �= k.
c. Compute v1 and v0 as v1 = hi(v) and v0 = lo(v) when j = k,

and as v1 = v0 = v when j �= k.
d. Compute w1 = APPLY(op, u1, v1) and w0 = APPLY(op, u0, v0).

4. Compute result vertex w:

a. If w1 =w0, then w =w1;
b. else if the unique table contains an entry for key 〈xk,w1,w0〉, then let w be the

associated value;
c. else create a new vertex w with var(w) = xk , hi(w) = w1, and lo(w) = w0.

Add an entry to the unique table with key 〈xk,w1,w0〉 and value w.

5. Add an entry with key 〈op, u, v〉 and value w to the computed cache and return w.

Fig. 4 Recursive algorithm to compute APPLY(op, u, v)

from previous invocations of the Apply operation, a process commonly referred to
as memoizing [50]. Each invocation of Apply first checks this cache to determine
whether a vertex corresponding to the given arguments has already been computed.
As the name suggests, this data structure can be a cache where elements are evicted
when space is needed, since the purpose of this data structure is purely to speed up
the execution. The unique table contains an entry for every OBDD vertex, with a
key encoding its variable and children. This table is used to ensure that duplicate
vertices are not created. When using a split representation, this cache and table must
be reinitialized for every invocation of Apply, while for a shared representation, the
two data structures are maintained continuously.

Figure 5 shows cases where the recursive function implementing the Apply al-
gorithm can terminate. As can be seen, the use of a shared representation enables
additional terminal cases. In Sect. 7.6, we will discuss the use of complement edges
to indicate the negation of a function. Their use enables even more terminal cases.

As the Apply algorithm illustrates, standard implementations of OBDD opera-
tions perform depth-first traversals of one or more argument graphs and generate
reduced graphs as the recursions complete. The unique table is used to enforce re-
duction rules 1 and 3. The computed cache is used to stop the recursion when pre-
viously computed results are encountered. This cache can guarantee that the time
required by the algorithm is bounded by the number of unique argument combina-
tions. If the top-level arguments to APPLY have Nu and Nv vertices, respectively,
then the total number of calls to APPLY is at most Nu ×Nv . Typical implementa-
tions of the computed cache and the unique table use hashing techniques, which can
yield constant average time for each access, and thus the overall time complexity of
APPLY is O(Nu ×Nv).
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Operation op Condition Restrictions Result
AND u, v are leaves CONST(val(u)∧ val(v))
AND u= 0 CONST(0)
AND v = 0 CONST(0)
AND u= 1 S v

AND v = 1 S u

AND u= v S u

AND u= NOT(v) S, C CONST(0)
OR u, v are leaves CONST(val(u)∨ val(v))
OR u= 1 CONST(1)
OR v = 1 CONST(1)
OR u= 0 S v

OR v = 0 S u

OR u= v S u

OR u= NOT(v) S, C CONST(1)
XOR u, v are leaves CONST(val(u)⊕ val(v))
XOR u= 1 NOT(v)
XOR v = 1 NOT(u)
XOR u= 0 S v

XOR v = 0 S u

XOR u= v S CONST(0)
XOR u= NOT(v) S, C CONST(1)
S: Only with a shared representation
C: Only when complement edges are used

Fig. 5 Special cases for the Apply operation, with arguments op, u, and v

The other operations listed in Fig. 1 are implemented in a similar fashion. We give
only brief descriptions here; more details can be found in [15]. The NOT operation
proceeds by generating a copy of the argument OBDD, with the values of the leaf
vertices inverted. To compute RESTRICT(f, i, b), we want to eliminate every vertex
v in the graph for f having var(v) = xi and redirect each incoming arc to either
hi(v) (when b = 1) or lo(v) (when b = 0). Rather than modifying existing vertices,
we create new ones as needed, applying the reduction rules in the process.

We have already seen that the composition, quantification, and relational product
operations can be computed using combinations of restriction and Boolean algebraic
operations (Eqs. (2)–(4)). However, these operations are of such critical importance
in symbolic model checking and other applications that they are often implemented
with more specialized routines. As with Apply, these algorithms use a combination
of depth-first traversal, memoizing, and the unique table to generate a reduced graph
as their result.

As an example, the algorithm to perform existential quantification can be ex-
pressed as a recursive function EXISTS(u, I ), where u is an OBDD vertex and I is a
set of variable indices. It maintains a quantifier cache using keys of the form 〈u, I 〉.
On a given invocation, if neither a previously computed result is found nor a termi-
nal case applies, it retrieves u1 and u0, the two children of u, and recursively com-
putes w1 = EXISTS(u1, I − {i}) and w0 = EXISTS(u0, I − {i}). For xi = var(u),
when i ∈ I , it computes the result as w = APPLY(OR, u1, u0). Otherwise, it either
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retrieves or creates a vertex w with var(w)= xi , hi(w)=w1, and lo(w)=w0. Ver-
tex w is then added to the quantifier cache with key 〈u, I 〉. Universal quantification
can be implemented similarly, or we can simply make use of De Morgan’s Laws to
express universal quantification in terms of existential: ∀X.f =¬∃X.(¬f ).

As mentioned earlier, the relational product operation implements ∃X.(f ∧g) for
variablesX, and functions f and g. In principle, this operation could proceed by first
computing f ∧ g and then existentially quantifying the variables in X. Experience
has shown, however, that the graph representing f ∧ g will often be of unmanage-
able size, even though the final result of the relational product is more tractable.
By combining conjunction and quantification during a single traversal of the graphs
for f and g, this problem of “intermediate explosion” can often be avoided. This
algorithm is expressed by a recursive function RELPROD(f, g, I ) that uses a com-
bination of the rules we have seen in the implementations of APPLY and EXISTS

[20, 67].
We are left with the operations that test or examine one or more functions. As

already mentioned, when using a shared representation, testing for equality can be
done by simply checking whether the argument vertices are the same. With a split
representation, we can implement a simple traversal of the two graphs to test for iso-
morphism. To evaluate a function for a specified set of argument values, we follow a
path from the root to a leaf, at each step branching according to the value associated
with the variable, with the leaf value serving as the result of the evaluation.

To find a single satisfying assignment for a function, we can search for a path
from the root to the 1-leaf. This search does not require any backtracking, since,
with the exception of arcs leading directly to the 0-leaf, each arc is part of a path
leading to the 1-leaf. To find all satisfying solutions, we can perform a depth-first
traversal of the graph to enumerate every path leading to the 1-leaf.

7.6 Implementation Techniques

Dozens of OBDD software packages have been created, displaying a variety of im-
plementation strategies and features. Most implementations follow a set of prin-
ciples described in a 1990 paper by Brace, Rudell, and Bryant (BRB) [12]. In
an evaluation of many different packages for benchmarks arising from symbolic
model-checking problems [67], the best performance consistently came from pack-
ages very similar to the BRB package. Here we highlight some of its key features.
In Sect. 7.10, we describe efforts to scale OBDD implementations to handle large
graphs and to support parallel execution. An excellent discussion of implementation
issues can be found in [63].

Most OBDD packages, including BRB, use a shared representation, with all
functions represented by a single, multi-rooted graph [52]. Formally, we can de-
fine a shared OBDD as representing a set of functions F , where each f ∈ F is
designated by a root vertex in the graph. As we have seen, this approach has several
advantages over a separate representation:
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• it reduces the total number of vertices required to represent a set of functions,
• it simplifies the task of checking for equality, and
• it provides additional cases where the recursions for operations such as APPLYand

RESTRICT can be terminated (see Fig. 5)

On the other hand, using a shared representation introduces the need for some form
of garbage collection to avoid having the available space exhausted by vertices that
are no longer reachable from any of the active root vertices. Most shared OBDD
implementations maintain a count of the total number of references to each vertex,
including arcs from other vertices as well as external references to the root vertices.
A vertex is a candidate for reclamation when its reference count drops to zero. Re-
claiming a vertex also involves removing the corresponding entry from the unique
table as well as every entry in the computed cache that references that vertex as part
of its key or value.

The BRB package makes use of complement edges, where each edge has an ad-
ditional attribute indicating whether or not the designated function is represented in
true or complemented form. By adopting a set of conventions on the use of these at-
tributes, it is possible to define a canonical form such that the NOT operation can be
computed in constant time by simply inverting the attribute at the root [12, 45, 52].
By sharing the subgraphs for functions and their complements, such a representation
can reduce the total number of vertices by as much as a factor of two. Perhaps more
importantly, it makes it possible to perform the NOT operation in unit time. We can
also see from Fig. 5 that the combination of a shared representation and complement
edges provides additional terminal cases for Apply and other operations.

The BRB package generalizes the two-operand Boolean operations to a single
three-argument operation known as ITE (short for “If-Then-Else”), defined as:

ITE(f, g,h)= (f ∧ g)∨ (¬f ∧ h). (7)

Using this single operation, we can implement other operations as:

AND(f, g)= ITE(f, g,0)

OR(f, g)= ITE(f,1, g)

XOR(f, g)= ITE
(
f,NOT(g), g

)

COMPOSE(f, i, g)= ITE
(
g,RESTRICT(f, i,1),RESTRICT(f, i,0)

)
.

By rearranging and complementing the arguments according to a simple set of
transformations, unifying the algebraic operations in this form can take advantage
of De Morgan’s Laws to increase the hit rate of the computed cache [12]. This can
dramatically improve overall performance, since each hit in the computed cache can
potentially eliminate many recursive calls.

One feature of BRB and most other packages is that the individual node data
structures are immutable. During program execution, new nodes are created, and
ones that are no longer needed can be recycled via garbage collection, but the nodes
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themselves are not altered.1 This functional programming model provides a useful
abstraction for a Boolean function API, but it also implies that the package can
expend much of its effort performing memory management tasks. New nodes must
be created and old ones recycled, rather than simply letting the program modify
existing nodes.

Several OBDD packages have been implemented that instead view the OBDD as
a mutable data structure. For example, the SMART model checker [24] represents
the set of states that have been encountered during a state-space exploration using a
variant of OBDDs, called multi-valued decision diagrams (MDDs), that we describe
in Sect. 7.9. As new states are encountered, the MDD is modified directly to include
these states in its encoding. When performing model checking of asynchronous sys-
tems, as is the case with SMART, this approach seems appropriate, since each action
of the system can be captured by a small change to the MDD.

7.7 Variable Ordering and Reordering

The algorithms we have presented require that the variables along all paths for
all represented functions follow a common ordering. Any variable ordering can
be used, and so the question arises: “How should the variable ordering be cho-
sen?” Some functions are very sensitive to variable ordering, ranging from linear
to exponential in the number of variables. These include the functions for bit-level
representations of integer addition and comparison. Others, including all symmet-
ric functions, remain of polynomial size for all variable orderings [15]. Still others
have exponential size for all possible variable orderings, including those for a bit-
level representation of integer multiplication [16].

We can express the choice of variable ordering by considering the effect of per-
muting the variables in the OBDD representation of a function. That is, for Boolean
function f and permutation π over {1, . . . , n}, define π(f ) to be a function such
that

π(f )(x1, . . . , xn)= f (xπ(1), . . . , xπ(n)).
Different permutations π yield different OBDDs, but all of these can be viewed as
just different representations of a single underlying function. The task of finding
a good variable ordering for a function f can then be defined as one of finding a
permutation π that minimizes the number of vertices in the OBDD representation of
π(f ). For a shared OBDD representation, we wish to find a good variable ordering
for the entire graph. That is, for permutation π and function set F , define π(F) to
be {π(f ) | f ∈ F}. For a shared OBDD implementation, we seek a permutation π
that minimizes the number of vertices in the OBDD representation of π(F).

1There is a nuance to this statement that we will discuss when we consider the implementation of
dynamic variable reordering.
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In general, the task of finding an optimal ordering π for a function f is NP-hard,
even when f is given as an OBDD [9]. There is not even a polynomial-time algo-
rithm that can guarantee finding a variable ordering within a constant factor of the
optimum, unless P= NP [61]. Similar results hold for a shared OBDD representa-
tion [65]. Published algorithms to find the exact optimal ordering have worst-case
time complexity O(n3n) [32] for a function with n variables. Knuth has devised
clever data structures that make the process practical for up to around n= 25 [41].

Instead of attempting to find the best possible ordering, a number of researchers
have derived heuristic methods that have been found to generate reasonably good
variable orders for specialized applications, such as when the Boolean function is
derived from a combinational circuit [33, 46], a sequential circuit [39], a CNF rep-
resentation [3], or a set of interacting state machines [6].

An alternate approach to finding a good variable ordering at the outset of the
computation is to dynamically reorder the variables as the BDD operations proceed.
This idea was introduced by Rudell [59], based on the observation that exchang-
ing two adjacent variables in a shared OBDD representation can be implemented
without making major changes to the Boolean function library API. Let πi be the
permutation that exchanges the values of i and i + 1, while keeping all other ele-
ments the same. Exchanging variables i and i+ 1 in a shared OBDD representation
involves converting the OBDD representation of function set F into one for function
set πi(F). This transformation can be implemented by introducing new vertices and
relabeling and eliminating some of the existing vertices, but with the property that
the identities of all root vertices are preserved. This is an important property, since
external references to functions being manipulated by the application program con-
sist of pointers to root vertices in the graph. Thus, the reordering can be performed
without altering any of these external references. Even though the relabeling of ver-
tices mutates the node data structures, these changes still preserve the “functional”
property stated earlier—the underlying functions being represented do not change.

Using pairwise exchanges of adjacent variables as the basic operation, most
OBDD libraries implement dynamic variable ordering by a process known as sifting
[59]. A single variable, or a small set of variables [57], is moved up and down in
the ordering via a sequence of adjacent-variable exchanges, until a location yielding
an acceptable number of total vertices is identified. In the original formulation of
sifting, a variable is moved across the entire range of possible positions and then
back to the position that minimizes the overall OBDD size. More recently, lower
bound techniques have been used to guide the range over which each variable is
moved [30]. Sifting is a very time-consuming process, but it has been shown to
greatly improve memory performance—often the limiting factor for OBDD-based
applications.

7.8 Variant Representations

Researchers have examined many variants of OBDDs, both for representing
Boolean functions and for extending to functions where the domain, the range, or
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Fig. 6 BDD and ZDD
representations of the set of
sets {{1,2}, {3}, {2,3}}

both are non-Boolean. Here we survey some of the variants that have either proved
effective for model checking or that seem especially promising. Some of these were
also described in an earlier survey [18]. Other surveys provide even more compre-
hensive coverage of the many innovative variants of OBDDs that have been devised
[31].

Zero-Suppressed BDDs

Perhaps the most successful variant of OBDDs are zero-suppressed BDDs [51],
sometimes referred to as ZDDs. This representation differs from traditional OBDDs
only in the interpretation applied to the case where an arc skips one or more vari-
ables. That is, it concerns the case where there is an arc emanating from a vertex v
with label var(v) = xi to a vertex u with label var(u) = xj , such that j > i + 1.
In the example of Fig. 2 (reproduced on the left-hand side of Fig. 6), such an
arc occurs from the root vertex v1 to vertex v3. With conventional OBDDs, such
an arc indicates a case where the represented function is independent of any of
the intervening variables. In the example, f |x1←0 is independent of x2. With a
ZDD, such an arc indicates a case where the represented function is of the form
¬xi+1 ∧ · · · ∧ ¬xj−1 ∧ fu, where fu is the function associated with vertex u. For
ZDDs, we replace the second reduction rule for OBDDs (that a vertex cannot have
two identical children) with a rule that no vertex can have the 0-leaf as its hi child.

More formally, we can define the Boolean function denoted by a ZDD by defin-
ing a set of functions of the form f

j
v for each vertex v. For leaf vertex v, we define

this set for all j ≤ n+ 1 as follows:

f jv =
⎧
⎨

⎩

1 , j = n+ 1 and val(v)= 1
0 , j = n+ 1 and val(v)= 0

¬xj ∧ f j+1
v , j ≤ n.
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For nonterminal vertex v having xi = var(v) we define this set for all j ≤ i as:

f jv =
{
xi ∧ f i+1

hi(v) ∨ ¬xi ∧ f i+1
lo(v) , j = i

¬xj ∧ f j+1
v , j < i.

The function associated with root vertex v is then f 1
v .

Although ZDDs can be considered an alternate representation for Boolean func-
tions, it is more useful to think of them as representing sets of sets. That is, let
Mn = {1, . . . , n}, and consider sets of sets of the form S ⊆ P(Mn). We can encode
any set A⊆Mn with a Boolean vector a, where ai equals 1 when i ∈A, and equals
0 otherwise. The set of sets represented by Boolean function f consists of those sets
A for which the corresponding Boolean vector yields f (a)= 1. As examples, Fig. 6
shows both the OBDD (left) and the ZDD (right) representations of the set of sets
{{1,2}, {3}, {2,3}}. The OBDD representation is identical to that of Fig. 2, because
these are the only three satisfying assignments to Eq. (5). Comparing the ZDD, we
see that, with two exceptions, each vertex vi in the OBDD has a direct counterpart
ui in the ZDD. The first exception is the introduction of new vertex u4 having two
identical children, since such vertices are no longer eliminated by our revised reduc-
tion rules. The second exception is that there is no counterpart to vertex v4, since
this vertex had the 0-leaf as its hi child.

ZDDs are especially well suited for representing sets of sparse sets, defined as
having two general properties:

• The total number of sets is much smaller than 2n.
• Most of the included sets have far fewer than n elements.

These conditions tend to give OBDD representations where many nonterminal ver-
tices have the 0-leaf as their hi children, and these vertices are eliminated by using
a ZDD representation.

The OBDD and ZDD representations of a function do not differ greatly in size.
It can easily be shown that if these two representations have No and Nz vertices,
respectively, then Nz/n ≤ No ≤ n × Nz [60]. Nonetheless, for complex functions
and large values of n, the advantage of one representation over the other can be very
significant.

ZDDs have proved especially effective for encoding combinatorial problems [41,
60]. They have been used in model checking for cases where the set of states has
the sparseness properties we have listed, such as for Petri nets [69].

Partitioned OBDDs

The general principle of partitioned OBDDs is to divide the 2n possible combi-
nations of variable assignments into m different, nonoverlapping subsets, and then
create a separate representation for a function over each subset.

More formally, define a set of partitioning functions as a set of functions P =
〈p1, . . . , pm〉, such that

∨
i pi = 1 and for each i and j such that i �= j , we have

pi ∧ pj = 0.
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Each function f is then represented by a set of functions 〈f1, . . . fm〉, where
each fi equals f ∧ pi . It can readily be seen that the Boolean operations distribute
over any partitioning. For example, for h = f ∨ g, we have hi = fi ∨ gi for each
partition i. On the other hand, other operations, including restriction, quantification,
and composition do not, in general, distribute over a partitioning.

Partitioning has been shown to be effective for applications where conventional,
monolithic OBDDs would be too large to represent and manipulate. One approach
is to allow different variable orderings for each partition [54]. This approach works
well for applications where some small set of “control” variables determine impor-
tant properties of how the remaining variables relate to one another. The different
partitions then consist of all possible enumerations of these control variables.

As will be discussed later (Sect. 7.10), partitioning can also provide the basis
for mapping an OBDD-based application onto multiple machines in a distributed
computing environment.

7.9 Representing Non-Boolean Functions

Many systems for which we might wish to apply model checking involve state vari-
ables or parameters that are not Boolean. A number of schemes have been devised to
represent such functions as decision diagrams, seeking to preserve the key properties
of OBDDs: (1) they achieve compactness, mostly through the sharing of subgraphs,
(2) key operations can be implemented via graph algorithms, and (3) properties of
the represented functions can readily be tested. Here we describe some of the deci-
sion diagrams that have been used in model checking and related applications.

Functions over Discrete Domains

Consider the case where function variable x ranges over a finite set D =
{d0, . . . , dK−1}. There are several possible ways to represent a function over x as a
decision diagram:

Binary encoding: Recode x in terms of Boolean variables xk−1, xk−2, . . . , x0,
where k = (log2K). Each value di is encoded according to the binary represen-
tation of i. When K is not a power of 2, then we can either (1) add an additional
constraint that any valid assignment to the Boolean variables must correspond to
a binary value less thanK , or (2) define multiple assignments to the Boolean vari-
ables to encode a single value from D. A binary encoding minimizes the number
of Boolean variables required.

Unary encoding: Recode x in terms of Boolean variables bK−1, bK−2, . . . , b0,
where value di is encoded by having xi = 1 and all other values equal to zero.
Except for very small values of K , this encoding would be impractical for OB-
DDs, but it works well for ZDDs.
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Multiway branching: Generalize the OBDD data structure to multi-valued decision
diagrams [24, 40], where a vertex for a K-valued variable has an outgoing arc for
each of its K children.

Indeed, all three of these approaches have been used successfully.
For representing functions over discrete domains having non-Boolean ranges, the

most straightforward approach is to allow the leaves to have arbitrary values, leading
to multi-terminal binary decision diagrams (MTBDDs) [34]. (These have also been
called algebraic decision diagrams (ADDs) [7].) More precisely, for a function f
mapping to some codomain R, define its image Img(f ) as those values r ∈ R such
that r = f (a) for some argument value a. Then the MTBDD representation of f
has a leaf vertex for each value in Img(f ).

The set of operations on such functions depends on the type of functions being
represented. Typically, they follow the same approach we saw with the algorithm
for the Apply operation (Sect. 7.5)—they recursively traverse the argument graphs,
stopping when either a terminal case is reached, or the arguments match those stored
in a computed cache. For example, when R is either the set of reals or integers,
such an approach can be used to perform algebraic operations such as addition or
multiplication over functions. It can also be used to generate a predicate, capturing
some property of the function values. For example, for function f mapping to real
values, let Zf be the Boolean function that yields 1 for those arguments a for which
f (a) = 0.0, and 0 otherwise. We can generate an OBDD representation of Zf by
traversing the MTBDD representation of f , returning 1 when we encounter leaf
value 0.0, 0 when we encounter a nonzero leaf value, and either generating a new
vertex or retrieving one from the unique table for the nonterminal cases.

MTBDDs have been used for a variety of applications, encoding such values as
data-dependent delays in transistor circuits [48], as well as transition probabilities
in Markov chains [43]. Their biggest limitation is that the size of a function image
can be quite large, possibly exponential in the number of function variables. Such a
function will have many leaf vertices and therefore little sharing of subgraphs. This
lack of sharing will reduce the advantage of decision diagrams over more direct
encodings of the problem domain, both in the compactness of the representation
and the speed of the operations on them. Successful applications of MTBDDs often
avoid this “value explosion” by exploiting the modularity in the underlying system.
For example, when performing model checking of stochastic systems, the transition
probabilities for the different subsystems can be maintained as separate MTBDDs,
rather than combined via a product construction [2].

Functions over Unbounded Domains

When a function variable x ranges over an infinite domain D, we cannot simply
encode its possible values with a set of binary values or add multiple branches to
the vertices of a decision diagram. In some applications, however, we need only
capture a bounded set of attributes of the state variables. In this section, we describe
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Fig. 7 Difference Decision Diagram (DDD) Examples. Vertices are labeled by difference con-
straints

Difference Decision Diagrams (DDDs) [53] as an example of this approach. DDDs
illustrate a general class of decision diagrams, where the decisions are based on
predicates over some domain, rather than simple Boolean variables. We then discuss
several variants and extensions of this representation.

The Difference Decision Diagram data structure was devised specifically for an-
alyzing timed automata. As discussed in Chap. 29 [11], a timed automaton operates
over a discrete state space but also contains real-valued clocks that all proceed at the
same rate, but can be at different offsets with respect to one another [4]. Although the
clock values can be unbounded, their behavior can be characterized during model
checking in terms of a finite set of bounds on their differences. DDDs therefore ex-
press the values of the clocks in terms of a set of difference constraints, each of the
form xi − xj ≤ c or xi − xj < c, where xi and xj are clock variables, and c is an
integer or real value. In the spirit of OBDDs, DDDs also impose an ordering require-
ment over difference constraints, based on the indices i and j of the two variables,
the comparison operator (≤ vs. <), and the constant c.

Figure 7 show three examples of DDDs and serves to illustrate some subtle issues
that arise when generalizing from a decision diagram where the decisions represent
independent Boolean variables to one in which the decisions represent predicates
over some other domain. The DDD on the left (A) represents a disjunction of two
different constraints C1 and C2, defined as follows:

C1 = (x1 − x2 > 4)∧ (x1 − x3 ≤ 12)

C2 = (x1 − x2 ≤ 4)∧ (x2 − x3 ≤ 5)

The DDD in the center (B) also represents a disjunction of two constraints: C1, as
in (A), as well as a constraint C′2:

C′2 = (x1 − x2 ≤ 4)∧ (x2 − x3 ≤ 5)∧ (x1 − x3 > 10).
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On closer examination, however, we can see that constraint C′2 must be false for
all values of x1, x2, and x3. That is, if x1 − x2 ≤ 4 and x2 − x3 ≤ 5, then we must
have x1 − x3 ≤ 9, and this conflicts with the term x1 − x3 > 10. The possibility of
infeasible paths implies that there is no simple way to determine whether a set of
constraints represented as a DDD is satisfiable, whereas this is a trivial task with
OBDDs. In particular, it is possible to determine whether any path in a DDD from
the root to the 1-leaf is satisfiable in polynomial time, but there can be an exponential
number of such paths.

The DDD on the right (C) represents a disjunction of constraint C1, as before,
and a constraint C′′2 :

C′′2 = (x1 − x2 ≤ 4)∧ (x2 − x3 ≤ 5)∧ (x1 − x3 ≤ 9).

We can see that constraint C′′2 is mathematically equivalent to C2; the first and sec-
ond terms of C′′2 already imply that the third term, x1− x3 ≤ 9, is redundant. In fact,
constraint C′′2 is saturated, meaning that it contains a predicate for every pairwise
constraint that can be inferred from it.

These examples show how the interdependencies between the predicates can lead
to paths in a DDD that are infeasible, as well as ones where different combinations
of terms can be mathematically equivalent. The developers of DDDs describe an
algorithm that eliminates infeasible paths by testing each one individually and re-
structuring the DDD when an infeasible path is found [53]. In the worst case, this
process can require time exponential in the size of the DDD, and it can also increase
its size. Once infeasible paths have been eliminated, then satisfiability becomes eas-
ily testable. The developers also propose several rules for dealing with redundant
tests, including ensuring that every path is saturated. This leads to a form that they
conjecture is canonical, although this has apparently never been proven. Fortunately,
most of the algorithms that use DDDs do not require having a canonical representa-
tion.

Several other decision diagrams have been devised specifically for model check-
ing of timed automata. Clock difference diagrams [44] coalesce the predicates of
difference decision diagrams, such that along any path there is a single node repre-
senting all constraints on a given pair of variables xi and xj . This node has multiple
outgoing branches, corresponding to disjoint intervals representing possible values
for xi − xj . Clock restriction diagrams [66] also have multiple branches emanating
from a single node associated with variables xi and xj , but these represent possible
upper bounds on the value of xi − xj . (Lower bounds on this value are represented
as upper bounds on the value of xj − xi .)

Although the focus of much of the work in representing constraints on real-
valued variables was motivated by the desire to perform symbolic model checking
on timed automata, such constraints arise in other applications as well. DDDs can
represent difference constraints of the form xi − xj ≤ c. Other constraints of inter-
est include box constraints of the form xi ≤ c, or more generally, arbitrary linear
constraints of the form a1 · x1+ a2 · x2+ · · ·+ an · xn ≤ c. Linear decision diagrams
extend DDDs to include such constraints [23]. With both DDDs and LDDs, it is
also possible to have nodes labeled by Boolean variables as well as ones labeled
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by constraints. Such decision diagrams can be used when verifying hybrid systems,
containing both continuous and discrete state variables.

We can see a parallel between these different forms of decision diagrams and
SMT solvers (Chap. 11 [8]). Just as SMT extends Boolean satisfiability solvers to
implement decision procedures for other mathematical theories, these generaliza-
tions of decision diagrams extend OBDDs to symbolically represent functions over
other theories. Both must deal with cases where some combination of constraints
is infeasible, leading to conflicts in SMT solvers and infeasible paths in decision
diagrams.

7.10 Scaling OBDD Capacity

Although the introduction of OBDD-based symbolic model checking in the early
1990s provided a major breakthrough in the size and complexity of systems that
could be verified, the nature of our field and our desire to apply our tools to real-
world systems means that we will always seek to scale them to handle ever larger
and more complex problems. Computer systems continue to scale—individual ma-
chines have more memory, more cores, and larger disk capacity. In addition, we
routinely map problems onto larger clusters of machines that are programmed to
work together on a single task. One would expect BDD libraries to have evolved
to take advantage of these technological advantages, but unfortunately this is not
the case. Most widely used BDD packages still execute on a single core of a single
machine, and they are barely able to use the amount of physical memory available
on high-end machines. In this section, we highlight some of the efforts to scale the
capacity of OBDD implementations, and some of the challenges these efforts face.

In most applications of OBDDs, the ability to handle larger and more complex
problems is limited more by the size of the OBDDs generated, rather than the CPU
performance. In the extreme case, very large OBDDs can grow to exceed the mem-
ory capacity of a machine. On a 64-bit machine, storing the OBDD nodes and all of
the associated tables requires, on average, around 40 bytes per node. Thus a machine
with 16 GB of RAM should, in principle, be able to support OBDD applications us-
ing up to around 400 million nodes. In practice, however, the performance of most
OBDD implementations becomes unacceptably slow well before that point, due to
poor memory-system performance. Traversing graphs in depth-first order (as occurs
with the recursive implementation of the Apply algorithm described in Sect. 7.5)
tends to yield poor virtual memory and cache performance, due to a lack of locality
in the memory access patterns. Standard implementations of the hash tables used
for the unique table and the computed cache also exhibit poor memory locality.

Some efforts have been made to implement OBDDs with an eye toward mem-
ory performance [5, 55, 58, 68]. These typically employ breadth-first traversal tech-
niques and try to pack the vertices for each level into a contiguous region of memory.
A breadth-first approach also lends itself to an implementation where most of the
data are stored on a large disk array [42]. Unfortunately, none of these ideas seem
to have been incorporated into publicly available OBDD packages.
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Early efforts to exploit parallelism in OBDD operations demonstrated the dif-
ficulty of this task. Most were implemented in a “shared nothing” environment,
where each processor has its own independent memory and can only communicate
with other processors via message passing. These implementations require some
strategy for partitioning the OBDD, so that each node is assigned to some proces-
sor. In a message-passing environment, traversing a graph that is partitioned across
machines requires message communications, versus the simply memory referenc-
ing that occurs on a single machine, and so the performance improvements due to
greater parallelism must overcome the potentially high cost of node referencing.
Implementations based on a random partitioning of the nodes [64] only showed
performance superior to a sequential implementation when the size of the graph ex-
ceeded the capacity of a single processor’s memory. In an attempt to minimize the
need for message passing, other implementations used a layered partitioning, where
the range of variable indices is divided into subranges, and all nodes within a given
subrange are mapped onto a single machine. Implementations that were specialized
to symbolic model checking could use a partitioning where different regions of the
state space were mapped onto different machines [37], following the principles of
partitioned OBDDs.

The recent availability of multicore processors supporting multiple threads exe-
cuting within a single memory space has revived interest in exploiting parallelism
in OBDD operations. There are two natural sources of parallelism: internal, in
which individual operations such as Apply use multiple threads [29], and exter-
nal, in which a multi-threaded application can invoke multiple Apply operations
concurrently [56]. An implementation that uses only internal parallelism requires
no changes to the API, while those that support external parallelism can use some
mechanism, such as futures, to allow one thread to invoke an operation on OBDDs
that are still being generated by other threads.

With the entire OBDD and all of the tables held in a shared memory, any core
can access any node or table entry via a memory reference. Obtaining good perfor-
mance requires careful attention to memory locality and to the potential for thrash-
ing, where multiple threads compete to read and write a small number of cache
lines. Such thrashing can occur due to poor design of user data structures or due
to excessive calls to synchronization primitives. Excessive synchronization can also
lead to a loss of parallelism among the threads.

Perhaps the most ambitious attempt to map an OBDD implementation onto mul-
ticore processors has been by researchers at the University of Twente [29]. Their
system maintains a set of workers, each of which maintains a queue of tasks. The
system implements the Apply operation with a task for each recursive step. To per-
form the recursion, each task then spawns two new tasks, with one performed by the
current worker and the other added to the worker’s queue. Workers are kept busy by
having them execute the tasks in their own queues, and “stealing” tasks from other
queues when needed. As the computation unfolds, this overall approach will have
the effect of having many workers collaboratively executing the Apply operation
over different parts of the argument graphs. The system maintains a single unique
table and a single computed cache as a way of maintaining consistency and avoiding
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duplicate efforts by the workers. By carefully designing these tables to use lockless
synchronization and cache-friendly data structures, they are able to achieve high
performance.

Building a multi-processor system with coherent shared memory becomes pro-
hibitively expensive as the system scales to thousands of processors. Thus, an impor-
tant challenge remains to devise OBDD implementations that can operate effectively
in a fully distributed, shared-nothing environment.

Comparison to SAT Checking

We conclude with some observations about how OBDD-based reasoning systems
and propositional satisfiability (SAT) checkers have important similarities and dif-
ferences, both from conceptual and operational viewpoints. Clearly, both are related
in the sense that they solve problems encoded in Boolean form. On the other hand,
they differ greatly in their intended task—a SAT checker need only find a single
satisfying assignment to a Boolean formula, while converting a Boolean formula
to an OBDD creates an encoding that describes all of its satisfying solutions. Once
we have generated the OBDD representation, it becomes straightforward to perform
tasks that SAT solvers cannot readily do, such as counting the number of solutions,
or finding an optimal solution for some cost function. Furthermore, OBDDs support
operations, such as variable quantification, that have proved to be very challenging
extensions for SAT checking.

For most applications of satisfiability testing, SAT checkers based on the Davis–
Putnam–Logemann–Loveland (DPLL) algorithm [27, 28] (Chap. 9 [47]) greatly
outperform ones that construct an OBDD and then call the SATISFY operation to
generate a solution. There are some notable exceptions, however. For example,
Bryant conducted experiments on satisfiability problems to test the equivalence of
parity trees—networks of exclusive-or logic gates computing the odd parity of a set
of n Boolean values [19]. Each experiment tested whether a randomly generated
tree was functionally equivalent to one consisting of a linear chain of logic gates.
We performed tests using four state-of-the-art SAT solvers, but none could handle
cases of n= 48 inputs within a 900 second time limit. These parity tree problems are
known to be difficult cases for DPLL, or in fact any method based on the resolution
principle. By contrast, an OBDD-based solver could readily handle such problems
in well under 0.1 seconds. Indeed, the OBDD representation of the parity function
grows only linearly in n.

This example illustrates the opportunity to devise SAT checkers that combine
top-down, search-based strategies, such as DPLL, with ones based on bottom-up,
constructive approaches, such as OBDDs. One approach is to replace the traditional
clause representation of SAT solvers with OBDDs, where the task becomes to find
a single variable assignment that yields 1 for all of the OBDDs [26]. Beyond the
usual steps of a SAT solver, the solver can also replace some subset of the OBDDs
with their conjunction. This approach can deal with problems for which OBDDs
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outperform DPLL (e.g., the parity tree example), while also getting the performance
advantages of DPLL-based SAT solvers.

Other connections between OBDDs and DPLL-based SAT solvers arise due to
the observation that the search tree generated by DPLL bears much resemblance
to an OBDD: each selection of a decision variable in DPLL creates a vertex in the
search tree, with outgoing branches based on the value assigned to the variable.
Depending on the decision heuristic used, DPLL might follow a common variable
ordering across the entire tree, yielding a tree that obeys the ordering constraint of
OBDDs, or it may have different orderings along different paths. These are analo-
gous to a class of BDDs known as “free BDDs,” in which variables can occur in any
order from the root to a leaf in the graph, but no variable can occur more than once
[36].

Huang and Darwiche exploit this relationship to modify an existing DPLL-based
SAT solver to instead generate the OBDD representation of a formula given in CNF
form [38]. They found this top-down approach to OBDD construction fared better
for formulas expressed in CNF than did the usual bottom-up method based on the
Apply algorithm. Along related lines, methods have been developed to analyze the
clausal representation of a formula and generate a variable ordering that should work
well for either SAT checking or for OBDD construction [3].

7.11 Concluding Remarks

Symbolic model checking arose by linking a model checking algorithm based on
fixed-point computations with binary decision diagrams to represent the underlying
sets and transition relations [10, 21, 25, 49]. This yielded a major breakthrough in
the size and complexity of systems that could be verified. Since that time, OBDDs
have been applied to many other tasks, but model checking remains one of their
most successful applications. Even as model checkers have been extended to use
other reasoning methods, especially Boolean satisfiability solvers, OBDDs have still
proved valuable for supporting the range of operations required to implement full-
featured model checkers.

Several major goals drive continued research on OBDDs and related representa-
tions. First, the desire to represent larger functions requires scaling OBDD imple-
mentations to exploit the memory sizes and multicore capabilities of modern pro-
cessors, as well as large-scale, cluster-based systems. Second, possible variants on
OBDDs may enable them to represent Boolean functions in more compact forms.
Finally, the desire to verify systems having state variables that range over larger dis-
crete domains, as well as infinite domains, provides a motivation to create types of
decision diagrams that can represent other classes of functions.

The resulting research efforts continue to yield novel ideas and approaches, while
taking advantage of the key property of OBDDs: that they can represent a variety of
functions in a compact form, and that they can be constructed and analyzed using
efficient graph algorithms. Future developments will certainly enhance the ability of
OBDD-based methods to support model checking.



214 R.E. Bryant

References

1. Akers, S.B.: Binary decision diagrams. IEEE Trans. Comput. C-27(6), 509–516 (1978)
2. de Alfaro, L., Kwiatkowska, M., Parker, G.N.D., Segala, R.: Symbolic model checking

of probabilistic processes using MTBDDs and the Kronecker representation. In: Graf, S.,
Schwartzbach, M. (eds.) Tools and Algorithms for the Construction and Analysis of Systems
(TACAS). LNCS, vol. 1785, pp. 395–410. Springer, Heidelberg (2000)

3. Aloul, F.A., Markov, I.L., Sakallah, K.A.: Faster SAT and smaller BDDs via common func-
tion structure. In: Proc. of the Intl. Conf. on Computer-Aided Design (ICCAD), pp. 443–448.
IEEE, Piscataway (2001)

4. Alur, R., Dill, D.: A theory of timed automata. Theor. Comput. Sci. 126(2), 183–235 (1994)
5. Ashar, P., Cheong, M.: Efficient breadth-first manipulation of binary decision diagrams. In:

Proc. of the Intl. Conf. on Computer-Aided Design (ICCAD), pp. 622–627. IEEE, Piscataway
(1994)
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Chapter 8
BDD-Based Symbolic Model Checking

Sagar Chaki and Arie Gurfinkel

Abstract Symbolic model checking based on Binary Decision Diagrams (BDDs)
is one of the most celebrated breakthroughs in the area of formal verification. It was
originally proposed in the context of hardware model checking, and advanced the
state of the art in model-checking capability by several orders of magnitude in terms
of the sizes of state spaces that could be explored successfully. More recently, it has
been extended to the domain of software verification as well, and several BDD-
based model checkers for Boolean programs and push-down systems have been
developed. In this chapter, we summarize some of the key concepts and techniques
that have emerged in this story of successful practical verification.

8.1 Introduction

Algorithms for temporal logic model checking [14] were initially implemented in
an explicit-state manner. This means that all automata involved in verification were
represented using explicit graph-based data structures. Such automata include the
Kripke structures as well as Büchi automata and tableaux obtained from the tempo-
ral logic specifications. In particular, the edges of the graph (which are in the worst
case quadratic in the number of nodes) were represented using adjacency lists, ma-
trices, etc.

From a theoretical perspective, the data structure used to represent the automata
makes no difference whatsoever. From a practical perspective, however, this meant
that model checkers could only handle automata with at most 103 to 106 reachable
states [8]. Verification of most realistic systems was beyond the capability of such
explicit-state engines. For example, a CPU with a single 32-bit register has more
than 232 ≈ 4× 109 possible states. Practical hardware verification via model check-
ing had to wait for another breakthrough.

S. Chaki (B)
Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA, USA
e-mail: chaki@sei.cmu.edu

A. Gurfinkel
University of Waterloo, Waterloo, ON, Canada

© Springer International Publishing AG, part of Springer Nature 2018
E.M. Clarke et al. (eds.), Handbook of Model Checking,
DOI 10.1007/978-3-319-10575-8_8

219

mailto:chaki@sei.cmu.edu
http://dx.doi.org/10.1007/978-3-319-10575-8_8


220 S. Chaki and A. Gurfinkel

The breakthrough appeared in the form of BDD-based symbolic model check-
ing [8]. This paradigm uses a data structure called binary decision diagrams, BDDs,
(see Chap. 7 and [1, 6]). BDDs are used to symbolically represent the transition re-
lation of the automata or Kripke structures under analysis, and sets of states manip-
ulated by the model-checking algorithm. Representing and manipulating transition
relations and sets of states is sufficient for implementing model-checking algorithms
for a wide range of temporal logics, for example, using the fixed-point construction
described in Chap. 2.

Since its inception, BDD-based symbolic model checking has revolutionized for-
mal verification and formal methods in profound ways. First, it has enabled practical
verification of industrial systems—beginning with hardware [7] and extending to
software [3]. Second, it has led to important developments for BDDs, such as new
types of BDDs [22], variable-ordering heuristics [2, 24] and efficient implementa-
tions [31]. Finally, it has paved the way to other forms of symbolic model checking,
especially those using efficient SAT solvers [4] and interpolants [21].

In this chapter, we present some of the key concepts and techniques in the area of
BDD-based symbolic model checking. More specifically, we use reduced ordered
BDDs (or ROBDDs). Unless otherwise mentioned, we use BDD to mean ROBDD.
The goal of this chapter is not to be a comprehensive exposition of this rich and well-
studied research area. Instead, we wish to present the basic ideas and algorithms to
help someone unfamiliar with this topic get started, and to cite resources for the
interested reader to find out more.

The rest of this chapter is organized as follows. Section 8.2 presents preliminary
definitions borrowed from other chapters in the book. Section 8.3 presents basic
concepts used in the rest of the chapter. Section 8.4 represents symbolic model
checking of Kripke structures for CTL, fair CTL, and LTL. Section 8.5 presents
symbolic model checking of reachability properties of push-down systems repre-
sented as Boolean programs. Section 8.6 concludes the chapter.

8.2 Preliminaries

Binary decision diagrams (BDDs) and their related concepts such as variable order-
ing and operations are presented in detail in Chap. 7. Therefore, we only give a brief
overview of the BDD concepts and notation that are used in the rest of this chap-
ter. Throughout, we assume that BDDs are ordered with respect to a fixed variable
ordering and are reduced.

For set X, we write P(X) to mean the powerset of X. For a propositional for-
mula f , let Var(f ) be the set of variables (a.k.a. atomic propositions) appearing
in f . We assume that the reader is familiar with the basic concepts of temporal logic
and its model-checking algorithms (see Chap. 2) and basic BDD operations (see
Chap. 7). However, we use different notation and, for that reason, repeat some of
the key definitions here. We refer the reader to earlier chapters for a more in-depth
presentation of these topics.
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Table 1 Correspondence between notations used in this chapter and Chap. 7

Name Notation in this chapter Notation in Chap. 7

Negation ¬f NOT(f)

Conjunction f∧ g AND(f,g)

Disjunction f∨ g OR(f,g)

Existential
Quantification

∃xi � f EXISTS(f, i)

Variable
Substitution

COMPOSE(g2,1, v′1), where

gn = COMPOSE(f, n, v′n)
Bdd(f [v1, . . . , vn/v

′
1, . . . , v

′
n]) gn−1 = COMPOSE(gn, n− 1, v′n−1)

· · ·
g2 = COMPOSE(g3,2, v′2)

Definition 1 (BDD) Reduced ordered BDDs are canonical representations of
Boolean propositional formulas. The BDD for a formula f , denoted by Bdd(f ),
is a directed acyclic graph (DAG). Given two BDDs Bdd(f ) and Bdd(g), there are
efficient algorithms to compute BDDs for the following operations:

• negation, ¬Bdd(f ), computes Bdd(¬f )
• conjunction, Bdd(f )∧ Bdd(g), computes Bdd(f ∧ g)
• disjunction, Bdd(f )∨ Bdd(g), computes Bdd(f ∨ g)
• projection, ∃v � Bdd(f ), computes Bdd(∃v � f ) where v ∈ Var(f ).
• renaming, computes Bdd(f [v1, . . . , vn/v

′
1, . . . , v

′
n]), where f [v1, . . . , vn/

v′1, . . . , v′n] is the formula obtained by simultaneously replacing each occurrence
of vi in f with v′i for 1≤ i ≤ n.

These operations are explained in detail in Chap. 7. Table 1 summarizes the corre-
spondence between the notation used in this chapter and that of Chap. 7. For sim-
plicity of presentation, we abuse notation by using propositional connectives, such
as ∧ and ∨, both as logical connectives and as the corresponding BDD operations.
For example, f ∧ g stands for a conjunction of propositional formulas f and g,
while Bdd(f ) ∧ Bdd(g) stands for the BDD operation AND( ), which constructs
the canonical BDD for f ∧ g directly from BDDs for f and g. Furthermore, we
sometimes write f for Bdd(f ), 0 for Bdd(FALSE), and 1 for Bdd(TRUE).

Definition 2 (Kripke structure) Let AP be a finite set of atomic propositions.
A Kripke structure is a triple (S,R,L) where S is a finite set of states, R ⊆ S × S
is a transition relation, and L : S �→P(AP) labels each state with a set of atomic
propositions.

Definition 3 (Model checking) Given a Kripke structure M = (S,R,L), a desig-
nated initial state s0 ∈ S, and a temporal logic formula ϕ, the model-checking prob-
lem is to decide whether M is a model of ϕ, i.e., whether M,s0 |= ϕ.
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8.3 Binary Decision Diagrams: The Basics

Any model-checking algorithm for deciding M |= ϕ must somehow represent the
Kripke structure M and manipulate sets of its states. In explicit-state model check-
ing,M is represented explicitly as a graph (with the edges represented via matrices,
adjacency lists, etc.) and sets of states are represented using standard data struc-
tures for sets of vertices (e.g., lists, balanced trees, hash tables, etc.). In contrast, in
symbolic model checking, both the transition relation of M and its sets of states are
modeled by Boolean functions and are represented symbolically by propositional
formulas. Operations over sets of states are performed as symbolic manipulation
of the corresponding formulas. While it is possible to manipulate the formulas di-
rectly, for example, using their abstract syntax trees (ASTs), efficient algorithms
require efficient data structures to represent the formulas compactly and manipulate
them efficiently. In this section, we show how BDDs are used for this purpose in
symbolic finite-state model checking.

In the rest of this section, we fix M to be a Kripke structure M = (S,R,L) over
k atomic propositions AP= {p1, . . . , pk}.

8.3.1 Representing Sets and Relations

In this section, we present key concepts needed to represent sets of states and transi-
tion relations symbolically. We begin with the notion of the characteristic function
of a set, which connects sets with logical formulas. Next, we show how characteris-
tic functions are used to represent sets of states and transition relations symbolically.

8.3.1.1 Characteristic Function

LetQ⊆ S be a set of states. The characteristic function ofQ, denoted by [[Q]], is a
mapping from S to {TRUE, FALSE} defined as follows:

[[Q]](s)= TRUE ⇐⇒ s ∈Q (1)

That is, [[Q]](s) is true if and only if s is an element of Q. A set of states Q is
represented by a BDD corresponding to the characteristic function [[Q]].

A literal of an atomic proposition p is either p itself or its negation ¬p.
A minterm over AP is a conjunction in which every atomic proposition in AP ap-
pears either positively or negatively. Formally, a minterm is a formula l1 ∧ · · · ∧ lk ,
where li is a literal of pi for 1 ≤ i ≤ k. Since AP has k elements, there are 2k

minterms, each corresponding to a distinct subset of AP. Minterms form a ba-
sis of propositional formulas over AP. Every propositional formula can be written
uniquely as a disjunction of all minterms that imply it.
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Fig. 1 A Kripke structure
and a BDD for its transition
relation (dashed and solid
lines represent zero- and
one-edges in the BDD,
respectively)

8.3.1.2 Representing Sets

Without loss of generality, we assume that every state s ∈ S is uniquely determined
by the valuation of the atomic propositions in it. This implies that |S| = 2|AP|. If
this is not the case, then there are two possibilities. First, assume |S| < 2|AP|; then
we add additional states to S, but make sure they do not have any incoming or
outgoing transitions. Second, assume |S|> 2|AP|. Then, there are two distinct states,
say s, t ∈ S, that agree on values of all atomic propositions. In this case, we add a
new atomic proposition p to AP , and set p to true in s and to false in t .

Under the assumption above, a state s ∈ S is uniquely determined by the set of
literals true in s, where p is true in s if and only if p ∈ L(s) and ¬p is true in s if
and only if p /∈ L(s). Formally, let χ be a mapping from S to minterms defined as
follows:

χ(s)= l1 ∧ · · · ∧ lk where li =
{
pi if pi ∈ L(s)
¬pi otherwise

(2)

Then, χ is a bijection.
For any X ⊆ S, the characteristic function [[X]] is represented by the proposi-

tional formula f (X) defined as follows:

f (X)=
∨

s∈X
χ(s) (3)

That is, s ∈ X if and only if χ(s) =⇒ f (X). X is represented symbolically by
a BDD for f (X). We use Bdd(X) (and X) to refer to Bdd(f (X)) as long as the
meaning is clear from the context.

Example 1 Consider the Kripke structure shown in Fig. 1. The corresponding func-
tion χ from states to minterms is

χ(s0)= p ∧¬q, χ(s1)= p ∧ q, χ(s2)=¬p ∧ q, χ(s3)=¬p ∧¬q
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Let X = ∅, Y = {s0, s1}, and Z = {s1, s3}. Then, the symbolic representation of the
corresponding characteristic functions are:

f (X)= FALSE, f (Y )= (p ∧¬q)∨ (p ∧ q)= p,
f (Z)= (p ∧ q)∨ (¬p ∧¬q) �

8.3.1.3 Representing Relations

To represent the transition relation R ⊆ S × S, we introduce a fresh set of
atomic propositions AP′ = {p′1, . . . , p′k}. For a formula f over AP, we write
Prime(f ) for the formula f [p1, . . . , pk/p

′
1, . . . , p

′
k], and UnPrime(f ) for the for-

mula f [p′1, . . . , p′k/p1, . . . , pk]. These operations are lifted to BDDs using a BDD
renaming operation. We now extend χ to a bijection between S × S and the set of
minterms over AP∪ AP′ as follows:

χ(s, t)= χ(s)∧ Prime
(
χ(t)

)
(4)

For any R ⊆ S × S, the characteristic function [[R]] is represented by a proposi-
tional formula f (R) as follows:

f (R)=
∨

(s,t)∈R
χ(s, t) (5)

That is, (s, t) ∈ R if and only if χ(s, t) =⇒ f (R). R is represented symbolically
using the BDD for f (R). We use Bdd(R) (and R) to refer to Bdd(f (R)) as long as
the meaning is clear from the context.

Example 2 Consider again the Kripke structure shown in Fig. 1. The symbolic rep-
resentation of its transition relation is shown below:

f (R)= (
p ∧¬q ∧ p′ ∧ q ′)∨ (

p ∧¬q ∧¬p′ ∧ q ′)∨ (
p ∧ q ∧ p′ ∧ q ′)

∨ (
p ∧ q ∧¬p′ ∧ q ′)∨ (¬p ∧ q ∧¬p′ ∧ ¬q ′)∨ (¬p ∧¬q ∧¬p′ ∧ ¬q ′)

= (
p ∧ q ′)∨ (¬p ∧¬p′ ∧ ¬q ′)

The BDD R for the transition relation is shown in Fig. 1. �

8.3.2 Image Computation

Image and pre-image computations—that is, computing the set of successors or
predecessors of a set of states, respectively—are the basic operations in any model-
checking algorithm (see Chap. 2 for more details). In this section, we show how
to implement this operation symbolically using the set and relation representations
described above.
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Given a set of states S, the image of S under the transition relation R is denoted
by Image(S,R) and is defined as follows:

Image(S,R)= {
t
∣
∣ ∃s ∈ S � (s, t) ∈R} (6)

Intuitively, Image(S,R) is the set of states reachable from S by one step of the
transition relation R. Let S and R be the symbolic representations of S and R by
BDDs over AP and AP ∪AP ′, respectively. Then, the symbolic representation of
Image(S,R), denoted BDDIMAGE(S,R), is computed as follows:

BDDIMAGE(S,R)=UnPrime(∃AP � S∧R) (7)

The computation first constructs the BDD for the conjunction of S and R, then
projects away using existential quantification all of the pre-state variables AP , and
finally renames the result from AP ′ to AP variables.

Example 3 As an example, consider the computation of BDDIMAGE(S,R), where
R is the transition relation of the Kripke structure in Fig. 1, and S = {s0}:

BDDIMAGE(S,R)

=UnPrime
(∃p,q � (p ∧¬q)∧ ((

p ∧ q ′)∨ (¬p ∧¬p′ ∧ ¬q ′)))

=UnPrime
(∃p,q � (p ∧¬q)∧ (

p ∧ q ′))

=UnPrime
(
q ′
)= q = Bdd

(
f
({s1, s2}

))

Similarly, the pre-image of S under R is denoted by PreImage(S,R) and defined
as follows:

PreImage(T ,R)= {
s
∣
∣ ∃t ∈ T � (s, t) ∈R} (8)

Intuitively, PreImage(S,R) is the set of all states that can reach a state in S by
one step of the transition relation R. Given symbolic representations T and R,
of T and R respectively, the symbolic representation of PreImage(T ,R), denoted
BDDPREIMAGE(T,R), is computed as follows:

BDDPREIMAGE(T,R)= ∃AP ′ � R∧ Prime(T) (9)

That is, the BDD for T is first renamed to be over post-state variables AP ′, then
it is conjoined with the BDD R for the transition relation, and finally all post-state
variables are quantified out existentially.
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Example 4 As an example, consider the computation of PreImage(T ,R), where R
is the transition relation of the Kripke structure in Fig. 1, and T = {s1, s2}:

BDDPREIMAGE(T,R)

= ∃p′, q ′ � ((p ∧ q ′)∨ (¬p ∧¬p′ ∧ ¬q ′))∧ Prime(q)

= ∃p′, q ′ � (p ∧ q ′)∧ q ′

= p = Bdd
(
f
({s0, s1}

))

Efficient implementations of BDDIMAGE and BDDPREIMAGE combine the con-
junction and existential quantification operations together in a single operation
called a relational product. In practice, the relational product is the bottleneck for
BDD-based model-checking algorithms. Even when the input and output of the
image computation are manageable, the intermediate results computed during the
relational product often explode. Further details on relational product and its imple-
mentation are presented in Chap. 7.

8.3.3 Partitioned Transition Relation

In the previous section, we have shown how to compute the image and pre-image of
a transition relation represented by a single BDD. This is called monolithic image
computation. In practice, often even when R, S, and Image(S,R) have efficient
BDD representations, the intermediate result is very large. This is often referred to
as the “hump” of the image computation.

In this case, it is desirable to partition the transition relation R into a set of BDDs
and operate directly on such a partitioned relation. In this section, we show two main
techniques called disjunctive and conjunctive decomposition, respectively.

8.3.3.1 Disjunctive Decomposition

Disjunctive decomposition is the simpler of the two. It is based on the fact that
existential quantification distributes over disjunction, i.e.,

∃X �A∨B ⇐⇒ (∃X �A)∨ (∃X �B) (10)

Specifically, assume that R is represented by a set of BDDs R1, . . . ,Rn such that

R=
∨

1≤i≤n
Ri (11)
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This is often the case when R is the result of asynchronous composition of several
transition relations. Then, since both existential quantification and variable renam-
ing distribute over disjunction, we have

BDDIMAGE(S,R)=UnPrime(∃AP � S∧R)

=UnPrime

(

∃AP � S∧
( ∨

1≤i≤n
Ri

))

=
∨

1≤i≤n
UnPrime(∃AP � S∧Ri )︸ ︷︷ ︸

done one Ri at a time

The computation is done similarly for the BDDPREIMAGE:

BDDPREIMAGE(S,R)= ∃AP ′ � Prime(S)∧R

= ∃AP ′ � Prime(S)∧
( ∨

1≤i≤n
Ri

)

=
∨

1≤i≤n
∃AP ′ � Prime(S)∧Ri︸ ︷︷ ︸

done one Ri at a time

The advantage of such modular image and pre-image computation is that, in
practice, it often leads to intermediate BDDs of smaller size.

8.3.3.2 Conjunctive Decomposition

Conjunctive decomposition is based on the principle of early quantification [18].
Let X be a set of variables, and A and B be two propositional formulas such that
X ∩ var(A)= ∅. Then,

∃X �A∧B ⇐⇒ A∧ ∃X �B (12)

That is, since A has no variables in X, the existential quantification can be “pushed
in”.

Specifically, assume that R is represented by a set of BDDs R1, . . . ,Rn such that

R=
∧

1≤i≤n
Ri (13)
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This is often the case when R is the result of synchronous composition of several
transition relations. Then,

BDDIMAGE(S,R)=UnPrime(∃AP � S∧R)

=UnPrime

(

∃AP � S∧
( ∧

1≤i≤n
Ri

))

=UnPrime
(∃V1 �

(∃V2 � . . .∃Vn � (S∧Rn) · · · ∧R2
)∧R1

)

where, for 1≤ i ≤ n,

Vi =AP ∩
(

Var(Ri )
∖ ⋃

1≤j<i
Var(Rj )

)

That is, Vi is the set of atomic propositions p such that i is the smallest value for
which p appears in Ri .

Similarly, for the BDDPREIMAGE

BDDPREIMAGE(S,R)= ∃AP ′ � Prime(S)∧R

= ∃AP ′ � Prime(S)∧
( ∧

1≤i≤n
Ri

)

= ∃V ′1 �
(∃V ′2 � · · · ∃V ′n �

(
Prime(S)∧Rn

) · · · ∧R2
)∧R1

where, for 1≤ i ≤ n,

V ′i = AP′ ∩
(

Var(Ri )
∖ ⋃

1≤j<i
Var(Rj )

)

That is, Vi is the set of primed atomic propositions p such that i is the smallest value
for which p appears in Ri . Once again, the advantage of early quantification is that,
in practice, it often leads to intermediate BDDs of smaller size.

8.3.4 Historical Perspective

Binary decision diagrams (more specifically, binary decision programs) were intro-
duced by Lee [19]. The key idea here was to build on the encoding proposed by
Shannon [30] to give an alternative (and superior) representation of switching cir-
cuits. The representation was a program consisting of a sequence of “two-address
conditional transfer instructions”. Such a program is equivalent to a BDD, where
each instruction corresponds to a node. BDDs were subsequently popularized by
Akers [1] and Boute [5]. Bryant [6] facilitated the use of BDDs in efficient auto-
mated verification by proposing and developing two ideas—fixed variable ordering
and shared sub-graphs—that lead to a compressed canonical form.
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The use of symbolic representations for verification has a long history. For ex-
ample, Coudert, Berthet, and Madre [17] present a symbolic algorithm to check
equivalence between two deterministic Moore machines. They perform a breadth-
first traversal of the product state machine. States and transitions are represented
symbolically using BDDs, which the authors refer to as “typed decision graphs”.

Touati, Savoj, Lin, Brayton, and Sangiovanni-Vincentelli [32] build on the work
by Coudert et al. [17] to develop more efficient algorithms for image computation
using BDDs. In particular, they propose a new variable-ordering heuristic to control
BDD sizes, and a new image computation algorithm that leverages the conjunctive
structure of the transition relation.

Burch, Clarke, McMillan, Dill, and Hwang [8] present symbolic model-checking
algorithms for the μ-calculus [25] using BDDs, their implementation, and experi-
mental results demonstrating successful verification of systems with 1020 states.
This contrasts with model checkers that use explicit-state enumeration techniques,
and are reported to scale to systems with 106 reachable states only.

The problem of computing a good BDD variable ordering has received wide
attention since it is crucial to keeping the BDD sizes manageable, and therefore
to the success of BDD-based model checking. State-of-the-art BDD packages [31]
use dynamic variable ordering, where the variables are reordered on the fly using
heuristics designed to minimize BDD sizes. A popular minimization heuristic is
“sifting”, which was introduced by Rudell [29].

A related, and also widely studied, problem is “conjunction scheduling” or “clus-
tering”, i.e., finding a good conjunctive partitioning of the transition relation and
then ordering the partitions during image computation so that BDD sizes remain
small. Moon, Hachtel, and Somenzi [23] present an algorithm to solve this problem
that uses information about the dependence matrix of the transition relation and its
permutation.

Ranjan, Aziz, Brayton, Plessier, and Pixley [26] address both the variable-
ordering and clustering problems. First, they present a dynamic variable-ordering
technique that is parameterized by the total number of BDD nodes at which re-
ordering starts, and the minimum increase in BDD size between two successive re-
ordering invocations by the BDD manager. These parameters are tuned at runtime,
leading to a highly adaptive reordering scheme. For clustering, the latch transition
relations are first ordered heuristically. Second, they are ordered such that the prod-
uct of the transition relation BDD sizes in each cluster is below a user-specified
threshold.

Another problem studied in BDD-based verification is approximate finite state
machine (FSM) traversal, whereby the transition relation of the FSM is first decom-
posed into several sub-relations, then each sub-relation is traversed independently,
and finally the results are combined together. In general, this results in an over-
approximation of the actual result, since the overall process can be viewed as a type
of Cartesian abstraction. Cho, Hachtel, Macii, Plessier, and Somenzi [12] present
and evaluate several heuristics for finding good decompositions and effective traver-
sal strategies.

Ravi and Somenzi [27] have explored BDD-based symbolic state space explo-
ration algorithms that aim to compute a subset of the actual set of reachable states.
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Combined with the approximate FSM traversal algorithms described above, this en-
ables both an upper and a lower bound on the reachable states to be obtained. The
key idea used in this paper is that of “BDD density” which is defined to be the ratio
of the number of minterms of the BDD and the number of its nodes. The algorithm
attempts to always maintain a BDD with high density. If the BDD size becomes
too large during state space exploration, it is under-approximated to obtain a high-
density BDD, and the exploration continues with the resulting BDD. The authors
also present a state space traversal strategy that combines breadth-first and depth-
first strategies in order to maximize BDD density.

Cabodi, Camurati, and Quer [9] explore the computation and use of “activity pro-
files” of BDDs. Informally, this measures, for each BDD node, its level of activity in
terms of time and memory usage. The profile is computed by using an inexpensive
reachability analysis as a learning phase. It is subsequently used to improve partial
state space traversals that use transition relation subsetting and a combination of
breadth-first and depth-first exploration [27].

Cabodi, Camurati and Quer [10] also explore dynamic BDD-partitioning strate-
gies to optimize complex operations used in state space exploration. The key idea
behind this partitioning is to recursively find splitting variables that lead to disjoint
subsets, well-balanced partitions, and overall minimized BDD size. In addition, the
authors also experimentally characterize the cost of complex BDD operations.

More recently, Xu, Williams, Mony, and Baumgartner [33] explore the use of
automated netlist-based hint generation to improve scalability of BDD-based reach-
ability analysis. Hints are used during reachability analysis to constrain the BDDs
and guide the state space exploration. They often lead to smaller peak BDD sizes.
Completeness is ensured by restoring the original transition relation once all hints
have been used.

Despite their long history, BDD-based symbolic verification techniques continue
to be an active area of applied research. A recent report on the Hardware Model
Checking Competition (HWMCC’14), in which model-checking tools compete on
verification problems from the hardware domain, shows that all of the top portfolio-
based tools employ at least one BDD-based model-checking algorithm [11].

8.4 Model Checking Kripke Structures

In this section, we present BDD-based symbolic model-checking algorithms for
CTL and LTL temporal logics. Throughout the section, we assume that M is a
Kripke structure (S,R,L) over a set of atomic propositions AP; R is represented
symbolically using a BDD, and there is a designated initial state s0 ∈ S of M repre-
sented by the BDD s0.
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1: function CHECKSAFETY(M , s0, AGp) - M = (S,R,L), s0 ∈ S
2: S := 0 - set of reachable states is initially empty
3: F := s0 - frontier set of states to be explored next
4: do
5: S := S∨ F - update reachable states
6: F := BDDIMAGE(F,R)∧¬S - update frontier
7: while F �= 0
8: return (S∧¬p)= 0 - check that all reachable states are labeled with p

Fig. 2 An algorithm to decide whether M |=AGp

8.4.1 Reachability/Invariant/AG

We begin with the simple case of model checking a safety property ϕ. Model check-
ing of any safety property can be reduced to model checking a CTL formula of the
form AGp, where p is a single atomic proposition. This follows from the fact that
violation of any safety property can be reduced to reachability of some well-defined
bad state (see Chap. 2). If M |= ϕ, then ϕ is called an invariant of M .

The algorithm for deciding whether M |= ϕ is shown in Fig. 2. It works by it-
eratively computing the set of states reachable from the initial state s0 (lines 2–7),
and then checking whether there exists a reachable state that does not satisfy p
(line 8). Throughout the i-th iteration of the main loop, it maintains two variables,
S—a BDD representing the set of states reached in fewer than i steps, and F—the
frontier—a BDD representing states reachable in exactly i steps. Note that the for-
ward image is only applied to the frontier F, and not to all the states discovered so
far. This helps to alleviate the bottleneck of the relational product computation.

The termination of the algorithm follows from the fact that the state space of
M is finite, and the set S is increased in each iteration of the loop. The number of
iterations is bounded by the number of (reachable) states in M .

8.4.2 CTL Model Checking

We now present the algorithm for model checking arbitrary Computation Tree Logic
(CTL) formulas. We refer the reader to Chap. 2 for a thorough presentation of CTL
and other temporal logics. In this chapter we use only the minimal amount of ma-
terial about temporal logics necessary for completeness. Without loss of generality,
we restrict the syntax of CTL as follows, where ϕ, ϕ1, and ϕ2 are CTL formulas and
p ∈ AP:

ϕ = p | ¬ϕ1 | ϕ1 ∧ ϕ2 | EXϕ1 | EGϕ1 | E(ϕ1 U ϕ2) (14)

We use⊥ and� as shorthands for (p0∧¬p0) and ¬⊥, respectively, where p0 ∈ AP
is a distinguished atomic proposition. Other operators are replaced using standard
equivalences (see [16] and Chap. 2). For example,

EFϕ = E(�U ϕ), AGϕ =¬EF¬ϕ
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1: function CHECKCTL(M , s0, ϕ) - M = (S,R,L), s0 ∈ krst
2: S= CTLSTATES(M,ϕ) - compute set of states satisfying ϕ
3: return (s0 ∧¬S)= 0 - check that the initial state satisfies ϕ

4: function CTLSTATES(M , ϕ)
5: if ϕ = p then return p
6: else if ϕ =¬ϕ1 then return ¬CTLSTATES(M,ϕ1)

7: else if ϕ = ϕ1 ∧ ϕ2 then return CTLSTATES(M,ϕ1)∧ CTLSTATES(M,ϕ2)

8: else if ϕ = EXϕ1 then
9: return EXSTATES(M, CTLSTATES(M,ϕ1))

10: else if ϕ = EGϕ1 then
11: return EGSTATES(M, CTLSTATES(M,ϕ1))

12: else if ϕ = E(ϕ1 U ϕ2) then
13: return EUSTATES(M, CTLSTATES(M,ϕ1), CTLSTATES(M,ϕ2))

14: function EXSTATES(M , Sϕ ) - M = (S,R,L)
15: return BDDPREIMAGE(Sϕ,R)

16: function EGSTATES(M , Sϕ ) - M = (S,R,L)
17: S′ := Sϕ - initialize
18: do
19: S := S′ - store previous result
20: S′ := Sϕ ∧ BDDPREIMAGE(S,R) - compute new result
21: while S′ �= S - stop when fixed point is reached
22: return S

23: function EUSTATES(M , S1, S2) - M = (S,R,L)
24: S′ := 0
25: do
26: S := S′ - store previous result
27: S′ := S2 ∨ (S1 ∧ BDDPREIMAGE(S,R)) - update new result
28: while S′ �= S - stop when fixed point is reached
29: return S

Fig. 3 CTL model-checking algorithm

Recall from Chap. 2 that every CTL formula ϕ is a state formula, and thatM |= ϕ
if and only if the initial state s0 ofM satisfies ϕ. An algorithm CHECKCTL to decide
whether M |= ϕ is given in Fig. 3. It works in two steps:

• use an auxiliary function CTLSTATES to compute the set of states S of M that
satisfy ϕ;

• return true if and only if s0 ∈ S.

Note that throughout the algorithm sets of states and the transition relation are
represented by BDDs and are manipulated by BDD operations. Recall that we write
S for a BDD representing propositional formula S and that we do not distinguish
between sets of states of a Kripke structure and their characteristic propositional for-
mulas. Function CTLSTATES works differently based on the syntax of its argument
CTL formula ϕ. In particular, it uses functions EXSTATES, EGSTATES, and EU-
STATES to handle the cases where ϕ is of the form EXϕ1, EGϕ1 and E(ϕ1 U ϕ2),
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respectively. Function EXSTATES(M,S) computes the set of predecessors of S us-
ing PreImage computation described in Sect. 8.3.2. Function EGSTATES(M,S) it-
eratively computes the set of states from which there exists a path consisting only
of states from S. This is a greatest fixed point (cf. Chap. 2) computation. Let Si be
the value of S in the i-th iteration of the algorithm. Initially, S0 contains all states.
Intuitively, the algorithm assumes that all states in S have a successor in S. In the
first iteration, S1 is set to the set of all states in S0 that have at least one immediate
successor in S0 (and states that have no successors in S0 are removed). Following
this reasoning, in iteration i, Si contains all states that have a path of length i − 1
in Si−1. When the algorithm terminates, S contains only states that have an infinite
path contained in S. The set S is reduced in each iteration, and since it is finite
initially, the algorithm eventually terminates. Function EUSTATES(M,S1, S2) com-
putes the set of states from which there exists a path on which states from S1 appear
initially until a state from S2 appears. This is a least fixed point (cf. Chap. 2) compu-
tation similar to the reachability computation described in Sect. 8.4.1. Note that we
use a strong version (cf. Chap. 2) of the until-operator E(ϕ1 U ϕ2) that requires ϕ2

to hold in the last state of satisfiable computation. An alternative definition of weak
until (cf. Chap. 2), also allows for computations on which ϕ1 holds forever without
ever reaching a state satisfying ϕ2. Note that the efficiency of the termination checks
(line 21 of EGSTATES and line 28 of EUSTATES) is due to the canonicity property
of BDDs.

The function CTLSTATES is recursive. Termination is guaranteed by the fact that
recursive calls always work on syntactically smaller formulas. Furthermore, since a
formula may contain the same sub-formula multiple times, results can be cached to
improve efficiency.

8.4.3 Fair CTL Model Checking

In this section, we extend the symbolic CTL model-checking algorithm to handle
CTL with additional fairness constraints. A more detailed presentation of fairness
is available in Chap. 2. We assume that the fairness constraints are given by a set
of CTL formulas F = {φ1, . . . , φn}. The pseudo-code for the model-checking algo-
rithm CHECKFAIRCTL for M |= ϕ under F is given in Fig. 4. It works in several
steps:

1. function FAIRSTATES computes the set SF of all fair states—states from which
there is at least one path that satisfies all the fairness conditions infinitely often;

2. function CTLFAIRSTATES computes the set of states Sϕ of M that satisfy ϕ un-
der F ;

3. finally, the algorithm returns true if and only if the initial state s0 is in SF ∩ Sϕ .
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1: var SF - a BDD representing the set of all fair states
2: function CHECKFAIRCTL(M , s0, ϕ, F ) - M = (S,R,L), s0 ∈ S, F = {φ1, . . . , φn}
3: SF := FAIRSTATES(M,F ) - the set of all fair states
4: Sϕ := CTLFAIRSTATES(M,ϕ,F ) - compute set of states satisfying ϕ under F
5: Sϕ := Sϕ ∧ SF - restrict to fair states
6: return (s0 ∧¬Sϕ)= 0 - check that all initial states satisfy ϕ under F

7: function FAIRSTATES(M , F )
8: return EGFAIRSTATES(M , TRUE, F )

9: function CTLFAIRSTATES(M , ϕ, F ) - M = (S,R,L), F = {φ1, . . . , φn}
10: if ϕ = p then
11: return p
12: else if ϕ =¬ϕ1 then
13: return ¬CTLFAIRSTATES(M,ϕ1,F )
14: else if ϕ = ϕ1 ∧ ϕ2 then
15: return CTLFAIRSTATES(M,ϕ1,F )∧ CTLFAIRSTATES(M,ϕ2,F )
16: else if ϕ = EXϕ1 then
17: S1 := CTLFAIRSTATES(M,ϕ1)

18: return EXSTATES(M,S1 ∧ SF )
19: else if ϕ = EGϕ1 then
20: return EGFAIRSTATES(M,ϕ1,F )
21: else if ϕ = E(ϕ1 U ϕ2) then
22: S1 := CTLFAIRSTATES(M,ϕ1)

23: S2 := CTLFAIRSTATES(M,ϕ2)

24: return EUSTATES(M,S1,S2 ∧ SF )

25: function EGFAIRSTATES(M , ϕ, F ) - M = (S,R,L)
26: S1 := CTLSTATES(M,ϕ) - states satisfying ϕ
27: Q′ := S1 - initially, assume all states satisfy EGϕ
28: do - repeat until fixed point
29: Q :=Q′ - store previous result
30: Q′ := 1
31: for i = 1→ n do
32: Fi := CTLSTATES(M,φi)

33: EUi := EUSTATES(M,S1,Q∧ Fi )
34: Q′ :=Q′ ∧ EXSTATES(M,EUi )
35: while Q �=Q′
36: return Q

Fig. 4 An algorithm for CTL model checking under fairness constraints. Functions CTLSTATES,
EXSTATES, and EUSTATES are from Fig. 3

8.4.3.1 Function EGFAIRSTATES

This function is the key part of the algorithm. Recall that F = {φ1, . . . , φn}.
CHECKFAIREG(M,ϕ,F ) computes the set of all states that satisfy EGϕ under
the fairness condition F . That is, it returns the set of all states that start an infinite
path π such that on π every fairness condition in F is satisfied infinitely often, and
every state on π satisfies ϕ. Note that in the case ϕ = TRUE, the function returns the
set of all fair states. This observation is used to implement FAIRSTATES.
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EGFAIRSTATES is implemented as an iterative computation of the greatest fixed
point of the function λ :P(S) �→P(S) defined as follows:

λ(Z)= ϕ ∧
n∧

i=1

EXE
(
ϕ U (Z ∧ φi)

)
(15)

In the above, we use CTL formulas and sets of states that satisfy them (without
fairness) interchangeably. Intuitively, a state s is in the greatest fixed point of λ(Z)
if and only if for each fairness condition φi it can reach a state si satisfying φi , and
each si , in turn, can do the same. We refer the reader to Chap. 26 for further details
about the μ-calculus, which is necessary to understand the correctness of (15) and
CHECKFAIREG, but is beyond the scope of this chapter. The formal correctness of
CHECKFAIREG is also presented in [16].

8.4.3.2 Function CTLFAIRSTATES

CTLFAIRSTATES works based on the structure of the input CTL formula ϕ. For
atomic formulas and propositional connectives, it works exactly as CTLSTATES.
For ϕ of the form EXϕ1 it computes the set of predecessors of the fair subset of the
states that satisfy ϕ1. This follows from the fact [16] that the set of states satisfying
EXϕ1 under F is equivalent to the set of states that have a successor s which (i)
satisfies EXϕ1 without fairness, and (ii) belong to SF .

The case where ϕ is of the form E(ϕ1 U ϕ2) follows from the fact that the set
of states satisfying ϕ is also the set of states from which there is a path on which
states satisfying ϕ1 (without fairness) appear initially until a state appears that both
(i) satisfies ϕ2 (without fairness), and (ii) belongs to SF .

8.4.4 LTL Model Checking

In this section, we present a BDD-based symbolic model-checking algorithm for
LTL formulas. The explicit-state LTL model-checking algorithm [20] for deciding
M,s0 |= ϕ works by (i) constructing a Büchi automaton Bϕ that represents ¬ϕ, and
(ii) checking for an accepting run in the Büchi automatonBM,ϕ obtained by compos-
ing M and Bϕ . All of the automata—M , Bϕ , and BM,ϕ—are represented explicitly
as graphs. Further details about this algorithm, and about automata-theoretic model
checking in general, are presented in Chap. 4.

The symbolic version of the LTL model-checking algorithm [15] is similar, but
with the following important exceptions. First, instead of an explicit Büchi automa-
ton for ¬ϕ, it constructs a symbolic tableau, i.e., a Kripke structureMϕ with a set of
fairness conditions Fϕ such that the set of all fair executions of Mϕ is exactly the
set of all computations that satisfy ¬ϕ. Second, it composes the tableau Mϕ with
the input Kripke structure M symbolically by conjoining their transition relations.
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1: function CHECKLTL(M , s0, ϕ) - M = (S,R,L), s0 ∈ S, ϕ is an LTL formula
2: Mϕ,Fϕ := LTLTABLEAU(¬ϕ)
3: M ′ :=M ∧Mϕ
4: S := FAIRSTATES(M ′,Fϕ)

5: return (s0 ∧¬S)= 0

Fig. 5 Symbolic algorithm for LTL model checking

Third, it uses the FAIRSTATES algorithm from Sect. 8.4.3.1 (shown in Fig. 4) as a
sub-routine to check whether the initial state of M is a fair state of the composed
structure M ′. If so (i.e., if the initial state of M is a fair state of M ′) then the overall
algorithm terminates by declaring M,s0 �|= ϕ. This is correct because, in this case,
there is an execution of M starting with s0 that satisfies ¬ϕ. Otherwise, it termi-
nates by declaring M,s0 |= ϕ. This is correct because, in this case, all executions
of M starting with s0 satisfy ϕ. Note that the tableau can be viewed as a symbolic
representation of a Büchi automaton. Further details on this topic can be found in
Chap. 4 and in [28].

The algorithm for symbolic LTL model checking is shown in Fig. 5. The main
new procedure is LTLTABLEAU(M,ϕ), which constructs the Kripke structure Mϕ
and the fairness constraint Fϕ symbolically using BDDs. Note that the transition
relation of the product Kripke structureM ′ constructed at line 3 is represented sym-
bolically by the BDD R ∧ RT where R is the transition relation of M and RT is
the transition relation of the tableau Mϕ . We now discuss a way of implementing
LTLTABLEAU inside a model checker.

8.4.4.1 Restricted Path Formula

We use the convention that every LTL formula ϕ is syntactically of the form AΨ
where Ψ is a restricted path formula, i.e., one in which the only state sub-formulas
are Boolean combinations of atomic propositions. Formally, the syntax of Ψ is de-
fined inductively as follows, where p ∈ AP and Ψ1 and Ψ2 are also restricted path
formulas:

Ψ = p | ¬Ψ1 | Ψ1 ∧Ψ2 | XΨ1 | Ψ1 U Ψ2 (16)

Definition 4 (Elementary formula) Given a restricted path formula Ψ , the set of
elementary formulas of Ψ is denoted by el(Ψ ) and defined inductively over the
structure of Ψ as follows:

el(p) = p
el(¬Ψ1) = el(Ψ1)

el(Ψ1 ∧Ψ2) = el(Ψ1)∪ el(Ψ2)

el(XΨ1) = {XΨ1} ∪ el(Ψ1)

el(Ψ1 U Ψ2) =
{
X(Ψ1 U Ψ2)

}∪ el(Ψ1)∪ el(Ψ2)

Note that el(Ψ ) contains all atomic propositions appearing in Ψ .



8 BDD-Based Symbolic Model Checking 237

8.4.4.2 Algorithm LTLTABLEAU

Let M = (S,R,L) be a Kripke structure over the set of atomic propositions AP.
We denote by p the set of atomic propositions appearing in Ψ . Clearly, p⊆ AP. Let
r = AP \ p be the set of atomic propositions appearing in M but not in Ψ . Let p′
and r′ be the primed versions of p and r, respectively. Thus, the transition relation
R of M is represented by a BDD over p∪ r∪ p′ ∪ r′.

Let the set of atomic propositions APT be the set of all elementary sub-formulas
el(¬ϕ). Therefore, from Definition 4, we know that APT = el(ϕ)⊇ p. The function
LTLTABLEAU(ϕ) constructs a tableau T from the formula ϕ as a Kripke structure
(ST ,RT ,LT ) over the set of atomic propositions APT . Formally, the components of
T are defined as follows:

• States and Labeling Function: Each state of T is a subset of APT . Thus, ST =
P(APT ). The labeling function LT is the identity mapping, i.e., each state is
labeled by the set of propositions it corresponds to.

• Transition Relation: Let sat be a function from restricted path formulas to P(ST )

such that sat(ϕ) is the set of all states of T that satisfy ϕ. Formally, for Ψ ∈ el(ϕ),
sat(Ψ ) is computed symbolically using BDDs by structural induction over Ψ as
follows:

sat(g)= Bdd(g) if g ∈ el(Ψ )

sat(¬Ψ1)=¬sat(Ψ1)

sat(Ψ1 ∧Ψ2)= sat(Ψ1)∧ sat(Ψ2)

sat(Ψ1 U Ψ2)= sat(Ψ2)∨
(
sat(Ψ1)∧ Bdd

(
X(Ψ1 U Ψ2)

))

Note that by Definition 4, X(Ψ1 U Ψ2) is an elementary formula. Let q= APT \p
be the set of atomic propositions appearing in T but not in p, and let q′ be the set
of primed versions of q. The transition relation RT of the tableau T is represented
by the BDD over p ∪ q ∪ p′ ∪ q′ corresponding to the following propositional
formula:

RT =
∧

XΨ ′∈el(Ψ )

sat
(
XΨ ′

) ⇐⇒ Prime
(
sat

(
Ψ ′

))
(17)

Fairness Constraint. Finally, the fairness constraint Fϕ is given by the following
set:

Fϕ =
{
sat

(¬(Ψ1 U Ψ2)∨Ψ2
) ∣
∣ Ψ1 U Ψ2 occurs in ϕ

}
(18)

Each element of Fϕ is represented symbolically by a BDD.
We have thus shown how the tableau Mϕ and the fairness constraints Fϕ are

constructed symbolically using BDDs. The correctness of the construction of Mϕ ,
and the correctness of the overall symbolic LTL model-checking algorithm (shown
in Fig. 5) by composing Mϕ with M and checking for fair states (in accordance
with Fϕ) in the resulting automata are presented in [16] and we will not describe
them further here.
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Fig. 6 Tableau for LTL formula (p U q)

Example 5 We conclude this section by illustrating the tableau construction on
an LTL formula Ψ = p U q . The set of elementary formulas of Ψ is el(Ψ ) =
{XΨ,p,q}. Thus, the tableau has three atomic propositions, one for each elementary
formula. The transition relation RT is defined as follows:

RT = (XΨ ) ⇐⇒ q ′ ∨ (
p′ ∧ (XΨ )′)

That is, any state in which the atomic proposition XΨ is true has a transition to
every state in which either q is true, or both p and XΨ are true. Finally, there is a
single fairness constraint Fϕ = {(p ∧XΨ ) =⇒ q}.

The tableau is shown in Fig. 6. Every fair computation of the tableau starts at
either s1, s2, s3, s4, or s6 and passes infinitely often through one of the doubly
bordered fair states. Note that state s3 is the only unfair one. Any execution of the
tableau that is trapped in state s3 corresponds to a computation π on which p is
always true and q is always false. Clearly, π violates the property (p U q), and the
fairness constraint excludes π from legal executions of the tableau. �

8.5 Push-Down Symbolic Model Checking

In this section, we present a symbolic BDD-based algorithm for model-checking
reachability (i.e., safety) properties of push-down systems (PDS). This presentation
is focused on the BDD aspect of the algorithm. More details on PDSs and various
model-checking algorithms for them are available in Chap. 17. We assume that the
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PDS is specified as a Boolean program BP, and that the reachability property is spec-
ified by an ERROR location in BP. For simplicity, we assume that the Boolean pro-
gram is defined by a graph whose nodes correspond to control-flow locations, and
whose edges correspond to statements. Let V be a set of Boolean variables, and V ′
and V ′′ be, respectively, the sets of their primed and double-primed versions. Given
a set of variables X ⊆ V , we write id(X) to mean the formula

∧
v∈X v ⇐⇒ v′. For

simplicity, we often write id(x1, . . . , xn) to mean id({x1, . . . , xn}).

Definition 5 (Variable substitution) Given a BDD b, we write b[V/V ′] to mean the
BDD obtained from b by replacing simultaneously each v ∈ V with its correspond-
ing primed version v′ ∈ V ′. We define BDDs b[V/V ′′], b[V ′/V ′′], etc. analogously.
We write b[V/V ′][V ′/V ′′] to mean the BDD (b[V/V ′])[V ′/V ′′], and so on.

Definition 6 (Boolean program) A Boolean program is a five-tuple (Loc, Init,GV,
LV,E) where

• Loc is a set of control-flow locations;
• Init ∈ Loc is the initial control-flow location;
• GV ⊆ V is a set of global Boolean variables;
• LV : Loc �→P(V ) maps each control-flow location l to the set of local Boolean

variables at l; we write LV ′(l) to mean the set of primed versions of the variables
in LV(l).

• E = (NE,CE,FE) is a triple denoting three types of control-flow edges:

– NE ⊆ Loc× Bdd× Loc is the set of normal edges. If e = (l,R, l′) is a normal
edge, then R is a BDD over GV ∪ LV(l)∪GV ′ ∪ LV ′(l′) that relates the values
of variables before and after the execution of e.

– CE ⊆ Loc× Loc× Loc is the set of call edges: a call edge e = (lc, le, lr ) de-
notes a function call where lc is the call-site, le is the entry location of the
called function, lr is the caller location where the control returns after the call
terminates.

– FE ⊆ Loc × Loc is the set of function edges: a function edge e = (lin, lout)

denotes a function body with lin and lout as its entry and exit locations, respec-
tively.

A state of a Boolean program at location l is a valuation of all global variables and
all local variables at l.

Example 6 Consider the Boolean program defined by the pseudo-code in Fig. 7
and shown graphically in Fig. 8. In our formalism, the Boolean program is given by
the five-tuple (Loc, Init,GV,LV,E) where

• Loc= {1,2, . . . ,9}, Init= 1, GV = {p, r}
• LV maps locations 1,2, . . . ,7 to {v} and 8,9 to ∅.
• Each normal edge (l, r, l′) ∈ NE is shown in Fig. 8 by an unbroken arrow from l

to l′ labeled by r .
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bool p - global variable used to pass parameters to functions
bool r - global variable used to return values from functions
function MAIN - top-level function

bool v - local variable
1: p := v - entry location
2: NEG() - first function call
3: p := r
4: NEG() - second function call
5: if r �= v then goto 7
6: return - exit location
7: goto 6 - error location

function NEG

8: r :=!p - entry location—set return value to negation of argument
9: return - exit location

Fig. 7 Pseudo-code of an example Boolean program

Fig. 8 Control locations and
edges of the Boolean program
in Fig. 7

• The set of call edges is

CE= {
(2,8,3)
︸ ︷︷ ︸

first call to NEG

, (4,8,5)
︸ ︷︷ ︸

second call to NEG

}
.

• The set of function edges is

FE= {
(1,6)
︸ ︷︷ ︸
MAIN

, (8,9)
︸ ︷︷ ︸

NEG

}
.

We assume, without loss of generality, that global variables are disjoint from lo-
cal variables. We now present a symbolic BDD-based algorithm CHECKBPSAFETY

whose inputs are
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1: var ρ - map from locations to reachable relations
2: var Σ - map from call locations to function summaries
3: function CHECKBPSAFETY(BP, S0, Err) - BP= (Loc, Init,GV,LV,E), Err ∈ Loc
4: COMPUTEREACH(BP,S0) - compute reachable states at each location
5: return ρ[Err] = 0

6: function IDREL(X) - X ⊆ V
7: return Bdd(id(X)) - identity relation over variables in X

8: function UPDATESTATE(l, s)
9: s′ := s∧¬ρ(l)

10: if s′ �= 0 then - if some new states have been reached
11: W [l] :=W [l] ∨ s′ ; ρ[l] := ρ[l] ∨ s′ - update reachable relation and worklist

12: function COMPUTEREACH(BP, S0) - BP= (Loc, Init,GV,LV, (NE,CE,FE))
13: ρ[Init] := S0 ∧ IDREL(GV ∪ LV(Init)) - initialize reachable relation at Init
14: ∀l ∈ Loc \ {Init} � ρ[l] := 0 - initialize other reachable relations
15: ∀(lin, lout) ∈ FE �Σ[lin] := 0 - initialize summaries
16: W [Init] := ρ[Init] - initialize worklist
17: while ∃l �W [l] �= 0 do
18: s :=W [l] ; W [l] := 0
19: for all (l,R, l′) ∈ NE do - process normal edges
20: X :=R[V ′/V ′′][V/V ′]
21: s′ := (∃V ′ � s∧X)[V ′′/V ′] - post over transition relation
22: UPDATESTATE(l′, s′) - update next location
23: for all (l, le, lr ) ∈ CE do - process call edges starting at l
24: se := (∃V � ∃LV ′(l) � s)[V ′/V ] ∧ IDREL(GV ∪ LV(le))
25: UPDATESTATE(le, se) - update initial location of called function
26: X := (Σ(le)∧ IDREL(LV(l)))[V ′/V ′′][V/V ′]
27: sr := (∃V ′ � s∧X)[V ′′/V ′] - post over current summary
28: UPDATESTATE(lr , sr) - update location after call returns
29: for all (lin, l) ∈ FE do - process call edges returning from l

30: X := s∧¬Σ(lin)
31: if X �= 0 then - if summary needs to be updated
32: Σ(lin) :=Σ(lin)∨X - update summary
33: for all (lc, lin, lr ) ∈ CE do - process each function call
34: Xr := (X∧ IDREL(LV(l)))[V ′/V ′′][V/V ′]
35: sr := (∃V ′ � ρ[lc] ∧Xr)[V ′′/V ′] - post over new summary
36: UPDATESTATE(lr , sr) - update location after call returns
37: return

Fig. 9 Pseudo-code for symbolic model checking of a Boolean program

1. a Boolean program BP= (Loc, Init,GV,LV,E);
2. an initial state S0 represented by a BDD S0 over GV ∪ LV(Init);
3. an ERROR location Err ∈ Loc.

The algorithm outputs TRUE if and only if there does not exist an execution of BP
starting from the initial state S0 that reaches Err. The pseudo-code for the algorithm
is given in Fig. 9. The algorithm iteratively computes two main data structures:
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1. A map ρ from control-flow locations to “reachable relations”. Given a location l
we write V (l)=P(GV ∪LV(l)) to mean the set of all states at l. Let l be a con-
trol location in BP in a function f . Let the entry location of f be l0. Informally,
ρ[l] consists of all pairs of states (s, s′) ∈ V (l0)× V (l) such that (i) there is an
execution of BP from an initial state in S0 that calls f with state s; and (ii) there
is an execution of f that begins at l0 with state s and reaches l with state s′.

2. A map Σ from entry locations of functions to their “reachable global sum-
maries”. Let a global state be a valuation of GV . Let f be a function in BP
with entry location l0. Then Σ(l0) consists of pairs (s, s′) ∈P(GV)×P(GV)
such that (i) there is an execution of BP from an initial state in S0 that calls f
with global state s; and (ii) there is an execution of f that begins at l0 with global
state s and terminates with global state s′. Note that if l1 is the exit location of f ,
then Σ(l0) equals the projection of ρ(l1) over global variables. Indeed our al-
gorithm maintains this invariant by updating Σ(l0) whenever ρ(l1) changes (see
Lines 29–36).

The top-level function is CHECKBPSAFETY. It invokes COMPUTEREACH to
compute ρ and Σ , and returns TRUE iff ρ(Err) = 0. By the definition of ρ, we
know that ρ(Err)= 0 if and only if Err is unreachable.

The main function is COMPUTEREACH. It first initializes ρ (Lines 13–14) andΣ
(Line 15). It then uses a worklist to iteratively update ρ and σ (Lines 16–37)
until a fixed point is reached. It invokes two helper functions: (i) IDREL(X) re-
turns a relation that equates all variables in X with their primed versions; and
(ii) UPDATESTATE(l, s) adds s to the reachable relation at l and updates the worklist
if necessary.

The body of the iteration (Lines 18–36) extracts an element from the worklist
and processes it. The processing depends on the type of the control location corre-
sponding to the extracted worklist element, and falls into three categories:

• If the location is the source of a normal edge (Lines 19–22), an image is computed
and propagated to the successor of the edge.

• If the location is a call-site (Lines 23–28), then two steps are performed: (a) an
appropriate image of the current state is propagated to the entry location of the
called function (Lines 24–25); and (b) the current summary of the called function
is used to compute an image of the current state and the image is propagated to
the control-flow location where the function call returns (Lines 26–28).

• If the location is the exit location of a function f (Lines 29–36), then the sum-
mary of f is updated (Lines 30–32) and the new summary is used to update the
reachable relations at all possible locations where a call to f might return (Lines
33–36).

Example 7 Suppose that CHECKBPSAFETY is called with the Boolean program
from Example 6 and with S0 = TRUE and Err = 7. First, CHECKBPSAFETY calls
COMPUTEREACH. During the execution of COMPUTEREACH, ρ, Σ , and W are
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initialized as follows:

ρ[1] �→ id(p, r, v), ∀i ∈ {2, . . . ,9} � ρ[i] �→ 0

Σ[1] =Σ[8] �→ 0, W [1] �→ id(p, r, v)

In the rest of this example, we only mention mappings to BDDs that are not 0. Once
ρ, Σ , and W are initialized, the main loop (Lines 17–36) is executed. After each
iteration, the values of ρ, Σ , and W are updated as follows:

• After iteration 1, we have ρ[2] =W [2] �→ id(r, v)∧ p′ = v.
• During iteration 2, we start exploring the first call to NEG. At the end of iteration

2 we have ρ[8] =W [8] �→ id(p, r).
• After iteration 3, we have ρ[9] =W [9] �→ id(p)∧ r ′ = ¬p.
• During iteration 4, we complete exploring the first call to NEG, update NEG’s

summary, and return to the first call-site of NEG. At the end of this iteration, we
have Σ[8] �→ id(p)∧ r ′ = ¬p and ρ[3] =W [3] �→ id(v)∧ p′ = v ∧ r ′ = ¬v.

• After iteration 5, we have ρ[4] =W [4] �→ id(v)∧ p′ = ¬v ∧ r ′ = ¬v. The map-
ping σ is unchanged.

• During iteration 6, we use the existing summary of NEG at the second call to NEG.
At the end of this iteration we have ρ[5] =W [5] �→ id(v)∧ p′ = ¬v ∧ r ′ = v.

• After iteration 7, we have ρ[6] =W [6] �→ id(v)∧ p′ = ¬v ∧ r ′ = v.
• After iteration 8, the worklist W is empty and COMPUTEREACH returns.

After COMPUTEREACH returns, we have ρ[Err] �→ 0. Therefore, CHECKBP-
SAFETY returns TRUE, which is the correct result since Err is unreachable.

Note that all computations in CHECKBPSAFETY are symbolic and performed us-
ing BDDs. We do not discuss the correctness of this algorithm since it is equivalent
to the BEBOP [3] algorithm.

8.6 Conclusion

This chapter presents the key ideas and techniques that embody the area of BDD-
based symbolic model checking. Starting with hardware model checking, symbolic
techniques have helped advance both the theory and practice of formal verification
in significant ways. Most state-of-the-art symbolic model checkers today, such as
NuSMV [13], employ BDD-based techniques as part of their verification strate-
gies. BDDs have also been implemented in the form of robust libraries, notably
CUDD [31], that have been used in a wide variety of applications. At the same
time, a number of research directions remain open and under active investigation.
We believe that this bodes well for existing and future researchers, and we hope this
chapter will at least be a gentle yet accurate introduction to this rich and complex
topic.
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Chapter 9
Propositional SAT Solving

Joao Marques-Silva and Sharad Malik

Abstract The Boolean Satisfiability Problem (SAT) is well known in computa-
tional complexity, representing the first decision problem to be proved NP-complete.
SAT is also often the subject of work in proof complexity. Besides its theoretical
interest, SAT finds a wide range of practical applications. Moreover, SAT solvers
have been the subject of remarkable efficiency improvements since the mid-1990s,
motivating their widespread use in many practical applications including Bounded
and Unbounded Model Checking. The success of SAT solvers has also motivated
the development of algorithms for natural extensions of SAT, including Quantified
Boolean Formulas (QBF), Pseudo-Boolean constraints (PB), Maximum Satisfiabil-
ity (MaxSAT) and Satisfiability Modulo Theories (SMT) which also see application
in the model-checking context. This chapter first covers the organization of modern
conflict-driven clause learning (CDCL) SAT solvers, which are used in the vast ma-
jority of practical applications of SAT. It then reviews the techniques shown to be
effective in modern SAT solvers.

9.1 Introduction

Given a propositional logic formula, determining whether there exists a variable
assignment such that the formula evaluates to true is referred to as the Boolean Sat-
isfiability Problem, commonly abbreviated as SAT. SAT has seen much theoretical
interest as the canonical NP-complete problem [30]. Given its NP-Completeness, it
is very unlikely that there exists any polynomial algorithm for SAT. However, NP-
Completeness does not exclude the possibility of finding algorithms that are efficient
enough to solve many interesting SAT instances. In addition to model checking, the
subject of this book, these instances arise from many diverse areas—many practi-
cal problems in AI planning [61], circuit testing [107], and software modeling [54]
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can be formulated as SAT instances. This has motivated research in practically ef-
ficient SAT solvers. This research has resulted in the development of several SAT
algorithms that have seen practical success. These algorithms are based on various
principles such as resolution [33], search [32], local search and random walk [98],
Binary Decision Diagrams [25], Stålmarck’s algorithm [100], and others. Some of
these algorithms are complete, while others are stochastic methods. For a given SAT
instance, complete SAT solvers can either find a solution (i.e., a satisfying variable
assignment) or prove that no solution exists. Stochastic methods, on the other hand,
cannot prove the instance to be unsatisfiable even though they may be able to find a
solution for certain kinds of satisfiable instances quickly. Stochastic methods have
applications in domains such as AI planning [61] and FPGA routing [87], where
instances are likely to be satisfiable and proving unsatisfiability is not required.
However, for many other domains, including verification using model checking,
the primary task is to prove unsatisfiability of the instances. Applications of SAT to
model checking arise in bounded model checking [20], as well as interpolant—[83]
and induction—[99] based approaches to unbounded model checking. For these,
complete SAT solvers are a requirement.

In recent years search-based algorithms based on the well-known Davis–Loge-
mann–Loveland algorithm [32] (sometimes referred to as the DPLL algorithm for
historical reasons) are emerging as some of the most efficient methods for complete
SAT solvers. Researchers have been working on DPLL-based SAT solvers for about
fifty years. In the last ten years we have seen significant growth and success in SAT
solver research based on the DPLL framework. Earlier SAT solvers based on DPLL
include Tableau (NTAB) [31], POSIT [40], 2cl [112] and CSAT [36] among others.
In the mid-1990s, Marques-Silva and Sakallah in the GRASP SAT solver [80, 81],
and Bayardo and Schrag in the relsat SAT solver [14] proposed to augment the
original DPLL algorithm with non-chronological backtracking and conflict-driven
clause learning (CDCL). These techniques greatly improved the efficiency of the
DPLL algorithm for structured (in contrast to randomly generated) SAT instances.
Many practical applications emerged (e.g., [20, 54, 87]), which pushed these solvers
to their limits and provided strong motivation for finding even more efficient algo-
rithms. This led to a new generation of solvers such as SATO [118], Chaff [86],
BerkMin [44] and more recently MiniSAT [38] and PicoSAT [19] which pay a lot
of attention to optimizing various aspects of the DPLL algorithm. Some of these
deal with efficient implementations of specific steps in the DPLL and CDCL, e.g.,
unit-propagation in SATO and Chaff, and others with more efficient search space
pruning such as the locality-based search in Chaff. The results are some very ef-
ficient SAT solvers that can often solve SAT instances generated from industrial
applications with tens of thousands or even millions of variables.

A DPLL-based SAT solver is a relatively small piece of software. Many of the
solvers mentioned above have only a few thousand lines of code (these solvers are
mostly written in C or C++, for efficiency reasons). However, the algorithms in-
volved are quite complex and significant attention is focused on various aspects
of the solver such as coding, data structures, choosing algorithms and heuristics
for specific steps, and parameter tuning. In this chapter we chart the journey from
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the original basic DPLL framework through the introduction of efficient techniques
within this framework culminating in state-of-the-art CDCL solvers. Given the
depth of literature in this field, it is impossible to do this in any comprehensive
way; rather, we focus on techniques with consistently demonstrated efficiency in
available solvers. While for the most part we focus on techniques within the basic
DPLL search framework, we will also briefly describe other approaches and look at
some possible future research directions.

The chapter is organized as follows. Section 9.2 introduces the notation used
throughout the chapter. Section 9.3 provides an overview of modern CDCL SAT
solvers. Section 9.4 details the key techniques that are used in CDCL SAT solvers.
Section 9.5 provides a brief overview of SAT-based problem solving, highlighting a
number of problems of interest to model checking. Finally, Sect. 9.6 concludes the
chapter.

9.2 Preliminaries

This section introduces the notation used in the remainder of the chapter. Stan-
dard propositional logic definitions are used throughout the chapter (e.g., [21, 62]).
Boolean formulas are represented in calligraphic font, e.g., F ,H,S,U , . . . Boolean
variables are represented with lowercase letters from the start or the end of the al-
phabet, e.g., a, b, c, . . . , r, s, t, u, v,w,x, y, z. Whenever necessary, subscripts can
be used, e.g., x1,w1, . . . An atom is a Boolean variable. A literal is a variable x
or its complement ¬x. For notational convenience, the complement of a variable
x is represented as x̄. A Boolean formula F is defined inductively over a set of
propositional variables, with the standard logical connectives, ¬, ∧, ∨, as follows:

1. An atom is a Boolean formula.
2. If F is a Boolean formula, then (¬F) is a Boolean formula. (When F represents

an atom x, ¬F is represented by x̄.)
3. If F and G are Boolean formulas, then (F ∨ G) is a Boolean formula.
4. If F and G are Boolean formulas, then (F ∧ G) is a Boolean formula.

Similar definitions can be developed for the other logic connectives,→ and↔. (The
use of parentheses is not enforced, and standard binding rules apply (e.g., [62]), with
parentheses being used only to clarify the presentation of formulas.) The variables
of a Boolean formula F are represented by var(F). Set X is also used to refer to the
set of variables of a formula, X = var(F). A clause c is a non-tautologous disjunc-
tion of literals. A term t is a non-contradictory conjunction of literals. Commonly
used representations of Boolean formulas include conjunctive and disjunctive nor-
mal forms (resp. CNF and DNF). A CNF formula F is a conjunction of clauses.
A DNF formula F is a disjunction of terms. CNF and DNF formulas can also be
viewed as sets of sets of literals. The two representations will be used interchange-
ably throughout the chapter. In the remainder of the chapter, Boolean formulas are
referred to as formulas, which includes CNF formulas and DNF formulas. The nec-
essary qualification will be used when necessary.



250 J. Marques-Silva and S. Malik

Given a formula F , a truth assignment ν is a map from the variables of F to
{0,1}, ν : var(F) �→ {0,1}.

Given a truth assignment ν, the value taken by a formula, denoted Fν , is defined
inductively as follows:

1. If x is a variable, xν = ν(x).
2. If F = (¬G), then

Fν =
{

0 if Gν = 1
1 if Gν = 0.

3. If F = (E ∨ G), then

Fν =
{

1 if Eν = 1 or Gν = 1
0 otherwise.

4. If F = (E ∧ G), then

Fν =
{

1 if Eν = 1 and Gν = 1
0 otherwise.

In some contexts, including search algorithms for the Boolean Satisfiability
(SAT) problem, a truth assignment is relaxed to be partial, i.e., not all variables
are assigned a truth value. A truth assignment is complete if the map is total; oth-
erwise it is partial. For a partial truth assignment, if ν(x) is not specified, then we
write ν(x)= u.

For a CNF formula F , let ν be a truth assignment. A clause c is satisfied if
there exists a literal l ∈ c, such that lν = 1. If all literals of c take value 0, then the
clause is falsified. If all literals but one are assigned value 0, and the remaining one
is unassigned, then the clause is unit. Finally, a clause is unresolved if it is neither
falsified, nor satisfied, nor unit. A CNF formula is satisfied if all clauses are satisfied,
and falsified if at least one clause is falsified.

A truth assignment is satisfying for F (or simply a satisfying truth assignment) if
Fν = 1. A formula F is satisfiable if it has a satisfying truth assignment; otherwise
it is unsatisfiable. If a formula F is satisfiable, we write F �⊥. If a formula F is
unsatisfiable, we write F �⊥.

Definition 1 (Boolean Satisfiability (SAT)) Given a formula F , the decision prob-
lem SAT consists of deciding whether F is satisfiable.

CDCL SAT solvers, but also DPLL SAT solvers, implement some form of back-
tracking search. Both CDCL and DPLL SAT solvers branch on variables; these are
referred to as decision variables.

A key procedure in SAT solvers is the unit clause rule [33]: if a clause is unit,
then its sole unassigned literal must be assigned value 1 for the clause to be satisfied.
The iterated application of the unit clause rule is referred to as unit propagation or
Boolean constraint propagation (BCP) [117]. In modern CDCL solvers, as in most
implementations of DPLL, logical consequences are derived with unit propagation.
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Unit propagation is applied after each branching step (and also during preprocess-
ing1), and is used for identifying variables that must be assigned a specific Boolean
value. If a falsified clause is identified, a conflict condition is declared, and the al-
gorithm backtracks.

In CDCL SAT solvers, each variable x is characterized by a number of prop-
erties, including the value, the antecedent clause (or just antecedent) and the
decision level, denoted respectively by ν(x) ∈ {0, u,1}, α(x) ∈ F ∪ {NIL}, and
δ(x) ∈ {−1,0,1, . . . , |X|}. A variable x that is assigned a value as the result of ap-
plying the unit clause rule is said to be implied. The unit clause c used for implying
variable x is said to be the antecedent of x, α(x)= c. For variables that are decision
variables or are unassigned, the antecedent is NIL. Hence, antecedents are only de-
fined for variables whose value is implied by other assignments. The decision level
of a variable x denotes the depth of the decision tree at which the variable is assigned
a value in {0,1}. The decision level for an unassigned variable x is −1, δ(x)=−1.
The decision level associated with variables used for branching steps (i.e., decision
assignments) is specified by the search process, and denotes the current depth of the
decision stack. The decision stack represents the sequence of branched-upon vari-
ables. Hence, a variable x associated with a decision assignment is characterized
by having α(x)= NIL and δ(x) > 0. When describing and analyzing SAT solvers,
implication graphs [80, 81] are used to graphically depict the application of unit
propagation at each decision level, as a consequence of each branching decision.
Each node in the implication graph shows a literal, with the incoming edges to each
literal identifying the antecedent of the assignment. If a falsified clause is identified
by unit propagation, this is marked in the implication graph with a special node ⊥.
The implication graph can be viewed as a graphical representation of the relation-
ship between implied variables and their antecendents.

Figure 1 exemplifies the implication graphs considered in this chapter. This ex-
ample also illustrates the above definitions. With the exception of decision level 0,
a decision literal is associated with each decision level. For example, for decision
level 1, the decision literal is w, denoting that w is assigned value 1. For simplicity
all examples shown just use positive literals (i.e., variables are always decided or
implied value 1). Given the implication graph, the antecedent of a given implied as-
signment can be inferred from the incoming edges. For example, b is assigned value
1 because a and x are assigned value 1. Hence, the antecedent of b is (x̄ ∨ ā ∨ b).

A standard operation associated with Boolean formulas is resolution [33, 94].
Given clauses C1 = (x ∨A) and C2 = (x̄ ∨ B), where A and B are disjunctions of
literals without complemented literals, the resolution of C1 and C2 is C3 = (A∨B).
As shown in Sect. 9.4, resolution serves to explain a wide range of techniques used
in modern SAT solvers, including CDCL SAT solvers. For example, unit propaga-
tion can be explained with resolution operations and, as illustrated in Sect. 9.4.1,
clause learning can also be explained as a sequence of resolution operations. More-
over, resolution is also associated with a number of complete proof systems for
SAT (e.g., [62, 111]).

1Preprocessing serves to simplify Boolean formulas and is briefly covered in Sect. 9.4.7.



252 J. Marques-Silva and S. Malik

Fig. 1 Example of notation and unit propagation

Modern SAT solvers typically accept CNF formulas [78]. This is due to the inex-
pensive deduction provided by unit propagation. Procedures for CNF-encoding (or
clausifying) arbitrary Boolean formulas are well-known (e.g., [90, 110]).

9.3 CDCL SAT Solvers: Organization

This section provides a high-level description of modern CDCL SAT solvers. After-
wards, Sect. 9.4 details the most important algorithmic techniques associated with
CDCL SAT solvers, namely conflict-driven clause learning [80, 81], unique impli-
cation points [80, 81], learned clause minimization [105], lazy data structures [86],
search restarts [11, 45] and lightweight branching heuristics [86].

Algorithm 1 shows the standard organization of a CDCL SAT solver, which es-
sentially follows the organization of DPLL. With respect to DPLL, the main differ-
ences are the call to function CONFLICTANALYSIS each time a conflict is identified,
and the call to BACKTRACK when backtracking takes place. Moreover, the BACK-
TRACK procedure allows for backtracking non-chronologically.

In addition to the main CDCL function, the following auxiliary functions are
used:

• UNITPROPAGATION consists of the iterated application of the unit clause rule. If
a falsified clause is identified, then a conflict indication is returned.

• PICKBRANCHINGVARIABLE consists of selecting a variable and assigning it a
value.

• CONFLICTANALYSIS consists of analyzing the most recent conflict and learning
a new clause from the conflict. The organization of this procedure is described in
Sect. 9.4.1.

• BACKTRACK backtracks to the decision level computed by CONFLICTANALY-
SIS.

• ALLVARIABLESASSIGNED tests whether all variables have been assigned, in
which case the algorithm terminates indicating that the CNF formula is satisfiable.
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Algorithm 1 Typical CDCL algorithm

CDCL(F , ν)
1 if (UnitPropagation(F , ν)==CONFLICT)
2 then return UNSAT
3 dl← 0 � Decision level
4 while (not AllVariablesAssigned(F , ν))
5 do (x, v)= PickBranchingVariable(F , ν)
6 dl← dl + 1 � Increment decision level due to new decision
7 ν← ν ∪ {(x, v)}
8 if (UnitPropagation(F , ν)==CONFLICT)
9 then β = ConflictAnalysis(F , ν)

10 if (β < 0)
11 then return UNSAT
12 else Backtrack(F , ν,β)
13 dl← β � Decrement decision level due to

backtracking
14 return SAT

An alternative criterion to stop execution of the algorithm is to check whether all
clauses are satisfied. However, in modern SAT solvers that use lazy data struc-
tures, clause state cannot be maintained accurately, and so the termination crite-
rion must be whether all variables are assigned. Thus, in this case the algorithm
provides a complete assignment.

Arguments to the auxiliary functions are assumed to be passed by reference.
Hence, F and ν are supposed to be modified during execution of the auxiliary func-
tions.

The typical CDCL algorithm shown does not account for a few often-used tech-
niques, namely search restarts [11, 45] and implementation of clause deletion poli-
cies [44]. Search restarts cause the algorithm to restart itself. However, past search
history is not erased, for example previously learnt clauses are kept. Clause dele-
tion policies are used to decide learned clauses that can be deleted based on their
expected future utility. Clause deletion allows the memory usage of the SAT solver
to be kept under control.

9.4 CDCL SAT Solvers

This section reviews the techniques that are common to CDCL SAT solvers. These
techniques can be organized as follows:

1. Conflict-driven clause learning [80, 81].
2. Unique implication points [80, 81].
3. Learned clause minimization [105].
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Algorithm 2 Main steps of conflict analysis procedure

CONFLICTANALYSIS(F , ν)
1 Start at node ⊥
2 Recursively visit literals of antecedents assigned at current decision level
3 Record complement of antecendent literals assigned at lower decision levels
4 Record complement of branching literal
5 Create clause with recorded literals
6 return largest decision level of recorded literals other than the current level

4. Lazy data structures [86].
5. Search restarts [11, 45].
6. Lightweight branching heuristics [86].
7. Additional techniques [7, 44, 89].

9.4.1 Clause Learning and Non-chronological Backtracking

Learning from conflicts has been extensively studied in a number of areas since
the 1970s (e.g., [106]). In some contexts, learning from conflicts was shown to
be ineffective, both in theory and in practice [9, 115]. Clause learning in SAT
solvers [80, 81] is inspired by this earlier work on learning from conflicts, but ex-
hibits important differences. The most important aspect is that clause learning ex-
ploits the sequence of unit propagation steps that produces the conflict. In addition,
clause learning in SAT solvers exploits UIPs (see Sect. 9.4.2). The original ideas of
clause learning in SAT solvers were proposed in the GRASP SAT solver [72, 80, 81].
A recent alternative formalization of clause learning can be found in [78]. This sec-
tion overviews clause learning by summarizing the main steps and illustrating how
these are applied to a simple example.

As the CDCL algorithm is executed, if a falsified clause is identified, conflict
analysis is used to create a clause that explains and prevents the same conflict from
re-occurring. Algorithm 2 summarizes the main steps of the conflict analysis (and
learning) procedure. The input arguments are the CNF formula, and the current set
of assignments. Literals implied at the current decision level are traversed, starting
from the ⊥ vertex (which represents the falsified clause). For each traversed literal,
the literals in the antecedent are analyzed. A literal assigned at a decision level
lower than the current one has its complemented literal recorded, whereas a literal
assigned at the current decision level is scheduled to be traversed. The process is
repeated until the branching variable for the current decision level is visited.

Figure 2 shows a simple example of unit propagation yielding a conflict. The
implication graph summarizes how unit propagation produces the conflict. Algo-
rithm 2 is executed on the implication graph, starting from node ⊥. Literals a, b,
and z are visited, since all are assigned at decision level 3. The recorded literals
are x̄ and z̄. Thus, the created clause is (x̄ ∨ z̄). These steps are shown in Fig. 3.
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Fig. 2 Clause learning: (a) example formula and (b) conflict after unit propagation

Fig. 3 Clause learning: creating a new clause

Traversed edges are marked with thick lines. Each literal for which the complement
is recorded is highlighted and shown inside a box. Moreover, the derivation of the
learned clause is formally explained by the application of a sequence of (selected)
resolution steps. Hence, clause learning can be viewed as a way to decide which
clauses to learn by selective resolution steps. Figure 4 also shows the result after
backtracking. The backtrack step shown is the one proposed in [86], which differs
somewhat from the backtrack step originally associated with clause learning in the
GRASP SAT solver [80, 81]. The GRASP SAT solver delayed backtracking until
both assignments had been considered for the branching variable. This would avoid
possibly unnecessary (and, in the case of GRASP, expensive) backtracking.

A number of researchers have investigated ways to improve the basic clause
learning procedure outlined above (e.g., [6]). Nevertheless, most state-of-the-art
SAT solvers implement the basic clause learning procedure, first proposed in
GRASP [80, 81], with the backtracking step used in Chaff, but improved with
learned clause minimization (which is described in Sect. 9.4.3). Recent work ad-
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Fig. 4 Clause learning: after backtracking

dresses techniques to decide which clauses are expected to be of interest for the
subsequent search [7].

9.4.2 Unique Implication Points

A key aspect of clause learning in SAT solvers is Unique Implication Points (UIPs).
If unit propagation due to a branching decision yields a conflict, then any domina-
tor [109] of the conflict node with respect to the branching decision is a UIP [80, 81].
UIPs can be related with failure-driven assertions [79], used in the context of cir-
cuit testing, and mimic, at the logic level, the notion of unique sensitization points
(USPs) also used in testing [42]. UIPs serve a number of purposes in CDCL SAT
solvers. First, UIPs allow learning of smaller clauses. Second, UIPs allow learning
of multiple clauses. The clause learning procedure outlined in Algorithm 2 can be
modified to stop when the first dominator is identified. The intuitive justification
for this is that assigning the literal associated with the UIP suffices to reproduce
the conflict. Hence, the clause learning procedure can terminate by recording the
complement of the UIP literal.

Figure 5 illustrates the use of UIPs in clause learning. For this example, without
the identification of UIPs, the learned clause would be (w̄ ∨ x̄ ∨ ȳ ∨ z̄). This is
shown in Fig. 6, where the clause is learned following the steps outlined earlier.
However, if clause learning stops at the first UIP, then the learned clause becomes
(w̄∨ x̄∨ ā). Observe that stopping at the first UIP essentially consists of performing
fewer resolution steps, i.e., the clause learned by stopping at the first UIP is already
present in the resolution steps used to derive the learned clause without stopping at
the first UIP.

Moreover, observe that, for this concrete example, the learned clause is not only
smaller, but induces backtracking to a lower decision level. A straightforward ob-
servation is that clauses learned by stopping learning at the first UIP result in back-
tracking decision levels that are no larger than the decision levels of clauses learned
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Fig. 5 Unique implication points: (a) example formula and (b) conflict after unit propagation

Fig. 6 Clause learning without UIPs

by stopping at the decision literal. A slightly more detailed characterization of this
property can be found in [6].

Although the modern usage of UIPs is based on stopping clause learning at the
first UIP, the original approach was to learn clauses at every UIP [80, 81]. Recent re-
sults, obtained on problem instances from the SAT competitions, suggest that learn-
ing clauses at multiple UIPs can improve SAT solver performance [96]. An example
of clause learning at multiple UIPs is shown in Fig. 8. As shown in Fig. 9a, conflict
analysis by stopping at the first UIP produces the learned clause (w̄ ∨ ȳ ∨ ā). How-
ever, it is possible to continue learning clauses at each additional UIP. For the ex-
ample in Fig. 8, z is also a UIP (it is actually the UIP corresponding to the decision
variable). Observe that (x = 1 and) z= 1 implies a = 1, and so a = 0 implies z= 0.
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Fig. 7 Clause learning with UIPs

Fig. 8 Multiple UIPs: (a) example formula and (b) conflict after unit propagation

However, this information is not obtained by unit propagation, i.e., a = 0 does not
lead to z= 0. Nevertheless, by noting that z is a UIP, the following clause is learned:
(z̄ ∨ x̄ ∨ a). This is illustrated in Fig. 9b. With this additional clause added to the
formula, a = 0 now implies z= 0 whenever x = 1. The clauses obtained by clause
learning at multiple UIPs are inspired by, but generalize, the concept of global im-
plications first studied in the area of circuit testing [97].
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Fig. 9 Multiple UIPs: (a) first UIP clause; and (b) second UIP clause

Fig. 10 Learned clause minimization: (a) example formula; (b) conflict after unit propagation

9.4.3 Learned Clause Minimization

The basic clause learning procedure has not changed significantly since the mid-
1990s [80, 81]. However, recent SAT solvers exploit a key optimization step after
clause learning: learned clause minimization [105]. In the mid-2000s, researchers
noticed that learned clauses exhibit important redundancies, and that these can be re-
moved with simple procedures. The performance gains obtained with learned clause
minimization justify the inclusion of this technique in most modern SAT solvers.

Let C1 = (x ∨ A) and C2 = (x̄ ∨ A ∨ B) be clauses of F , where A and B
are disjunctions of literals. Resolution between C1 and C2 produces the clause
C3 = (A ∨ B) which subsumes C2. If C3 is added to F , then C2 can be removed
from F , since it is subsumed by C3. This form of resolution is called self-subsuming
resolution [105]. One clause minimization procedure consists of the iterative appli-
cation of self-subsuming resolution between a learned clause c and the antecedents
of the literals in c [105]. Figure 10 shows an example of clause minimization by
self-subsuming resolution. Clause learning without clause minimization, shown in
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Fig. 11 Clause learning without minimization

Fig. 12 Minimization with self-subsuming resolution

Fig. 11, yields the learned clause Cl = (x̄ ∨ ȳ ∨ z̄ ∨ b̄). However, clause learning
followed by self-subsuming resolution between Cl and the antecedent of b yields
the clause C′l = (x̄ ∨ ȳ ∨ z̄), as shown in Fig. 12. Observe that, in contrast with
UIPs, self-subsuming resolution steps are resolution steps which are appended to
the resolution derivation to generate the final minimized learned clause.

In practice, self-subsuming resolution is often not enough to effectively mini-
mize learned clauses. An alternative is the so-called recursive minimization proce-
dure [105], which is summarized in Algorithm 3. Figure 13 shows an example of
applying recursive clause minimization. As shown in Fig. 14, clause learning with-
out minimization yields clause (w̄ ∨ x̄ ∨ c̄). For this example, self-subsuming res-
olution cannot be applied, because resolution operations make the resulting clause
larger. However, the recursive clause minimization procedure can be used to prove
that literal c̄ can be dropped from the clause. As shown in Fig. 14b, the traversal
from vertex c solely reaches marked vertex w. Hence, the literal c̄ can be dropped
from the learned clause, and so the final clause becomes (w̄ ∨ x̄).



9 Propositional SAT Solving 261

Algorithm 3 Main steps of recursive clause minimization procedure

RECURSIVECLAUSEMINIMIZATION(c)

1 Mark literals in c
2 Implied literals in c are flagged as candidates for removal
3 foreach candidate literal l in c
4 do Traverse implication graph starting from antecedent of l
5 Stop at decision literals or marked literals
6 if Non-marked literal visited
7 then Keep literal l in c
8 else Drop literal l from c

9 return c

Fig. 13 Learned clause minimization: (a) example formula; (b) conflict after unit propagation

Fig. 14 Clause learning: (a) no minimization; and (b) recursive minimization

9.4.4 Lazy Data Structures

Until the early 2000s most DPLL/CDCL SAT solvers used adjacency lists as the un-
derlying data structure for clause representation [70], with the exception being the
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Fig. 15 Operation of
watched literals

head-tail representation proposed in SATO [119]. Adjacency lists require L refer-
ences from literals to clauses, where L denotes the total number of literals. This can
become an issue when learning many (possibly large) clauses. The head-tail repre-
sentation requires between 2×C and L references from literals to clauses [70, 78],
where C denotes the number of clauses. Although more efficient in practice than
adjacency lists, the head-tail representation causes overhead when backtracking, be-
sides requiring a varying number of references.

One of the main contributions of the Chaff SAT solver was the use of a new
(lazy) data structure, the watched literals data structure. The watched literals data
structure has several important advantages. First, for each clause only two refer-
ences from literals to the clause are required. This results in 2 × C references in
total. Also, when backtracking, no bookkeeping is required. This provides signifi-
cant performance gains over the other data structures. As a result, watched literals
have become the de facto standard in the implementation of modern SAT solvers
(e.g., [19, 38]). Observe that the lowest number of references for each clause is 2,
since one must be able to decide when the clause is unit so that unit propagation
can be used to assign a value to some variable. Figure 15 illustrates the operation of
the watched literals data structure, being adapted from [78]. The example considers
a single clause with 5 literals, with the arrows showing the currently watched liter-
als. The current decision level is either 3 or 4, and the clause has 2 literals already
assigned value 0 (shown crossed out in the figure). At decision level 5, one of the
watched literals is assigned value 0. This requires the algorithm to find another lit-
eral to watch, and so the reference is updated. At decision level 7, another watched
literal is assigned value 0. In this case, all literals are visited, trying to find a literal
that is still unassigned and not watched. In this case none exists, i.e., all literals but
one are assigned value 0 and the remaining unassigned literal is already watched.
Hence, the clause is declared unit. As a result, the only unassigned literal is assigned
value 1 (shown as a black box in the figure), so that the clause becomes satisfied.
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Afterwards, the algorithm backtracks to decision level 4. As indicated earlier, there
is no need to update the references. Thus, when backtracking, the watched literal
data structure requires no bookkeeping.

9.4.5 Search Restarts

Another standard ingredient in modern SAT solvers is search restarts [45]. Research
in the late 1990s showed that DPLL SAT solvers exhibit heavy-tail behavior on sat-
isfiable problem instances when the branching heuristic is randomized [45]. This
means that the run times of DPLL SAT solvers can exhibit large variations for the
same satisfiable instance, and that large run times can happen with non-negligible
probability. This observation motivated the proposal of rapid randomized restarts,
i.e., to restart the search after a fixed (or alternatively increasing) number of con-
flicts. The increase in the number of conflicts is one possible technique to guarantee
that the SAT algorithm is still complete when search restarts are implemented; an-
other is to keep all learned clauses [68]. Later work [11] showed that search restarts
were also very effective for CDCL SAT solvers, and for solving unsatisfiable prob-
lem instances. These conclusions were further substantiated by the implementation
of search restarts in the Chaff SAT solver [86].

As with the techniques described in earlier sections, search restarts are commonly
used in modern CDCL SAT solvers [19, 38, 78]. In recent years, a number of works
have studied different restart policies, including [7, 19, 52, 103].

9.4.6 Lightweight Branching Heuristics

Modern CDCL SAT solvers also exploit so-called lightweight branching heuris-
tics, most notably the VSIDS branching heuristic [86]. The previous generation of
branching heuristics [73] maintained counts of assigned literals in each clause. This
incurs a significant overhead. For example, in the GRASP SAT solver, branching
could account for more than two thirds of the run time [70]. In contrast, lightweight
branching heuristics use solely information from conflicts to decide which variables
to branch upon. Hence, static or dynamic literal counts are not required. Variables
that are involved in more conflicts are more likely to be used for branching than
variables not involved in conflicts. This is achieved by associating a metric with
each variable, which is incremented for variables involved in conflicts. On average,
the most recent conflicts are more relevant than earlier conflicts, since these may
no longer be useful for the current state of the search. As a result, VSIDS divides
the variable metrics by a constant after a fixed number of conflicts. Besides the
low overhead of this heuristic, it also results in what is called locality-based search.
Since the variables occurring in recent conflicts are weighted more heavily, the al-
gorithm is biased towards branching on these variables. Thus, the search focuses on
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the sub-space of recent conflicts, effectively pruning this sub-space before moving
on to other sub-spaces. While only intuitively understood, this has a very significant
impact on the size of the search space explored and is credited with the speed-up
of this generation of SAT solvers. As with the techniques described in earlier sub-
sections, the VSIDS branching heuristic has become a de facto standard in modern
CDCL SAT solvers.

9.4.7 Additional Techniques and Recent Trends

This section reviews a few other techniques that are found in modern CDCL SAT
solvers. One key issue with CDCL SAT solvers is that the number of learned clauses
can become too large. As a result, researchers have developed different solutions for
this problem since the mid-1990s. Original solutions were based on restricting the
size of learned clauses [14, 80, 81]. More recent work proposes the use of different
metrics to decide which clauses to delete [7, 44]. Earlier work considered activity
heuristics [44], i.e., if a clause is not used for unit propagation, then it can be marked
for deletion. More recent work gives preference to deleting clauses whose literals
are distributed by more decision levels [7].

The main change to the organization of branching is the use of phase saving [89],
i.e., the value of each assigned literal is saved when backtracking takes place. Af-
terwards, this saved value is reused when that literal is branched upon.

Formula preprocessing has been studied extensively [24, 69, 74]. Recent work
has shown that specific forms of preprocessing are effective [37, 57]. Among the
many techniques that have been proposed, the most widely used include variable
elimination, blocked clause elimination and elimination of subsumed clauses. More-
over, preprocessing techniques have been integrated within SAT solvers, under the
general framework of inprocessing [58].

Additional promising research directions include algorithm portfolios for
SAT [96, 116] and parallel algorithms for SAT [47–49].

9.5 SAT-Based Problem Solving

The importance of SAT solvers is demonstrated by the many problem-solving uses
of SAT. This section overviews the different ways in which SAT solvers can be used
for solving different problems.

The standard use of SAT solvers is as an engine for solving decision problems,
i.e., requiring a yes/no answer. A large number of practical applications of SAT
also involve iterative SAT solving, i.e., the problem to be solved requires calling
a SAT solver a number of times. Clearly, the number of calls to the SAT solver is
paramount in the overall efficiency.

In some cases, the number of calls to the SAT solver is polynomial in the size of
the problem instance, but in some other cases the number of calls to the SAT solver
is exponential in the worst case.
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9.5.1 Incremental SAT

A key issue with iterative use of SAT solvers is how to communicate minimal
changes in the formula to the SAT solver and, rather more importantly, how to reuse
the learned clauses from previous SAT solver calls. One alternative is to commu-
nicate the complete CNF formula each time the SAT solver is to be called. This
approach is often referred to as non-incremental, and reuse of learned clauses is
not used. Another alternative is to communicate to the SAT solver only the clauses
that should be discarded (or deactivated) and the new clauses that should be con-
sidered (or activated). This alternative is referred to as incremental, and its use in
applications based on iterative SAT solving is now common. The essential ideas for
incremental SAT solving are summarized below.

Most modern SAT solvers achieve these goals by using assumptions [38].
Clauses in the SAT solver are associated with a new assumption variable. Then,
assumption variables are used in each SAT solver call to activate/deactivate clauses.
The use of assumptions has important advantages and significant disadvantages.
First, any learned clause will keep a record of the clauses explaining its derivation.
Thus, activation (resp. deactivation) of assumption variables immediately activates
(resp. deactivates) learned clauses that are usable (resp. unusable) in the next SAT
solver call.

Another technique to implement incremental SAT, and so to allow reuse of
learned clauses, is to use some proof-tracing mechanism [2, 19] (which includes
representation of resolution proofs) [19].

Both approaches listed have advantages and disadvantages. Nevertheless, the use
of assumptions is more widespread in published work.

9.5.2 Unsatisfiable Cores

In many SAT applications, including model checking, SAT solvers are expected to
produce unsatisfiable cores [120], i.e., a subset of the original subformula which was
used to prove unsatisfiability. Alternatively, a SAT solver can produce a resolution
proof [120]. Unsatisfiable cores find a wide range of applications, including model
checking [22], debugging specifications [101], and abstraction refinement [15]. Res-
olution proofs also find different applications, e.g., in computing interpolants [84].

Two main alternatives exist for computing unsatisfiable cores. The original ap-
proach consists of tracing the process of clause learning in CDCL SAT solvers, e.g.,
by writing an explanation for each learned clause to disk (or keeping it in memory in
a separate data structure). Examples of variants of this approach include [2, 19, 120].
A widely used alternative is based on the use of assumption variables (see previous
section). When learning clauses, all assumption variables associated with the clauses
used for explaining a learned clause are added to the learned clause. Thus, when the
SAT solver terminates, instead of producing the empty clause, it produces a clause
containing the list of assumption variables of all clauses involved in proving the
instance unsatisfiable, i.e., an unsatisfiable core.
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9.5.3 CNF Encodings

In most uses of SAT, problems are not initially represented in CNF, e.g., [108]. As a
result, a large body of research has been dedicated to encoding richer domains into
CNF. Concrete examples include Satisfiability Modulo Theories (SMT), Constraint
Satisfaction Problems (CSP), Answer Set Programming (ASP), but also simple ex-
tensions of propositional logic, that include non-clausal and pseudo-Boolean (PB)
constraints.2

Encodings to CNF often address two key aspects. First, the size of the result-
ing CNF formula, namely whether the size of the encoding is polynomial in the
original problem representation. Second, whether the CNF encoding preserves arc-
consistency (e.g., see [1, 8, 92]), i.e., whether unit propagation suffices to (i) identify
partial assignments that cannot be extended to a satisfying assignment; and (ii) iden-
tify any necessary assignments.

A number of ways exist to encode SMT into SAT. An up-to-date review is pro-
vided in [63]. Similarly to SMT, there are a number of ways to encode CSP into
SAT. An overview of CSP to SAT encodings is provided in [92]. Like with SMT
and CSP, there are also different ways to encode ASP into SAT. A recent account is
provided in [55].

In many model-checking applications, instances of SAT are naturally non-clausal
(e.g., interpolants in interpolant-based model checking [84]). As a result, mech-
anisms for encoding non-clausal formulas into clausal form have been devel-
oped (e.g., [90, 110]). A recent survey of these encodings is provided in [92].

For many practical applications, the domain variables are Boolean and the goal
is to encode a pseudo-Boolean (PB) constraint of the general form:

n∑

j=1

aj xj -. b (1)

where -. ∈ {<,≤,=,≥,>}, aj ≥ 0, with j ∈ {1, . . . , n}, b ≥ 0, and xj are proposi-
tional. For analyzing the size of the encodings, aM denotes the value of the largest
coefficient in (1).

A number of special cases of (1) have been extensively studied in the past. These
include cardinality constraints of the form AtMostk, AtLeastk, and Equalsk:

n∑

j=1

xj -. k (2)

Of these, constraints of the form AtMost1 have also been extensively studied [92].
(Observe that an AtLeast1 constraint can be trivially encoded with a clause, and so
an Equals1 constraint can be encoded with an AtLeast1 and an AtMost1 constraint.)

There is a vast body of work on encoding PB constraints, cardinality constraints
and AtMost1/Equals1 constraints [92]. Table 1 shows examples of CNF encodings.

2See [21] and references therein.
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Table 1 Examples of CNF Encodings

Type Encoding # Clauses Arc-Consistency Reference

Pseudo-Boolean Operational linear No [113]

BDD exponential Yes [39]

GPWE O(n3 log(n) log(aM)) Yes [8]

GPWE* O(n3 log(aM)) Yes [1]

Cardinality BDD O(nk) Yes [39]

Seq. Counter O(nk) Yes [102]

Sort. Networks O(n log2 n) Yes [13, 39]

Card. Networks O(n log2 k) Yes [4]

AtMost1 Seq. Counter O(n) Yes [102]

Bitwise O(n logn) Yes [41, 91]

9.5.4 Optimization

In many settings, the problem to be solved involves a set of constraints (F ) subject
to a linear cost function f =∑

x∈X x. In Boolean domains, optimization problems
can be described as follows:

min
∑n
i=1 cj xj

s.t. F
(3)

(3) can be solved with algorithms for pseudo-Boolean optimization. For this con-
crete case, the cost function can be optimized with standard linear or binary search
(see, e.g., [95] for an overview).

Alternatively, (3) can be reduced to weighted partial Maximum Satisfiabil-
ity (e.g., [51]). The original constraints F are set as hard clauses. Moreover, each
term in the cost function can be represented as a soft clause (¬xj ) with cost cj .
A wealth of algorithms have been developed in recent years for MaxSAT. These
include branch-and-bound search, iterative SAT solving and (unsatisfiable) core-
guided approaches. Recent accounts are provided in [3, 66, 85].

9.5.5 Model Enumeration

In many settings, a SAT solver is required to compute all satisfying assignments.
A well-known example is in model checking [59, 83]. Another well-known example
is the use of SAT solvers in lazy SMT solvers [12], where satisfying assignments
are iteratively computed until a model of the SMT formula is found, or the formula
is proved unsatisfiable. An essential step in model enumeration is the identification
of prime implicants, e.g., [93].

Given a (total) satisfying assignment for the variables, a prime implicant can be
obtained by iteratively checking whether each variable is required for satisfying the
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formula [93]. The resulting set of literals is a prime implicant, and its complement
can be used for blocking the recomputation of any model that is covered by the
prime implicant.

9.5.6 Minimal Sets

A number of applications of SAT solvers involve computing minimal sets. Concrete
examples include computing minimal unsatisfiable subsets (MUSes) [16, 46], min-
imal correction subsets (MCSes) [67, 75], prime implicates (PIs) [23], and minimal
models [17, 18], among many others. Recent work shows that all these problems
can be solved with the same algorithms [76]. Algorithms for computing minimal
sets of Boolean formulas include the following:

• Insertion-based (or constructive) [104].
• Deletion-based (or destructive) [10, 28].
• Dichotomic [50].
• QuickXplain [60].
• Progression [76].

Of these, QuickXplain and Progression offer the best performance in terms of the
worst case number of calls to a SAT solver. The deletion-based algorithm is well
known, and has been rediscovered in different settings, e.g. [10, 28]. Given a ref-
erence set of elements and a monotone predicate P , each element is iteratively re-
moved from the reference set and the predicate is checked on the resulting set. If the
predicate holds, the element is dropped from the reference set; otherwise it is kept.
In the end, the resulting set is a minimal set.

Depending on the type of minimal set being computed, different approaches ex-
ist for reducing the number of calls to a SAT solver. For computing MUSes and
PIs, existing techniques include using unsatisfiable cores to remove unnecessary
clauses [10, 16, 35] and model rotation [16, 114].

9.5.7 Quantification

Quantified Boolean Formulas (QBF) are Boolean formulas where the variables can
either be existentially or universally quantified. Quantification changes the complex-
ity class, and QBF is a well-known PSPACE-Complete problem [26, 62]. In prac-
tice, solving QBF formulas turns out to be significantly harder than solving SAT.
A large number of approaches have been proposed for deciding QBF formulas, i.e.,
for deciding whether a formula is true or false. A recent overview of algorithms for
QBF is provided in [43, 56].
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9.6 Research Directions

Despite a well-defined set of key techniques, CDCL SAT solvers have been the
subject of continued improvements over the years. This section outlines possible
lines of research in the area of propositional SAT solving.

One recent promising area of research is the integration of extended resolu-
tion into SAT solvers [5, 53]. Extended resolution allows definitions to be created
(e.g., new variables representing some Boolean expression). This can provide an
added degree of flexibility in modern CDCL SAT solvers.

Another recent promising area of research is to use the DPLL(T ) paradigm [88]
in designing problem-specific SAT-based algorithms. Concrete examples include
specific solvers for handling SAT problems with parity constraints [65], and also
PBO solvers [71].

One additional area for future improvements to SAT solvers is formula simplifi-
cation, before or during search [37, 57, 58].

Besides improvements to SAT solver technology, a number of additional research
directions can be envisioned in the area of SAT solving. First, applications of SAT
continue to be proposed on a regular basis. This is expected to continue in the future.
A related topic is the development of improvements to existing applications of SAT.
Moreover, the general area of SAT-based problem solving has been the subject of
remarkable improvements in recent years, namely in terms of the many uses of
SAT solvers as oracles for solving function problems. Concrete examples include
Maximum Satisfiability (MaxSAT) and Pseudo-Boolean Optimization (PBO) [66,
95], minimal unsatisfiable subsets (MUSes) [16, 27], minimal correction subsets
(MCSes) [75], backbones of Boolean formulas [77, 121], minimal models, and, in
general, minimal sets over monotone predicates [76].

One final area of research is Quantified Boolean Formulas (QBF). Despite the
many improvements made in recent years, improvements to QBF solvers are still
far inferior to those made to SAT solvers. Nevertheless, recent new uses of SAT
solvers in QBF solving suggest further improvements are to be expected [56].
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Chapter 10
SAT-Based Model Checking

Armin Biere and Daniel Kröning

Abstract Modern satisfiability (SAT) solvers have become the enabling technol-
ogy of many model checkers. In this chapter, we will focus on those techniques
most relevant to industrial practice. In bounded model checking (BMC), a transi-
tion system and a property are jointly unwound for a given number k of steps to
obtain a formula that is satisfiable if there is a counterexample for the property up
to length k. The formula is then passed to an efficient SAT solver. The strength of
BMC is refutation: BMC has been used to discover subtle flaws in digital systems.
We cover the application of BMC to both hardware and software systems, and to
hardware/software co-verification. We also discuss means to make BMC complete,
including k-induction, Craig interpolation, abstraction refinement techniques, and
inductive techniques with iterative strengthening.

10.1 Introduction

Modern satisfiability (SAT) solvers have become the core technology of many
model checkers, greatly improving capacity when compared to BDD-based model
checkers. In this chapter, we will focus on those SAT-based model-checking tech-
niques that are most relevant to industrial practice. In SAT-based bounded model
checking (BMC) [26], a symbolic representation of a transition system and a prop-
erty are jointly unwound for a given number of steps k to obtain a formula that is
satisfiable if there is a counterexample for the property up to length k. The formula
is then passed to an efficient SAT solver.

The idea of using propositional SAT to encode and solve path constraints for
transition systems was discussed before in the AI planning community. Originally
Kautz and Selman [103] observed that direct encodings of planning problems into
a propositional SAT problem outperformed the best planning algorithms by orders
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of magnitude. A more recent experimental survey of using SAT for planning can be
found in [145].

The rationale for using BMC is based on the observation that SAT solvers are
often able to solve much larger formulas than classical techniques based on binary
decision diagrams (BDDs) [40] (see also Chap. 8 of this Handbook). It is now in-
dustrial practice to simply run BMC for a certain amount of time or up to a certain
bound k, fixed for instance in the verification plan.

On the other hand, BDD-based techniques allow efficient implementations of
quantifier elimination, which is crucial for termination checks in symbolic fix-point
algorithms. The detection of the fix-point is essential to prove properties in general,
but not necessary when aiming at refutation.

In this chapter, we cover the application of BMC to both hardware and software
systems, and hardware/software co-verification. In its simplest form, BMC is in-
complete, as bugs that are only exposed with more than k transitions are missed.
These BMC-based techniques therefore either relinquish completeness, or have to
rely on alternative ways to assert that a property holds in general for all bounds. The
chapter therefore covers a range of SAT-based techniques that are able to establish
a proof of correctness for the property for an unbounded depth.

This material has been covered more extensively in other tutorial-style publica-
tions and surveys before [69, 81, 141, 155], including two chapters [24, 110] in the
Handbook of Satisfiability [28], by the same authors as this chapter. Thus, besides
explaining some of the very basic ideas, the rather restricted amount of space avail-
able here is used to give pointers to existing important work on SAT-based model
checking and elaborating on more recent publications.

The outline of the chapter is as follows. We begin with a description of how
to perform BMC on an abstract description of the system, given in the form of a
transition system. We then provide details on how to obtain formal models from
industrial system description languages such as Verilog and ANSI-C, and how to
encode these models and systems properties into a propositional formula. In par-
ticular, we show how model-checking problems for software and hardware can be
encoded into satisfiability checking (SAT). The chapter concludes with a discussion
of means to make BMC complete, including k-induction, Craig interpolation, and
inductive techniques with iterative strengthening.

10.2 Bounded Model Checking on Kripke Structures

10.2.1 Kripke Structures

The behaviors of a program or circuit can be formally captured using a Kripke Struc-
ture, formally defined as follows.

Definition 1 (Kripke structure) A Kripke Structure is a (finite) set of states S, a set
of initial states I ⊆ S, and a transition relation T ⊆ S × S.
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A path in a Kripke structure is a (possibly infinite) sequence of states s0, s1, s2, . . .
such that

• s0 is an initial state, i.e., s0 ∈ I , and
• there is a transition between any si and si+1, i.e., (si , si+1) ∈ T .

The states are typically valuations of a set of state variables, corresponding to
latches and registers in circuits and program variables in software. In the case of
a finite set of states we can always re-encode the Kripke structure to use proposi-
tional variables only. As a result, we obtain purely propositional predicates I and T .
We use the set notation and the state predicates and relations interchangeably, i.e.,
the propositional formula I (si) evaluates to true iff si ∈ I . Similarly, T (si, si+1)

evaluates to true iff (si , si+1) ∈ T .
The key idea of bounded model checking is to construct a formula that is satis-

fiable if there exists a path that violates a given property. We now consider specific
kinds of properties, and will distinguish safety and liveness properties.

10.2.2 Safety Properties

Properties are typically defined using a suitable temporal logic. We refer to Chap. 2
of this Handbook [140] for an introduction to temporal logics. We restrict the dis-
cussion in this chapter to properties given in Linear Temporal Logic (LTL). One
benefit of this restriction is that counterexamples to LTL properties can always be
given in the form of a path, as defined above. A full survey on ways to encode
LTL in a BMC context together with an experimental comparison with BDD-based
techniques is provided by Biere et al. [27]. Note that encodings differ in terms of
compactness, ease of implementation, and of course SAT-solving efficiency.

We begin with LTL properties of the form Gp, where p is a state predicate. This
property establishes that p is a global invariant of the system. A counterexample
for a property of this kind can be given as a finite path that ends with a state s that
satisfies ¬p. This gives rise to a straightforward condition for the existence of a
counterexample path of length k:

∃s0, . . . , sk. I (s0) ∧
k−1∧

i=0

T (si, si+1) ∧ ¬p(sk) (1)

The formula above contains three conjuncts. The first conjunct, I (s0), ensures that
the state s0 is one of the initial states. The second conjunct encodes the requirement
that there is a transition from si to si+1 for each i ∈ {0, . . . , k − 1}. This amounts to
creating k replicas of the transition relation T . Finally, the conjunct ¬p(sk) asserts
that the state sk satisfies ¬p.

Note that the formula obtained in this way has only one level of (existential)
quantification and thus corresponds to a propositional satisfiability problem. Most
modern SAT solvers such as ZChaff [136] or MiniSAT [73] expect to receive the
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propositional formula in conjunctive normal form (CNF).1 The transformation of
the quantifier-free propositional formula into CNF is performed using the Tseitin
transformation [151]. This transformation is linear-time, and results in an equi-
satisfiable formula in CNF. Numerous papers on more compact or more efficient
variants of this step have been published, e.g., [45, 72, 153]. Further details on CNF
encodings can also be found in the Handbook of Satisfiability [142]. See also the
discussion on the relation between CNF-level preprocessing and encoding in [97].

10.2.3 Liveness Properties

We will consider further categories of system properties. The simplest type of live-
ness properties are eventualities, e.g., whether a particular state property is guaran-
teed to eventually hold. These properties are written as Fp in LTL. The encoding of
LTL formulas of this form is very similar to the encoding of Gp. We observe that
counterexamples to properties of this form can always be given as a finite (possi-
bly empty) prefix (called the stem) followed by a finite loop. All states on the path
satisfy ¬p. This pattern can be encoded as follows:

∃s0, . . . , sk. I (s0) ∧
k−1∧

i=0

T (si, si+1) ∧
k−1∧

i=0

¬p(si) ∧
k−1∨

i=0

sk = si (2)

As described above, the formula can be converted into propositional logic, and can
then be passed to a propositional SAT solver.

The translation of general LTL formulas is more complex. Techniques for per-
forming this translation can be categorized as syntactic or semantic [58]. Syntac-
tic translations follow the syntactic structure of the LTL property; instances in-
clude [26, 90, 91, 128, 139].

As an alternative semantic translations can be used, which are based on au-
tomata: the formula is transformed into a suitable kind of automaton that accepts
counterexample paths. An instance is the translation of the LTL property ϕ into a
Büchi automaton M¬ϕ that accepts paths that satisfy ¬ϕ [74, 152]. Counterexam-
ples to ϕ then have the form of a path through the product of the Kripke struc-
ture and M¬ϕ that contains infinitely many accepting states. A counterexample in a
finite-state product is thus a loop that does not contain an accepting state. This con-
dition can be encoded using a formula similar to Eq. (2). One key advantage of the
automata-based encoding is that numerous minimization techniques can be applied
to the automaton prior to building the BMC formula.

Semantic translations allow the use of sophisticated automata optimization tech-
niques, but the space requirements might explode for larger formulas, due to explicit
representation of potentially exponentially many states in the automata.

1There are now also non-clausal propositional SAT solvers, e.g., [95].
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10.2.3.1 Liveness to Safety Translation

Besides these syntactic and semantic translations, a third approach to handle live-
ness is to encode liveness into safety (L2S) and then use model-checking algorithms
for checking safety [25, 146]. This is particularly useful for techniques such as in-
terpolation which only work for safety properties at this point. The L2S encoding
actually increases the size of the model by a factor of two. Thus, it might be pro-
hibitively expensive for BDD-based techniques, which are very sensitive to model
size. However, even for BDD-based model checking there are cases where L2S is
exponentially more efficient.

10.2.3.2 k-Liveness

More recently, a new approach for checking liveness was presented in [49] and
independently discovered in [80] (see also [124]). In [49], the authors called it “k-
liveness”. Their implementation proved to be quite effective in the liveness track
of the Hardware Model Checking Competition 2012 (HWMCC 2012). In this ap-
proach, liveness properties are assumed to be encoded as FGp properties. Then the
approach tries to prove that a witness trace for such a property does not exist. In
case of a finite-state system, a witness trace to FGp can be assumed to be an infi-
nite path which ends in a loop, where the loop contains a state in which p holds.
If FGp cannot be satisfied, then the prefix of any path satisfies p only an arbitrary
(but finite) number of times.

The basic idea of the approach is to count the number of occurrences of p and
then check that the count is smaller than a fixed bound k. Note that this turns the
liveness-checking problem into a simple safety-checking problem. If p can only be
satisfied at most k times, then FGp cannot be satisfied on any initialized path. If
the safety check fails and a path is found on which p can be satisfied more than
k times, the bound k is increased to say k + 1 and a new safety-checking problem
for bound k + 1 is generated. If the property FGp does not hold for a finite-state
system, then this process has to terminate after k reaches the number of states of the
system. In practice the process terminates much earlier, in particular if combined
with a method for extracting additional constraints [49]. In order to find violations
of liveness properties, i.e., witness traces for formulas like FGp, the approach has
to rely on other techniques, such as those discussed above.

10.3 Bounded Model Checking for Hardware Designs

We will now cover techniques to translate system descriptions given in industrial
system description languages into BMC instances. We begin with verification of
designs given in hardware description languages (HDLs), which was one of the
earliest applications of SAT-based BMC (see also Chap. 24 of this Handbook [77]).
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10.3.1 Hardware Description Languages (HDLs)

In industrial practice, hardware designs are described by means of modeling lan-
guages. These include languages to describe schematics and net-lists at the lowest
level. Higher levels of abstraction can be achieved by hardware description lan-
guages (HDLs) such as VHDL or Verilog.

The challenges in encoding models given in hardware description languages into
SAT are mostly shared by all model-checking techniques for hardware; they affect
BDD-based and SAT-based methods alike. Most HDLs have both simulation seman-
tics and synthesis semantics. Designers rely heavily on simulation and build models
with simulation semantics in mind. Simulation semantics are typically based on an
event queue, resembling the data structures maintained by event-driven simulators.
On the other hand, the synthesis semantics is closer to the actual hardware produced,
and may uncover design flaws that go unnoticed during simulation.

10.3.2 BMC on Net-Lists

We will briefly elaborate on performing BMC using synthesis semantics. In this
context, the BMC implementation will initially perform several stages of behavioral
synthesis up to the point that a net-list is produced. A net-list is a collection of
primitive elements. A typical way to represent net-lists is to use an and-inverter
graph (AIG) [123], i.e., the net-list consists of “and” gates, inverters and memory
elements referred to as registers.

Definition 2 A net-list N is a directed graph (VN,EN, τN) where VN is a fi-
nite set of vertices, EN ⊆ VN × VN is the set of directed edges and τN : VN →
{AND, INV, REG, INPUT} maps a node to its type, where AND is an “and” gate, INV

is an inverter, REG is a register, and INPUT is a primary input. The in-degree of a
vertex of type AND is at least two, of type INV and REG is exactly one and of type
INPUT is zero. Any cycle in N must contain at least one REG node.

As an example, consider the 3-bit counter whose Verilog module is shown in
Fig. 1 (taken from [47]). The corresponding net-list is shown in Fig. 2. A node drawn
as a box represents a REG. A circle-shaped node is an AND gate. An incoming edge
of a node marked with a circle indicates negation.

A state of a net-list is a mapping of its registers to the Boolean values B= {0,1}.
A net-list N with r registers gives rise to a Kripke structure M = (SN , IN ,TN)
where SN = B

r is the set of states and TN is the transition relation specifying what
pairs of states are connected by transitions. The set IN of initial states is determined
by the values of the registers immediately after reset. In the above example, IN =
¬count[0] ∧ ¬count[1] ∧ ¬count[2]. The state-transition diagram for the circuit
is shown in Fig. 3. Note that SN for the 3-bit counter consists of 23 = 8 states.
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Fig. 1 Verilog module of a
counter

Fig. 2 Net-list for Fig. 1

Fig. 3 State-transition
diagram of the counter in
Fig. 1

Unreachable states are not shown in Fig. 3. An algorithm for obtaining a transition
relation for a net-list is given in [57].

The required property of a circuit can be given as part of the design description
in languages such as PSL [76] or as a System Verilog Assertion [154]. A discussion
of hardware specification languages can also be found in Chap. 24.

10.4 Bounded Model Checking for Software

We focus on BMC-like approaches to software verification; for a broader perspec-
tive on automated techniques for formal software verification, we refer the reader to
a survey [69].
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10.4.1 Monolithic Encodings

The most straightforward manner to implement BMC for software is to encode the
transition relation of the program into a circuit representation, and then to perform
BMC as described in Sect. 10.2.

1. The first step is to add a program counter (PC) to the set of state variables of
the model. The program counter determines the instruction that is to be executed
next.

2. Each instruction is turned separately into a transition relation. One way to obtain
such a formula is to convert the arithmetic operators in the program into their
circuit (net-list) equivalents. Arrays and pointers are treated as memories, using
a large case split over the possible values of the address or a first-order array
theory.

We will illustrate the second step by means of an example. Suppose that our
program has three state variables named x, y, and z, and suppose we wish to encode
the following instruction, given in C syntax:

x= y+ 1;
Note that the equal sign = in the C program fragment above indicates an assign-

ment, and not an equality relation. Following the usual convention, we will use x′,
y′ and z′ to denote the next-state values of the state variables. The transition relation
for the statement above is then

x′ = y′ + 1 ∧ y′ = y ∧ z′ = z .

Note that in the above formula, the symbol = denotes mathematical equality, and
not assignment. Also note the second and third conjuncts: these constraints state the
fact that the value of the program variables y and z is not changed by the instruction.

An unwinding using the “monolithic encoding” as described above with k steps
permits all program paths that traverse k (or fewer) instructions to be explored. The
size of this basic unwinding is k times the size of the program. For large programs,
this is prohibitive, and thus, several optimizations have been proposed. These opti-
mizations focus on reducing the size of the encoding by eliminating combinations
of control-flow locations that do not correspond to paths through the program.

As an instance, in the case of sequential programs it is beneficial to merge all
instructions within one basic block into a single big-step instruction. Each basic
block of the program is converted into a formula by transforming it into static single
assignment (SSA) form [3]. This reduces the number of control-flow locations. The
model checker F-SOFT is reported to use an optimized monolithic encoding [94].

10.4.2 Path-Based Encodings

Instead of unwinding the entire transition relation, path-based software analyzers
perform forward symbolic execution [105] or in general symbolic simulation along-
side specific program paths up to a given depth. The resulting formula is then passed
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to the SAT solver [62]. This basic approach has a broad range of applications; e.g., it
can be used to check arbitrary safety properties or to generate test vectors to achieve
particular coverage goals. See [43] for a historical perspective on symbolic execu-
tion.

There are numerous approaches to prune the set of paths that are to be explored,
or to heuristically choose a path that most likely leads to a particular goal [14]. Once
a satisfying assignment is obtained, a counterexample can be extracted. There is
also work on obtaining particularly desirable counterexamples, and attempts to use
information from the BMC instance to explain the root cause of the error [85, 87].

In the most basic form, tools using path-based encodings explore precisely one
path at a time. An advantage of this approach is that the formulas generated this way
are often very simple, and can be solved effectively by modern solvers. However,
this basic approach to path-based exploration suffers from the path explosion prob-
lem, as the number of paths through a program is exponential in the worst case. As
an example, consider a loop with a branch in the body. The branching decision is
potentially independent in each iteration of the loop, and thus, the program has 2n

distinct paths for n loop iterations.
A principal method to address the path explosion problem is path merging. The

idea is to merge the formulas that correspond to two (or more) paths at points of
reconverging control flow. As a result, the number of formulas is reduced, but the
resulting formulas are larger and thus more difficult to solve for the SAT solver.
This enables a trade-off between the number of formulas to solve and their relative
difficulty.

At the extreme end, the CBMC bounded model checker always merges, and thus,
generates only a single formula for a given unwinding bound k [51, 52, 108, 112].
This formula is linear in the size of the program and linear in k even if there is an
exponential number of paths in the program. This corresponds to replicating the ba-
sic blocks along the path k times, followed by a transformation of the concatenation
of these blocks into SSA form [3]. Other tools perform path merging heuristically
in order to contain the total number of formulas.

10.4.3 Completeness for Bounded Programs

Bounded model checking, when applied as described above, is inherently incom-
plete, as it searches for property violations only up to a given bound and never re-
turns “No Errors”. Bugs that are deeper than the given bound are missed. Neverthe-
less, BMC can be used to prove liveness and safety properties on a particular class
of programs if applied in a slightly different way. The class we consider here are
programs that have a high-level worst-case execution time (WCET). Numerous pro-
grams are required to have this property, especially in the domain of safety-critical
embedded software.

A high-level WCET is typically given by a bound on the maximum number of
loop iterations and is usually computed via a simple syntactic analysis of loop struc-
tures. If the syntactic analysis fails, an iterative algorithm can be applied. First,
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a guess k for the bound on the number of loop iterations is made. The loop is then
unrolled up to this bound k using BMC. The property that is checked is that any
path exceeding k loop iterations is infeasible. If the property holds, k is established
as a sound high-level WCET. Otherwise, there are paths in the program exceeding
the bound, and a new guess for the bound is made [52, 112].

10.4.4 BMC for Multi-threaded Programs

The verification of concurrent software is primarily discussed in Chap. 18 of this
Handbook [88]. We will thus only briefly mention those methods in which the use
of SAT, or more general satisfiability modulo theories (SMT) (discussed in Chap. 11
of this Handbook [16]), is most prominent.

The basic approach described above also applies to concurrent software with
interleaving semantics. In BMC for this scenario, path formulas with thread in-
terleavings are built. Due to the potential for path explosion, numerous vari-
ants for restricting the search, path merging and compression have been consid-
ered [60, 78, 82, 143, 144]. An alternative to considering interleavings explicitly
during the encoding is to build a formula in which the interleavings are encoded by
means of clocks [2, 150]. Further constraint-based approaches to analyzing concur-
rent programs include [126, 149]. Concurrent programs can be reduced to sequential
programs by applying a bound on the number of context switches [127, 143]. This
transformation enables the application of analyzers for sequential programs as de-
scribed above.

Verifiers for concurrent systems usually benefit from some form of partial-order
reduction. Instances of BMC-based verifiers for concurrent systems that implement
partial-order reduction are [70, 100, 101].

10.4.5 Bounded Model Checking for HW/SW Co-verification

The encodings described in Sect. 10.3.1 for hardware and Sect. 10.4 for software
can be combined to form a single SAT instance, which enables the verification of
systems that have both a hardware and a software component. This approach is the
baseline for the broad area of “symbolic co-simulation” of two models, where one is
written in C and the other is a hardware model in (for example) Verilog or SystemC.

A typical scenario is checking the correspondence between a “golden” hardware
reference model and an RTL implementation. Another scenario is checking proper-
ties of software–hardware interaction, where the software is in C and the hardware is
modeled in an HDL. There is a broad variety of styles in which ANSI-C programs or
SystemC descriptions are used in these settings as (possibly partial) hardware spec-
ifications. In the special case of sequential equivalence checking between C and an
HDL this is combined with heuristic insertions of equivalence cut points.
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10.5 Encodings into Propositional SAT

In this section we elaborate on the original question of how to encode the model
and the temporal specification into propositional SAT. Due to the widespread use of
C to implement safety-critical software, model checking of C programs, even just
for bug hunting, is an important application of formal verification. The challenge
in making BMC work for a concrete programming language such as C is many-
fold. First, programming languages have complex syntax and semantics which have
to be parsed, analyzed and encoded. Reasoning about memory and in particular
pointer arithmetic requires non-trivial decision procedures for arrays. In order to
model the actual computation, including but not limited to modular arithmetic, bit-
precise reasoning is indispensable.

10.5.1 Encoding Bit Vectors

At the core of SAT-based Model Checking is the encoding of word-level opera-
tions, which correspond to the evaluation of arithmetic expressions in programming
languages or HDLs, into bit-level formulas. This task, also known as bit-blasting,
is very similar to the synthesis of hardware models on the register transfer level
(RTL) into net-lists. Alternatively, operations on the word-level can be modeled in
the first-order theory of bit vectors (QF_BV).

As discussed in Chap. 11, there are various approaches to handle the bit-vector
theory. Here we focus on bit-blasting. As examples we show the encoding of assign-
ments, i.e., equality in BV, and addition of bit vectors. Other arithmetic and logical
operations are treated in a similar way. Note that, in general, bit-blasting is an expo-
nential procedure, if bit-widths, as is usually the case, are encoded logarithmically.
This exponential explosion cannot be avoided, since the decision problem for full
QF_BV is NEXPTIME complete [107].

After encoding models into bit vectors and bit vectors into propositional bit-level
logic there remains a last step of encoding bit-level formulas into conjunctive normal
form (CNF), the common input format of most SAT solvers.

In order to compactly represent formulas we need sharing. This means we use
directed acyclic graphs (DAGs) or simply combinational circuits to represent gen-
erated bit-level formulas and not trees, which can be exponentially larger.

A bit-level data structure commonly used for this purpose is And-Inverter-Graphs
(AIGs) [123]. AIGs are in essence representations of net-lists (Definition 2). In or-
der to obtain a formula in CNF from an AIG it is possible to first translate the
AIG into negation normal form (NNF), which at most doubles the size of the DAG,
and then use the distributivity law to eliminate disjunctions over conjunctions. Each
elimination of a disjunction is quadratic and thus this approach may lead to an ex-
ponential blow-up of the resulting CNF. As a consequence, translating an AIG into
CNF by distribution is only feasible for small and shallow formulas. The common
approach for translating formulas (and AIGs) into CNF is to use a Tseitin encoding
and related optimizations, as discussed in Sect. 10.2.2.
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10.5.2 Encoding Memory

Memory occurs in software but also in hardware models. The first-order theory of
arrays is powerful enough to express most memory-related properties of practi-
cal interest. Therefore, decision procedures for the theory of arrays, as presented
in Chap. 11, are essential for bounded model checking. We are mostly interested
in bit-precise semantics. Thus for bounded model checking, we can focus on the
quantifier-free fragment of arrays over bit vectors (QF_ABV).

Most of the time, memory in hardware can be handled by standard decision pro-
cedures for arrays. However, for software there are additional requirements. In par-
ticular, dynamic memory management has to be encoded.

10.5.3 Encodings with Under- and Over-approximation

The direct use of a SAT solver as cited earlier (“bit-blasting”) is the conceptu-
ally simplest way to implement a bit-vector decision procedure. However, the bit-
blasting approach can be too computationally expensive in practice, and there is a
pressing need for better decision procedures for bit-vector arithmetic.

One frequently applied method to obtain faster decision procedures for bit-vector
arithmetic and other theories is abstraction. The key insight is that in many cases,
only a small part of the formula needs to be analyzed to conclude whether it is
satisfiable or unsatisfiable. The goal of abstraction is to focus on this part of the
formula.

Most decision procedures that employ abstraction implement either strict over-
or under-approximations. In both cases, the desired result is a formula φ′ that is
easier to solve than the original formula φ.

An over-approximation of a decision problem permits more solutions than the
original formula. A simple way to obtain an over-approximation for a satisfi-
ability problem is to replace sub-formulas by new variables. In case an over-
approximation φ′ is found to be unsatisfiable, we can conclude that the original
formula is unsatisfiable. Nothing, however, can be concluded if φ′ is satisfiable,
since the satisfying assignment for φ′ need not be a satisfying assignment for φ.

Conversely, an under-approximation of a decision problem permits fewer solu-
tions than the original formula. A simple way to obtain an under-approximation for a
satisfiability problem is to add further constraints or to replace sub-formulas by con-
stants. In case an under-approximation φ′ is found to be satisfiable, we can conclude
that the original formula is satisfiable. Nothing, however, can be concluded if φ′ is
unsatisfiable. A proof of unsatisfiability of φ′ need not be a proof of unsatisfiability
for φ.

Both over- and under-approximations can naturally be combined with forms of
automated abstraction refinement, such as those pioneered in [55]. SMT solvers
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implementing DPLL(T ) [15, 138, 147] can be seen as performing iterative refine-
ment (strengthening) of an over-approximation. The array theory is a very typi-
cal instance of a fragment of first-order logic that is particularly suitable for over-
approximation [120, 137]. Under-approximation is frequently applied in the case of
expensive bit-vector arithmetic operations such as multiplication.

In order to obtain the strengths of both over- and under-approximation, alterna-
tion between the two schemes can be applied. This idea is particularly fruitful if each
of the two phases provides refinement information for the other. An instance of this
scheme for quantifier-free Presburger arithmetic has been presented in [114]; a vari-
ant for quantifier-free bit-vector arithmetic has appeared in [41]. It is also possible
to combine over- and under-approximation in a single abstraction, thereby forming
a mixed abstraction. The resulting formula in general neither implies nor is implied
by the original formula [38, 39].

10.6 Complete Model Checking with SAT

As explained above, the search for a counterexample of fixed length is inherently
incomplete, as means to conclude the absence of counterexamples of any length are
missing. We now discuss methods that enable proofs that a given property holds for
unbounded depth [7].

10.6.1 Completeness Thresholds

Intuitively, if we could search deeply enough, we could guarantee that we have ex-
amined all the relevant behavior of the bounded program, and that searching any
deeper would only exhibit states that we have explored already. A depth that pro-
vides such a guarantee is called a completeness threshold [119]. The notion of com-
pleteness threshold is used to determine an upper bound on the length k of coun-
terexamples that have to be tried before the property can be declared to hold.

Computing the smallest such threshold is as hard as the model-checking prob-
lem itself, and thus, one settles in practice for over-approximations. Techniques for
obtaining completeness thresholds include structural analyses of the description of
the transition system [20, 21, 109], and semantic analyses of the model and the
property [5, 58, 115, 119].

The completeness threshold of a design can be lowered significantly by apply-
ing abstraction techniques such as localization reduction [125]. This idea has been
exploited in a number of techniques [130, 135].

10.6.2 Image Computation with SAT

BDD-based model checkers perform forward or backward fixed-point iterations in
order to determine the truth of a property given in temporal logic. The key step in this
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procedure is to compute a pre- or post-image of a given set of states with respect to
the transition relation. Attempts have been made to emulate this fixed-point iteration
using SAT solvers [1, 46, 131].

10.6.3 Basic Inductive Techniques

SAT-based techniques are well suited to check whether a given transition system
satisfies a given inductive invariant. Recall that I denotes the initial state predicate,
and that T denotes the transition relation. A state property P is inductive iff

1. P holds in the initial state, i.e., I �⇒ P , and
2. P holds in all states reachable from states that satisfy P , i.e.,

(
P(s)∧ T (s, s′)) �⇒ P

(
s′
)
.

Observe that both conditions are quantifier-free and can therefore be checked effec-
tively using the techniques we have described so far. The main practical problem is
that a property that holds does not have to be inductive. Nothing can be concluded
about P if the second condition fails. We now discuss techniques that attempt to
address this case.

10.6.3.1 Strengthening the Inductive Argument

Induction can be made more likely to succeed when we check a state property P ′
that is stronger than the non-inductive property P . Numerous heuristics have been
proposed to strengthen inductive arguments, both in the case of software and hard-
ware models. Many initial methods relied on careful manual strengthening of prop-
erties to make them inductive, followed by automated heuristics [6].

10.6.3.2 Equivalence Reasoning

Another important preprocessing technique for bit-level model checking is based on
iteratively computing the set of equivalent circuit nodes. This in particular includes
the set of equivalent latches and registers. The pioneering work of van Eijk [75]
consists of a greatest fixpoint computation of this equivalence relation. In essence it
computes the largest equivalence relation among signals which is inductive, i.e., is
preserved under the transition relation, and holds in the initial state. The resulting
equivalence relation can then be used to simplify the model-checking problem by
replacing equivalent nodes by representatives. An important related technique is
SAT sweeping [122]. For a more complete set of references see [104].
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10.6.3.3 Temporal Decomposition

Circuit nodes which are initialized to one specific constant value, true or false, and
then never change, can be found in the same way. However, in many practical prob-
lems, nodes only stabilize after a certain number n of steps. In this situation, the
original model-checking problem should be split into a bounded-model-checking
problem for the first n steps, followed by checking a simplified model where the
signals fixed after n steps are replaced by constants. This technique is called tem-
poral decomposition and was introduced in [44]. Ternary simulation can be used to
quickly compute an approximation of stabilizing signals.

10.6.3.4 k-Induction

An automated way to increase the strength of the inductive argument is to increase
the depth of the unwinding, forming a formula that is very similar to a BMC in-
stance. In k-induction, we first check that there is no counterexample of length k or
less. We then check that no state reachable from a sequence of k-states that satisfy
P violates P . Both checks can be performed effectively using a satisfiability deci-
sion procedure. The technique was first applied to hardware models [148], and then
generalized to include software [64, 65]. The approach is also applicable to liveness
properties, e.g., given in LTL, as ω-regular properties, or as Büchi automata [90, 91].

10.6.4 Craig Interpolation

Model checking with Craig interpolation [132] was the first robust complete SAT-
based model-checking technique and is still considered to be one of the most effec-
tive techniques in practice. It uses an over-approximation of quantifier elimination,
for image computation, which is obtained as an interpolation from a refutation of a
BMC run between the first and the remaining states of the considered path [132].
The crucial part is an algorithm for extracting an interpolant from a resolution proof
in linear time. The technique has been combined with other methods to reduce the
complexity of the model, e.g., abstraction [129].

Interpolating decision procedures have been developed for numerous fragments
of first-order logic, primarily with the goal of application to approximate loop invari-
ants in program analyzers. An algorithm for interpolation in linear real arithmetic
has been given in [133], for transitive relations in [156], and for full quantifier-
free Presburger arithmetic in [36, 113]. An interpolating decision procedure for
quantifier-free Presburger arithmetic with arrays is described in [37]. A full descrip-
tion of interpolation-based model checking is in Chap. 14 of this Handbook [134].
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10.6.5 Iterative Inductive Strengthening

A failing inductive argument can be strengthened iteratively in a BMC-like set-
ting, an idea exploited in the seminal algorithm IC3 [33, 34], also called property-
directed reachability checking in [71]. As of 2013, IC3 is considered the most ef-
ficient single-engine model-checking technique for proving properties of bit-level
models. In addition, it is also shown to be able to reach deep counterexamples. IC3
has been extended to full CTL, as demonstrated in [89], as well as to more general
models [48, 93].

The basic idea of IC3 is to generate a relative inductive chain F0 ⊆ F1 ⊆ · · · ⊆ Fk
of over-approximations of reachable states. “Relative inductive” means that all the
successor states of Fi are in Fi+1. Starting with the initial state set F0 = I alone, the
algorithm proceeds by either refining frontiers or by increasing k, which adds a new
frontier. This process is repeated until the chain reaches a fix-point or a bad state is
shown to be reachable.

The frontier sets Fi are refined by adding restrictions on states reachable in one
step backward from a goal state, i.e., a bad state. These restrictions are expressed as
clauses over state literals. In order to minimize their size, and speed up termination
of IC3, the algorithm performs many incremental calls to a SAT solver. Initially
only bad states are goal states, but after one step backward, the negation of an added
clause becomes a goal too (unless the initial state is reached). These goals can thus
be seen as partial models of the transition relation. Finding and minimizing these
partial models is the most time-consuming part of the algorithm, and the current
state of the art either uses SAT-based techniques [35] or uses ternary simulation [71].

In contrast to bounded model checking, IC3 requires many more calls to the SAT
solver, typically in the range of thousands of SAT-solver calls per second. These
calls, however, only check properties of one step, e.g., a single copy of the transition
relation. This is a very different usage scenario for a SAT solver than in BMC.
Further details and a discussion on lifting these ideas to SMT can be found in [34]
or in the original publication on IC3 [33].

10.7 Abstraction Techniques Using SAT

10.7.1 Overview of Predicate Abstraction

Promoted by the success of the SLAM toolkit [8, 12, 13], predicate abstraction is
currently the predominant abstraction technique in software model checking. Graf
and Saïdi use logical predicates to construct an abstract domain by partitioning a
program’s state space [84]. The details of this procedure are described in Chap. 15
of this Handbook [99]. We focus on the use of SAT in this context.

In predicate abstraction, a sound approximation R̂ ofR is constructed using pred-
icates over program variables. A predicate P partitions the states of a program into
two classes: one in which P evaluates to true, and one in which it evaluates to false.
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Each class is an abstract state. Let A and B be abstract states. A transition is de-
fined from A to B (i.e., (A,B) ∈ R̂) if there exists a state in A with a transition to
a state in B . This construction yields an existential abstraction of a program, sound
for reachability properties [56]. The abstract program corresponding to R̂ is repre-
sented by a Boolean program [12, 13]; one with only Boolean data types, and the
same control flow constructs as in C programs (including procedures). Together, n
predicates partition the state space into 2n abstract states, one for each truth assign-
ment to all predicates.

10.7.2 Computing Abstractions with SAT

Abstractions are automatically constructed using a decision procedure to decide, for
all pairs of abstract states A,B , and instructions Li, whether Li permits a transition
from A to B . As n predicates lead to 2n abstract states, this method requires (2n)2

calls to a decision procedure to compute an abstraction. In practice, a coarser but
more efficiently computed Cartesian Abstraction (see for instance [11]) is obtained
by constructing an abstraction for each predicate separately and taking the product
of the resulting abstract relations.

The decision procedures are either SMT-based first-order logic theorem provers
combined with theories such as machine arithmetic, for reasoning about the C
programming language (e.g., ZAPATO [10] or SIMPLIFY [63]), or SAT-solvers,
used to decide the satisfiability of a bit-level accurate representation of the formu-
las [53, 59, 120].

We now describe how an abstraction can be verified. Despite the presence of a
potentially unbounded call stack, the reachability problem for sequential Boolean
programs is decidable [42].2

The intuition is that the successor of a state is determined entirely by the top of
the stack and the values of global variables, both of which take values in a finite set.
Thus, for each procedure, the possible pairs of input-output values, called summary
edges, is finite and can be cached and used during model checking [12, 79].

All existing model checkers for Boolean programs are symbolic. BDD-based
tools suffer from scalability issues if the number of variables is very large. SAT-
based methods scale significantly better, but cannot be used to detect fixed points.
For this purpose, solvers for quantified Boolean formulas (QBF) must be used [83,
106]. However, the decision problem for QBF, a classical PSPACE-complete prob-
lem, faces the same scalability issues as BDDs. Most tools used in practice are
therefore still based on BDDs, and the verification phase is often the bottleneck of
predicate abstraction.

2In fact, all ω-regular properties are decidable for sequential Boolean programs [32].
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10.7.3 Simulation with SAT

The reachability computation above may discover that an error state is reachable in
the abstract program. Subsequently, a simulation step is used to determine whether
the error exists in the concrete program or is spurious.

Symbolic simulation mentioned in Sect. 10.4.2, in which an abstract state is prop-
agated through the sequence of program locations occurring in the abstract coun-
terexample, is used to determine whether an abstract counterexample is spurious.
If so, the abstraction must be refined to eliminate the spurious trace. This approach
does not produce false error messages.

There are two sources of imprecision in the abstract model. Spurious traces arise
because the set of predicates is not rich enough to distinguish between certain con-
crete states. Spurious transitions arise because the Cartesian abstraction may con-
tain transitions not in the existential abstraction. Spurious traces are eliminated by
adding additional predicates, obtained by computing the weakest precondition (or
strongest postcondition) of the instructions in the trace. An alternative method is
Craig interpolation [92]. Spurious transitions are eliminated by adding constraints
to the abstract model. Such transitions are eliminated by restricting the valuations
of the Boolean variables before and after the transition.

Various techniques to speed up the refinement and the simulation steps have
been proposed. Path slicing eliminates from the counterexample instructions that
do not contribute to a property violation [98]. Loop detection is used to compute
the effect of arbitrary iterations of loops in a counterexample in a single simulation
step [121]. The refinement step can be accelerated by adding statically computed
invariants [22, 96], including those that eliminate a whole class of spurious coun-
terexamples [23]. Proof-based refinement eliminates all counterexamples up to a
certain length, shifting the computational effort from the verification to the refine-
ment phase, and decreasing the number of iterations required [4].

10.7.4 Abstraction-Based Tools

The SATABS model checker uses SAT- or SMT-based abstraction, simulation and
refinement [53, 54], and has also been combined with dynamic execution (test-
ing) [86] and has been applied to concurrent software [18, 19, 157], including the
scenario in which the number of threads is not bounded [102]. A proof-based tech-
nique to approximate images for bit-vector arithmetic has been proposed in [116].
Predicate abstraction has also been applied to hardware verification and HW/SW
co-verification [111] and to SpecC [50] and SystemC models [29–31]. SLAM now
also uses an SMT-based decision procedure [9], and experiments have been reported
using a SAT-based decision procedure [59]. SAT-based checking has also been ap-
plied to the abstraction itself, i.e., to Boolean programs [17]. The LOOPFROG ver-
ifier uses SAT to compute a precise transformer for a given loop body and a given
abstract domain [117, 118].



10 SAT-Based Model Checking 295

10.8 Outlook and Conclusions

We have given an overview of a broad range of SAT-based analysis techniques for
both software and hardware, demonstrating the versatility of the approach.

The extension of techniques that rely on propositional SAT to the more general
case of Satisfiability Modulo Theories (SMT) is often straightforward. The tech-
niques described in Chap. 11 are therefore a very natural starting point for further
development of the methods described here.

Early SAT-based methods have been restricted to bounded search, and are there-
fore typically applied for refutation, i.e., the generation of counterexamples. While
bounded verification has been accepted as a useful paradigm in practical verification
problems, research in recent years has extended this approach in a variety of ways
to enable automated and scalable proofs for non-trivial systems.

Exciting avenues for future research include the generalization of the DPLL algo-
rithm to rich natural domains [61] and the integration of abstraction-based methods
implementing the abstract interpretation framework into SAT solvers over natural
domains [66–68].
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Chapter 11
Satisfiability Modulo Theories

Clark Barrett and Cesare Tinelli

Abstract Satisfiability Modulo Theories (SMT) refers to the problem of determin-
ing whether a first-order formula is satisfiable with respect to some logical theory.
Solvers based on SMT are used as back-end engines in model-checking applications
such as bounded, interpolation-based, and predicate-abstraction-based model check-
ing. After a brief illustration of these uses, we survey the predominant techniques
for solving SMT problems with an emphasis on the lazy approach, in which a propo-
sitional satisfiability (SAT) solver is combined with one or more theory solvers. We
discuss the architecture of a lazy SMT solver, give examples of theory solvers, show
how to combine such solvers modularly, and mention several extensions of the lazy
approach. We also briefly describe the eager approach in which the SMT problem is
reduced to a SAT problem. Finally, we discuss how the basic framework for deter-
mining satisfiability can be extended with additional functionality such as producing
models, proofs, unsatisfiable cores, and interpolants.

11.1 Introduction

In several areas of computer science, including formal verification of hardware and
software, many important problems can be reduced to checking the satisfiability of
a formula in some logic. Several of these problems can be naturally formulated as
satisfiability problems in propositional logic and solved very efficiently by modern
SAT solvers, as described in Chap. 10 of this book [23]. Other problems are formu-
lated more naturally and compactly in classical logics, such as first-order or higher-
order logics, with a more expressive language that includes non-Boolean variables,
function and predicate symbols (with positive arity) and quantifiers. There is, of
course, a trade-off between the expressiveness of a logic and the ability to automat-
ically check the satisfiability of its formulas.
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A practical compromise can be achieved with fragments of first-order logic that
are restricted either syntactically, for instance by allowing only certain classes of
formulas, or semantically, by constraining the interpretation of certain function and
predicate symbols, or both. Such restrictions can make the satisfiability problem de-
cidable and, more importantly, allow the development of specialized satisfiability
procedures that exploit properties of the fragment to great advantage for practi-
cal efficiency, even in cases with high worst-case computational complexity. When
semantic restrictions are involved, they can be understood as limiting the interpre-
tations of certain symbols to models of some logical background theory (e.g., the
theory of equality, of integer numbers, of real numbers, of arrays, of lists, and so
on). In such cases, we speak of Satisfiability Modulo Theories (SMT).1

Building on classical results on decision procedures for first-order reasoning,
and on the tremendous advances in SAT-solving technology in the last two decades,
SMT has grown in recent years into a very active research field whose defining fea-
ture is the use of reasoning methods specific to logical theories of interest in target
applications. Thanks to advances in SMT research and technology, there are now
several powerful and sophisticated SMT solvers (e.g., Alt-Ergo [26], Beaver [94],
Boolector [36], CVC4 [10], MathSAT5 [53], openSMT [39], SMTInterpol [51],
SONOLAR [135], STP [76], veriT [29], Yices [69], and Z3 [121]) which are being
used in a rapidly expanding set of applications. Application areas currently include
processor verification, equivalence checking, bounded and unbounded model check-
ing, predicate abstraction, static analysis, automated test case generation, extended
static checking, type checking, planning, scheduling, and optimization.

The recent progress in SMT has been driven by several factors, including: a fo-
cus on background theories and classes of problems that occur in practice; liftings
and adaptations of SAT technology to the SMT case; innovations in core algorithms
and data structures; development of abstract constraint-solving frameworks and gen-
eral solver architectures to guide efficient implementations; novel search heuristics;
and attention to implementation details.2 A major enabler of this progress has been
SMT-LIB [14], a standardization and benchmark collection initiative collectively
developed and supported by the SMT community, together with its derivative activ-
ities: the SMT workshop, an international forum for SMT researchers and users of
SMT applications or techniques; SMT-COMP [20], an international competition for
SMT solvers supporting the SMT-LIB input/output format [15]; and SMT-EXEC,
a public execution service allowing researchers to run experimental evaluations on
SMT solvers.3

This chapter provides a fairly high-level overview of SMT and its main results
and techniques, together with references to the relevant literature for a deeper study.
It concentrates mostly on the predominant approach for implementing SMT solvers,
known as the “lazy approach,” wherein an efficient and properly instrumented SAT

1This terminology originated in [156] and was popularized by the SMT-LIB initiative [14].
2It is worth noting that many of the same factors are driving improvements in modern SAT research
(see [22] as well as Chap. 9 of this book).
3http://smtlib.org, http://smt-workshop.org, http://www.smtexec.org.

http://smtlib.org
http://smt-workshop.org
http://www.smtexec.org


11 Satisfiability Modulo Theories 307

solver is combined with one or more theory solvers, highly specialized solvers for
problems consisting just of conjunctions of theory literals—atomic and negated
atomic formulas in the language of some particular theory T .

The chapter is structured as follows. The rest of this section provides technical
background information, defining basic notions and terminology used throughout
the chapter. Section 11.2 gives an overview of some uses of SMT solvers in model
checking applications. Section 11.3 describes the lazy approach to SMT in which a
SAT solver and a theory solver cooperate to solve an SMT problem. Section 11.4
discusses theory solvers for a number of background theories used in SMT appli-
cations, and specifically in model checking. Section 11.5 focuses on techniques for
combining theory solvers for different theories into a solver for a combination of
those theories. Section 11.6 discusses a few extensions and enhancements to the
lazy approach. Section 11.7 describes an alternative to the lazy approach for SMT,
aptly named the “eager approach,” which takes advantage of SAT solvers more di-
rectly. Finally, Sect. 11.8 presents a number of important functionalities provided
by modern SMT solvers that go beyond mere satisfiability checking, and that have
been crucial to the success of SMT as an enabling technology in applications like
model checking.

11.1.1 Technical Preliminaries

SMT problems are formulated within first-order logic with equality. Since many
applications of SMT involve different data types, it is more convenient to work
with a sorted (i.e., typed) version of that logic, as opposed to the classical unsorted
version. In this chapter we use a basic version of many-sorted logic [71, 114], which
is adequate for our purposes. More sophisticated typed logics are sometimes used in
the literature. For instance, the SMT-LIB 2 standard is based on a sorted logic with
non-nullary sort symbols and let binders [16]. Other work adopts, and advocates for,
a first-order logic with parametric (universal) types [26, 108, 109].

Syntax We fix an infinite set S of sort symbols and consider an infinite set X of
(sorted) variables, each uniquely associated with a sort in S. A many-sorted signa-
ture Σ consists of a set ΣS ⊆ S of sort symbols; a set ΣP of predicate symbols;
a set ΣF of function symbols; a total mapping from ΣP to the set (ΣS)∗ of strings
over ΣS; and a total mapping from ΣF to the set (ΣS)+ of non-empty strings over
ΣS—where ∗ and + are the usual regular expression operators. For n ≥ 0, a func-
tion symbol f (resp., predicate symbol p) has a unique4 arity n and rank σ1 · · ·σnσ
(resp., σ1 · · ·σn) inΣ if it is mapped to the sort sequence σ1 · · ·σnσ (resp., σ1 · · ·σn).
When n above is 0, f is also called a constant symbol (of sort σ ) and p a propo-
sitional symbol. A signature Σ is a subsignature of a signature Ω , written Σ ⊆Ω ,
and Ω is a supersignature of Σ , if ΣS ⊆ ΩS, ΣF ⊆ ΩF, ΣP ⊆ ΩP, and every
function or predicate symbol of Σ has the same rank in Σ as in Ω .

4For simplicity, we do not allow any form of symbol overloading here.
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A (Σ -)term of sort σ is either a sorted variable x of sort σ ∈ΣS or an expression
of the form f (t1, . . . , tn) with n≥ 0 where f ∈ΣF with rank σ1 · · ·σnσ and ti is a
term of sort σi for i = 1, . . . , n. An atomic (Σ -)formula is either the symbol ⊥, for
falsity; an expression of the form t1 = t2 with t1, t2 terms of the same sort;5 or an
expression of the form p(t1, . . . , tn) with n ≥ 0 where p ∈ ΣP with rank σ1 · · ·σn
and ti is a Σ -term of sort σi for i = 1, . . . , n. A (Σ -)literal is an atomic Σ -formula
or an expression ¬ϕ where ϕ is an atomic Σ -formula. A (Σ -)formula is an atomic
Σ -formula or an expression of the form ¬ϕ, ϕ ∨ ψ , or ∃x ϕ where x is a variable
with sort in ΣS and ϕ and ψ are Σ -formulas. We will write ∃x:σ ϕ instead of ∃x ϕ
to indicate that x has sort σ . The other logical connectives as well as the universal
quantifier can be formally defined in terms of the logical symbols above as usual
(e.g., ϕ⇒ ψ as a shorthand for ¬ϕ ∨ ψ ; ∀x ϕ as a shorthand for ¬∃x¬ϕ; and so
on). Examples of signatures and formulas used in SMT are provided in Sect. 11.4.

Free occurrences of a variable in a formula are defined as usual: all variable
occurrences in atomic formulas are free; a variable x distinct from a variable y
occurs free in a formula ¬ϕ, ϕ1 ∨ ϕ2, or ∃y.ψ iff it occurs free respectively in ϕ, in
ϕ1 or ϕ2, or in ψ . A (Σ -)sentence is a Σ -formula with no free variables. If ϕ is a
Σ -formula and x= (x1, . . . , xn) a tuple of distinct variables, we will write ϕ[x] or
ϕ[x1, . . . , xn] to express that the free variables of ϕ are in x; furthermore, if t1, . . . , tn
are terms with each ti of the same sort as xi , we will write ϕ[t1, . . . , tn] to denote the
formula obtained from ϕ[x1, . . . , xn] by simultaneously replacing each occurrence
of xi in ϕ by ti , for i = 1, . . . , n.

Semantics For each signature Σ and set X ⊆X of variables whose sorts are in ΣS,
a Σ -interpretation A over X maps

• each sort σ ∈ΣS to a non-empty set Aσ , the domain of σ in A ;
• each variable x ∈X of sort σ to an element xA ∈Aσ ;
• each function symbol f ∈ΣF of rank σ1 · · ·σnσ to a total function fA : Aσ1 ×
· · · ×Aσn→Aσ (and in particular each constant c of sort σ to a cA ∈Aσ ),

• each predicate symbol p ∈ΣP of rank σ1 · · ·σn to a relation pA ⊆ Aσ1 × · · · ×
Aσn .

A Σ -model is a Σ -interpretation over an empty set of variables. Let A be an Ω-
interpretation over some set Y of variables. WhenΣ ⊆Ω and X ⊆ Y , we denote by
A Σ,X the reduct of A to (Σ,X), i.e., the Σ -interpretation over X obtained from
A by restricting it to interpret only the symbols in Σ and the variables in X. A is
an expansion of a Σ -interpretation B over X if B =A Σ,X .

Every Σ -interpretation A over some X ⊆ X induces a unique mapping (_)A

from Σ -terms f (t1, . . . , tn) with variables in X to elements of sort domains such
that (f (t1, . . . , tn))A = fA (tA1 , . . . , t

A
n ). We define a satisfiability relation |= be-

tween such interpretations and Σ -formulas with variables in X inductively as fol-

5We will use ‘=’ also to denote equality at the meta-level, relying on the context for disambigua-
tion.
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lows:

A �|= ⊥
A |= t1 = t2 iff tA1 = tAn
A |= p(t1, . . . , tn) iff (tA1 , . . . , t

A
n ) ∈ pA

A |= ¬ϕ iff A �|= ϕ
A |= ϕ ∨ψ iff A |= ϕ or A |=ψ
A |= ∃x:σ ϕ iff A [x �→ a] |= ϕ for some a ∈Aσ

where A [x �→ a] denotes the Σ -interpretation that maps x to a and is otherwise
identical to A . AΣ -interpretation A satisfies aΣ -formula ϕ if A |= ϕ. A set Φ of
Σ -formulas entails a Σ -formula ϕ, written Φ |= ϕ, iff every Σ -interpretation that
satisfies all formulas in Φ satisfies ϕ as well. The setΦ is satisfiable iff Φ �|= ⊥, and
ϕ is valid iff it is entailed by the empty set.

Theories In SMT, one is not interested in arbitrary models but in models belonging
to a given theory T constraining the interpretation of the symbols in some signa-
ture Σ . We define theories most generally as classes of models with the same sig-
nature. More precisely, a Σ -theory T is a pair (Σ,A) where Σ is a signature and
A is a class (in the sense of set theory) of Σ -models. Section 11.4 discusses several
examples of theories commonly used in SMT.

Let T = (Σ,A) be a Σ -theory. A T-interpretation is anyΩ-interpretation A for
some Ω ⊇Σ such that A Σ,∅ ∈A. A formula ϕ is satisfiable in T , or T-satisfiable,
if it is satisfied by some T-interpretation A .6 A set Φ of Ω-formulas T-entails an
Ω-formula ϕ, written Φ |=T ϕ, iff every T-interpretation that satisfies all formulas
in Φ satisfies ϕ as well. The set Φ is T-satisfiable iff Φ �|=T ⊥, and ϕ is T-valid iff
ϕ is T-entailed by the empty set, written as |=T ϕ. T-unsatisfiable abbreviates not
T-satisfiable. These notions reduce to the corresponding ones given earlier when T
is the class of all Σ -models.

Note that, as defined here, T-interpretations allow us to consider the satisfiability
in a Σ -theory T of formulas that contain sort, predicate or function symbols not
in Σ . These symbols are traditionally called uninterpreted. In SMT applications,
it is convenient to use formulas with uninterpreted constant symbols, which for
satisfiability purposes are analogous to free variables, or with uninterpreted pred-
icate/function symbols, which can be used as abstractions of other formulas/terms
or of operators not in the theory.

Also note that the notions of theory and T-validity presented here are more gen-
eral than those used traditionally in first-order theorem proving, where a theory is
defined as a recursive set of sentences, the axioms of the theory, and T-validity is de-
fined as entailment by those axioms. The reason is that every set A of Σ -sentences
is characterized by (i.e., has the same set of valid sentences as) a class ofΣ -models,

6Observe that the class of all T-interpretations includes all possible expansions of models in A.
This essentially means that variables and sort, function, and predicate symbols not in Σ can be
interpreted arbitrarily.
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namely theΣ -models ofA. In contrast, not every class ofΣ -models is characterized
by a recursive, or even non-recursive, set of (first-order) axioms.7

In the next sections, we will often consider the T-satisfiability of conjunctions
(or, equivalently, sets) of literals. We will refer to these conjunctions as constraints
and talk about constraint satisfiability in T .

Abstractions SMT techniques often use propositional abstractions of first-order
sentences. Since our logic properly embeds propositional logic, such abstractions
can be defined as follows. Let us fix a signature Π consisting exclusively of an
infinite set of propositional symbols not contained in any theory signature. Every
quantifier-free formula (qff ) of signatureΠ is in effect a propositional formula, sat-
isfiable in our sense iff it is satisfiable in propositional logic. For every theory signa-
ture Σ , we define an injective mapping (_)a from the set of all atomic Σ -formulas
into Π . This mapping extends homomorphically to an (injective) mapping, also de-
noted as (_)a, from quantifier-free Σ -formulas to quantifier-free Π -formulas (i.e.,
propositional formulas) such that (¬ϕ)a = ¬(ϕa) and (ϕ ∨ψ)a = ϕa ∨ ψa for all
qffs ϕ and ψ . We denote by (_)c the inverse homomorphism of (_)a, which is such
that (ϕa)c = ϕ, (¬ϕ)c =¬(ϕc), and (ϕ ∨ψ)c = ϕc ∨ψc for all qffs ϕ and ψ .

We call an SMT solver any program that tries to determine the satisfiability of
some class C of formulas in some theory T . What distinguishes SMT as a field is
the development and use of efficient reasoning techniques specific to the selected
theory and class of formulas.

11.2 SMT in Model Checking

Model checking has leveraged SMT extensively in the last decade thanks to the
impressive growth in the performance and scope of SMT solvers. The use of SMT
solving in support of software model checking and, more generally, model checking
for infinite-state transition systems is now widespread, as can be seen in the rest of
this book. In this section, we give a general—and necessarily incomplete—sampling
of that by focusing on a few major model-checking methods.

Roughly speaking, we could say that all of these methods rely on some encod-
ing of a software or hardware system under analysis as a transition system S whose
state space is represented by the Cartesian product D1 × · · · ×Dn of finite or in-
finite domains (Booleans, fixed-size bit vectors, integers, and so on) modeled by
some Σ -theory T . The system itself is (implicitly or explicitly) described by a pair
(I[x],Tr[x,x′]) of typically quantifier-free Σ -formulas8 where

7A well-known example of the latter would the SMT theory consisting of a singleΣ -interpretation
for the integers with the usual operations.
8This is an oversimplification because, for instance, several software model-checking methods also
rely for efficiency on a separate representation of a program’s control structure as a control flow
graph. See Chap. 15 for more details [96].
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• x and x′ are n-tuples of variables semantically ranging over D1 × · · · ×Dn;
• I[x] is satisfied exactly by the initial states of S;
• Tr[x,x′] is satisfied by all pairs s, s′ of reachable states of S where s′ is a successor

of s in S.

This representation is analogous to that used in SAT-based model checking (see
Chap. 10 of this Handbook [23]) except that the system is formulated in a more pow-
erful logic than propositional logic, though still endowed with efficient satisfiability
checkers: SMT solvers. The SMT setting has a number of advantages. To start, the
first-order language allows natural and more or less direct formulations of the sys-
tem under analysis—regardless of whether the system has finitely or infinitely many
states. In the finite-state case, these formulations can also be exponentially more
compact than propositional ones because they do not need to encode non-Boolean
data types and their operations at the propositional level, which allows for better
scalability. Moreover, several SAT-based model-checking techniques lift naturally,
although not necessarily immediately, to the SMT case.

BMC and k-Induction-Based Methods The most obvious example of such lifting
is bounded model checking (BMC) [57]. As in the original propositional setting,
one tries to disprove that a given state property P [x] is invariant for the system, i.e.,
true in all reachable states, by looking for a value i ≥ 0 such that the formula

I[x0] ∧ Tr[x0,x1] ∧ · · · ∧ Tr[xi−1,xi] ∧ ¬P [xi] (1)

is satisfiable [4, 93, 125]. Another example is k-induction [148], where one tries to
prove that a given state property P [x] is invariant by looking for a k ≥ 0 such that
(1) is unsatisfiable for all i = 0, . . . , k and the formula

Tr[x0,x1] ∧ · · · ∧ Tr[xk,xk+1] ∧ P [x0] ∧ · · · ∧ P [xk] ∧ ¬P [xk+1] (2)

is also unsatisfiable. In both examples, the only differences with the original for-
mulations are that the formulas (1) and (2) are first-order qffs; propositional satis-
fiability is replaced by T-satisfiability; and an SMT solver is used to perform the
satisfiability check. Again, as in the propositional case, any variable assignment that
satisfies (1) can be used to construct a counter-example trace for P . Several enhance-
ments to BMC and k-induction (such as lemma learning, abstraction and refinement,
path compression, termination checks, . . . ) lift to the SMT case as well [93, 125].

Interpolation-Based Methods Interpolation-based model checking proves a prop-
erty P [x] invariant by constructing a formula R[x] that holds in all reachable states
and entails P [x]. This is done incrementally, for i = 0,1, . . ., by checking the satis-
fiability of formulas of the form

Ri[x0] ∧ Tr[x0,x1] ∧ · · · ∧ Tr[xk−1,xk] ∧
(¬P [x0] ∨ · · · ∨ ¬P [xk]

)
(3)

for some k > 0, where Ri is a formula satisfied by all states reachable in up to
i steps, starting with R0 = I . When (3) is unsatisfiable, Ri[x] is generalized to
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Ri+1 :=Ri[x]∨ Int[x]where Int[x1] is a formula entailed by Ri[x0]∧Tr[x0,x1] and
jointly unsatisfiable with Tr[x1,x2]∧ · · ·∧Tr[xk−1,xk]∧ (¬P [x0]∨ · · ·∨¬P [xk]),
an interpolant of those two formulas. The property is proved if at some point Ri+1
is equivalent to Ri , something that can be checked by verifying the unsatisfiabil-
ity of Ri+1[x] ∧ ¬Ri[x]. This method was developed originally in the SAT set-
ting [115]. However, it immediately lifts to the SMT setting with theories T and
language fragments for which T-entailment is decidable and interpolants exist and
are computable (e.g., [116]). Note that in this case a plain SMT solver is not enough,
since procedures for computing theory interpolants are also needed. These proce-
dures, however, can often be built within existing SMT solvers (see Sect. 11.8). See
also Chap. 14 for a comprehensive treatment of interpolation-based methods [118].

Predicate-Abstraction-Based Methods Perhaps the most successful approach to
software model checking so far, described in more detail in Chap. 15, is predi-
cate abstraction. In a predicate abstraction method popularized by the SLAM model
checker and further improved in other tools [8, 95], a program written in a high-level
programming language (such as C or Java) and a safety property P to be checked
are modeled as a system (I[x],Tr[x,x′]) with a distinguished error state directly
reachable from any state that violates the property.

The system (I,Tr) is abstracted to a finite-state system S = (I,Tr), obtained,
roughly speaking, by replacing predicates (i.e., atoms or other sub-formulas) of I
and Tr by propositional variables. Then, using traditional symbolic model-checking
techniques (see Chap. 8 of this Handbook [48]), an exhaustive analysis of all the
paths of S is performed to determine whether the abstract error state is reachable.
If a trace t to that state is found, it is converted to a formula ϕ that is T-satisfiable
exactly when t corresponds to an execution of the original program that leads to
the concrete error state. If ϕ is not T-satisfiable, the abstraction S is refined using
techniques like those described in Chap. 15 to remove that spurious error trace t . As
in the other methods above, all T-satisfiability checks involved in this process are
performed by an SMT solver.

11.3 The Lazy Approach to SMT

The majority of the work in SMT has focused on the T-satisfiability of quantifier-
free formulas and on theories T for which this problem is decidable. We discuss
that major case here. Let us start by observing that to decide the quantifier-free
T-satisfiability problem, it is enough in principle to have a procedure for deciding
the T-satisfiability of constraints (conjunctions of literals): one can first convert any
quantifier-free formula to Disjunctive Normal Form, and then check each disjunct
individually. This solution, however, is impractical because of the frequent exponen-
tial blow-up in the size of the resulting DNF formula. Except for degenerate (and
uninteresting) examples of theories, this blow-up cannot be eliminated in general
because the T-satisfiability of qffs is NP-hard, even if the constraint T-satisfiability
problem is polynomial, as one can easily show by simple reductions from SAT.
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To avoid the inefficiencies inherent in DNF conversions, most current SMT
solvers follow a general approach that essentially amounts to constructing and
checking a DNF for the input formula incrementally and as needed. The main
characteristic of this approach, referred to as the lazy approach in the literature
(e.g., [147]), is the combination of one or more specialized constraint satisfiability
procedures, or theory solvers, with a conflict-driven clause-learning (CDCL) SAT
solver, the SAT engine, used to reason efficiently about the propositional connec-
tives. The approach has several variants, differing in the sophistication of the inter-
action between the SAT engine and the theory solvers. We discuss some of them in
the following.

For the rest of the section, we fix a generic Σ -theory T and assume the exis-
tence of a theory solver, or T-solver for short, that can decide the T-satisfiability
of conjunctions of Σ -literals. We will discuss only a few general desirable features
of T-solvers here. Details on algorithms and techniques for implementing theory
solvers for specific theories of interest in model checking are provided in Sect. 11.4.
We will assume that the reader has some familiarity with the inner workings of
modern SAT solvers (see Chap. 9 for a general overview).

11.3.1 A Basic Lazy SMT Solver

In the most basic version of the lazy approach, with a single Σ -theory T , one ab-
stracts each atom in the input formula by a new propositional variable (as detailed
at the end of Sect. 11.1.1), uses the SAT engine to find a model of the formula,
a satisfying assignment given as a set A of literals, and then asks the T-solver to
verify that theΣ -literals abstracted by this model are jointly T-satisfiable [19, 124].
If the latter check succeeds, one can conclude that the input formula is T-satisfiable.
Otherwise, one asks the SAT engine for another model—something achievable in
the simplest way by adding a proper blocking lemma, the negation of a subset of
the assignment A, to the original formula and restarting the engine. This process is
repeated until a model consistent with the theory is found, or all possible proposi-
tional models have been explored with no success—in which case one can conclude
that the input formula is T-unsatisfiable.

A pseudo-code description of this algorithm is provided in Fig. 1, with the con-
cretization and abstraction functions (_)c and (_)a defined as in Sect. 11.1.1. Current
implementations are based on more sophisticated variations on this basic approach
that exploit advanced features of modern SAT engines and theory solvers to achieve
a tighter integration between them [3, 5, 31, 72, 77]. The most important ones are
described next.

11.3.2 SAT Engine and Theory Solver Features

For efficient integration, in addition to having all the features usually found in mod-
ern SAT solvers, it is important for the SAT engine to be on-line, i.e., able to take
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Require: ϕ is a qff in the signature Σ of T
Ensure: output is sat if ϕ is T-satisfiable, and unsat otherwise
F := ϕa

loop
A := get_model(F )
if A= none then

return unsat
else
μ := check_satT (A

c)

if μ= sat then
return sat

else
F := F ∧¬μa

Fig. 1 A basic SMT solver based on the lazy approach. The function get_model implements the
SAT engine. It takes a propositional formula F and returns either none, if F is unsatisfiable, or
a satisfiable conjunction A of propositional literals such that A |= F . The function check_satT
implements the theory solver. It takes a conjunction ψ of Σ -literals and returns either sat or a
T-unsatisfiable conjunction μ of literals from ψ

and process its input progressively, maintaining at all times a set Γ of input for-
mulas and a satisfying assignment for it. Initially, Γ is empty (and so satisfied by
the empty assignment). When a new formula is fed as input, the engine attempts to
modify the current assignment to satisfy the new formula as well, terminating if that
is not possible or waiting for more input formulas otherwise.

T-solvers usually maintain internally at all times a set Λ of literals to be checked
for T-satisfiability. The salient advanced features for these solvers are listed below.

Incrementality Intuitively, a T-solver is incremental if it can be given a set of lit-
erals one at a time and determine each time the T-satisfiability of the newly ex-
panded internal set Λ with a cost proportional to the size of the addition—as
opposed to the size of Λ. With an incremental T-solver, the model produced by
the SAT engine can be checked for T-satisfiability as it is being constructed, and
so discarded as soon as it becomes T-unsatisfiable. Decision procedures used for
most theories were either already incremental in their original formulation or have
been adapted to be so by SMT researchers.

Backtrackability Incremental solvers are naturally state-based. A state-based T-
solver is backtrackable if, for any of the literals in its current input set L, it is
able to restore inexpensively the state it had right before it was fed that literal.
This feature is crucial to keep an incremental T-solver in sync with the SAT en-
gine, which itself relies on backtracking to recover from propositional conflicts
generated while attempting to construct a model for its input formula.

Conflict Set Generation A conflict set for a T-unsatisfiable input set Λ to a
T-solver is an (ideally minimal) subset {l1, . . . , ln} of Λ that is already T-
unsatisfiable. The T-valid formula ¬l1 ∨ · · · ∨ ¬ln constructed from this set is
called a justification or explanation (of Λ’s unsatisfiability). An explanation can
be abstracted and passed to the SAT engine, to be treated as a learned clause. Its
immediate effect is to create a conflict in the engine and force a backtrack. If it
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is kept afterwards, its later effect will be the same as that of learned lemmas in
CDCL SAT solvers: to drive the search away from other parts of the search space
that would generate the same conflict.

Literal Deduction A T-solver with this feature is able to identify consequences of
its current set Λ among a predetermined set L of literals—i.e., identify literals
l ∈ L such that Λ |=T l. This information is useful to the SAT engine which then
does not have to guess the value of these literals. Typically, but not exclusively,
L consists of all atoms occurring in the original input formula (the formula ϕ in
Fig. 1), as well as their negation. Theory propagation, the process of communi-
cating entailed literals to the SAT engine, can be partial or exhaustive, depending
on the cost of determining all entailed literals of L. For some theories, such as
for instance difference logic (cf. Sect. 11.4.5), exhaustive theory propagation is
extremely cheap and proves highly effective. For others, it pays off performance-
wise to propagate only literals of L that happened to be deduced in the process of
checking the satisfiability of the input set Λ. For instance, this is the case for the
(positive) equalities computed by congruence closure in solvers for the theory of
equality (cf. Sect. 11.4.1).

Explanation Generation With theory propagation, the SAT engine may generate a
conflict involving a theory-propagated literal l. For the engine to perform its con-
flict analysis and determine how far to backtrack, it is necessary to have an expla-
nation for l, a formula of the form l1 ∧ · · · ∧ ln→ l where {l1, . . . , ln} is a subset
of the literals Λ in the T-solver such that l1, . . . , ln |=T l. Typically, the same
mechanisms and infrastructure used to compute conflict sets can be used to com-
pute these explanations too.9 Explanations need not be minimal, as computing
those can be unacceptably expensive, but should be relatively small since shorter
explanations usually lead to better conflict analysis than longer ones. A compli-
cation and main difference with conflict sets is that literal explanations are (best)
computed a posteriori and as needed, whereas conflict sets are usually computed
as soon as the input set becomes unsatisfiable (see [132] for a discussion).

11.3.3 A General Framework and Architecture

SMT solvers implementing the many variants of the lazy approach can be described
abstractly and declaratively in terms of a transition system between states of the
form M || F , where M is a sequence of Σ -literals and decision points, and F
is a quantifier-free Σ -formula in conjunctive normal form, or, equivalently, a set
of clauses; an additional distinguished state Fail is used to model the discovery
by the SMT solver that its input formula is T-unsatisfiable [131, 132]. Identifying
for simplicity every Σ -literal l with its propositional abstraction la, the sequence

9In fact, one can look at a conflict set as an explanation for the literal ⊥.
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M represents the propositional assignment being built by the SAT engine, together
with the engine’s non-deterministic guesses; the formula F models the current set of
clauses being processed by the SMT solver. Slightly more concrete versions of this
framework also model conflict analysis and lemma construction by adding states of
the formM || F || C whereM and F are as before and C is a conflict clause forM
and F , a clause T-entailed by F and propositionally falsified by M [108, 142].

This declarative framework has been used to provide a clean formulation of the
different lazy variants and a basis for comparison and formal analysis at an ab-
straction level free of inessential implementation and control details. Its description,
however, is beyond the scope of this chapter. We refer the reader to the original
work [108, 132] or previous survey work [12] for more information and formal cor-
rectness results. Here, we informally describe instead a general modular architecture
for SMT solvers based on the lazy approach, known in the literature as DPLL(T).

The DPLL(T) Architecture The architecture relies on a generic CDCL-style SAT
engine, called DPLL(X), which is parametric in the theory and theory solver used.
Instantiating the parameter X with a theory solver for some theory T produces a
DPLL(T) system that can be seen as a concrete implementation of the abstract frame-
work mentioned above.10 In particular, the engine maintains the partial assignment
M and the current formula F . The T-solver maintains a set Λ of literals—which
at any time is a subset of those in M . The T-solver can be arbitrary as long as
it conforms to a specific, simple interface. The precise details of the interface are
not needed here (the interested reader is referred to [77, 132]). It suffices to know
that the T-solver provides operations that the DPLL(X) engine can invoke to do the
following.

• Assert a literal l, that is, ask for l to be added toΛ. This operation is to be invoked
when the DPLL(X) engine adds l to its partial assignment M .

• Ask whether the current set Λ of asserted literals is T-unsatisfiable. This request
can be made by the DPLL(X) engine with different degrees of strength: for theo-
ries where deciding unsatisfiability is expensive, it can be more effective for the
engine to rely on a cheap, if incomplete, T-unsatisfiability check while it is build-
ing the partial assignment M , and request a complete one only when M propo-
sitionally satisfies F (and Λ contains all the literals in M). In response, when it
determines the T-unsatisfiability ofΛ, the T-solver returns an explanation of that.

• Request a set of input literals not in Λ that are T-entailed by Λ. The returned
set, which is used for theory propagation, need not include all T-entailed literals.
Note that for this operation the T-solver must know the set of all input literals.

• Request an explanation for a previously theory-propagated literal l. Explanations
are used by the DPLL(X) engine during the analysis of conflicts that involve
theory-propagated literals.

10The motivation for the abbreviation DPLL in DPLL(T) is historical. At the time the architecture
was proposed [77], CDCL solvers were still commonly referred to as DPLL solvers—in reference
to the work of Davis, Putnam, Logemann and Loveland [62, 63].
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• Request the T-solver to undo the n most recent assertions, that is, to remove
from Λ its n most recent literals, for some n > 0. This operation is to be invoked
after the engine backtracks to some previous decision level and shrinks its partial
assignment M correspondingly.

DPLL(T) is currently the most popular general architecture for SMT solvers
based on the lazy approach. However, its black-box treatment of the SAT engine
and the theory solvers (originally an asset because it allowed the use of minimally
modified off-the-shelf SAT solvers) is becoming a limitation as research in SMT ad-
vances. A number of alternative architectures have been proposed quite recently that
aim at overcoming these limitations by integrating propositional-level and theory-
level reasoning more tightly [34, 98, 119].

11.4 Theory Solvers for Specific Theories

In this section, we consider solvers for constraint satisfiability problems in several
specific theories. For each theory, we first describe the signature and semantics of
the theory and then discuss how to solve its constraint satisfiability problem.

11.4.1 Uninterpreted Function Symbols

We start with the simplest possible theory consisting of a given signature Σ and the
class of all Σ -models. This theory, or rather family of theories parametrized by the
signature, is known as the theory of Equality with Uninterpreted Functions (EUF)
or the empty theory—since it imposes no restrictions on its models.

Conjunctions of literals in this theory can be decided in polynomial time by
congruence closure algorithms. For simplicity, we describe a version of the algo-
rithm assuming no predicate symbols. This assumption loses no generality, because
predicate symbols can be handled using a simple encoding: introduce a new sort
symbol B and a new function symbol fp of rank σ1 · · ·σnB for each predicate
symbol p of rank σ1 · · ·σn, plus a new constant symbol tt of sort B; then, replace
each literal p(t1, . . . , tn) with fp(t1, . . . , tn)= tt and each literal ¬p(t1, . . . , tn) with
fp(t1, . . . , tn) �= tt.

Let Φ be a set of literals to be checked for satisfiability. Since there are no
predicate symbols, Φ can be partitioned into a set E of equalities and a set D
of disequalities. Let E∗ be the congruence closure of E, defined as the small-
est equivalence relation (over the terms in Φ) that includes E and also satisfies
the congruence property: for every pair of terms f (s1, . . . , sn) and f (t1, . . . , tn),
(f (s1, . . . , sn), f (t1, . . . , tn)) ∈ E∗ whenever (si , ti) ∈ E∗ for i = 1, . . . n.11 Then,
Φ is satisfiable iff for each t1 �= t2 ∈D, (t1, t2) /∈E∗.

11Observe that two terms may be related by E∗ only if they have the same sort.
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Example 1 Let Φ = {f (f (a))= a, f (f (f (a)))= a, g(a) �= g(f (a))}. The equiv-
alence classes induced by E are {a, f (f (a)), f (f (f (a)))}, {f (a)}, {g(a)},
{g(f (a))}. Congruence closure requires merging the first two classes and the last
two. As a result, (g(a), g(f (a))) ∈E∗ and Φ is not satisfiable.

Standard algorithms use directed acyclic graphs (DAGs) to represent terms, and
a union-find data structure [155] to represent equivalence classes of terms. The main
work is in the congruence closure step. A simple O(n2) algorithm for congruence
closure is as follows [127]: seed a work-list with the equalities in E; then, while
the work-list is non-empty, remove an equality, perform a union operation on the
two equivalence classes containing the terms on either side of the equality, and then
examine all pairs of parents (in the DAG) of these terms to see if any of them newly
satisfy the congruence property; if they do, add this new pair to the work-list. Once
the work-list is empty, Φ is satisfiable iff for each disequality t1 �= t2 ∈D, the find
of t1 is different from the find of t2. More efficient algorithms (O(n logn)) only
require traversing one set of parents after each union operation and include efficient
mechanisms for computing, in the case whenΦ is unsatisfiable, a small unsatisfiable
subset of Φ [66, 130].

11.4.2 Real Arithmetic

Next, consider the signature Σ containing a single sort, R, all rational number con-
stants, function symbols {+,−,∗} and the predicate symbol≤, all with the expected
rank. The theory of real arithmetic consists of this signature paired with the stan-
dard model of the real numbers, that is the Σ -model that interprets R as the set R
of the real numbers and the constants and operators in the usual way. Satisfiability
of Σ -formulas in this theory, even with quantifiers, is decidable [112]. Tradition-
ally, decision procedures for the full theory have not been efficient enough to be
practical. It is worth noting, however, that this is an area of active research and
several promising new approaches are being investigated [80, 99]. Efficient deci-
sion procedures do exist for the satisfiability of appropriately restricted classes of
quantifier-free Σ -formulas in this theory.

Consider, for instance, linear real arithmetic (LRA). Here, formulas are re-
stricted in that the symbol ∗ can only appear if at least one of its two operands
is a rational constant. For illustration purposes, we describe here a simple algorithm
based on Fourier–Motzkin elimination [146]. For convenience, let t1 < t2 abbreviate
¬(t2 ≤ t1) and assume that in all constraints, like terms are combined.

Now, suppose we are given a set Φ of LRA literals. We first eliminate disequali-
ties by replacing t1 �= t2 by t1 < t2 ∨ t2 < t1. We also eliminate weak inequalities by
replacing t1 ≤ t2 with t1 < t2 ∨ t1 = t2. These steps introduce disjunctions, but case-
splitting or conversion to DNF can be used to reduce the new problem to several
instances of simple conjunctions of strict inequalities. Next, we eliminate equali-
ties. If t1 = t2 cannot be solved for some variable x, it must either be trivially true or
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trivially false. If the former, we remove it; if the latter, Φ is unsatisfiable and we are
done. Otherwise, the equality is equivalent to x = t3 for some term t3. In this case,
we replace x everywhere by t3 and then remove the equality.

We are left with only conjunctions of strict inequalities, to which we apply
Fourier–Motzkin elimination. We pick a variable x occurring in Φ to eliminate,
and rewrite all constraints containing x as either (i) t1 < x or (ii) x < t2. For every
possible pair of constraints in Φ consisting of a constraint of the form (i) and one of
the form (ii), we introduce the new constraint t1 < t2. We then remove all constraints
containing x, eliminating x from Φ . We repeat with another variable until no more
variables appear in Φ . The result is a set of inequalities over rational constants that
can easily be simplified to ⊥, indicating that Φ is unsatisfiable, or ¬⊥, indicating
that Φ is satisfiable.

Example 2 Let Φ =Φ1 ∪ {w ≤ y} with Φ1 = {x < y + z, x − y = z−w, y < 0}.
Eliminating ≤ yields two sets of constraints: Φ1 ∪ {w < y} and Φ1 ∪ {w = y}. In
the first set, solve the equality for x to get x = y + z − w. After substituting and
combining like terms, we have {0<w, y < 0, w < y}. Applying Fourier–Motzkin
elimination to y results in {0<w, w < 0}. Then eliminating w yields 0< 0, which
simplifies to ⊥. For the second set of constraints, first eliminate w = y by substitut-
ing y for w everywhere to get {x < y + z, x = z, y < 0}. Next, eliminate x which
gives {0 < y, y < 0}. Fourier–Motzkin elimination on y then again yields 0 < 0.
Thus Φ is unsatisfiable.

Each elimination step in the procedure above introduces in the worst case a
quadratic number of new constraints, making the procedure doubly exponential.
For this reason, Fourier–Motzkin elimination is usually not practical for large sets
of constraints, Though more efficient procedures based on Fourier–Motzkin have
been developed [98, 106], procedures based on the Simplex method are currently
preferred because of their superior overall performance. A Simplex-based algorithm
specialized for use in SMT solvers is given in [67], and further improvements on it
are described in [68, 91, 104].

11.4.3 Integer Arithmetic

Consider now a signature Σ containing a single sort Z, for the integers, all integer
number constants, function symbols {+,−,∗} and the predicate symbol ≤, all with
the expected rank. The theory of integer arithmetic consists of this signature paired
with the standard model of the integers, the Σ -model that interprets Z as the set Z
of the integers, and the constants and operators in the usual way. The satisfiability
of Σ -formulas in this theory, even without quantifiers, is undecidable [112].

The linear integer arithmetic (LIA) fragment is the analog of the LRA frag-
ment described above: the symbol ∗ can only appear if at least one of its operands
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is an integer constant. The fully quantified LIA fragment is also known as Pres-
burger arithmetic and is decidable using Presburger’s algorithm [138]. More effi-
cient methods exist for the quantifier-free fragment. Again, for illustrative purposes,
we describe here a relatively simple procedure for quantifier-free LIA based on the
Omega test [21, 107, 140]. This is essentially an integer adaptation of the Fourier–
Motzkin elimination procedure described for the reals above.

Let Φ be a set of LIA literals. As before, we assume that all constraints are nor-
malized by combining like terms. We divide coefficients in each constraint by any
common factors and check for any contradictions in constraints involving only con-
stants. Then, we eliminate disequalities by replacing t1 �= t2 with t1 < t2 ∨ t2 < t1,
where again s < t abbreviates ¬(t ≤ s). We similarly eliminate weak inequalities
by replacing (t1 ≤ t2) with t1 < t2 + 1.

The next step is the elimination of equalities. If it is possible to solve some equa-
tion for some variable x, we do this and either: (i) halt the procedure and report Φ
is unsatisfiable if the right-hand side of the solved equation reduces to a non-integer
constant; or else (ii) substitute the right-hand side for x in Φ as before. If it is not
possible to solve any equation for a variable while maintaining integer coefficients,
we proceed as follows: let a be the minimum coefficient of any variable and write
the equation it appears in as ax +∑

i aixi + c = 0. Let m = |a| + 1 and define
k m̂od m= k−m/ k

m
+ 1

20. Note that m̂od distributes (modulo m) over both multi-
plication and addition. Next, apply this operator to both sides of the original equation
to get: ±(x m̂od m)+∑

i (ai m̂od m)(xi m̂od m)+ (c m̂od m) = 0 (modulo m).
Expanding the definition of m̂od , this can be rewritten as: ±x+∑

i (ai m̂od m)xi +
(c m̂od m) = m · y where y is a fresh variable. This equation can now be used to
eliminate x from the original equation (and indeed from Φ). The new equation still
has the same number of variables, since y was introduced, but in the new equation,
the absolute values of the coefficients of all variables other than y are reduced by
a factor of at least 2/3, while the absolute value of the coefficient of y is in fact
|a|. By repeating this process a logarithmic number of times, we eventually obtain
an equation in which some variable has coefficient ±1 and can thus be eliminated
without introducing any new variables. This process can be used to eliminate all
equality constraints from Φ .

The final step again involves only conjunctions of strict inequalities and is similar
to Fourier–Motzkin elimination. We pick a variable x occurring in Φ to eliminate,
and write all constraints containing x as either (i) ax < t1 or (ii) t2 < bx where a
and b are positive integers. We remove these constraints from Φ and then for ev-
ery possible pair consisting of a constraint of the form (i) and a constraint of the
form (ii), we add a new constraint, choosing from the following three alternatives:
the real shadow at2 < bt1; the dark shadow bt1 − at2 > ab; and the gray shadow∨i=b−1
i=1 bx = t2 + i. The first two are approximations, with the first preserving the

soundness and the second the completeness of the procedure. The gray shadow is
exact and can be used to eliminate x via additional case splitting and equation solv-
ing. However, this can be prohibitively expensive, so one possible strategy is: check
whether the real shadow constraints are sufficient for unsatisfiability; failing that,
check whether the dark shadow constraints are satisfiable; and finally, failing that,
check the gray shadow constraints.
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Example 3 Let Φ = {2x = 3w+4z, w < x, 2x+4z < w}. When solving for x, the
minimal coefficient is 2, som= 3, and we can derive the new equation−x−z= 3y,
or x =−3y − z. Substituting into the first equation, we get −6y − 2z = 3w + 4z,
or w =−2y − 2z. Substituting for x and w in the second constraint, we get −2y −
2z < −3y − z or y < z. Substituting for x and w in the third constraint, we get
2(−3y − z)+ 4z <−2y − 2z or z < y. The real shadow is now unsatisfiable.

As with real arithmetic, better performance is possible by using Simplex-based
algorithms, in this case expanded with additional techniques for obtaining integer
solutions [65, 67, 68, 91, 92].

11.4.4 Mixed Integer and Real Arithmetic

Sometimes it is desirable to mix integer and real reasoning. A simple solution is
to use two different sorts, Z and R and then create two copies of the arithmetic
symbols, one set for integers and one set for reals. Mapping operators, such as toInt
of rank RZ (returning the integer part of a real) and toReal of rank ZR (returning the
corresponding real) can be used to mix real and integer terms.

Alternatively, mixing can be done by reasoning within the theory of reals with
the addition of a unary predicate symbol Int whose interpretation is exactly the set
of all whole (real) numbers. Often, constraints of interest limit the use of the Int
predicate to variables (as opposed to more complicated terms). In such cases, an
algorithm can be obtained by mixing approaches for LRA and LIA [21, 68].

For example, suppose Φ is a set of literals. Let VZ be the set of variables in Φ
that are constrained by Int, and let VR be the set of remaining variables of Φ . We
can eliminate disequalities and weak inequalities as before. Then, all equations that
contain at least one variable in VR can be eliminated by solving for the variable and
then substituting for that variable in Φ . Next, the remaining variables in VR can be
eliminated by performing Fourier–Motzkin elimination. The result of this step is
a system of equalities and inequalities over only the variables in VZ. Furthermore,
each constraint can be made to have integer coefficients by multiplying through by
the least common multiple of the denominators appearing in its rational coefficients.
The resulting set of constraints can be solved using any algorithm for LIA, such as
the one described above.

11.4.5 Difference Logic

Difference logic refers to a quantifier-free arithmetic fragment in which all atoms
are of the form x − y -. c, where -. ∈ {=,≤,≥}, c is a constant, and x and y are
variables. The background theory may be the theory of real arithmetic, in which
case c can be any rational constant and the fragment is called real difference logic
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(RDL). Alternatively, it may be the theory of integer arithmetic, in which case c is
required to be an integer constant and the fragment is called integer difference logic.
Conjunctions of literals in either IDL or RDL can be solved in polynomial time.
A simple algorithm is as follows [128].

Let t1 < t2 abbreviate ¬(t2 ≤ t1), and eliminate disequalities by replacing ¬(x−
y = c) with x − y < c ∨ x − y > c. We similarly eliminate equalities by replacing
(x − y = c) with x − y ≤ c ∧ x − y ≥ c. Finally, we write all constraints in terms
of ≤ by applying the following rewriting steps: (i) x − y ≥ c −→ y − x ≤ −c;
(ii) x− y > c −→ y− x <−c; and (iii) x− y < c −→ x− y ≤ c− 1. Step (iii) is
only valid in IDL. For RDL, a slight variation is possible: x − y < c −→ x − y ≤
c− δ where δ is a rational positive constant chosen to be sufficiently small [146].

Now, we form a weighted directed graph with a vertex for each variable and an
edge from x to y with weight c for each constraint x − y ≤ c. The set of constraints
is satisfiable iff there is no cycle for which the sum of the weights on the edges is
negative, which can be determined using standard graph algorithms [50].

Example 4 Let Φ = {x − y = 5, z − y ≥ 2, z − x > 2, w − x = 2, z − w < 0}.
After eliminating equality and rewriting, we have {x − y ≤ 5, y − x ≤−5, y − z≤
−2, x − z ≤ −3, w − x ≤ 2, x − w ≤ −2, z − w ≤ −1}. In the associated graph,
the cycle from x to z to w to x has total weight −2. Therefore, Φ is unsatisfiable.

The algorithm described here is elaborated and extended in [58, 161]. An effi-
cient alternative algorithm based on a reduction to propositional logic is described
in [103].

11.4.6 Bit Vectors

The theory of fixed-size bit vectors is useful for modeling hardware or low-level
software. The theory signature consists of one sort BVn for each bit width n ≥ 1;
2n binary constants for each such sort, each representing a constant bit vector of
width n; and a large set of operators corresponding to standard hardware and soft-
ware operations on bit vectors. For example, t1 ◦ t2 represents the concatenation of
bit vectors t1 and t2 and t[i : j ] represents the extraction of bits i through j of t ,
where n > i ≥ j ≥ 0 and n is the bit width of t .

A conjunction of equations containing only concatenation and extraction opera-
tors can be checked for satisfiability in polynomial time as follows [41, 61]. In step
(i), simple rewrites are used to distribute extraction over concatenation, other extrac-
tions, or constants, until the only arguments of extractions are variables. In step (ii),
whenever an equation contains a concatenation on one side, r ◦ s = t , it is replaced
by two equations: r = t[n− 1 : m] and s = t[m − 1 : 0], where n is the bit width
of t and m is the bit width of s. In step (iii), if a variable x appears as an argument
to two different extractions, x[i : j ] and x[k : l], with i > k ≥ j , then x[i : j ] is
replaced by x[i : k + 1] ◦ x[k : j ]. Similarly, if i > l ≥ j , then x[i : j ] is replaced
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by x[i : l + 1] ◦ x[l : j ]. These three steps are repeated until they can no longer be
applied. Let ∼ be the equivalence relation over terms induced by the resulting set of
equations. The original equations are unsatisfiable iff there exist two distinct binary
constants, c1 and c2, such that c1 ∼ c2.

Example 5 Let x be of width 4 and consider the equation 1 ◦ x = x ◦ 0. Step (ii)
produces three new equations: 1 = x[3 : 3], x[0 : 0] = 0, and x[3 : 1] = x[2 : 0].
Then, step (iii) requires that the last equation be replaced with x[3 : 3] ◦ x[2 : 1] =
x[2 : 1] ◦ x[0 : 0]. Repeating step (ii) on this equation gives x[3 : 3] = x[2 : 2],
x[2 : 2] = x[1 : 1], and x[1 : 1] = x[0 : 0]. The equivalence relation induced by all
of these equations equates 0 and 1, so the original equation is unsatisfiable.

Almost any extensions beyond this core fragment of the theory, including just
allowing disequalities, make the constraint satisfiability problem NP-hard. Recent
results show that, depending on the extension, the problem can be NP-complete,
PSPACE-complete, or up to NEXPTIME-complete for the full fragment [74].
Solvers typically handle the general case by first employing a set of rewrite rules
to simplify and normalize parts of the input and then encoding the result as a propo-
sitional satisfiability problem. This can be done by assigning a propositional variable
to each bit in each bit vector variable and then using propositional logic formulas
to encode each equation in terms of these variables—a process known as bit blast-
ing. In reality, the situation is more nuanced as several bit blasting SMT solvers,
including non-DPLL(T ) solvers such as Boolector and STP, bit blast some of their
internal formulas only as needed, and so combine aspects of both the lazy and the
eager approaches.

Both the rewrite rules and the method of encoding can dramatically affect per-
formance, as detailed in an extensive set of publications on the subject [7, 18, 25,
36, 37, 44, 76, 94, 113].

11.4.7 Arrays

Consider a signature Σ with sorts A, I,E (for arrays, indices and array elements)
and function symbols: read, of rank A I E and write of rank A I E A. Then, consider
the theory consisting of all Σ -structures satisfying the axioms:

1. ∀a:A ∀ i:I ∀v:E read(write(a, i, v), i)= v,
2. ∀a:A ∀ i, j :I ∀v:E i �= j ⇒ read(write(a, i, v), j)= read(a, j),
3. ∀a ∀b:A (∀ i:I read(a, i)= read(b, i))⇒ a = b.

This is the theory of functional arrays with extensionality. (Axiom (3) may be omit-
ted to obtain a theory without extensionality.) This theory is especially useful for
modeling memories or array data structures. The full theory is undecidable although
it contains a number of decidable fragments [33].

A simple algorithm for constraint satisfiability can be obtained by naive instanti-
ation of the axioms plus the use of congruence closure (e.g., [101]). LetΦ be a set of
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Σ -literals. With no loss of generality, assume that each element of Φ is a flat literal,
that is, of the form a = b, a �= b, v = read(a, i), or b= write(a, i, v), where a, b, i, v
are variables.12 First, replace any disequality a �= b between array variables with
read(a, k) �= read(b, k), where k is a fresh variable of sort I. Now, let I be the set of
all variables in Φ of sort I, and replace each formula of the form a = write(b, i, v)
with read(a, i)= v ∧∧

j∈I (i = j ∨ read(a, j)= read(b, j)). Since this step intro-
duces disjunctions, case-splitting or conversion to Disjunctive Normal Form (DNF)
can be used to reduce the new problem to several instances of sets of literals. Each
such instance can be checked for satisfiability using only congruence closure over
read, since write no longer appears in Φ . The set Φ is satisfiable iff one of these
instances is satisfiable.

Example 6 Let Φ = {read(a, i) = v, read(b, i) �= v, w �= v, a = write(b, j,w)}.
The reduction replaces the last equation with read(a, j)=w∧ (i = j ∨ read(a, i)=
read(b, i)). Now, note that if i = j , then congruence closure generates read(a, i)=
read(a, j) and so v = w, contradicting w �= v. On the other hand, if read(a, i) =
read(b, i), then this contradicts read(b, i) �= v. Thus, Φ is unsatisfiable.

In practice, various heuristics and optimizations are used to avoid many unnec-
essary axiom instantiations, greatly reducing the number of cases that must be con-
sidered [27, 35, 76, 89, 122, 153].

11.4.8 Other Theories

There are many other theories of general interest with decision procedures that
have been or could be integrated into SMT solvers. These include theories of fi-
nite sets [47], finite multi-sets [136], inductive data types [13] (lists, records, and
tuples can be handled as special cases), character strings [102], pointers [49, 111],
and floating point numbers [144]. It is also possible to design special-purpose theo-
ries for specific application domains (see, e.g. [129]).

11.5 Combining Theory Solvers

All constraint satisfiability procedures described in the previous section consider
theories of a single data type. In many applications of SMT, however, including
model checking, one is often interested in the satisfiability of formulas over several
data types (e.g., arrays with integer indices and real values, lists of integers, etc.)

12Any set of literals can be converted into an equisatisfiable set of flat literals by introducing new
variables.
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and, consequently, over some combination of their theories. An important theoret-
ical and practical question then is whether and how constraint satisfiability proce-
dures for different theories can be combined modularly into a single one so as to
allow the construction of theory solvers for a combination of these theories. This
section gives an overview of notable combination methods and results.

A general mechanism for combination is available when the desired combination
of theories is axiomatized simply by the union of the axioms of the individual theo-
ries.13 More formally, since theories here are defined as classes of models, a modular
combination of two theories (the combination of more theories is similar) is defined
as follows.

Let T1 = (Σ1,A1) and T2 = (Σ2,A2) be two theories such that Σ1 and Σ2
agree on the rank they assign to their shared function and predicate symbols.14

The combination of T1 and T2 is the theory T1 ⊕ T2 = (Σ1 ⊕ Σ2,A) where
Σ1 ⊕Σ2 is the smallest supersignature of both Σ1 and Σ2, and A= {A |A Σ1,∅ ∈
A1 and A Σ2,∅ ∈A2}. These definitions encompass the more traditional view of the-
ories defined by a set of axioms. In particular, if Ai is the class of all Σi models
that satisfy a set Axi of Σi -sentences for i = 1,2, then A above is the class of all
Σ1⊕Σ2-models that satisfy the set Ax1 ∪Ax2 [141, 158]. Given, for i = 1,2, a de-
cision procedure for the satisfiability of sets of Σi -literals in a Σi -theory Ti , we
are interested in constructing a decision procedure for the satisfiability of sets of
Σ1 ⊕Σ2-literals in T1 ⊕ T2 using those procedures as black boxes.

11.5.1 A Basic Combination Method

A combination method originally due to Nelson and Oppen [126], and later adapted
and extended to sorted logics by others [87, 141, 159], provides a general mecha-
nism for combining decision procedures as above. Variants of the method are im-
plemented in all major SMT solvers. Its essence is captured by the following non-
deterministic procedure.

The Nelson–Oppen Procedure Let Γ be a set of literals in the combined signature
Σ1 ⊕ Σ2. (i) First, purify Γ by constructing an equisatisfiable literal set Γ1 ∪ Γ2
where each Γi consists of Σi -literals only. This can be easily done by finding a
pure (i.e., Σi - for some i) subterm t , replacing it with a new variable v, adding the
equation v = t to the set, and then repeating this process until all literals are pure.
(ii) Then get the component satisfiability procedures to agree on the values assigned
to the shared variables15 of Γ1 and Γ2, the variables appearing in both Γ1 and Γ2.

13An example of a theory which is not a modular combination in this sense is the theory of finite
sets with cardinality. This theory includes the theory of finite sets and the theory of integers, but
also additional, mixed axioms defining the cardinality operator.
14Shared symbols with (same name but) different ranks can always be renamed apart.
15Also called interface variables in recent literature—see, e.g., [38].
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This is done by guessing an arrangement of V , that is, a set arr(V ) of equations
and disequations encoding an equivalence relation over V (and so expressing which
pairs of variables take the same value and which do not). (iii) Finally, check each Γi
locally for Ti -satisfiability under the chosen arrangement.

If each satisfiability procedure finds its respective input Γi ∪ arr(V ) satisfiable,
report the original set Γ to be T1 ⊕ T2-satisfiable. Otherwise, repeat steps (ii) and
(iii) with another arrangement. If no suitable arrangement exists, report Γ to be
T1 ⊕ T2-unsatisfiable. �

The non-deterministic combination procedure above yields a decision procedure
for a large class of theories. Its main requirement is that T1 and T2 be disjoint in the
sense of not sharing any function or predicate symbols. The procedure is terminat-
ing simply because the purification step is terminating and the number of possible
arrangements is finite (although exponential in the number of shared variables). The
procedure is refutationally sound for any two disjoint theories: every set it declares
T1⊕ T2-unsatisfiable is indeed so. Without additional restrictions the method is not
refutationally complete, as it may fail to detect the unsatisfiability of its input for
certain pairs of disjoint theories [160]. It becomes complete if both T1 and T2 are
stably infinite over the sorts they share [134, 157, 159]. A Σ -theory T is stably infi-
nite over a sort σ in Σ if every T-satisfiable quantifier-free Σ -formula is satisfiable
in a T-interpretation that interprets σ as an infinite set.

Many theories of interest in SMT applications are indeed stably infinite over
some or all of their sorts. Examples include the various theories of arithmetic dis-
cussed in Sect. 11.4 and the theory of arrays, which is stably infinite over its array,
index and element sorts. However, some are not—most notably the theory of bit
vectors described in Sect. 11.4.6.

With disjoint stably infinite theories the combination method has an exponential
worst-case time complexity in general. More precisely, if the constraint satisfiability
problem for Ti can be decided in time O(fi(n)) for i = 1,2, the corresponding
problem for T1 ⊕ T2 can be decided in time O(2n

2 × (f1(n) + f2(n))), with the
exponential factor due to the need to guess the right arrangement [134].

11.5.2 Combination Variants and Extensions

Actual implementations of the non-deterministic procedure sketched above try to
reduce its exponential penalty by reducing the amount of guessing of arrangements.
The most common approach is to check the satisfiability of Γ1 and Γ2 locally and
then deduce and propagate, from one component decision procedure to the other,
disjunctions of shared equalities entailed by Γ1 or Γ2. This is particularly effec-
tive when T1 and T2 are both convex over the sorts they share because then it is
enough for completeness to consider only individual entailed equalities. AΣ -theory
T is convex over a sort σ ∈ σ S if for all sets Φ of Σ -literals and all sets E of
equalities between variables of sort σ , Φ |=T

∨
e∈E e iff Φ |=T e for some e ∈ E.
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With convex theories, worst-case time complexity of the combination goes down to
O(n4 × (f1(n)+ f2(n))) [134].

With non-convex theories, or convex theories for which computing entailed
equalities is expensive, another approach is to check the Ti -satisfiability of Γi alone
for some i = 1,2 and, once a model Ai is found, make the optimistic assumption
that Γj ∪ arr(V ) is Tj -satisfiable, where j �= i and arr(V ) is the arrangement of
V induced by Ai . If Γj ∪ arr(V ) is unsatisfiable because of some of the literals
in arr(V ), a new model for Γi with different truth values for those literals must be
found. For some theory combinations, this heuristic approach is highly effective in
practice [123].

The stable infiniteness requirement can be relaxed for one theory if the other
satisfies stronger properties [109, 141, 160]. However, the equality-sharing mech-
anism of the original combination procedure needs to be extended to certain car-
dinality constraints. The most general results so far in the context of many-sorted
logic are described in [97]. A case for using a typed logic with parametric types
to frame and generalize Nelson–Oppen combination is provided in [109]. A few
extensions have been proposed to lift the disjointness restriction, most notably by
Ghilardi and his collaborators, although their interest thus far has been mostly theo-
retical [84, 87, 158]. Recent work, however, uses Ghilardi’s results to develop novel
SMT-based LTL model-checking algorithms [85, 86, 88].

11.6 SMT Solving Extensions and Enhancements

The scope of SMT solvers, especially those based on the lazy approach, has been
extended further in a number of directions. Also, several solvers contain further
enhancements aimed at improving their overall performance. We briefly describe a
few significant extensions and enhancements next.

Multiple Theories When working with multiple theories T1, . . . ,Tn that can be
combined with the Nelson–Oppen method, one can generate a single theory solver
for their combination T by combining the constraint satisfiability procedures for
various theories, as described in Sect. 11.5. With solvers based on the DPLL(T)
architecture a better approach is to develop an independent theory solver for each
theory and extend the interface of the SAT engine so that it interacts directly with
each theory solver and coordinates among them in Nelson–Oppen style, to maintain
soundness and completeness.

A general framework for doing this is known as delayed theory combination
(DTC) [30, 38]. At the level of abstract transition systems described in Sect. 11.3.3,
the essence of DTC is to work again with states of the form M || F except that
now every atom occurring in M or in F is pure, i.e., in the signature of one of the
theories T1, . . . ,Tn. A preprocessing purification step can be applied to the SMT
solver’s input to guarantee this for the initial formula F0. The atoms in M come
from F0 or from the set S of all interface equalities, equalities between variables
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that occur in two atoms of F0 belonging to different theories. The SAT engine is
modified so that it also determines, by guessing, the truth values of the atoms in S,
in addition to those in F0. In its more general and advanced form, DTC also benefits
from changes to the theory solvers that enable them to propagate entailed interface
equalities or disjunctions of them, thus reducing the SAT engine’s guesswork. More
details on DTC together with a study of its relative merits with respect to the en-
capsulation approach mentioned at the beginning can be found in [38]. A general
abstract formulation of multi-theory lazy SMT that encompasses DTC is provided
in [108].

Quantifiers Checking the satisfiability of quantified formulas is a long-standing
challenge in SMT. A typical use of quantifiers in input formulas is to provide ax-
iomatic definitions for function or predicate symbols not in the solver’s background
theories. In model-checking applications, other uses of quantifiers include assertions
involving all the elements of a collection datatype (such as arrays and sets) and as-
sertions about concurrent systems (which for instance quantify over all processes).
Extending decision procedures to such quantified formulas without losing termina-
tion is in general impossible because of basic undecidability results for first-order
logic. In fact, even maintaining (refutational) completeness is already difficult, both
in theory and in practice.

While the T-satisfiability of quantified formulas is decidable for certain theo-
ries T (such as, for instance, the theory of real numbers), their decision proce-
dures use quantifier elimination methods, which convert formulas into T-equivalent
quantifier-free ones, and are quite heavy computationally. Furthermore, these meth-
ods normally break down in the presence of additional symbols, such as uninter-
preted ones. As a consequence, SMT solvers use incomplete methods based on in-
stantiating quantified formulas into a set of ground ones.16 Existential quantifiers in
formulas of the form ∀x1 · · · ∀xn ∃x ϕ (with n ≥ 0) are eliminated by dropping ∃x
and replacing all free occurrences of x in ϕ by the term f (x1, . . . , xn) where f is a
fresh (uninterpreted) function symbol of arity n. Then, each universally quantified
formula ∀x ϕ is conjoined with a number of its instances, obtained from the qff ϕ
by replacing its free occurrences of x with some ground term of the same sort. The
selection of these instances is driven by incomplete heuristics.

The most common strategy is to select for instantiation ground terms that are rel-
evant to ∀x ϕ, according to some heuristic relevance criterion. The SMT solver tries
to find a subterm t[x] of ∀x ϕ properly containing x, a ground term g among those
in its working memory, and a subterm s of g, such that t[s], the result of replacing x
by s in t , is T-equivalent to g. The expectation is that instantiating x with s is more
likely to be helpful than instantiating it with an arbitrary ground term. In terms of
unification theory [6], checking that |=T t[s] = g is a special case of T-matching.
In the context of SMT, because of the richness of the background theory T , it may
be very difficult if not impossible to determine whether an arbitrary term T and a

16A term or formula is ground if it contains no variables (although it may contain uninterpreted
constant symbols).
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ground term g T-match. As a result, most implementations use some form of T-
matching only for uninterpreted terms. More details on this and on heuristics that
are fairly effective in practice can be found in [24, 64, 82].

More recent work has focused on identifying fragments of first-order logic mod-
ulo theories for which is it possible to produce complete, and in some cases also
terminating, quantifier-instantiation methods [70, 83, 150]. Some of this work [83]
is based on a general model-based quantifier instantiation approach where the SMT
solver maintains at all times (a finite representation of) a candidate model, a T -
model that satisfies the current set G of ground formulas. The solver uses the can-
didate model to focus instance generation on only a few ground instances falsified
by that model. Unless extending G with these instances makes G unsatisfiable, the
solver then constructs a new candidate model for the extended G, and repeats the
process until it is able to construct one that satisfies all quantified formulas as well.

A similar idea is used in the Inst-Gen calculus for first-order logic (with no the-
ories) [78]. New ground instances are generated based on a model for the ground
ones computed by an off-the-shelf SAT solver. A theorem prover based on this cal-
culus has been shown to be very effective [105]. The Inst-Gen calculus has been
extended to built-in theories [79]. However, implementing the extended calculus in
an efficient solver has proven difficult so far.

A recent and quite promising line of work on model-based instantiation focuses
on SMT formulas all of whose quantifiers range over uninterpreted sorts [142, 143].
There, the solver tries to prove its input formula T-satisfiable by imposing finite
cardinality constraints on those sorts, identifying for each sort σ a set Uσ of ground
terms that enumerates the sort’s finite domain, and instantiating quantifiers with
these terms. The candidate model is used also to avoid exhaustive instantiation over
each Uσ by identifying, and ignoring, whole sets of instances that are equisatisfiable
with an already generated one.

Layered Theory Solvers Some theories T with a decidable constraint satisfiabil-
ity problem contain less-expressive fragments whose constraint satisfiability prob-
lem can be decided by more efficient methods. For example, the theory of real
numbers includes a chain of increasingly larger and harder to decide fragments:
inequalities between variables, difference constraints, linear constraints, and non-
linear constraints. For these theories, one can design a layered T-solver consist-
ing of a sequence of subsolvers of decreasing performance but increasing gener-
ality [5, 32, 37, 59, 149]. In principle then, the solver can use the most efficient
subsolver that is able to process the conjunction of literals given as input.

In reality, inputs rarely fall neatly in one of the fragments in the sequence. So ab-
straction and refinement techniques, similar in spirit to those used in model check-
ing, must be used to take advantage of the faster subsolvers. Considering a non-
incremental theory solver, for simplicity, the layering mechanism works as follows.
The solver abstracts the literals in the input formula ψ as needed to get a formula
ψ ′ T-entailed by ψ and accepted by its most restricted subsolver. If that subsolver
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determines ψ ′ to be T-unsatisfiable, the solver reports ψ to be T-unsatisfiable.17

Otherwise, it refines ψ ′ just enough for it to fall into the fragment processed by the
next more general subsolver, and sends it to that one, repeating the same process
until a subsolver finds the refined formula ψ ′ unsatisfiable or ψ ′ gets refined to ψ .

Incomplete Theory Solvers For some theories—such as the theories of arrays, lin-
ear integer arithmetic, algebraic data types, and finite sets—the constraint satisfi-
ability problem alone is NP-hard. To be refutationally complete then, a solver for
such a theory T must perform internal search and case splitting. In a DPLL(T) set-
ting, it is possible to use much simpler, albeit incomplete, T-solvers by delegating
all search and case splitting to the SAT engine, a module already designed to do that
efficiently.

The main idea, developed in the splitting on demand framework [11], is the
following. Any time the T-solver needs to do a case analysis to determine the T-
satisfiability of its input, it encodes the needed case split into a T-valid disjunction
of literals, a theory lemma in effect. Then, instead of returning a sat/unsat answer,
it returns the lemma demanding that the SAT engine process it—doing case splits
on it as it would do with any other lemma. When the engine adds a literal from the
lemma to its variable assignment, the literal will be asserted back to the T-solver,
letting it proceed with that choice. After that, the T-solver either manages to deter-
mine the satisfiability of the newly extended input set or repeats the process with a
new lemma. For termination, and overall completeness, there must be a finite upper
bound on the number of splitting demands a T-solver needs to make for any given
input before it is able to reply with sat or unsat. General sufficient conditions for
the correctness of splitting on demand are discussed in [11].

Although splitting on demand simplifies the construction of theory solvers, it
does not always provide the best performance. A discussion of this issue for real
arithmetic solvers can be found in [92].

11.7 Eager Encodings to SAT

An alternative to the lazy approach to SMT is one usually referred to as the eager
approach. It encompasses any technique that aims to fully reduce SMT problems
to propositional satisfiability (SAT) problems via some kind of encoding. More for-
mally, an eager SMT solver accepts a first-order formula ϕ in the signature of some
theory T , generates a propositional formula ψ that is propositionally satisfiable iff
ϕ is T-satisfiable, and then it feeds ψ to an off-the-shelf SAT solver.

Although the lazy approach is now predominant in SMT, mostly because of its
flexibility and generality, efficient eager solvers do exist for a number of important
theories. To give a sense of how some of them work, let us look at the theory of
Equality with Uninterpreted Functions (EUF), that was introduced in Sect. 11.4.1.

17If a conflict set is required for ψ , it can be computed from one for ψ ′.
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Eager solvers for quantifier-free formulas in EUF can be constructed using Ack-
ermann’s reduction [1]. Suppose f is a unary function symbol (the generalization to
n-ary symbols is straightforward) in an input formula ϕ, and let {f (t1), . . . , f (tn)}
be the set of occurrences of f in ϕ. We introduce n new constant symbols f1, . . . , fn
and replace each f (ti) with fi in ϕ. Let ϕ′ denote the result of this replacement.
Then the formula ϕ′ ∧∧n

i=1
∧n
j=i+1(ti = tj ⇒ fi = fj ) is satisfiable in EUF iff ϕ

is. By repeating this process, all function symbols can be removed.18

To complete the eager translation, we must also remove all equality literals.
One way to do this is by introducing propositional variables and transitivity con-
straints [46]. Suppose ψ is an EUF formula with equalities but no function sym-
bols. Let S = {s1, . . . , sm} be the set of all terms appearing in equalities. Let ψ ′ be
the result of replacing each equality si = sj or sj = si where i < j with a propo-
sitional variable ei,j . Let G be an undirected graph on S with an edge between
si and sj iff ei,j appears in ψ ′. Let G′ be a chordal graph (no chord-free cycle
of size four or more) obtained from G by adding arbitrary chords within cycles
of size four or more. For each triangle (si , sj , sk), i.e., cycle of size three in G′
with i < j < k, we add the following transitivity constraint to ψ ′: ((ei,j ∧ ej,k)⇒
ei,k) ∧ ((ei,j ∧ ei,k)⇒ ej,k) ∧ ((ei,k ∧ ej,k)⇒ ei,j ). The result is a propositional
formula that is satisfiable iff ψ is satisfiable in EUF. For additional details on and
extensions to this algorithm, see [107].

Example 7 Consider again the EUF example Φ = {f (f (a)) = a, f (f (f (a))) =
a, g(a) �= g(f (a))}. After applying the Ackermann reduction, we have: {f2 =
a, f3 = a, g4 �= g5, a = f1 ⇒ f1 = f2, a = f2 ⇒ f1 = f3, f1 = f2 ⇒ f2 =
f3, a = f1 ⇒ g4 = g5}. The graph G is already chordal and has four triangles:
(a, f1, f2), (a, f1, f3), (a, f2, f3), (f1, f2, f3). Let a0 ≡ a and introduce the propo-
sitional terms ei,j according to the subscripts. Also, let Bi,j,k be the transitivity
constraint on ei,j , ej,k, ei,k introduced above. The set {e0,2, e0,3, ¬e4,5, e0,1 ⇒
e1,2, e0,2 ⇒ e1,3, e1,2 ⇒ e2,3, e0,1 ⇒ e4,5, B0,1,2, B0,1,3, B0,2,3, B1,2,3} of
propositional formulas is satisfiable iff Φ is satisfiable. It is easy to see that this
set is unsatisfiable: e0,2 and e0,3 must be true and e4,5 must be false. The fifth con-
straint then implies that e1,3 must also be true. But then B0,1,3 entails e0,1 which
implies that e4,5 must be true, a contradiction.

The UCLID solver [42, 45, 110] uses these and other techniques to solve
(eagerly) problems specified in the CLU logic, a logic of Counter arithmetic
with Lambda expressions and Uninterpreted functions. Other eager approaches
have looked at small-domain instantiations [137] and various fragments of arith-
metic [151, 152]. As mentioned in Sect. 11.4.6, a common approach to construct
solvers for the theory of bit vectors is to apply some rewriting to the input formula
followed by bit blasting. This too is an instance of the eager approach.

18A method due to Bryant can be used as an alternative that can sometimes be more efficient [43].



332 C. Barrett and C. Tinelli

11.8 Additional Functionalities of SMT Solvers

Arguably, the success of SMT solvers as embedded deductive reasoning engines is
due in large part to the emergence of additional functionalities well beyond the mere
checking of a formula’s T-satisfiability. These functionalities are used extensively
and with great benefit by tools such as model checkers, interactive provers, program
verifiers, test case generators and so on. We discuss a selection of them next.

Models In many applications it is useful not only to know that a formula is T-
satisfiable but also to obtain a witness of its T-satisfiability in the form of a T-
interpretation (in the sense of Sect. 11.1.1) satisfying the formula. Fully representing
first-order models such as T-interpretations finitarily, however, is challenging, when
possible at all. Hence SMT solvers usually return only partial information, in the
form of value assignments to selected symbols in the input formula. Furthermore,
they restrict consideration only to models that permit a finitary representation of
these values.19 For instance, for the theory of arrays they only consider models that
interpret array variables as almost constant maps, unary functions mapping all their
inputs to the same value except for finitely many inputs. A similar restriction is
adopted for EUF in computing the interpretation of function symbols.

Even with these restrictions, returning models may require strictly more work
than just determining satisfiability. Depending on the theory, different approaches
are possible. One approach, followed for instance by the CVC3 solver [17], is first
to compute a partial model sufficient to establish the input formula’s satisfiability,
and then to do additional work as needed to extend that partial model to include val-
ues for symbols of interest (variables and function/predicate symbols) to the user.
Another approach, followed for instance by the solvers Yices and Z3, is to instru-
ment the theory solver to maintain some value for every symbol at all times, starting
with some default assignment, and modifying the assignment as needed until it be-
comes a satisfying one. Yet another approach, which is implemented in CVC4 and is
beneficial with quantified formulas whose quantifiers range only over uninterpreted
sorts, is to explicitly construct models that interpret those sorts as finite sets [142].

Proofs For most applications that utilize SMT solvers, it is important to have con-
fidence in their refutational soundness. Since proving the soundness of an SMT
solver is unrealistic, due to the complexity of such tools, a reasonable approach is
for the solver to accompany its unsat answers with a certificate that can be checked
independently with much simpler and more trustworthy tools. This certificate is in
general a proof of the input formula’s unsatisfiability, expressed as a proof term in
some suitable proof system.

With SMT solvers based on the lazy approach it is possible to produce proofs
with a two-tiered structure, consisting of a propositional skeleton filled with several
theory-specific subproofs. In these two-tiered proofs, the conclusion is reached by

19These restrictions cause no loss of generality with quantifier-free queries.
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means of propositional inferences applied to a set of input formulas and theory
lemmas. The latter are disjunctions of theory literals deduced from no assumptions,
using proof rules specific to the background theory in question. The propositional
skeleton is generated using techniques similar to those used by proof-producing
SAT solvers (e.g., [2, 9]). The proofs of the various lemmas used as hypotheses in
the propositional skeleton are produced typically using natural deduction inference
rules with theory-specific axioms [28, 73, 81, 120].

A major challenge for the field is to devise a common proof system for proof-
producing SMT solvers. The wide diversity of theories and solving algorithms in
SMT makes it difficult to find a single proof system that is universally good. One
way to address this difficulty is to use a meta-language for specifying proof systems
for SMT [154]. The advantage of a meta-language solution is that one can build an
automatic proof checker generator that takes as input a proof system and generates
an efficient proof checker for that system [133].

Unsatisfiable Cores Most SMT solvers allow the user to inquire about the joint
T-satisfiability of a set of formulas. For T-unsatisfiable sets Φ , some solvers are
able to return a T-unsatisfiable core, a possibly minimal subset of Φ that is also T-
unsatisfiable. This functionality, which is useful in many applications, is patterned
after the analogous one offered at the propositional level by many modern SAT
solvers. Research on producing minimal or small T-unsatisfiable cores in SMT is
not as extensive as in SAT. Current methods either are inspired by similar ones in
the SAT literature or rely directly on propositional technology. Following Barrett et
al.’s terminology [12], we can identify three main approaches.

In the proof-based approach, adopted by proof-producing SMT solvers such as
CVC3 and MathSAT, a T-unsatisfiable core is extracted from the produced proof of
unsatisfiability simply by collecting all the formulas of Φ that appear as premises in
the proof. The size of the returned core depends on the sophistication of the proof-
generation mechanism in producing compact proofs. This approach requires only
a small additional implementation effort but incurs the (heavy) cost of producing a
proof, even when none is requested.

In the assumption-based approach, implemented in Yices and applicable to any
DPLL(T)-style solver, the input set Φ = {ϕ1, . . . , ϕn} is internally converted into
the equisatisfiable set {p1 ⇒ ϕ1, . . . , pn⇒ ϕn, p1, . . . , pn} where each pi is a
fresh propositional symbol. Then, the same conflict analysis mechanism used by
the DPLL engine can be used to identify a subset of {p1, . . . , pn} that caused the
last conflict. The returned T-unsatisfiable core consists of the corresponding ϕi ’s.

In the lemma-lifting approach [56], implemented in more recent versions
of MathSAT, one uses the fact that a DPLL(T) solver will discover the T-
unsatisfiability of Φ by adding theory lemmas until Φ becomes propositionally
unsatisfiable. Once the DPLL engine detects unsatisfiability, any external proposi-
tional core extractor can be used to produce an unsatisfiable core C for the proposi-
tional abstraction {ϕa | ϕ ∈Φ} of the extended Φ . The returned T-unsatisfiable core
consists then of {ϕ | ϕa ∈ C}, the formulas of Φ whose abstraction is in C.
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Interpolants A fundamental result in model theory due to Craig [60] asserts the
existence of an interpolant for every pair of first-order formulas A and B such that
A |= B . This is a formula I written using only logical symbols and symbols oc-
curring in both A and B such that A |= I and I |= B . Analogues of this result,
expressed in terms of unsatisfiability instead of entailment, hold for a variety of
logics and logic fragments. In the SMT case, the result states that for all first-order
theories T and formulas A,B such that A,B |=T ⊥, there is a formula I using only
logical symbols, symbols of T and symbols occurring in both A and B such that
A |=T I and I,B |=T ⊥.

Starting with the seminal work by McMillan [115], interpolants have found a
number of practical uses in model checking (see Chap. 14). Applications involve the
computation of interpolants in propositional logic or in logics with (combinations
of) theories such as the theory of equality, linear rational arithmetic, arrays, and
finite sets [54, 100, 117, 162].

In propositional logic, interpolants can be computed from resolution proofs using
a simple method due to Pudlák [139]. For theories T with the quantifier-free inter-
polation property, which guarantees the existence of quantifier-free interpolants for
any T-unsatisfiable pair A,B of quantifier-free formulas, interpolants can be com-
puted using SMT techniques. In many cases, it is possible to produce interpolants ef-
ficiently by modifying existing theory solvers in relatively minor ways [54, 75, 145].

Under fairly general conditions, the generation of theory interpolants for sets of
literals can be extended modularly to (i) sets of arbitrary quantifier-free formulas
and (ii) combinations of theories (each with the quantifier-free interpolation prop-
erty), thanks to a method by Yorsh and Musuvathi [162]. This allows one to turn an
SMT solver into an interpolant generator. The first extension is possible with SMT
solvers that produce the sort of two-tiered proofs mentioned earlier in this section,
and relies on an adaptation of Pudlák’s method to deal with the proof’s propositional
skeleton. The second extension additionally requires each component theory T to be
equality-interpolating: whenever A,B |=T r = t where r is a term occurring in A
and t a term occurring in B , it is possible to compute a term s in the language shared
by A and B such that A,B |=T r = s ∧ s = t . A further, and related, requirement
is that the unsatisfiability proof from which the interpolant is extracted contains no
AB-mixed literals, literals with symbols occurring only in A and symbols occurring
only in B . Unfortunately, typical SMT solvers do not guarantee the absence of AB-
mixed literals from their proofs.20 Initial implementations of the Yorsh–Musuvathi
method imposed restrictions on solver search strategies in order to produce proofs
of a certain shape from which it is possible to extract interpolants even in the pres-
ence of AB-mixed literals [54]. In later work, these restrictions, and their potential
performance penalty, have been increasingly and considerably reduced by relying
on a certain amount of proof post-processing [40, 55, 90] or by considering only
certain classes of theories [52].

20Both Delayed Theory Combination and Splitting on Demand generate new literals during a proof
which may be AB-mixed.



11 Satisfiability Modulo Theories 335

Acknowledgement Clark Barrett was at the Courant Institute of Mathematical Sciences at New
York University, New York, NY, USA, when he coauthored this chapter.

References

1. Ackermann, W.: Solvable Cases of the Decision Problem. North-Holland, Amsterdam
(1954)

2. Amjad, H.: A compressing translation from propositional resolution to natural deduction. In:
Konev, B., Wolter, F. (eds.) Intl. Symp. on Frontiers of Combining Systems (FroCoS). LNCS,
vol. 4720, pp. 88–102. Springer, Heidelberg (2007)

3. Armando, A., Castellini, C., Giunchiglia, E.: SAT-based procedures for temporal reasoning.
In: Biundo, S., Fox, M. (eds.) European Conf. on Planning (ECP). LNCS, vol. 1809, pp. 97–
108. Springer, Heidelberg (2000)

4. Armando, A., Mantovani, J., Platania, L.: Bounded model checking of software using SMT
solvers instead of SAT solvers. In: Valmari, A. (ed.) Intl. Workshop on Model Checking
Software (SPIN). LNCS, vol. 3925, pp. 146–162. Springer, Heidelberg (2006)

5. Audemard, G., Bertoli, P., Cimatti, A., Korniłowicz, A., Sebastiani, R.: A SAT-based
approach for solving formulas over Boolean and linear mathematical propositions. In:
Voronkov, A. (ed.) Intl. Conf. on Automated Deduction (CADE). LNCS, vol. 2392, pp. 195–
210. Springer, Heidelberg (2002)

6. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press, Cam-
bridge (1998)
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89. Goel, A., Krstić, S., Fuchs, A.: Deciding array formulas with frugal axiom instantiation.
In: Joint Workshops of the Intl. Workshop on Satisfiability Modulo Theories and the Intl.
Workshop on Bit-Precise Reasoning (SMT/BPR), pp. 12–17. ACM, New York (2008)
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Chapter 12
Compositional Reasoning

Dimitra Giannakopoulou, Kedar S. Namjoshi, and Corina S. Păsăreanu

Abstract State Explosion is a fundamental challenge for model checking methods.
This term refers to the potentially exponential growth of the state space of a pro-
gram as a function of the number of its components. Compositional reasoning is a
technique which aims to ameliorate the effects of state explosion. In its essence, it
replaces reasoning on the global state space of a program with localized reasoning:
each component is analyzed separately, based on assumptions about the behavior
of the other components. The challenge for a fully automated method is the con-
struction of the right assumptions: they should be strong enough to prove a desired
property, while being simple enough for efficient analysis. This chapter describes
the ideas underlying compositional reasoning, foundational algorithms for generat-
ing assumptions, and applications.

12.1 Introduction

Concurrent programs are difficult to analyze. Informally, this is because any proof
of correctness must keep track of multiple concurrently active threads of control.
This informal view can be crisply formalized as the question of whether a specified
global state of a program with N concurrently active components is reachable. This
question is PSPACE-hard in N . One proof goes by a reduction from the IN-PLACE-
ACCEPTANCE problem [77], by letting each component simulate a single tape cell;
hardness holds even if the state space of every component is a constant independent
of N . In practice, the difficulty manifests itself as an exponential growth (in N ) of
the number of program states, often referred to as “state explosion”. Exponential
growth makes it difficult to analyze programs with standard model-checking tech-
niques, such as those which are based on computing the reachable state space.
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This chapter explores an alternative reasoning principle called “compositional
reasoning”. (Other common names are “local”, “modular”, “assume-guarantee”,
“assumption-commitment” and “rely-guarantee”.) The essence of this principle is
to replace a single analysis over the global state space with a number of local-
ized analyses. A local analysis examines a single component, abstracting the rest
of the program as an assumption for this component. A compositional proof rule
is set up to ensure mutual consistency among the per-component assumptions. The
challenge in applying such a rule is the construction of proper assumptions: they
should be strong enough to prove a desired property, while being amenable to sim-
ple analysis. This chapter describes the ideas underlying compositional reasoning,
foundational algorithms for generating assumptions, and applications. Our focus is
on the algorithms for compositional verification and assumption generation; for a
deeper discussion of the underlying proof principles, the book [83] is an excellent
reference.

PSPACE-hardness of the verification question implies that compositional rea-
soning cannot avoid state explosion for all programs (supposing P �= PSPACE). On
the other hand, many programs can be viewed as “loosely coupled” collections of
components, where the behavior of a component is influenced only to a limited de-
gree by the behavior of the others. For such programs, one may expect localized
reasoning to perform significantly better than a global analysis.

For sequential programs, compositional reasoning is built into Hoare’s proof
rules for while programs [53] and the denotational semantics of Scott and Stra-
chey [84]. Both were developed in the late 1960s. For concurrent programs, the
seminal work on compositional reasoning principles is that of Owicki and Gries
and Lamport, from the mid-1970s [60, 76]. This work inspired the creation of fully
compositional methods by Misra and Chandy [69] and by Jones [57]. In these meth-
ods, each process is associated with an assumption on its input and a guarantee on
its output. The proof rules ensure mutual consistency of the assumptions and guar-
antees. The methods are known as “assume-guarantee methods” for this reason. We
use “A-G reasoning” as an abbreviation.

We consider two models of concurrency. In both, the execution of components is
asynchronous or loosely synchronized. In one model, components communicate via
shared memory; in the other, communication is through synchronized (buffer-less)
message exchange. The focus of the chapter is on algorithms which automatically
construct assumptions with which to instantiate the compositional rules. We de-
scribe only briefly the issues that arise in the design of correct compositional rules,
but give references for further reading. References are also given to compositional
rules for other models of concurrency, in particular for the important model of fully
synchronized (hardware) processes.

There is a variety of assume-guarantee rules in the literature, but they can be un-
derstood using only two core principles. These can be explained informally in terms
of the notation {a}M{g}, which indicates that component M guarantees a property
g under assumption a. (A rough interpretation is as the implication [(a ∧M)⇒ g];
the following sections have precise definitions.)

The simplest principle is that of transitivity. For example, suppose that com-
ponent M satisfies {a}M{g} while component N satisfies {true}N{a}. Reasoning
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based on the transitivity of implication establishes that the composition N//M sat-
isfies {true}N//M{g}. This form of reasoning applies when assumptions and guar-
antees are related in an acyclic manner.

The second principle is that of mutual induction. This applies if assumptions and
guarantees are related in an (apparently) circular manner. Suppose that M satis-
fies {a}M{g} while N satisfies {g}N{a}. Here, the assumptions and guarantees are
circular: the guarantee of one process forms the assumption of the other. Hence,
one can no longer use transitivity to show that N//M guarantees g. Soundness ar-
guments for circular rules typically rely on mutual induction over an appropriate
well-founded domain, such as the length of finite computations. Therefore, special
care must be taken with properties which are naturally defined over infinite com-
putations, such as properties which incorporate liveness and fairness. In particular,
circular rules that are sound for safety properties may not be sound for liveness
properties.

A-G reasoning is a particular form of process abstraction. It is special in that it
makes use of the internal structure of a process, in particular the connectivity be-
tween its components. Abstraction can be seen as operating on two levels. First,
the influence of one process on another is defined solely in terms of the interface
between the processes, so that much of the internal structure of a process can be
ignored. Second, the behavior of a process is directly influenced only by its imme-
diate neighbors; this abstracts away processes which are further off within a process
network.

This chapter describes two types of rules for assume-guarantee reasoning. The
first kind operate at the level of proof outlines (assertions on state, ranking functions
for termination) as seen in the work of Owicki–Gries, Lamport, and Jones, referred
to earlier. These rules are considered in Sect. 12.2. A second type of rule is based
on the semantics of a process as a language of program traces, as seen in the work
of Misra–Chandy and Pnueli [80]. Such rules are considered in Sect. 12.3.

The goal of an automated method for compositional analysis is to find the ‘right’
assumptions and guarantees for each component, in order to prove a global property
for the composite program. Experience has shown (cf. [61]) that designing such
abstractions by hand can be quite difficult: an abstraction must be strong enough
to prove global correctness properties, while also being simple enough for efficient
analysis. The automated methods discussed here take an iterative approach to the
construction of assumptions, progressing from simpler assumptions to more com-
plex ones. They can be viewed as algorithms which “learn” the assumptions required
to correctly instantiate a compositional rule. Learning is an iterative process: in each
iteration, counterexamples to the currently conjectured assumptions and guarantees
are used to refine the conjecture.

The following sections define compositional rules and their associated algo-
rithms. Section 12.2 lays out a shared-variable communication model and composi-
tional rules which are based on invariants and ranking functions. Section 12.3 lays
out a model based on process communication and compositional rules which are
based on the semantics of a process as a set of execution traces. We also collect and
organize a number of references for further reading, including pointers to work on
compositional rules for other models of concurrent execution.



348 D. Giannakopoulou et al.

12.2 Reasoning with Assertions

In this section, we examine assertion-based compositional reasoning methods.
These methods derive from the seminal work in the mid-1970s by Susan Owicki
and David Gries [76] and independently by Leslie Lamport [60]. It is usual to refer
to the original method as the Owicki–Gries method.

The Owicki–Gries method is an attempt to extend to concurrent programs the
compositional reasoning rules developed by Hoare for sequential programs. From
that point of view, the method is only a partial success as it is localized but not com-
positional. Historically, however, further work led to fully compositional assume-
guarantee rules for concurrency. These rules lead to automatic methods of comput-
ing consistent assumptions and guarantees, as described in this section.

12.2.1 The (Non-compositional) Owicki–Gries Method

For simplicity, we consider a program M with two components M1,M2. The com-
ponents represent independent, asynchronous threads of execution. We denote their
combination as M =M1//M2. One may attempt to extend the compositional style
of Hoare’s method to this new operator by the following proof rule: if Hoare
triples {P1}M1{Q1} and {P2}M2{Q2} hold for the individual components, the triple
{P1 ∧ P2}M{Q1 ∧Q2} holds for the composition. This rule is unsound, though, as
shown by the example below.

var x: integer; initially x=0

M1:: l: {x >= 0} x := 1 k: {x = 1}
M2:: l: {x >= 0} x := 2 k: {x = 2}

The individual proof outlines are correct, but the conclusion of the proof rule,
which is {x ≥ 0}M{false}, is not! Operationally, the conclusion implies that the
programM does not terminate from a state where x = 0. An alternative view is that
it requires the predicate transformer for M to be “miraculous” (cf. Dijkstra [31]).

Owicki and Gries traced the failure of this rule to the “interference” (their term)
of the actions of M2 with the proof outline of M1. Operationally, the statement
x := 2 ofM2 may execute after the statement x := 1 ofM1, changing the value
of x to 2; by doing so, it causes a failure of the proof assertion {x=1} in the outline
for M1.

The less straightforward but correct formulation of the proof rule adds a side
condition, called non-interference: no statement of M2 should change an assertion
in the proof outline of M1, and vice-versa. The modified proof outline given be-
low is free of interference, and shows that the composed program satisfies the triple
{x ≥ 0}M1//M2{x ≥ 1}. Note that this outline has weaker assertions than the origi-
nal; weakening is usually required for interference-freedom.
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var x: integer; initially x=0

M1:: l: {x >= 0} x := 1 k: {x >= 1}
M2:: l: {x >= 0} x := 2 k: {x >= 1}

Formally, a statement S with pre-condition P in a proof outline for M1 does
not interfere with an assertion A in a proof outline for M2 if the Hoare triple
{P ∧ A}S{A} holds. Informally, one may say that the transition S from any state
satisfying (P ∧ A) does not falsify A. If each proof outline has N statements and
assertions, checking non-interference is a task of complexity O(N2).

As shown by the example, it can be difficult to discover a set of assertions which
provide an interference-free proof. For these reasons, hand-constructing Owicki–
Gries style proofs is not to be recommended. (Lamport even goes so far as to title
one of his papers [61] “Composition: A way to make proofs harder”!) We show that
these objections can be removed by automating the task of obtaining an interference-
free proof.

Although the Owicki–Gries method was created with the goal of compositional
reasoning, it is not compositional in the strict sense. A generally accepted defini-
tion of a compositional method is one where, assuming every component Pi satis-
fies the property ϕi , the composition P = (//i ∈ [1, n] : Pi) satisfies the property
F(ϕ1, . . . , ϕn), for a specific function F . In the Owicki–Gries method, the final
Hoare triple cannot be defined solely from the Hoare triples for each component;
it is necessary to add the non-interference side condition which examines the proof
outlines for the Hoare triples. This makes the method non-compositional.

On the other hand, if each property ϕi is a proof outline (vs. a triple), the non-
interference check can be “built in” to the function F , so one has a truly com-
positional proof rule. Indeed, this is precisely how the compositional form of the
Owicki–Gries rule is constructed. Proof outlines are somewhat unwieldy objects,
so instead one uses an equivalent representation as an invariant assertion. This re-
quires the introduction of an auxiliary variable, π , which denotes the program loca-
tion. For example, the proof outline given above for M1 is turned into the assertion
(π1 = l⇒ x ≥ 0)∧ (π1 = k⇒ x ≥ 1), which is an invariant for M1. The next sec-
tion describes more precisely how the semantic, program invariant view gives rise to
a compositional proof rule and to a fixpoint method for calculating interference-free
proofs.

12.2.2 The Assume-Guarantee View: Localized Inductive
Invariants

The explanation of the Owicki–Gries method given previously is in terms of proof
outlines, which is tied to the syntax of a particular programming language. In this
section, we examine a semantic view based on localized invariants. Besides being
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compositional, the semantic view is simpler and forms a better foundation for au-
tomated algorithms and for extensions of the method beyond safety properties. We
begin with preliminaries and necessary notation.

12.2.2.1 The Shared-Variable Program Model

A program is given by a tuple (V , I, T ), where V is a finite set of program variables;
I (V ) defines a set of initial states; and T (V,V ′) defines a successor relation, with
V ′ an isomorphic copy of V . The underlying state space of the program is given by
the set of assignments of values to variables. The strongest post-condition predicate
transformer sp(T , ξ) defines the set of states which are successors under T of the
states satisfying ξ . (It is also known as post.) Formally, the transformer is defined
by sp(T , ξ)(V )= (∃V : T (V,V ′)∧ ξ(V ))〈x : x ∈ V : x′ := x〉. The angled brackets
define a substitution operator which replaces each variable x′ with its corresponding
unprimed variable x.

Consider a program M with components {Mk} and let Mk be given by
(Vk, Ik, Tk). The program M formed by asynchronous composition is defined by
the tuple (V , I, T ), where the set of variables V is the union (∪k : Vk) of the com-
ponent variables, and the initial condition I is the conjunction (∧k : Ik) of the initial
conditions of the components. Every transition of M is a transition by some com-
ponent, which leaves the values of all variables of other components unchanged.
Formally, the joint transition relation T is defined by (∨k : Tk(Vk,V ′k) ∧ (∀j : j �=
k : unch(Vj\Vk))), where unch(W), read as “W is unchanged”, is given by the
formula (∧w :w ∈W :w′ =w).

A Note on Notation

We use a succinct notation introduced by Dijkstra and Scholten [30]. The bracketing
operator [Φ] denotes universal quantification over all free variables in Φ . Thus,
[I ⇒ ξ ] is short for (∀V : I (V )⇒ ξ(V )), which itself is another way of saying that
the set of states satisfying I is a subset of those satisfying ξ .

Invariant Assertions

An assertion or predicate is a Boolean-valued function on program states. An asser-
tion ξ(V ) defines the set of states where ξ evaluates to true. The fundamental notion
in assertion-based proofs of safety is that of an inductive invariant. An assertion ξ is
an inductive invariant if it includes all initial states, i.e., [I ⇒ ξ ], and it is inductive,
i.e., it is closed under program transitions, written [sp(T , ξ)⇒ ξ ]. A standard proof
rule for showing that an assertion ϕ is invariant is to find an inductive invariant ξ
such that [ξ ⇒ ϕ] holds.
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Fig. 1 The scope of a split
invariant, in a ring topology
(left) and a centralized star
topology (right). Circles
represent process nodes,
rectangles represent shared
memory

12.2.2.2 Split Invariants

An assertion is local to a component Mk if it is defined only over the vari-
ables Vk which belong to Mk . A separable assertion is one which is a Boolean
combination of local assertions. A conjunctive separable assertion has the form
θ1(V1) ∧ θ2(V2) ∧ · · · ∧ θn(Vn), one for each component M1, . . . ,Mn. It can be
represented as a vector θ = (θ1, θ2, . . . , θn) of local assertions, one per component.
We call such an assertion a split invariant if the conjunction is globally inductive.
Figure 1 illustrates the local scope of the components of a split invariant, for the ring
and star topologies.

Definition 1 A split invariant is a conjunctively separable assertion which is a
global inductive invariant.

For simplicity, we consider a two-component system, M = M1//M2 where
the components communicate using a set of shared variables, X, defined by X =
V1 ∩ V2. We let Li = Vi\X, so that L1, L2, and X are mutually disjoint. Let
θ = θ1(V1) ∧ θ2(V2) be a split invariant for that system. We simplify the initial-
ity and inductiveness conditions using the locality of predicates and show how the
non-interference condition emerges naturally from this exercise.

The initial condition is [I ⇒ (θ1 ∧ θ2)], which is equivalent to the pair of condi-
tions below, for i ∈ [1,2].

[I ⇒ θi]. (1)

The inductiveness condition is [sp(T , θ1 ∧ θ2)⇒ (θ1 ∧ θ2)]. By the definition of
T and the distributivity of sp over ∨, this is equivalent to the four conditions below
for i, j ∈ [1,2] and i �= j .

[
sp
(
Ti ∧ unch(Lj ), θi ∧ θj

)⇒ θi
]
, (2)

[
sp
(
Ti ∧ unch(Lj ), θi ∧ θj

)⇒ θj
]
. (3)

Condition (2) simplifies to
[
spi

(
Ti, θi ∧ (∃Lj : θj )

)⇒ θi
]
. (4)
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The notation spk(Tk, ξ) is used in place of sp(T , ξ) when the support for ξ is
limited to Vk . The formula (4) shows “near-inductiveness” of θi . It is weaker than
inductiveness due to the additional pre-condition (∃Lj : θj ).

Condition (3) simplifies to the following
[
spj

((∃L′i ,Li : Ti ∧ θi
)∧ unch(Lj ), θj

)⇒ θj
]
. (5)

Informally, this requires that actions of process Mi leave θj unchanged. This is
precisely the non-interference requirement, now expressed semantically in terms of
invariance predicates rather than proof outlines!

We use sumi (θ) (read as “summary for j”) as an abbreviation for the term
(∃Li,L′i : Ti ∧ θi) which appears in Eq. (5). This formula is a transition term over X
and X′. It may be thought of as a summary transition representing the interference
due to transitions of Mi on the state of Mj .

A proof outline for a program is a mappingQ from program points to assertions.
An outline is valid if whenever there is a transition S from program point p to pro-
gram point q , the condition [Q(p)⇒ wlp(S,Q(q))] holds. A proof outline Q in-
duces the assertion ξ(Q)= (∧p : π = p⇒Q(p)), where π is the program counter
and the quantification is over program points p. The validity condition forQ implies
that the assertion ξ(Q) is an inductive invariant of the program. Viewed through this
transformation, conditions (5) are precisely the Owicki–Gries non-interference as-
sertions, while conditions (4) are slightly weaker forms of the local Hoare triples
from the outline. The following theorem arises from this correspondence.

Theorem 1 Any Owicki–Gries proof defines a split invariant. Conversely, any split
invariant corresponds to an Owicki–Gries proof with slightly weaker inductiveness
requirements.

12.2.3 Computing the Strongest Split Invariant

Model-checking algorithms are usually based on the computation of fixpoints. The
split invariance conditions also have a pre-fixpoint form, which is apparent when
they are simplified (as described before) and considered together.

These implications in Eqs. (1), (4), and (5), gathered together, form a system of
simultaneous implications. These have the general form [Fi(θi, θj )⇒ θi], where Fi
is a monotonic function on the lattice of assertion vectors ordered by component-
wise implication.

Recall that, for simplicity, the program has only two components, so the indices
i, j are distinct and range over {1,2}. The specific function Fi is given by the dis-
junction below.

Fi = (∃Lj : I )∨ spi
(
Ti, θi ∧ (∃Lj : θj )

)∨ spi
(
sumj (θ)∧ unch(Li), θi

)
. (6)

Monotonicity of Fi follows from the monotonicity of sp and that of the Boolean
operators. The following theorems are a direct consequence of the rewriting and the
Knaster–Tarski fixpoint theorem.
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Theorem 2 Any split invariant is a solution to the simultaneous system of implica-
tions [Fi(θ)⇒ θi] for all i.

Theorem 3 There is a strongest split invariant, which is defined by the simultaneous
least fixpoint of F .

By the Knaster–Tarski theorem, the vector function F = (F1,F2) has a least
fixpoint. Moreover, this fixpoint can be calculated by the approximation sequence
⊥,F (⊥),F 2(⊥), . . ., where ⊥ denotes the vector (false, false). It can be shown
that any fixpoint of F defines local assertions: i.e., that [(∃Lj : θi) ≡ θi] holds for
all i, j : i �= j .

By Theorem 1, split invariants are more general than Owicki–Gries proofs. How-
ever, the strongest split invariant is an Owicki–Gries proof. One can show by in-
duction on the fixpoint stages that [θi ⇒ (∃Lj : θj )] holds at each stage; thus, the
“near-invariance” condition (2) turns into the standard invariance condition.

Theorem 4 The strongest split invariant corresponds to an Owicki–Gries proof; in
fact, the strongest such proof outline.

Split Invariance for N Processes

The generalization for N processes, N ≥ 1, follows the same pattern. Rather than
give the generalized implications, we describe below the fixpoint calculation algo-
rithm which is based on those rules. The algorithm computes a vector θ of N com-
ponents through a simultaneous fixpoint iteration where, in the (K + 1)th iteration,
all components are updated based on their values at the K th iteration.

1. The initial value of the N -vector, θ , is false for each component.
2. At stage K + 1, all components are updated together. The update for component
i sets the new value, θK+1(i), to the union (∨) of one of the terms below with
the previous value, θK(i).

[initial] (∃Li : I )
[step] spi (Ti, θ

K(i))

[interference] spi (sumj (θK)∧ unch(Li), θK(i)), for j �= i.
3. The computation terminates when all components have reached a fixpoint.

This is a non-deterministic algorithm. The chaotic iteration theorem from [27]
allows much freedom in evaluating a simultaneous fixpoint. Each component of
the fixpoint vector may be updated asynchronously, so long as the overall evalua-
tion schedule is fair, in that no component or update step is neglected forever. For
instance, a schedule may iterate the “step” update for component i until θi does
not change (in effect, doing local reachability in Mi ), and only then apply the in-
terference update. Several optimizations are also possible, such as a frontier-based
calculation based on changes to the θ ’s.
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12.2.4 Relationship to Rely-Guarantee

Introducing fresh variables {Ri,Gi} into (5), one obtains the implications below.

[
spi (Ri, θi)⇒ θi

]
, (7)

[(∃L′i ,Li : Ti ∧ θi
)⇒Gi

]
, (8)

[Gj ⇒Ri], for j �= i. (9)

This set of implications, together with the initial conditions given by (1) and
the local invariance given by (4), forms the “rely-guarantee” method introduced by
Jones [57]. The variables Ri and Gi clearly represent transition terms. Implication
(8) says that Gi is weaker than the summary transition for Mi ; it is therefore called
the “guarantee” of Mi . The interference of all other processes on Mi is represented
by the variable Ri . Informally, one may say that Mi “relies” upon the fact that
interference is limited to Ri . The implication (7) says that the interference leaves
θi invariant. The rely and guarantee terms must be linked up: the implication (9)
says that the rely term for Mi is weaker than the guarantees provided by all other
components.

Given a split invariant, one can define Gi = (∃L′i ,Li : Ti ∧ θi) and Ri = (∨j :
j �= i :Gj ∧ unch(Li)), which meet the rely-guarantee conditions. Conversely, the
strongest rely-guarantee proof is the least solution of the implications above, which
is a fixpoint by the Knaster–Tarski theorem, so it has this shape for Gi and Ri . This
connection is summarized below.

Theorem 5 Any split invariant induces a rely-guarantee proof. Moreover, the
strongest rely-guarantee proof is equivalent to the strongest split invariance proof.

12.2.5 Completeness Issues

The standard inductive invariant proof rule is complete. This means that if an as-
sertion ϕ is invariant, there is an inductive invariant, ψ , which is stronger than ϕ.
Hence, any invariant can be proved by defining a stronger inductive invariant. The
witness for completeness is trivial: the set of reachable states forms an inductive
invariant, and it is (by definition) stronger than any other invariant assertion.

On the other hand, for the split invariants constructed in the Owicki–Gries
method, completeness is not guaranteed. This can be shown by the following mu-
tual exclusion protocol. The labels represent states: thinking (T), hungry (H), and
eating (E). The transition from hungry to eating occurs if x is true. The transition
uses an atomic test-and-set primitive, expressed as <..>. This tests the associated
condition and sets x to false in a single action. The transition from eating to thinking
re-sets x to true.
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var x: boolean; initially x=true

M1: M2:
while (true) { while (true) {
T: skip; T: skip;
H: <if x then x:= false> H: <if x then x:= false>
E: x := true E: x := true
} }

This program satisfies the mutual exclusion property: there is no reachable state
of the program where M1 and M2 are both in location E. However, the least fix-
point computation of the strongest split invariant produces the result (θ1, θ2) =
(true, true). While the conjunction, true, is a global invariant, it does not imply
mutual exclusion.

Owicki–Gries and Lamport recognized this problem, and showed that complete-
ness could be regained by the addition of shared auxiliary variables to the program.
An auxiliary variable is a fresh shared variable that is updated with the original pro-
gram, but does not influence program behavior. As an auxiliary variable is shared, it
appears in the support of each split invariant component, and thus indirectly tightens
the constraints between the local state of different components. As an example, if w
is an auxiliary shared variable, and l1, l2 are local variables for componentsM1 and
M2 respectively, the split assertion (w ≥ l1) ∧ (l2 ≥ w) implies the joint assertion
(l2 ≥ l1), which cannot be expressed by the individual invariants.

Owicki and Gries showed that adding a single variable which records the history
of actions in an execution suffices for completeness. Lamport proposed a different
approach, which exposes portions of the local state of components through aux-
iliary variables. History information, while unbounded in the general case, need
not always be so. For instance, in the example above, adding a history variable
“last”, which records the last process to enter the critical region, suffices to compute
a strong invariant. The program with the changes due to the auxiliary variable is
shown below.

var x: boolean; initially x=true
var last: {1,2}; initially last=1

M1: M2:
while (true) { while (true) {
T: skip; T: skip;
H: <if x then H: <if x then

{x:=false;last:=1}> {x:= false;last:=2}>
E: x := true E: x := true
} }

The fixpoint computation on this program results in the solution θ(i) =
(@E(i) ≡ ¬x ∧ (last = i)), where @E(i) is a predicate true when the program
counter of component Mi is at location E. This suffices to show mutual exclusion:
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if there is a reachable state where both components are at location E, the invariant
implies that (last= 1) and (last= 2) must both be true, a contradiction.

12.2.6 Deadlock Detection with Local Invariants

A program enters a deadlock state when no transition is possible by any of its com-
ponents. Thus, absence of deadlock can be formulated as the invariance of the asser-
tion (∨j : (∃L′j : Tj )). This can be shown through a split invariant. For the mutual
exclusion example, the only state where a deadlock might occur is one in which
both components are in stateH and x is false. The stronger split invariant computed
above implies that in this state, last is neither 1 nor 2. This is a contradiction, as the
variable last must have one of these two values by its definition. Hence, the split
invariant suffices to show absence of deadlock.

12.2.7 Local Proofs for Termination, Temporal Properties,
and Fairness

We extend the split invariance calculation to show termination and other temporal
liveness properties, including those that hold only under fairness assumptions.

12.2.7.1 Background

Assertional proof methods for termination combine an inductive invariant with a
ranking argument. A ranking function, ρ, is a partial function which maps a program
state to its “rank”, an element of a well-founded set (W,≺). In the context of an
inductive invariant, θ , this function must satisfy two conditions:

1. The function ρ is defined for all states where the invariant θ holds. Formally,
[θ⇒ domain(ρ)], and

2. The value of ρ must decrease strictly across every program transition from an
invariance state. Formally, [θ ∧ (ρ = k)⇒ wlp(T ,ρ ≺ k)], for every k in W .

Termination is implied, as follows. Consider a non-terminating execution, σ .
Then σ is infinite, and every state on σ satisfies the invariant, θ . Hence, ρ is de-
fined at each state of σ . From the second condition, the values taken by ρ on σ
form an infinite strictly decreasing sequence. This contradicts the well-foundedness
of the rank domain.

Ranking functions are also a key component of proof rules for temporal liveness
properties and fairness properties. We consider a temporal property which is spec-
ified by a Büchi automaton for its negation. A Büchi automaton is specified as a
tuple, (Q,Q0,Σ, δ,G), whereQ is a finite set of states,Q0 is a set of initial states,
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a non-empty subset of Q, δ is a transition relation, a subset of Q×Σ ×Q, and G
is a set of accepting, “green”, states. A run of the automaton on an infinite sequence
σ :N→Σ is given by a function r :N→Q such that r(0) is inQ0, and for each i,
(r(i), σ (i), r(i + 1)) is in δ. The run r is accepting iff there are infinitely many i
such that r(i) is in G. An accepting run is thus marked by an infinite sequence of
green flashes.

A programM induces a transition system (S, I, T ) where S is the set of program
states, I is the initial set of states, and T is the transition relation. The synchronous
product of a program M and an automaton A, written M × A, is given by the au-
tomatonB with alphabet {ε} andQB = SM×QA,Q0

B = IM×Q0
A,GB = SM×GA,

and where ((s, q), ε, (s′, q ′)) ∈ δB iff (s, s′) ∈ TM and (q, s, q ′) ∈ δA. If A specifies
the negation of the desired temporal property ϕ, then M satisfies ϕ iff there is no
accepting run of A on a computation ofM , which holds iff there is no accepting run
of B on the infinite sequence of ε-symbols.

For a correct program, a rank function is used to show that an accepting run does
not exist. An invariant, θ , and a partial rank function, ρ, are supplied for the product
B =M ×A. The rank function is constrained to satisfy three conditions:

1. The function ρ must be defined for all states satisfying the invariant; i.e., [θ ⇒
domain(ρ)],

2. The value of ρ cannot increase across any program transition from a state satis-
fying the invariant; i.e., [θ ∧ (ρ = k)⇒ wlp(TB,ρ 3 k)], for all k in W , and

3. The value of ρ must strictly decrease across any transition from a green invariant
state; i.e., [θ ∧ (ρ = k)∧Green⇒ wlp(TB,ρ ≺ k)], for all k in W .

Establishing θ and ρ with these properties ensures correctness. Suppose, to the
contrary, that the program is incorrect. Hence, there is an infinite accepting run, σ ,
of the automaton on a program computation, which corresponds to an infinite com-
putation ofM×A along which green states occur infinitely often. Every state of the
run satisfies the invariant θ ; hence, the rank ρ is defined for that state. By the second
condition, the rank values do not increase along σ . By the third condition, the rank
values must strictly decrease for infinitely many transitions on σ , inducing an infi-
nite, strictly decreasing sequence of ranks, which contradicts the well-foundedness
of the rank domain.

12.2.7.2 Local Proof Rules for Liveness Properties

Owicki and Gries developed a localized proof rule for termination which replaces
the global rank function with per-component rank functions, each mapping to its
own well-founded domain. Non-interference is extended to ranking functions: the
rank of a (component) state cannot increase due to a transition from another com-
ponent. This localized termination rule can be made complete by the introduction
of auxiliary variables. We first describe a generalization of this rule to temporal
properties, then show one way of treating fairness assumptions.
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The localized rule for temporal properties restricts the property so that it is de-
fined by a Büchi automaton which operates only on the shared state. The non-
compositional proof rule given above for correctness is localized by replacing the
global invariant with a split invariant, and the global ranking function with a split
ranking function. For the ith component, let Bi =Mi ×A be the synchronous prod-
uct of that component with the automaton. A ranking function, ρi , is defined overBi ,
and maps to a well-founded set (Wi,≺i ). In addition to the proof rules showing that
θ is a split invariant, the rules for ranking functions are the following.

1. The function ρi must be defined for all states satisfying the invariant; i.e., [θi⇒
domain(ρi)],

2. The value of ρi cannot increase across any program transition from a state satis-
fying the invariant; i.e., [θi ∧ (ρi = k)⇒ wlp(TBi , ρi 3 k)], for all k in W ,

3. The value of ρ must strictly decrease across any transition from a green invariant
state; i.e., [θi ∧ (ρi = k)∧Greeni⇒ wlp(TBi , ρi ≺ k)], for all k in W ,

4. The value of ρi cannot increase across any interference transition; i.e., [θi∧(ρi =
k)⇒ wlp(sumj (θ)∧ unch(Li)∧ δA,ρi 3 k)], for all k in W .

Theorem 6 The localized proof rule can be instantiated if and only if it can be
instantiated with the strongest split invariant.

This result (whose non-compositional analogue is also true) is useful for auto-
matic calculation, as one can separate the calculation of the split invariant—which
is done by the fixpoint procedure described previously—from the calculation of the
split rank function.

12.2.8 Algorithms for Local Analysis of Temporal Properties

We suppose that a property is specified by a Büchi automaton, A, for its comple-
ment.

1. Compute the strongest split invariant, θ .
2. For each i, compute an abstraction, Miθ , of component Mi relative to θ as fol-

lows. The initial states are those of Mi . The transition relation includes all tran-
sitions from Ti , and all interference transitions, sumj (θ) ∧ unch(Li), generated
by every other component, j .

3. Form the synchronous compositions Ci =Miθ ×A.
4. Use one of two tests for correctness, specified by Theorems 7 and 8 below.

Theorem 7 The program satisfies the property if for some abstract component Ci ,
there is no infinite computation on which Green holds infinitely often.

Proof Sketch Consider an erroneous global computation, σ . There is a run r of
the automaton on σ in which a Green state occurs infinitely often. As θ is a split
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invariant, it holds for all states on σ . Thus, each component of θ holds for every
state of σ .

We project σ on to a componentMi to obtain a sequence δ, as follows. Consider
each transition of σ . If it is a transition of Ti , it is retained as is; if not (say it
is a transition by component Mj ) it is replaced with the corresponding summary
transition, sumj (θ)∧ unch(Li). The replacement is possible as along the sequence,
every state satisfies θj . The sequence δ is a computation of the abstract Miθ by
construction. Since the shared state is preserved in δ, so is the accepting run of A;
hence, δ induces an infinite computation of Ci where a Green state occurs infinitely
often. �

Theorem 8 The program satisfies the property if for all abstract components Ci ,
there is no infinite computation on which there are infinitely many Ti transitions
from Green states.

Proof Sketch This proof uses a refinement of the argument made in the proof sketch
for Theorem 7. As a Green state occurs infinitely often in the erroneous computa-
tion σ , there is a component Mi such that infinitely many of the transitions origi-
nating at Green states are Ti transitions. Hence, the projection of σ on Mi , which
is a computation of Miθ , satisfies the stronger property that infinitely often there
is a transition of Ti from a Green state. This fails the test in the statement of the
theorem. �

Theorem 8 provides the more accurate of the two tests. For the mutual exclu-
sion example, the property “infinitely often, x=1” can be proved using the test in
Theorem 8, but not with the test in Theorem 7.

Local proof rules for fairness and the corresponding automated method are dis-
cussed in [25]. A fairness assumption typically refers to the transitions of all pro-
cesses, an example is the unconditional fairness assumption: “every process tran-
sition is taken infinitely often”. While it is possible to construct a Büchi automa-
ton for properties under fairness, this automaton cannot be limited to the shared
states. Thus, handling fairness compositionally requires a new approach. The key
idea in [25] is to start with a weaker fairness assertion over the shared memory state
and strengthen it iteratively as needed.

12.2.9 Automating the Discovery of Auxiliary Variables

As discussed in Sect. 12.2.5, the incompleteness that is inherent to the split in-
variance formulation can be remedied by adding auxiliary shared variables. Thus,
a fully automated method also requires the development of automatic methods for
discovering auxiliary variables. In this section, we describe a basic scheme which
applies the CEGAR (CounterExample-Guided-Abstraction-Refinement) principle,
in a manner specialized to compositional reasoning.
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The overall method is iterative: at each iteration, a split invariant is computed.
If the invariant does not suffice to prove the desired property (or to demonstrate
failure), new auxiliary Boolean variables are added to the shared state, and the next
iteration is initiated. Each Boolean variable corresponds to an assertion over the
local state of some process. In effect, each variable exposes a part of the internal
state of a component at the shared level. The result is that the split invariant which is
computed at the next iteration is stronger than the current split invariant. In the limit,
all of the local state is exposed as shared state, and the compositional calculation is
then identical to a reachability analysis over the global program states. The best
situation, however, is clearly that where exposing only a small subset of the local
state suffices to compute a strong split invariant.

A heuristic algorithm for discovery of local assertions is given in [23]. If the
strongest split invariant, θ , does not imply a global invariant ϕ, the heuristic looks
for a distinguishing pair of states, say (s, t), such that both states satisfy θ and agree
on the shared state (including all previously added auxiliary variables); however,
s satisfies ϕ but t does not. If the pair differs in the local state for component i,
a new auxiliary Boolean variable corresponding to the local predicate (Li = s(i)) is
added. Unlike non-compositional applications of CEGAR, the new predicate refers
to the state of a single component. It is possible that no distinguishing pair can
be found; in this case, the predecessors of the states in (θ ∧ ¬ϕ) are also marked
as error states. A key property of this heuristic is that it is complete: eventually,
either enough auxiliary predicates are added to obtain a valid proof, or a real error is
discovered. A drawback is that the set of error states is not represented as a separable
assertion.

For the mutual exclusion example from Sect. 12.2.5, this heuristic adds an auxil-
iary predicate for each component which indicates whether the component is in its
critical state, C. Taken together, the auxiliary predicates are equivalent to the aux-
iliary variable last: at most one of them can be true, and that one indicates the last
component to enter its critical section. Experiments in [24] show that the composi-
tional calculation with the refinement step (implemented symbolically using BDDs)
can be significantly faster, by an order of magnitude or more, than the global reach-
ability computation. This gap can be larger for explicit state implementations, as the
use of BDDs ameliorates state explosion to an extent.

For liveness properties, the problem of discovering auxiliary predicates is some-
what simpler as the correctness property is restricted to the shared state. The refine-
ment method is based on the abstract components which are defined in Sect. 12.2.8.
A violation gives rise to a counterexample trace in some abstract component. This
trace can be enlarged to a global counterexample if all of the summary transitions
along it are MUST-transitions. A summary transition from a state (X = a,Li = b) in
Mi

θ that originates from processMj is a MUST-transition if it is enabled at all states
of the form (X = a,Lj = c) which belong to θj . If it is not a MUST-transition, the
set of local states {c} where the MUST-condition fails forms an auxiliary predicate
for Mj . It is shown in [24] that this strategy is complete: eventually, either enough
auxiliary predicates are added to obtain a valid proof, or a real error is discovered.
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12.2.10 Local Symmetry

It is often the case that concurrent programs exhibit non-trivial symmetries. Using
symmetries on the global state space, one can reduce the number of states that must
be analyzed for model checking [20, 32, 56]. For many programs, however, the
global state space has little symmetry, and the reduction is correspondingly less
effective. For example, protocols on ring or torus networks of N nodes typically
have a symmetry group of size O(N), giving a linear reduction of a potentially
exponential state space. Distributed protocols may operate on irregular networks
which have little to no symmetry. Compositional reasoning opens up the possibility,
in such cases, of exploiting local symmetries, which are more prevalent. In a ring or
torus network, for instance, any two nodes have isomorphic neighborhoods and are
thus locally similar.

In a process network, a structural local symmetry is a triple of the form (m,β,n),
where m and n are nodes, and β is an isomorphism between the network neigh-
borhoods of m and n. The set of all local symmetries of a network forms a
groupoid [43]. This is a set with group-like properties: for instance, if (m,β,n)
is a local symmetry, the tuple (n,β−1,m) is its inverse, and symmetries (m,β,n)
and (n, γ, k) may be composed to form the symmetry (m,γβ, k). Golubitsky and
Stewart, in [43], define a recursive notion of local symmetry, called balance. This
has a form akin to the co-inductive definition of bisimulation: roughly, for balanced
nodes m and n, and any neighbor j of m, there is a neighbor k of n such that j
and k are balanced. The significance of this formulation is shown by the following
theorem, from [74]. For a symmetry (m,β,n), let β(X) be the function which maps
a set X of neighborhood states of node m to corresponding neighborhood states for
node n, via the isomorphism β .

Theorem 9 Let θ∗ be the strongest split invariant on a network. If (m,β,n) is part
of a balance relation on the network, then [θ∗(n)≡ β(θ∗(m))].

This theorem shows that balanced nodes have isomorphic components in the
strongest split invariant. Hence, it suffices to compute the split invariant for a single
representative of each balance equivalence class. For uniform networks such as rings
and tori, which have limited global symmetry, there is a single balance class, as any
two nodes are balanced. Of course, networks such as star and complete networks,
which have considerable global symmetry, also have a single balance class. Thus,
in these networks, the cost of calculating a split invariant is reduced to computing
a single component in place of all N . For the ring and torus networks, which have
bounded degree, this cost is independent of the size of the network. For irregular
networks, per-neighborhood abstraction can induce local symmetries where none
originally exist, as is explored in [75].
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12.2.11 Further Reading

The computation of a split invariant was originally formulated in explicit-state terms
in [38]. Fixpoint computations for constructing separable predicates in the syn-
chronous (hardware) model are described in [19, 70]. The chaotic iteration theorem
makes it possible to parallelize the computation of a split invariant [26]. Alternative
strategies for computing auxiliary variables using constraint solvers are developed
in [47]. Connections between compositional proofs and sequentializing transforma-
tions of concurrent programs are explored in [39]. Local proof techniques focusing
on data flow are developed in [34, 35]. There are close connections between lo-
cal symmetry, compositional reasoning, and parametric proofs. A number of tech-
niques [3, 72, 75, 81] transform compositional invariants of small instances of a
parametric system to quantified invariants which hold for all instances.

12.3 Automata-Based Assume-Guarantee Reasoning

In this section we introduce assume-guarantee style reasoning for systems made up
of components modeled as finite-state machines (FSMs). Properties and assump-
tions are also represented as finite-state machines. We provide the necessary back-
ground: we define finite-state machines and their parallel composition and present
how safety properties are checked.

We then introduce assume-guarantee reasoning and the notion of the weak-
est assumption. We first present a simple assume-guarantee rule and consequently
describe a framework for automating it. Subsequently, we discuss other assume-
guarantee rules (asymmetric, symmetric, and circular) in the context of checking
safety and liveness properties. Finally, we discuss the more general problem of inter-
face generation, and close the chapter with a discussion of related work and further
reading suggestions.

12.3.1 Formalisms

12.3.1.1 Finite-State Machines

Let Act be the universal set of observable actions and let τ denote a local action
unobservable to a component’s environment.

An FSM M is a five-tuple 〈Q,αM,δ, q0,F 〉 where:

• Q is a finite non-empty set of states,
• αM ⊆Act is a set of observable actions called the alphabet of M ,
• δ ⊆Q× (αM ∪ {τ })×Q is a transition relation,
• q0 ∈Q is the initial state,
• F ⊆Q is a set of accepting states.
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A transition (s, a, s′) ∈ δ is written as s
a−→ s′. A trace t of an FSMM is a finite

sequence of observable actions that label the transitions thatM can perform starting
at its initial state (ignoring the τ -transitions). For an FSMM and a trace t , let δ̂(q, t)
denote the set of states that M can reach after reading t starting at state q . A trace t
is said to be accepted by an FSM M = 〈Q,αM,δ, q0,F 〉 if δ̂(q0, t) ∩ F �= ∅. The
language accepted by M , denoted L(M), is the set {t | δ̂(q0, t)∩ F �= ∅}.

We sometimes denote by t both a trace and its trace FSM. For a trace t of length
n, its trace FSM consists of n+ 1 states, all accepting, where there is a transition
between states m and m+ 1 on the mth action in the trace t .

For Σ ⊆ Act , we use t ↑Σ to denote the trace obtained by removing from t

all occurrences of actions a /∈ Σ . Similarly, M ↑Σ is defined to be an FSM over
alphabet Σ which is obtained from M by renaming to τ all the transitions labeled
with actions that are not inΣ . Let t , t ′ be two traces. LetΣ ,Σ ′ be the sets of actions
occurring in t , t ′, respectively. By the symmetric difference of t and t ′ we mean the
symmetric difference of the sets Σ and Σ ′.

An FSM M is non-deterministic if it contains τ -transitions or if there exists
(q, a, q ′), (q, a, q ′′) ∈ δ such that q ′ �= q ′′. Otherwise, M is deterministic.

12.3.1.2 Parallel Composition of FSMs

Let M1 = 〈Q1, αM1, δ
1, q1

0 ,F
1〉 and M2 = 〈Q2, αM2, δ

2, q2
0 ,F

2〉 be two FSMs.
The parallel composition operator ‖ is a commutative and associative operator that
combines the behavior of two components by synchronizing the actions common
to their alphabets and interleaving the remaining actions. Formally, M1 ‖M2 is an
FSM M = 〈Q,αM,δ, q0,F 〉, where Q =Q1 ×Q2, q0 = (q1

0 , q
2
0 ), αM = αM1 ∪

αM2, and δ is defined as follows, where s1, s′1 ∈Q1 and s2, s′2 ∈Q2 (note that the
symmetric rules are implied by the fact that the operator is commutative):

s1
a−→ s′1, a /∈ αM2

(s1, s2)
a−→ (s′1, s2)

s2
a−→ s′2, a /∈ αM1

(s1, s2)
a−→ (s1, s

′
2)

s1
a−→ s′1, s2

a−→ s′2, a �= τ
(s1, s2)

a−→ (s′1, s′2)
The language of M1 ‖M2 is L(M1 ‖M2)= {t | t ↑ αM1 ∈ L(M1) ∧ t ↑ αM2 ∈

L(M2)∧ t ∈ (αM1 ∪ αM2)
∗}.

12.3.1.3 Properties

We will first introduce assume-guarantee reasoning in the context of checking safety
properties. Later in this section we will also talk about liveness properties. For the
context of our presentation, a safety property is modeled as an FSM P , whose lan-
guage L(P ) defines the set of acceptable behaviors over αP . For FSMs M and P
where αP ⊆ αM , M |� P if and only if

∀t ∈ L(M) : t ↑ αP ∈ L(P )
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12.3.1.4 Complementation

The complement of an FSM M , denoted coM , is an FSM that accepts the com-
plement of M’s language. It is constructed by first making M deterministic, subse-
quently completing it with respect to αM , and finally turning all accepting states into
non-accepting ones, and vice-versa. An automaton is complete with respect to some
alphabet if every state has an outgoing transition for each action in the alphabet.
Completion typically introduces a non-accepting state and appropriate transitions to
that state.

12.3.2 Assume-Guarantee Reasoning

12.3.2.1 Assume-Guarantee Triples

In the assume-guarantee paradigm a formula is a triple 〈A〉M 〈P 〉, where M is a
component, P is a property, and A is an assumption about M’s environment. The
formula is true if wheneverM is part of a system satisfying A, then the system also
guarantees P , i.e., ∀E, E ‖M |�A implies E ‖M |� P . Assume-guarantee triples
can be checked through reachability of error states in A ‖M ‖ coP [78]. A state
(sA, sM, scoP ) is an error state if scoP is accepting in coP .

12.3.2.2 Weakest Assumption

LetM be a finite-state component withΣ being the set of its interaction points with
the environment, and let P be a safety property. Then there is a natural notion of
the weakest assumption Aw , such that 〈Aw〉M 〈P 〉 holds, where αAw = Σ . Aw
characterizes all the possible environments E under which the property holds, i.e.,

∀E :M ‖E |� P iff E |�Aw.
It has been shown that, for any finite-state componentM , the weakest assumption

Aw exists, and can be constructed algorithmically [41]. The weakest assumption is
associated with a notion of precision defined in the literature for “temporal” compo-
nent interfaces [48], i.e., interfaces that capture ordering relationships between invo-
cations of component methods. For example, an interface may describe the fact that
closing a file before opening it is undesirable because an exception will be thrown.
An ideal interface should precisely represent the component in all its intended us-
ages. It should be safe, meaning that it should exclude all problematic interactions,
and permissive, in that it should include all good interactions [48].

Safety and permissiveness can similarly be defined for assumptions, where the
weakest assumption is the one that is both safe and permissive. An assumption A is
safe if 〈A〉M1 〈P 〉. Safety is concerned with restricting behaviors to only those that
satisfy P . Permissiveness is concerned with including behaviors, making sure that
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behaviors are restricted only if necessary. Permissiveness is desirable because Aw
is then appropriate for deciding whether an environment E is suitable for M1 (if E
does not satisfy Aw , then E ‖M1 does not satisfy P ).

12.3.2.3 Basic Assume-Guarantee Rule

The simplest assume-guarantee rule is for checking a safety property P on a system
with two components, M1 and M2.

Rule ASYM

1 : 〈A〉M1 〈P 〉
2 : 〈true〉M2 〈A〉
〈true〉M1 ‖M2 〈P 〉

In this rule, A denotes an assumption about the environment of M1. Note that
the rule is not symmetric in its use of the two components, and does not support
circularity. Despite its simplicity, experience has shown it to be quite useful in the
context of checking safety properties.

12.3.2.4 Soundness and Completeness

Soundness of an assume-guarantee rule means that whenever its premises hold, its
conclusion holds as well. Without soundness, we cannot rely on the correctness of
conclusions reached by applications of the rule, which makes the rule useless for
verification. On the other hand, completeness states that whenever the conclusion of
the rule is correct, the rule is applicable, i.e., there exist suitable assumptions such
that the premises of the rule hold. While completeness is not needed to ensure cor-
rectness of proofs obtained by the rule, it is important as a measure for the usability
of the rule. Rule ASYM is both sound and complete.

To prove soundness, we assume that the two premises hold and show that
〈true〉M1 ‖M2 〈P 〉 also holds. By definition of assume-guarantee triples, we need
to show that for any environment E: (E ‖ M1 ‖ M2) |� true implies (E ‖ M1 ‖
M2) |� P . Let E be an arbitrary environment such that (E ‖M1 ‖M2) |� true. We
instantiate the definition of assume-guarantee triples for premise 1 and premise 2
with environments (E ‖ M2), and (E ‖ M1), respectively. We thus obtain that
(1) (E ‖M1 ‖M2) |�A implies (E ‖M1 ‖M2) |� P , and (2) (E ‖M1 ‖M2) |� true
implies (E ‖M1 ‖M2) |�A. From these two we conclude that (E ‖M1 ‖M2) |� P ,
as desired. Completeness holds trivially, by substituting M2 for A. �

For the use of rule ASYM to be justified, the assumption should be (much)
smaller than M2, but still reflect M2’s behavior, i.e., A should be an abstraction
of M2, according to premise 2. Additionally, an appropriate assumption for the rule
needs to “restrict” M1 enough to satisfy P in premise 1. Coming up with such as-
sumptions manually is highly non-trivial. In the next section we describe techniques
for synthesizing assumptions automatically.
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12.3.3 Automation of Basic Assume-Guarantee Rule

In this section, we focus on techniques for automating assume-guarantee reason-
ing using Rule ASYM. In particular, the framework that we describe uses the L*
automata-learning algorithm to provide, and gradually refine, approximations of the
desired assumption.

12.3.3.1 The L* algorithm

L* is a learning algorithm that was developed by Angluin [10] and later improved
by Rivest and Schapire [82]. L* learns an unknown regular language and produces
a deterministic finite-state machine (DFM) that accepts it. Let U be an unknown
regular language over some alphabet Σ . In order to learn U , L* needs to interact
with a Minimally Adequate Teacher, from now on called a Teacher. A Teacher must
be able to correctly answer two types of questions from L*. The first type is a mem-
bership query, consisting of a string σ ∈Σ∗; the answer is true if σ ∈ U , and false
otherwise. The second type is an equivalence query, or conjecture, i.e., a candidate
DFM C whose language the algorithm believes to be identical to U . The answer
is true if L(C) = U . Otherwise, the Teacher returns a counterexample, which is a
string σ in the symmetric difference of L(C) and U .

L* creates a table where it incrementally records whether strings in Σ∗ belong
to U . It does this by making membership queries to the Teacher. At various stages
L* decides to make a conjecture. It constructs a candidate automaton C based on
the information contained in the table, and asks the Teacher whether the conjecture
is correct. If it is, the algorithm terminates. Otherwise, L* uses the counterexample
returned by the Teacher to extend the table with strings that witness differences
between L(C) and U .

Characteristics of L*. L* depends on the correctness of the Teacher in order to
provide a number of guarantees. More specifically, L* is guaranteed to terminate
with a minimal automaton for the unknown language U . Moreover, each candidate
DFM C that L* constructs is smallest, in the sense that any other DFM consistent
with the information provided to L* has at least as many states as C. This charac-
teristic of L* makes it particularly attractive in the context of learning interfaces or
assumptions, since in the frameworks that we describe, the candidates provided by
L* are combined with component models in model-checking steps. Smaller state
machines typically result in easier model-checking problems. The conjectures made
by L* strictly increase in size; each conjecture is smaller than the next one, and
all incorrect conjectures are smaller than the minimal automaton for language U.
Therefore, if that minimal automaton has n states, L* makes at most n− 1 incorrect
conjectures. The number of membership queries made by L* is O(kn2 + n logm),
where k is the size of the alphabet of U , n is the number of states in the minimal
DFM for U , and m is the length of the longest counterexample returned when a
conjecture is made.
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Fig. 2 Learning assumptions
for assume-guarantee
reasoning

12.3.3.2 Learning-Based Assumption Generation

From the definition of the weakest assumption Aw , one can observe that with
Aw , the premises of Rule ASYM become necessary, in addition to being suffi-
cient, for the conclusion of the rule to hold. In other words, (〈Aw〉M1 〈P 〉) and
(〈true〉M2 〈Aw〉) hold if and only if (〈true〉M1 ‖M2 〈P 〉). This is an advantage for
an automated assume-guarantee reasoning framework, since it enables us to also
disprove properties of a system, compositionally.

The framework illustrated in Fig. 2, and first presented in [22], provides a
learning-based automation for assume-guarantee reasoning with Rule ASYM. In
this framework, L* targets the computation of the weakest assumption Aw , for the
reasons stated above. The set of interaction points of component M1 with its envi-
ronment, constituting the alphabet of the weakest assumption in this context, hence
the alphabet over which L* is learning, is defined as: (αM1 ∪αP )∩αM2. Note that
the framework uses the knowledge of the actual environment of component M1,
namely, component M2, to make the reasoning more efficient. More specifically,
the framework implements a teacher for L*, meaning that it responds to member-
ship and equivalence queries, as described in the following.

Membership Queries. L* is first used to repeatedly query M1 to check whether,
in the context of strings s, M1 violates the property. More formally, the query cor-
responds to checking the triple 〈s〉M1 〈P 〉 as illustrated in Fig. 2 (note that s rep-
resents its trace FSM). Checking 〈s〉M1 〈P 〉 corresponds to simulating string s on
M1 ‖ P : if an error is reachable, then the triple is false, otherwise it is true. The
query returns true/false if 〈s〉M1 〈P 〉 is true/false, respectively. This is because, as
mentioned, Aw allows all behaviors that satisfy the property, and disallows only
violating behaviors.

Equivalence Queries. The conjectured automaton A is checked for correctness,
which in this context means checking whether it corresponds to the weakest assump-
tion or not. Note that, in Fig. 2, we use Ai to denote the ith assumption conjectured
by the framework, which we simply refer to as A here. As discussed earlier, the
weakest assumption is safe and permissive. We therefore reduce equivalence queries
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to two separate checks, for safety and permissiveness of A, which we name Oracle 1
and Oracle 2, respectively.

Oracle 1 checks whether A is safe, by checking triple 〈A〉M1 〈P 〉, using a model
checker. If A is safe, then the Teacher proceeds to Oracle 2. If it is unsafe, the model
checker returns a counterexample t . The resulting counterexample t , projected on
the assumption alphabet αAw , is returned to L* to refine its conjecture. The projec-
tion is necessary because L* needs counterexamples in terms of the alphabet over
which it is learning.

Oracle 2 checks whether safe assumption A is also permissive. As discussed,
permissiveness is concerned with ensuring that the assumption does not exclude
correct behaviors. However, given the fact that the main goal of the framework is to
prove or disprove a property of the system using assume-guarantee reasoning, the
framework does not need to generate a fully permissive assumption. Rather, it uses
M2 to add behaviors to over-restrictive assumptions on demand, and as needed for
completion of the verification.

Note that Oracle 1, in essence, checks that premise 1 of Rule ASYM holds. To
prove the property on the system using this rule, one would need to additionally
check premise 2: (〈true〉M2 〈A〉). We therefore use premise 2 as follows, to drive
the permissiveness check and to thereby potentially complete assume-guarantee rea-
soning (see Fig. 2).

If 〈true〉M2 〈A〉, which consists of a model-checking step, is true, then we know
that both premises of Rule ASYM hold, and therefore P holds for M1 ‖ M2. If
〈true〉M2 〈A〉 is false, the Teacher performs some analysis to determine the under-
lying reason (see Fig. 2). This analysis consists of a simulation step identical to the
one performed to respond to membership queries, as presented above. Specifically,
the Teacher performs a query to determine whether the returned counterexample
cex, projected on the alphabet of the assumption, belongs to Aw , in which case L*
needs to refine the assumption. If the query returns true, then A is not permissive,
so cex ↑ αA is returned to L* for refinement of its guess. If, on the other hand, the
answer is false, it means that cex is a word that belongs to M2, in the context of
which M1 violates the property P . As a consequence, M1 ‖M2 does not satisfy the
property P .

Notice that the answers that the framework provides to L* are always precise
with respect to the targeted weakest assumption. However, the framework uses M2
to select which missing words to include in the language of the assumption. The
reason is that we restrict our reasoning to a specific context, rather than account-
ing for all possible contexts, as required for the computation of Aw . That means,
of course, that the assumption obtained from this framework does not necessarily
correspond to Aw . On the other hand, we remind the reader that the primary goal
is to obtain conclusive results from the assume-guarantee rule. As soon as we are
able to prove or disprove the property in the system, we stop refining the learned
assumption, since we have achieved our goal. The assumption computed with this
framework will be smaller than, or in the worst case equal to Aw , in terms of num-
ber of states, as guaranteed by the characteristics of L*. In the worst case, where
Aw itself is computed, the framework is guaranteed to terminate, because Aw is
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both necessary and sufficient, and therefore the framework will prove or disprove
the property during this iteration.

12.3.3.3 Correctness Arguments

Framework correctness argument: The framework directly uses the assume-
guarantee rule Rule ASYM to answer conjectures. Correctness of the rule guar-
antees correctness of positive answers by the framework. On the other hand, each
counterexample reported is a real counterexample, as discussed above.

Teacher Correctness Argument: Correctness of the teacher corresponds to show-
ing that all the answers returned to L* are consistent with Aw . This was discussed
during the presentation of the framework above.

Termination Argument: Given the fact that our Teacher only comes back to L*
for refinement with counterexamples related to Aw , the framework eventually con-
verges to Aw , unless it terminates earlier. As discussed, Aw makes Rule ASYM

sound and complete, and therefore our framework will return a conclusive answer
at that iteration. As a result, the framework always terminates.

12.3.4 Example

Let us revisit the mutual exclusion protocol presented in Sect. 12.2.5. We model the
protocol in a behavior-based fashion. In particular, we use the FSP input language
of the LTSA tool [64] to model FSMs. FSP stands for “Finite State Process” and
is a process algebra-like language (see [21], Chap. 32 of this Handbook). Detailed
syntax and semantics are provided in [64]. In the example, “->” stands for action
prefix, “|” stands for choice, and “||” stands for parallel composition. Indexing
“[]” is used to parameterize specifications. Note that in the LTSA-generated fig-
ures, an indexed transition corresponds to multiple transitions, one for each index in
the specified range.

// State-based description
var x: boolean; initially x=true

M1: M2:
while (true) { while (true) {
T: skip; T: skip;
H: <if x then x:= false> H: <if x then x:= false>
E: x := true E: x := true
} }

// Behavior-based implementation
// FSP code for LTSA model-checking tool

const False = 0
const True = 1
range Boolean = False..True

// variable implements atomic test-and-set
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X = Var[True],
Var[True] = (m[1..2].atomicTestSetX[False] -> Var[False]),
Var[False] = (m[1..2].setX[True] -> Var[True]).

// module implementation
M(Steps=1) = Hungry,
Hungry = (atomicTestSetX[False] -> Eating),
Eating = (start_eating -> CS[0]),
CS[i:0..Steps] = ( when (i< Steps) step[i] -> CS[i+1]

| when (i==Steps) done_eating -> setX[True] -> M).

|| M1 = (m[1]:M(4)). // creating module M1
|| M2 = (m[2]:M(5)). // creating module M2

// mutual exclusion property
property
MX = (m[i:1..2].start_eating -> m[i].done_eating -> MX).

|| Module1 = ( X || M1 || MX ).

set Alphabet0 = {m[2].{setX[True], atomicTestSetX[False],
start_eating, done_eating}}

|| Module2 = (M2).

We model the two concurrent modules M1 and M2 by creating two instances of
the FSM M named m[1] and m[2], respectively. The FSM M is parameterized by
the number of steps that each module performs in its “eating” stage. For example,
M1 has four processing steps, and M2 has five. This models the fact that a module
may include several states within its critical section. Figure 4 illustrates M1 for a
single processing step. All figures in this section have been created automatically by
the LTSA tool.

Variable X allows the two modules to atomically set it to False when its current
value is True, and allows them to set its current value to True unconditionally. The
FSM corresponding to this variable implementation is illustrated in Fig. 3. The mu-
tual exclusion property requires that M1 and M2 not be eating at the same time:
each module must finish eating before the other module starts eating. This is illus-
trated in Fig. 5. In all the FSMs presented in this section state “0” is initial and all
the states are accepting.

For compositional verification, we group M1 with variable X and the property
MX into Module1, and M2 into Module2. The alphabet of the interface between
the two modules is defined as Alphabet0. The assumption generated by the learning
framework is depicted in Fig. 6.

The generated assumption has four states. The module that it represents,
Module2, has five states for one processing step, and nine for four processing steps.
Note that, no matter how many processing steps we include in the two modules,

Fig. 3 Shared variable
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Fig. 4 Module M1 FSM for one processing step

Fig. 5 Mutual exclusion property

Fig. 6 Generated assumption

the assumption that is generated will always be exactly the same. The gains from
compositional verification therefore become more pronounced for components that
include many processing steps in their critical section. This confirms the fact that
the algorithms presented are able to detect the main synchronization principle on
which the correctness of this protocol is based, irrespective of the internal details
of each module. More generally, generated assumptions may be much smaller than
the system components, as they essentially abstract away the internal component
computations and only represent (succinctly) the component interactions.
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12.3.5 Additional Assume-Guarantee Rules and Their Automation

We note that rule ASYM can be extended to reason about more than two com-
ponents. To see this, consider checking whether system M1 ‖M2 ‖ · · · ‖Mn sat-
isfies P . One can decompose the system into: M1 and M ′

2 =M2 ‖M3 ‖ · · · ‖Mn
and apply the rule to reason about the two components M1 and M ′

2. Now notice
that when checking the second premise of the rule, i.e., when checking whether
triple 〈true〉M ′

2 〈A〉 holds, assumption A plays the role of a safety property for
system M ′

2. Therefore, we can recursively apply rule ASYM when reasoning about
M ′

2 = M2 ‖ · · ·Mn, by decomposing M ′
2 into M2 and M ′

3 = M3 ‖ · · ·Mn and so
on. To summarize, we have the following rule for reasoning about n ≥ 2 compo-
nents [78]:

Rule ASYMN

1 : 〈A1〉M1 〈P 〉
2 : 〈A2〉M2 〈A1〉
3 : 〈A3〉M3 〈A2〉

· · ·
n− 1 : 〈An−1〉Mn−1 〈An−2〉
n : 〈true〉Mn 〈An−1〉

〈true〉M1 ‖M2 ‖ · · ·Mn 〈P 〉
Reasoning based on this rule can be similarly automated using learning tech-

niques for the assumption inference, as explained below. To check whether sys-
tem M1 ‖M2 ‖ · · ·Mn satisfies property P , consider the decomposition: M1 and
M ′

2 =M2 ‖M3 ‖ · · ·Mn. The learning framework for two components described
above can be applied recursively to check the second premise of the assume-
guarantee rule, involving M ′

2, where the assumption A1 for M1 plays the role of
property when checking M ′

2. More generally, at each recursive invocation for Mj
and M ′

j+1 = Mj+1 ‖ Mj+2 ‖ · · ·Mn we use learning to infer an assumption Aj
such that both 〈Aj 〉Mj 〈Aj−1〉 and 〈true〉Mj+1 ‖Mj+2 ‖ · · ·Mn 〈Aj 〉 hold, and
the second triple is checked through another invocation of the learning framework.

Although sound and complete, the two rules presented so far are not always sat-
isfactory since they are not symmetric in the use of the components. Some form of
circular or symmetric rules is desirable, that makes use of all the components in a
similar way.

The obvious “circular” rule for the parallel composition of two components dis-
charges the two assumption of each component by the guarantee of the other com-
ponent:
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Fig. 7 Example that
illustrates unsoundness of
rule CIRC-0

Rule CIRC-0

1 : 〈A1〉M1 〈P 〉
2 : 〈A2〉M2 〈P 〉
3 : P |�A1 ∧A2

M1 ‖M2 |� P
However, this rule is not sound as demonstrated by the example in Fig. 7. Con-

sider components M1 and M2 and property P ; both M1 and M2 have the same
behavior asM (see figure). Now consider two assumptions A1 and A2 that have the
behavior defined by P . Then premise 3 holds. Premises 1 and 2 also hold, since A1
restricts M1 to be exactly P , similarly for premise 2. Therefore, according to rule
CIRC-0, M1 ‖M2 satisfies P . On the other hand M1 ‖M2 is M again which vio-
lates P , since it allows b to occur before a. The circular reasoning involved in this
rule is unsound. The rule fails essentially because the two components may have
common behavior that violates the property, but this behavior is ruled out by the
assumptions and it is never checked in the premises.

Circularity in itself is not a reason for unsoundness: other models of computation
have sound circular rules [6, 59]. The soundness argument there relies on induction
over finite traces and properties of the models. This is discussed later in the section.

In our setting, there are simple ways to remedy unsoundness. One way is to avoid
circularity. Rule SYM below is an example of a rule that is symmetric in its use
of components but does not use circular reasoning. Using this rule for automated
compositional verification may result in smaller verification problems (than using
rule ASYM) [78].

Rule SYM

1 : 〈A1〉M1 〈P 〉
2 : 〈A2〉M2 〈P 〉
3 : L(coA1 ‖ coA2)⊆ L(P )
M1 ‖M2 |� P

We require αP ⊆ αM1 ∪ αM2 ∪ · · · ∪ αMn and that for i ∈ {1,2, . . . n}
αAi ⊆ (αM1 ∩ αM2 ∩ · · · ∩ αMn)∪ αP.

Informally, each Ai is a postulated environment assumption for the component Mi
to achieve the safety property P . Recall that coAi is the complement of Ai . Premise
3 of the rule ensures that all the possible common behaviors of M1 and M2 that
are ruled out by both assumptions A1 and A2 satisfy property P (see the cause of
unsoundness in the example above).
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Rule SYM extends naturally to n > 2 components:

Rule SYMN

1 : 〈A1〉M1 〈P 〉
2 : 〈A2〉M2 〈P 〉

· · ·
n : 〈An〉Mn 〈P 〉
n+ 1 : L(coA1 ‖ coA2 ‖ · · · coAn)⊆ L(P )

M1 ‖M2 ‖ · · ·Mn |� P
Although sound and complete, the symmetric rules described above have two

disadvantages: (i) they use the complement of the assumptions, which may be ex-
pensive to compute for non-deterministic assumptions, and (ii) the last discharge
step uses the composition of all coA’s, which may be expensive when n is large.

Alternative sound compositional proofs use circular reasoning principles in
which properties of other components are assumed when proving properties of in-
dividual components. One such rule is the following:

Rule CIRC

1 : 〈A1〉M1 〈P 〉
2 : 〈A2〉M2 〈A1〉
3 : 〈true〉M1 〈A2〉
M1 ‖M2 |� P

This rule is a special case of Rule ASYMN (for n= 3), where the first and last
components coincide. The rule is sound and complete and it naturally extends to
reasoning about systems containing more than two components. Both the symmetric
and the circular rules discussed so far can be similarly automated using learning
techniques for assumption generation. The interested reader should look in [78] for
details.

Other models of composition have sound circular rules. These models have
somewhat different notions of composition and conformance than the ones defined
here. For instance, the following rule is sound for a special kind of FSMs called
Moore machines [59] and in the more general setting of “Reactive Modules” [6].
The soundness proof is based on induction over the length of finite traces. It relies
also on a crucial property of the models that allows every finite trace to be extended
(cf. [6]).

Rule CIRC-IND

1 :M1||P2 |� P1
2 :M2||P1 |� P2

M1||M2 |� P1||P2
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The inductive argument applies only to safety properties. To achieve soundness
in general, the second hypothesis is strengthened to M2||safe(P1) |� P2, where
safe(P1) is the strongest safety property that includes the language of P1 [6, 9].
The same rule is used in, e.g., [49, 50, 52] and it forms the basis of a system-
atic proof decomposition methodology [51]. Other circular rules have been pro-
posed in e.g. [1, 67, 69, 80] and their soundness and completeness has been studied
in [65, 73]. However, they have not been studied for automation.

12.4 Related Approaches

12.4.1 Learning for Compositional Verification

We have shown how to guide our learning for compositional verification towards an
assumption that is both safe and permissive. Other researchers focused on the more
computationally expensive problem of learning a minimal assumption [17, 46] for
compositional verification, in other words, computing an assumptionAmin such that
any other assumption A that can check satisfaction or violation of P will have a
greater or equal number of states, i.e., |A| ≥ |Amin|.

So far, in our presentation, we have assumed that the alphabet of the assumptions
learned for compositional verification is fixed as (αM1 ∪ αP ) ∩ αM2. However,
it is sometimes possible to verify a problem with a smaller alphabet, resulting in
potentially smaller assumptions and cheaper verification [15, 78].

Learning assumptions has also been applied in the context of symbolic and im-
plicit model checking [16, 71], has been adapted for infinite traces in the context of
assume-guarantee reasoning for liveness properties [33], and has been studied in the
context of timed [63] and probabilistic systems [36, 58].

12.4.2 Assumption Generation by Abstraction-Refinement

The learning algorithm presented in Sect. 12.3.3.2 for assumption discovery ba-
sically starts from a small automaton and uses the off-the-shelf L* algorithm to
split states based on queries that it makes and the counterexamples it receives. This
is reminiscent of the well-known abstraction-refinement scheme (CEGAR), where
some abstract description of a model is analyzed and iteratively refined based on
spurious counterexamples that result from the abstraction being too coarse. Typi-
cally abstraction is designed to preserve correctness in some way (e.g., it may be
an over-approximation of the original model). However, candidates produced by
L* in the context of rule ASYM do not have clear semantic guarantees (i.e., being
under- or over-approximations, not even when compared to each other). The focus
of L* is to generate assumptions with the smallest number of states for the data it



376 D. Giannakopoulou et al.

gathers. An alternative approach [13] generates assumptions for the rule ASYM us-
ing assume-guarantee abstraction-refinement (AGAR), a variant of the well known
CEGAR approach adapted to compositional reasoning (see [29], Chap. 13 of this
Handbook). In this case,M2 is abstracted in a conservative way, such that premise 2
holds by construction. However it is possible that premise 1 does not hold, and the
counterexample returned is analyzed to see whether it corresponds to a real error or
is spurious, due to the imprecision introduced by the abstraction. If the counterex-
ample is spurious, the abstraction of M2 is refined to eliminate it.

12.4.3 Components and Interfaces

At the heart of any modular development or reasoning technique is the capability to
summarize aspects of a component that are relevant to its customers. These aspects
are captured in component interfaces, which are closely related to the notion of
assumptions.

As mentioned in Sect. 12.3.2, temporal interfaces capture ordering relationships
between invocations of component methods. In such a context, component inter-
faces have the same flavor as assumptions that relate to safety properties, as studied
in the previous section. The fundamental difference between an interface and an
assumption in the context of compositional reasoning is that an interface summa-
rizes the component irrespective of the environment in which the component is to
be introduced. On the other hand, an assumption serves as a potentially imprecise
interface that is sufficient for breaking up a targeted verification problem into sim-
pler problems; all components that participate in the verification problem are known
and available.

A precise interface is similar to the notion of a weakest component assumption.
It is therefore characterized in terms of two properties, safety, and permissiveness.
Note that error states in this context are not introduced by explicit properties, but
are rather assumed to represent undesirable component states.

Interfaces can be learned through a very similar framework to that of Fig. 2.
Queries and conjectures related to safety are answered in an identical way, except
that in the case of interfaces we assume that error states exist in the components,
whereas in the previous framework they come from the property P .

Permissiveness, however, needs to be different, because the environment of the
targeted component is not available.

The example in Fig. 8 shows how a permissiveness check could be performed.
Component M has states M0, M1, M2, and Merror and states A0, A1, and Aerror
belong to an interface A. A permissiveness check needs to detect sequences that are
blocked by the interface but are legal in the component. Such sequences identify that
the interface is not permissive. This can be performed by checking reachability, in
M ‖A, of legal states ofM andMerror . According to this check, trace a, b leading to
state [M1,Aerror ] in the composition could be an indication that A is not permissive
enough. However this is not true, since the same path leads to [Merror ,Aerror ]. This
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Fig. 8 Checking for
permissiveness

happens because the alphabet of the assumption is {a, b}, meaning that action c in
M is considered as a τ from the point of view of A. In the figure, this is illustrated
as a τ action covering action c.

This example illustrates the fact that non-determinism in component M may
cause spurious counterexamples in the permissiveness reachability check described
above. As a consequence, precise characterization of permissiveness requires deter-
minization of component M , which can be performed using a subset construction.
The permissiveness check is therefore NP-hard [5], and can be inefficient in prac-
tice.

Several approaches have been proposed to deal with this problem. Unless de-
terminization is a viable solution for a targeted component [12, 41], heuristic ap-
proaches are often used to determine whether a counterexample is spurious [5, 40].
Also, if non-determinism is introduced through abstraction of a deterministic con-
crete component, this problem can sometimes be avoided, using a combination of
over- and under-approximating abstractions [85]. More recently, automata learning
has been combined with symbolic execution or machine-learning approaches for the
generation of interfaces enriched with method guards that represent constraints on
method parameters for safe execution [42, 54, 87].

12.4.4 Other Modular Reasoning Frameworks

Assume-guarantee-style reasoning was introduced to help build and verify complex
systems, where some form of component assumptions (either implicit or explicit)
is needed. The assumptions are used to model the components’ interaction with the
environment (e.g., the other components) [57, 60].

Assume-guarantee reasoning has been studied extensively [6, 50, 52, 67] and
large case studies are presented, for example, in [49, 66]. Some automated tech-
niques to support the reasoning are presented in [7, 8, 37, 45]. However, these tech-
niques still require some manual effort for the creation of the necessary assump-
tions. For example, the technique from [45] describes a framework for the assume-
guarantee-style verification of properties written in the universal fragment of the
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CTL temporal logic (ACTL) (see [79], Chap. 2 of this Handbook). A tableau method
for ATCL, presented there, plays the role of an assumption. Also related is the work
of Inverardi and colleagues, see [55] for example, which is also aimed at provid-
ing support for the modular verification of properties of interest, such as deadlock
freedom. The Alternating Time Temporal Logic ATL (and transition systems) [7]
was proposed for the specification and verification of open systems together with
automated support via symbolic model-checking procedures. The Mocha toolkit [8]
provides support for modular verification of components with requirement specifi-
cations based on the ATL.

The soundness of circular rules is justified essentially based on induction, al-
though the form of the induction is different in each model of computation. A sim-
plification and unification of such proofs is carried out in [2, 9].

Interface automata [4] provide an elegant formalism for the specification and
verification of composite systems. Interface automata capture in the same model
both input assumptions about the order in which the operations of a component are
called and output guarantees about the order in which the component invokes opera-
tions on external components. The formalism supports automatic compatibility and
refinement checks between interface models. These notions have game-theoretic
foundations supported by efficient checking algorithms.

The underlying approach to automated assumption generation that we have pre-
sented here has similarities with “sub-module construction”, “equation solving”,
“scheduler synthesis” and “supervisory control”, as seen, for example, in [11, 62,
68] and in many works that followed. However, the goals of these methods are
different than in compositional verification. There are many other approaches to
compositional verification that are not based on assume-guarantee reasoning. An
example related to the techniques presented here is compositional reachability anal-
ysis [18, 44], which is based on iterative composition and minimization with respect
to properties of interest.

12.5 Conclusion

In this chapter we have discussed compositional reasoning techniques that address
the fundamental challenge in model checking, namely the state explosion problem.
We have focused on assume-guarantee style reasoning with particular emphasis on
automated techniques for assumption generation, which we believe is essential for
transitioning the techniques to practice. The subject of this chapter continues to be
a very active area of research, see e.g. [14].
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Chapter 13
Abstraction and Abstraction Refinement

Dennis Dams and Orna Grumberg

Abstract Abstraction, in the context of model checking, is aimed at reducing the
state space of the system by omitting details that are irrelevant to the property be-
ing verified. Many successful approaches to the “state explosion problem,” some
of them described in other chapters, can be seen as abstractions. In this chapter,
several notions of abstraction are considered in a uniform setting. Different such
notions lead to a variety of preservation results that establish which kind of tempo-
ral properties may be verified via an abstracted system. We first define the needed
background on simulation and bisimulation relations and their logic preservation.
We then present the abstraction that is currently most widely used in practice: ex-
istential abstraction, which preserves universal fragments of branching-time log-
ics. We give examples of such abstractions: localization reduction for hardware and
predicate abstraction for software. We then proceed to stronger abstractions which
preserve full branching-time logics. We introduce Kripke Modal Transition Systems
and modal simulation, and show logic preservation. We close the chapter with a re-
view of the presented results in the light of the notion of completeness.

13.1 Introduction

On Wikipedia [101], abstraction is defined as follows:

Abstraction is a process by which higher concepts are derived from the usage and classi-
fication of literal (“real” or “concrete”) concepts, first principles and/or other abstractions.
An “abstraction” (noun) is a concept that acts as super-categorical noun for all subordinate
concepts, and connects any related concepts as a group, field, or category.
Abstractions may be formed by reducing the information content of a concept or an ob-
servable phenomenon, typically to retain only information which is relevant for a particular
purpose. For example, abstracting a leather soccer ball to the more general idea of a ball
retains only the information on general ball attributes and behavior, eliminating the charac-
teristics of that particular ball.
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In the first paragraph, apart from the technical terms which are not relevant to this
chapter, it is clarified that the word abstraction is used to denote both the process of
abstracting as well as the possible result of that process. In this chapter, we also use
the term abstract object to denote the latter meaning.

According to the second paragraph, the process of abstraction starts from a “con-
cept or an observable phenomenon,” which we will call a concrete object. The pro-
cess yields an object in which only certain information is retained; the other infor-
mation that is present in the concrete object is sometimes said to have been ab-
stracted away. For example, the integer number −3 can be abstracted to its sign,
which can, for example, be denoted −, or neg, or {. . . ,−4,−3,−2,−1}. Its abso-
lute value is thus abstracted away; its sign is the resulting abstract object. Some-
times, concrete and abstract objects look the same, in the sense that from their rep-
resentation alone one cannot tell whether an object is concrete or abstract. As an
example, consider rectangles in a graphical drawing application that have a fill pat-
tern. Suppose that these rectangles are abstracted by removing their fill pattern, and
that the resulting rectangles are shown with a white interior. When seeing such a
white rectangle, one cannot tell whether it is a concrete rectangle whose fill pat-
tern is “uniform white,” or an abstract rectangle. To avoid such confusion, when
representations of concrete and abstract objects look the same, we will nevertheless
consider the domains of concrete and of abstract objects to be of different types.

In this chapter, we consider the abstraction of Kripke structures, focusing on
finding suitable concepts to use as abstractions, and also on the process of abstrac-
tion. We reduce the information content of Kripke structures with the particular
purpose of making it easier to model check temporal logic properties on them. In
the statement of a model-checking problem, the Kripke structure is usually not given
directly, but, for example, as a software system represented in some programming
language; the intended Kripke structure is then obtained as a particular semantic
interpretation of that system description. Constructing and representing that Kripke
structure in a way that allows efficient checking of temporal logic properties forms
one of the main challenges of the field of model checking. It is often impossible to
store a “naive” representation of such a Kripke structure (e.g., by explicitly listing
the states and transitions) on a computer, because of its size. This is called the state
explosion problem. Solutions to this problem based on symbolic representations of
the Kripke structure are presented elsewhere in this handbook [10, 21] (Chaps. 8
and 10). In this chapter we take a different approach, that of abstraction.

Abstraction tackles this challenge based on the assumption that a reduction of
the information content results in a reduction of the size of the representation of
a Kripke structure. Given a temporal property (or a set of them) to be checked,
information that is not relevant to the valuation of any of those properties can be
omitted from the Kripke structure. The resulting abstraction need not be a Kripke
structure itself, but it should come with a notion of evaluating a temporal property
on it. This chapter presents several possible choices for such abstractions, explaining
for each of them how they relate to the concrete Kripke structures that they abstract,
and how to evaluate temporal properties on them.

Besides the issue of what kind of object the abstraction of a Kripke structure
should be, there is the question of how to construct that object. Given a notion of
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abstraction, e.g., defined via a function α mapping a Kripke structure to its abstrac-
tion, in practice, the latter usually cannot be constructed by first constructing the
concrete Kripke structure from the system description and then applying α to it.
This would defy the purpose of avoiding the creation of the (potentially too big
or even infinite) concrete Kripke structure. Instead, abstractions are built by apply-
ing “non-standard” semantic interpretations to system descriptions. The CEGAR
approach (CounterExample-Guided Abstraction Refinement) discussed later in this
chapter, and elsewhere in this Handbook [65] (Chap. 15), can be seen as a collection
of algorithms for this kind of construction. The topic of constructing abstractions is
also one of the focuses of the theory of Abstract Interpretation [8, 37–40, 76], which
is not treated in this chapter.

13.2 Preliminaries

13.2.1 Abstraction Frameworks

To formalize some of the terms introduced above, we use the notion of an abstrac-
tion framework.

Definition 1 An abstraction framework is a tuple (C,L, [[·]],A,ρ, [[·]]α), where
the components are as follows. The set C contains the concrete objects: the things
whose properties we are interested in, e.g., Kripke structures. Properties are ex-
pressed as formulas in a logic L and the interpretation of ϕ ∈ L w.r.t. concrete ob-
jects is denoted [[ϕ]], which is the set of concrete objects for which ϕ is true. A is
the set of abstract objects (or abstractions), which reduce the information content of
concrete objects, e.g. in order to render them amenable to automated techniques for
property checking. The abstraction relation ρ ⊆ C×A specifies how each concrete
object can be abstracted. That is, for a given c ∈ C, all those a ∈A such that ρ(c, a)
are abstractions of c. The interpretation [[ϕ]]α is the set of abstract objects for which
ϕ holds.1

It is helpful to keep in mind the view that any abstract object a represents a set of
concrete objects, namely those for which a is an abstraction: {c ∈ C | ρ(c, a)}. This
set is called the concretization of a, denoted γ (a).

The truth values true and false are denoted tt and ff respectively. For a set S of
objects (e.g., S = [[ϕ]] or S = [[ϕ]]α), we often treat S as a predicate symbol that
denotes the predicate whose characteristic set is S. Thus, for a single (concrete or
abstract) object x we then say that S(x) holds (writing S(x)= tt or even just S(x))
to mean that x ∈ S. Furthermore, in the notation [[ϕ]]α we drop the superscript α

1One could choose different logics on the concrete and abstract sides, but this would unnecessarily
complicate the discussion here.
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when the type of the elements is clear. For example, if a is an abstract object, we
write [[ϕ]](a) instead of [[ϕ]]α(a).

A principal requirement for any abstraction framework is that it is sound.

Definition 2 An abstraction framework (C,L, [[·]],A,ρ, [[·]]α) is sound if when-
ever ρ(c, a) and [[ϕ]]α(a)= tt, then [[ϕ]](c)= tt.

Soundness ensures that we can establish properties of a concrete object by in-
specting an abstraction of it. Soundness as stated here is also called soundness for
true, since the premise requires [[ϕ]]α(a) to be true. A stronger soundness require-
ment, considered later on in this chapter, extends to “soundness for both true and
false.”

13.2.2 Kripke Structures

To represent the semantics of programs, we use Kripke structures as defined else-
where in this Handbook [88] (Chap. 3), albeit with slightly different notational con-
ventions. Kripke structures will play the role of concrete objects (the set C from
above) throughout this chapter.

Definition 3 A Kripke structure M = (AP, S, I,R, [[·]]) consists of:

• a set AP of propositional symbols (or atomic propositions),
• a set S of states,
• a set I ⊆ S of initial states,
• a transition relation R ⊆ S × S, and
• a propositional interpretation [[·]] : AP→ S→{ff, tt}.
[[·]] turns the symbols in AP into predicates over states in S. So, [[p]](s)= tt (ff) says
that p is true (false) in state s. When [[·]] is clear from the context, we sometimes
write p(s) instead of [[p]](s).

An alternative definition [31] includes a labeling function L : S→ 2AP as part of
the Kripke structure, instead of [[·]]. In that case, for each state s ∈ S, L(s) is the set
of all atomic propositions which are true in s; all propositions in AP \L(s) are then
false in s.

We fix a set AP of propositional symbols throughout this chapter, with typical
elements p, q . A literal is a proposition from AP or its negation (denoted ¬p, for
p ∈ AP).

Example 1 Consider a simple program which implements a mutual exclusion al-
gorithm for two processes, P1 and P2, running in parallel. The processes share
a Boolean variable Flag, indicating whether getting into the critical section is
permitted. Each process has a local variable vi (i being 1 or 2) ranging over
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Fig. 1 Process Pi

Fig. 2 Kripke structure M
for the mutual exclusion
program

{Neutral,Trying,Critical}, indicating whether process Pi is outside (neutral state),
trying to get into, or inside its critical section. The program is depicted in Fig. 1. It
is a “do forever” loop with three conditional choices, where conditions appear to the
left of the arrows and pieces of code to be executed appear on the right.

The Kripke structureM representing the global behavior of the program is given
in Fig. 2. Its set of states is the set of all combinations of valuations of v1, v2, and
Flag. That is, S = {Neutral,Trying,Critical} × {Neutral,Trying,Critical} × {tt, ff}.
For simplicity, only states which are reachable from the initial state are shown in the
figure. Its initial state, indicated by an incoming arrow, is s1 = (Neutral,Neutral, tt).
The transitions are shown by arrows between states. Note that the transitions assume
a semantics in which each of the program’s choices is executed in an atomic manner.
The set of atomic propositions is AP = {N1, T1,C1,N2, T2,C2,F0}. The atomic
propositions are interpreted as follows. For every s ∈ S,

[[Ni]](s) iff s(vi)=Neutral,

[[Ti]](s) iff s(vi)= Trying,

[[Ci]](s) iff s(vi)= Critical,

[[F0]](s) iff s(Flag)= tt.

In Fig. 2, each state s is labeled with the set of atomic propositions from AP that are
true in s. Atomic propositions from AP which do not label s are false in s.

The CTL formula2 ∀G¬(C1 ∧C2) specifies the property of mutual exclusion: It
says that in none of the reachable states are both processes in their critical section. It
is easy to see that this property holds in M . The formula ∀G(Ti→∀FCi) specifies
non-starvation: If a process is trying to get into its critical section, it eventually will
get in. This property does not hold. For example, process 1 “starves” along the path
s1, (s2, s5, s8)

ω. �

2See elsewhere in this Handbook [84] (Chap. 2) and also below.
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It is sometimes useful to restrict the discussion to finite state Kripke structures,
where S is finite, or to structures in which R is total, that is, for every s ∈ S there is
s′ ∈ S such that (s, s′) ∈R.

A path inM from a state s is a non-empty sequence of states, π = s0, s1, . . ., such
that s = s0 and for every i ≥ 0, if si is not the last state in π then (si , si+1) ∈ R.
When si is the last element of π , we define length(π) = i. If π is infinite, then
length(π)=∞ where∞ is greater than any natural number i. We write π[i] for si .
A path π is maximal if it is infinite or if its last state has no successor in R.

It is straightforward to represent a fairness-free Fair Discrete System (FDS, de-
fined elsewhere in this Handbook [84] (Chap. 2)) D = 〈V ,Θ,ρ〉 by a Kripke struc-
ture (AP, S, I,R, [[·]]). Let V = {v1, . . . , vn} where each variable vi is defined over
domain Di . Then for the set S of states of the Kripke structure, take D1× · · ·×Dn,
the set of all possible valuations for V . For R, take {(s, s′) | (s, s′) |= ρ}; and let
I = {s | s |=Θ}. Further, the atomic propositions in AP are the state formulas asso-
ciated with the FDS, with [[·]] being the usual interpretation (see Chap. 2 for details).

The general results presented in this chapter do not depend on the internal struc-
ture of individual states as long as a valuation of the atomic propositions over states
is given. In particular, the assumption that states are valuations of variables, as is the
case in Fair Discrete Systems, is not needed. Another reason to use Kripke structures
instead of FDSs is that the fairness requirements of an FDS are relative to paths, and
they are used to restrict the valuation of temporal formulas to those paths that are
fair. This makes sense for temporal logics that refer to paths explicitly via (universal
and existential) path quantifiers, such as CTL∗ and its sublogics. In this chapter, we
use the μ-calculus, introduced briefly below and presented in more detail elsewhere
in this Handbook [14] (Chap. 26), which does not explicitly refer to paths. As a re-
sult, the valuation of μ-calculus formulas is not naturally defined over objects that
come with a notion of fair paths.3

13.2.3 The μ-Calculus

To express properties of Kripke structures, in this chapter we use the μ-calculus,
Lμ [67]. We refer the reader to Chap. 26 for a detailed account of the μ-calculus.
Here, we give a somewhat simplified definition. Note that our Kripke structures do
not have actions labeling the transitions; therefore, we can omit the action symbols
from the μ-calculus modal operators, writing them as � (“for all next states”) and ♦
(“there exists a next state”).

Definition 4 The syntax of the μ-calculus, Lμ, is defined relative to the given
set AP of propositional symbols. A formula is built up from literals (propositional

3Path fairness can be captured in the μ-calculus by encoding it as part of the formula.
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symbols and their negations), the logical connectives ∨ and ∧, the modal operators
♦ and �, and the fixpoint operators μ and ν, as defined in Chap. 26. The fixpoint
operators depend on variables (typically X, Y ).

Note that negation is only allowed on propositions. Thus the formulas of Lμ as
defined above are in negation normal form.4 In examples, we will use general nega-
tion. As the term “normal form” already suggests, a formula using general negation
can be brought into negation normal form. This is done by “pushing the negations
inward,” while exchanging operators with their dual ones. For instance, ∧ is ex-
changed with ∨; � with ♦; μ with ν; F with G; ∀ with ∃; and conversely. Also,
we use → for logical implication, defined in the usual way (ϕ1 → ϕ2 is defined
as ¬ϕ1 ∨ ϕ2). We also use the syntax of CTL∗ (see Chap. 2 [84]) in many places
throughout this chapter. Whenever a formula is written in CTL∗ syntax, it is as-
sumed to denote an equivalent formula in the μ-calculus. The latter always exists,
as explained in Chap. 26 [14], specifically in Sect. 26.4.2.

In this chapter we present various abstraction frameworks; in each of these, the
logic (the component L in Definition 1 from Sect. 13.2.1) is Lμ or a fragment of
it.

Definition 5 The universal fragments of the logics Lμ and CTL/CTL∗ are defined
as follows:

• Let ϕ be a Lμ formula in negation normal form. Then, ϕ is a universal Lμ

formula if it does not contain the modal operator ♦ (in other words, if ϕ contains
any modal operators, these must all be �). �Lμ is the set of all universal Lμ

formulas.
• Let ϕ be a CTL∗ formula in negation normal form. Then ϕ is a universal CTL∗

formula if it does not contain the existential path quantifier ∃. ACTL∗ is the set
of all universal CTL∗ formulas. The universal fragment of CTL, denoted ACTL,
is defined similarly.

Note that the universal fragments include both liveness operators (μ, F) and
safety operators (ν, G).

The following definition specifies how to evaluate ϕ ∈Lμ over a Kripke struc-
ture M = (AP, S, I,R, [[·]]), i.e., to determine whether M satisfies the property ex-
pressed by ϕ. In this case it is said that “M is a model of ϕ.” This is done by
extending the function [[·]] which specifies how to evaluate propositions from AP
over individual states of M , as follows. First, it is extended to all formulas of Lμ,
so that [[ϕ]] denotes the set of all states of M for which ϕ holds. Since the property
expressed by ϕ now possibly depends not only on s, but also on other states in M
that are reachable from s, the definition of [[ϕ]] depends on the transition relation
R of M . Second, it is extended to evaluate a formula over a Kripke structure as a

4Another term used is positive normal form.
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whole, i.e., [[ϕ]](M) is defined. As expected, this is where the initial states of M
play a role.

Definition 6 Let M = (AP, S, I,R, [[·]]) be a Kripke structure. The definition of
[[·]] : AP→ S→{tt, ff} is extended to [[·]] :Lμ→ S→{tt, ff}, as follows. Here, ψ ,
ψ1, and ψ2 are formulas from Lμ.

[[¬ψ]](s)= tt iff [[ψ]](s)= ff
[[ψ1 ∧ψ2]](s)= tt iff [[ψ1]](s)= tt and [[ψ2]](s)= tt
[[ψ1 ∨ψ2]](s)= tt iff [[ψ1]](s)= tt or [[ψ2]](s)= tt
[[�ψ]](s)= tt iff ∀t ∈ S :R(s, t) implies [[ψ]](t)= tt
[[♦ψ]](s)= tt iff ∃t ∈ S :R(s, t) and [[ψ]](t)= tt
[[μX.ψ(X)]](s)= tt iff ∀S′ ⊆ S : [[ψ(S′)]] = S′ implies s ∈ S′
[[νX.ψ(X)]](s)= tt iff ∃S′ ⊆ S : [[ψ(S′)]] = S′ and s ∈ S′

A note about the notation in the last two cases, which are somewhat informal: For
a variable X (bound by ν or μ), the notation ψ(X) is used for a subformula in
which X occurs free. In the context of this notation, [[ψ(S′)]] (where S′ is a set
of states) denotes the evaluation of ψ(X) in which X is evaluated to S′, i.e., in
which [[X]] = S′. This can be further formalized by carrying the evaluation of free
variables around as an extra argument in the definition, as done elsewhere in this
Handbook [14] (Chap. 26). Here, it would unnecessarily complicate the notation.

For ϕ ∈Lμ, [[ϕ]](M) is defined to be true if and only if [[ϕ]](s) is true for all
s ∈ I (i.e., for all initial states of M).

13.2.3.1 Some Notes on the Difference Between Lμ and CTL/CTL∗

The Lμ modalities ♦ and � in the current chapter are quite different from what
those symbols represent elsewhere in this Handbook [84] (Chap. 2). There they
are (derived) operators that express the notions “eventually” and “globally,” respec-
tively; those notions are denoted by the operators F and G in the current chapter.
The Lμ modalities ♦ and � may be viewed as branching-time generalizations of
the “next” operator© from Chap. 2, where a computation state always has a single,
unique successor state, to the case where a state may have zero, one, or multiple
successors. The LTL (Linear Temporal Logic) formula©p means “in the next state
(on the current computation) p holds.” The Lμ formula ♦p means “there exists a
successor state (in the Kripke structure) in which p holds,” and �p means “in all
successor states, p holds.”

Thus, the Lμ modalities ♦ and � carry the existential and universal character
that is expressed in CTL and CTL∗ by the quantifiers ∃ and ∀. An important differ-
ence is that the latter quantify over the computations (infinite paths of a Fair Discrete
Transition System) that originate at the current state, whereas ♦ and � only talk
about the successor states (if any) of the current state in a Kripke structure. In order
to express quantification over whole computations in Lμ, the “one-step-deep” ♦ and
� are combined with iteration as expressed by μ (bounded iteration, for eventuality,
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e.g., “p will hold within a finite number of steps”) and ν (unbounded iteration, for
invariance, e.g., “p always holds, or, in other words, it does not eventually happen
that p does not hold”). For example, consider the CTL formula ∃Gp, expressing
that from the current state, there exists a computation on which always (globally)
p holds. An equivalent formula in Lμ is νX.p ∧ ♦X. The ♦ modality expresses
existential quantification over next states, but not beyond them; in order to reach
the effect of existentially quantifying over computations, it is iterated by adding a
fixpoint operator around it. Since the number of iterations is infinite (p must con-
tinue to hold, no matter the number of steps taken), the greatest fixpoint operator ν
is used.

When restricting logics to universal or existential fragments, some care has to be
taken. The point is that a formula in ACTL∗, the universal fragment of CTL∗, may
contain a ♦ when translated into Lμ, and therefore it will not be universal in Lμ.
The reason is that the eventuality F of (A)CTL∗ has “an existential flavor” to it, when
interpreted on finite paths. This is again best illustrated by an example. The ACTL∗
formula ∀Fp says that along all computations that originate from the current state,
p must eventually hold. When we break this up into iterated requirements about
successor states, it becomes something like: “either [p holds in the current state], or
[there must exist at least one successor, and furthermore in all successor states, the
requirement holds recursively]; and we do not allow infinite postponement of p.”
More formally, we have the following equivalence:

∀Fp ≡ (
p ∨ (∃Xtrue∧ ∀X∀Fp)

)

In Lμ, the formula becomes:

μX.p ∨ (♦true∧�X)

The part “there must exist at least one successor” (which shows up in the formulas as
∃Xtrue and ♦true resp.) is needed because otherwise the formula might be fulfilled
vacuously when the current state does not satisfy p and has no successors; this is
because any formula of the form �ϕ will be true in any state that has no successors.
In the ACTL∗ formula ∀Fp, this requirement is captured implicitly by the fact that
such a formula must be interpreted over a computation, in which there is always a
(unique) successor.

If the transition relation R of the Kripke structure is total, i.e., if for every s ∈ S
there is s′ ∈ S such that (s, s′) ∈ R, then ∃Xtrue holds in every state, and therefore
in that case we have:

∀Fp ≡ (p ∨ ∀X∀Fp)≡ μX.p ∨�X

Thus, ∀F and also ∀X and ∀U have a universal character on models with total tran-
sition relations. However, on models with non-total transition relations they have a
combination of existential and universal characteristics.
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13.3 Simulation and Bisimulation Relations

In this section we define two of the most commonly used relations over Kripke
structures. We also present the logic preservation they induce. Bisimulation is an
equivalence relation which roughly says that two Kripke structures have the same
behaviors, even though their sets of states and transitions may differ. Simulation is a
preorder in which the larger structure may have more behaviors, but possibly fewer
states and transitions. Bisimulation guarantees the preservation of full branching-
time logics, while simulation guarantees the preservation of only the universal frag-
ment of such logics.

The two relations can be exploited in model checking as follows: Instead of
checking the concrete (full) model of a system we will check a related, reduced
model with fewer states and transitions. Thus, applying model checking to it is eas-
ier. By the preservation theorems presented below we will be able to conclude that
if the reduced structure is bisimilar to the concrete one than every property true
(false) in the former is also true (false) in the latter. On the other hand, if the re-
duced structure simulates the concrete one then only truth of universal properties
can be concluded.

We notice that, in the context of abstraction, bisimulation is less desirable: Insist-
ing on preservation of both truth and falsity of properties implies that less informa-
tion can be abstracted away, and thus less reduction can be achieved.

13.3.1 Simulation Relation

We start by defining the simulation preorder over Kripke structures [81]. Simulation
between two models is checked state-wise: One state is smaller than another by the
simulation relation if they agree on their common atomic propositions, and if for
every successor of the smaller state there is a corresponding successor of the greater
one. Formally, we have the following.

Definition 7 Let M1 = (AP1, S1, I1,R1, [[·]]1) and M2 = (AP2, S2, I2,R2, [[·]]2)
be Kripke structures, such that AP2 ⊆ AP1. A relation H ⊆ S1 × S2 is a simulation
relation [81] from M1 to M2 if for every s1 ∈ S1 and s2 ∈ S2 such that H(s1, s2),
both of the following conditions hold:

• For all p ∈ AP2, [[p]]1(s1) iff [[p]]2(s2) and
• ∀ t1 [[ R1(s1, t1)] ⇒ ∃ t2 [[ R2(s2, t2)∧H(t1, t2) ]]]
We write s1 ≤ s2 for H(s1, s2). We say that M1 is simulated by M2 (or M2 simu-
latesM1) (denotedM1 ≤M2) if there exists a simulation relationH fromM1 toM2
such that

∀ s1 ∈ I1
[∃ s2 ∈ I2

[
H(s1, s2)

]]
.

Example 2 Consider the Kripke structure M1 = (AP1, S1, I1,R1, [[·]]1) in Fig. 3,
where AP1 = {C1,C2,F0}, S1 = {a1, a2, a3}, and I1 = {a1}. The transition relation
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Fig. 3 Abstract Kripke
structure M1 for the mutual
exclusion program

and the state labeling are shown in the figure, where state labeling includes negation
of atomic propositions explicitly.

Also consider the Kripke structure M of Fig. 2. In order to show that M ≤M1

we first notice that AP1 ⊆ AP. A simulation relation H ⊆ S× S1 fromM toM1 can
be defined as follows:

H = {
(s1, a1), (s2, a1), (s3, a1), (s4, a2), (s5, a1), (s6, a3), (s7, a2), (s8, a3)

}
.

It is easy to check that corresponding states agree on the common atomic proposi-
tions, and that for every successor of a state inM there is a corresponding successor
of the simulating state in M1.

For example, (s2, a1) ∈ H and for the successors s4, s5 of s2 it holds that
(s4, a2) ∈H and (s5, a1) ∈H , where a2, a1 are successors of a1. �

The simulation relation induces a relationship between paths in M1 and M2, as
described in the following lemma.

Lemma 1 Let H be a simulation relation from M1 to M2 and assume that
s1 ∈ S1, s2 ∈ S2, and H(s1, s2). Then, for every maximal path π1 from s1 there
is a maximal path π2 from s2 such that length(π1)≤ length(π2). Further, for every
i ≤ length(π1), H(π1[i],π2[i]).

The following theorem states the preservation of universal formulas in the μ-
calculus and in CTL∗ and CTL.

Theorem 1 LetM1 ≤M2, s1 ≤ s2, and let ϕ be a formula with atomic propositions
in AP2. Then, the following holds:

1. [40, 76] Assume that ϕ is in �Lμ. Then [[ϕ]]2(s2) implies [[ϕ]]1(s1) and
[[ϕ]]2(M2) implies [[ϕ]]1(M1).

2. [51] Assume that R1 is total and ϕ is in ACTL∗. Then [[ϕ]]2(s2) implies [[ϕ]]1(s1)
and [[ϕ]]2(M2) implies [[ϕ]]1(M1).
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Note that the result holds for ACTL and LTL formulas as well. Also, as men-
tioned above, the universal fragments preserved by the simulation relation include
both safety and liveness properties.

Consider Example 2 again. Consider also the ACTL property ϕ = ∀G(F0 ↔
(¬C1 ∧¬C2)). Since M1 |= ϕ, by Theorem 1 we conclude that M |= ϕ as well.

The requirement in Item 2 that R1 must be total is necessary for preservation of
ACTL∗. This is because if R1 is not total then a path of M1 may correspond to just
a prefix of a path in M2. Assume M2 |= ∀Fp. Then, M1 may fail to satisfy ∀Fp
due to a “short” path that does not reach a state satisfying p. The discussion above
demonstrates itself also in the equivalences discussed in Sect. 13.2.3.1.

13.3.2 Bisimulation Relation

We next define the bisimulation equivalence [83] over Kripke structures. Bisimula-
tion between two models is also checked state-wise: One state is related to another
by the bisimulation relation if they agree on their common atomic propositions, and
in addition, for every successor of one state there is a corresponding successor of
the other state, and vice versa. Formally, we have the following.

Definition 8 LetM1 = (AP1, S1, I1,R1, [[·]]1) andM2 = (AP2, S2, I2,R2, [[·]]2) be
Kripke structures. A relationB ⊆ S1×S2 is a bisimulation relation [83] betweenM1

andM2 if for every s1 ∈ S1 and s2 ∈ S2 such that B(s1, s2), the following conditions
hold:

• For all p ∈ AP1 ∩ AP2, [[p]]1(s1) iff [[p]]2(s2),• ∀ t1 [[ R1(s1, t1)] ⇒ ∃ t2 [[ R2(s2, t2)∧B(t1, t2) ]]], and
• ∀ t2 [[ R2(s2, t2)] ⇒ ∃ t1 [[ R1(s1, t1)∧B(t1, t2) ]]]
We write s1 ≡ s2 for B(s1, s2). We say that M1 is bisimilar to M2 (denoted
M1 ≡M2) if there exists a bisimulation relation B between M1 and M2 such that

• ∀ s1 ∈ I1 [∃ s2 ∈ I2 [B(s1, s2)]] and
• ∀ s2 ∈ I2 [∃ s1 ∈ I1 [B(s1, s2)]]

Example 3 Consider the Kripke structure M5 = (AP5, S5, I5,R5, [[·]]5) in Fig. 4,
where AP5 = {F0}, S5 = {a′1, a′2, a′3, a′4, a′5}, and I5 = {a′1}. The transition relation
and the state labeling are shown in the figure, where, as before, state labeling in-
cludes negation of atomic propositions explicitly.

Also consider the Kripke structure M of Fig. 2. In order to show that M ≡M5

we first notice that AP5 ⊆ AP. A simulation relation B ⊆ S × S5 between M and
M5 can be defined as follows:

B = {(
s1, a

′
1

)
,
(
s2, a

′
2

)
,
(
s3, a

′
2

)
,
(
s4, a

′
4

)
,
(
s5, a

′
3

)
,
(
s6, a

′
4

)
,
(
s7, a

′
5

)
,
(
s8, a

′
5

)}
.
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Fig. 4 Kripke structure M5,
bisimilar to Kripke structure
M of the mutual exclusion
program

It is easy to check that corresponding states agree on the common atomic proposi-
tions, and that for every successor of one state there is a corresponding successor of
the other state, and vice versa.

For example, (s2, a′2) ∈ B and for the successors s4, s5 of s2 it holds that
(s4, a

′
4) ∈ B and (s5, a′3) ∈ B , where a′4, a′3 are successors of a′2. Moreover, for the

successors a′3 and a′4 of a′2 it holds that (s4, a′4) ∈ B and (s5, a′3) ∈ B , where s4, s5
are successors of s2.

Note that if we extend AP5 with additional atomic propositions from M , then
the smallest structure that is bisimilar to M is M itself. To see why this is true,
consider for instance AP′5 = {T1,F0}. Now s2 and s3 cannot both be related to a′2,
since they do not agree on their labeling. As a result, s7 and s8 will have to be related
to different abstract states, since they do not agree on their successors, and similarly
for s4 and s6. This demonstrates the trade-off between the set of properties that can
be checked in a reduced structure and the size (in terms of states and transitions) of
this model. �

Similarly to the simulation relation, the bisimulation relation induces a relation-
ship between paths in M1 and M2, as described in the following lemma.

Lemma 2 ([15]) Let B be a bisimulation relation betweenM1 andM2 and assume
that s1 ∈ S1, s2 ∈ S2, and B(s1, s2). Then, for every maximal path π1 from s1 there
is a maximal path π2 from s2 such that length(π1)= length(π2). Further, for every
i ≤ length(π1), B(π1[i],π2[i]).

The following theorem states the preservation of formulas in the μ-calculus and
in CTL∗ and CTL.

Theorem 2 LetM1 ≡M2, s1 ≡ s2, and let ϕ be a formula with atomic propositions
in AP1 ∩ AP2. Then the following holds:
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1. [76] Assume that ϕ is in Lμ. Then [[ϕ]]1(s1) if and only if [[ϕ]]2(s2) and
[[ϕ]]1(M1) if and only if [[ϕ]]2(M2).

2. [15] Assume that ϕ is in CTL∗. Then [[ϕ]]1(s1) if and only if [[ϕ]]2(s2) and
[[ϕ]]1(M1) if and only if [[ϕ]]2(M2).

As before, the result holds for CTL and LTL formulas as well, as sublogics of
CTL∗.

Consider Example 3 again. Consider also the CTL∗ property ϕ = ∀GF(∃XF0 ∧
∃X¬F0). The formula means that along every path, infinitely often we reach a state
which has two successors, one that satisfies F0 and the other that satisfies ¬F0. In
M2, a′2 and a′4 are such states. In M , it is states s2, s3, s4 and s6.

Since M2 |= ϕ, by Theorem 2 we conclude that M |= ϕ as well. Note that this
formula is not preserved by the simulation relation since it is not a universal formula.

Next, we describe an algorithm [15] to compute bisimulation equivalence over
a single structure. Let M = (AP, S, I,R, [[·]]) be a finite Kripke structure. We com-
pute a sequence of equivalence relations over S. We start by relating two states if
and only if they agree on all atomic propositions. We iteratively refine the relation
until a fixpoint is reached. Upon termination, two states are related if and only if
they are bisimilar.

• E0(s, s
′) if and only if L(s)= L(s′).

• En+1(s, s
′) if and only if

– En(s, s′) and
– ∀ s1 [[ R(s, s1)] ⇒ ∃ s′1 [[ R(s′, s′1)∧En(s1, s′1) ]]] and
– ∀ s′1 [[ R(s′, s′1)] ⇒ ∃ s1 [[ R(s, s1)∧En(s1, s′1) ]]]

It is easy to see that when En = En+1, En is a bisimulation relation. Fur-
ther, it is the greatest bisimulation over M . We denote by E the resulting rela-
tion. The relation E induces the following set of equivalence classes: For each
s ∈ S, [s] = {s′ ∈ S | (s, s′) ∈ E}. We can now define a quotient structure
MA = (AP, SA, IA,RA, [[·]]A), that is the smallest structure, in terms of states and
transitions, which is bisimulation equivalent to M :

• SA = { [s] | s ∈ S }
• IA = { [s0] | s0 ∈ I }
• RA = { ([s], [t]) | ∃s1, t1 ∈ S [(s1, t1) ∈R ∧ s1 ∈ [s] ∧ t1 ∈ [t] }]
• for every p ∈ AP: [[p]]A([s])= [[p]](s)

13.3.3 Additional Reading

Many notions of equivalence relations over models and their related logic preserva-
tion have been defined. For example, [43, 44, 56, 96].

An efficient algorithm for computing the quotient structure with respect to bisim-
ulation is suggested in [74]. Other symbolic algorithms for bisimulation minimiza-
tion are proposed in [12, 13]. A notion of simulation equivalence and its related
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quotient structure was introduced in [20]. An efficient algorithm for computing the
quotient structure with respect to simulation is presented in [57].

13.4 Abstraction Based on Simulation

13.4.1 Existential Abstraction

In this section we define an abstraction which is suitable for reasoning about uni-
versal properties, such as all properties expressible in �Lμ. We define an abstract
model (Kripke structure), which is derived from a given concrete model by means
of a concretization function γ . The abstract model is, by definition, guaranteed to
be greater by the simulation relation than the concrete model, thus preservation of
universal properties is guaranteed by Theorem 1.

It is important to note that while the definition assumes that a concrete model is
given, in practice such a model is usually too large to fit into memory and therefore
is not produced. Abstract models are constructed directly from some high-level de-
scription of the system [31, 34]. More details on the construction of abstract models
in practice can be found elsewhere in this Handbook [65] (Chap. 15). Construction
of abstractions is also the topic of Abstract Interpretation [8, 37–40, 76].

We define abstract Kripke structures by means of existential abstraction [34].
Let M be a Kripke structure over a set S of states. Given a set Ŝ of abstract states,
the concretization function γ : Ŝ→ 2S indicates, for each abstract state ŝ, the set
of concrete states represented by ŝ. Existential abstraction defines an abstract state
to be an initial state if it represents an initial concrete state. Similarly, there is a
transition from abstract state ŝ to abstract state ŝ′ if there is a transition from a state
represented by ŝ to a state represented by ŝ′. In order to preserve the valuation of
atomic propositions in the abstract model we will use a γ that is appropriate for
AP. That is, for every p ∈ AP and every s1, s2 and ŝ such that s1, s2 ∈ γ (̂s), we have
p(s1)⇔ p(s2). In Sect. 13.6 we will investigate abstract models for which γ is not
appropriate.

An abstract model constructed by means of an existential abstraction is an over-
approximation of the concrete model in the sense that every behavior of the concrete
model corresponds to a prefix of a behavior in the abstract model, but the abstract
model may also contain additional behaviors. Formally,

Definition 9 Let M = (AP, S, I,R, [[·]]) be a Kripke structure, let Ŝ be a set of
states and γ : Ŝ → 2S be a concretization function. The Kripke structure M̂ =
(AP, Ŝ, Î , R̂, [̂[·]]) derived from M by γ is defined as follows:

1. Î (̂s)⇔∃s (s ∈ γ (̂s)∧ I (s)).
2. R̂(ŝ1, ŝ2)⇔∃s1∃s2 (s1 ∈ γ (ŝ1)∧ s2 ∈ γ (ŝ2)∧R(s1, s2)).
3. For all p ∈ AP, [̂[p]](̂s)⇔∀s∈γ (̂s)[[p]](s).
In this context, we refer to M̂ as the abstract Kripke structure, to its states as abstract
states, etc., and to M as the concrete Kripke structure.
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Note the “iff” (⇔) conditions in each of the items. M̂ defined this way is called
the exact abstraction derived fromM by γ . If the first two “iff”s are replaced by “if”
(⇐) then more initial states and more transitions are possible in the abstract model.
It is then referred to as an approximated abstraction.

As for the third item, the “iff” condition is necessary in order to guarantee that
atomic propositions true in an abstract state ŝ are also true in all concrete states in
γ (̂s). Falsity of atomic propositions is preserved only if γ is appropriate. In that
case, p(̂s)⇔ p(s) for every p ∈ AP and s ∈ γ (̂s).

Note that the abstract model M̂ defined above is just a Kripke structure. Usual
model-checking algorithms can be applied to it. However, only if a universal prop-
erty is true in M̂ can we conclude that it is also true in the model M from which M̂
has been derived.

The following theorem and corollary state that universal properties which are
correct for M̂ are correct for M as well.

Theorem 3 ([34, 40, 76]) Let M be a Kripke structure defined over AP. Further,
let γ be appropriate for AP and M̂ be an abstract model derived fromM by γ . Then
M ≤ M̂ .

Proof Sketch We define the following relation over S and Ŝ: For every s ∈ S and
ŝ ∈ Ŝ, H(s, ŝ) if and only if s ∈ γ (̂s). It is easy to see that H is a simulation relation
from M to M̂ . Thus, we conclude that M ≤ M̂ .

By the above theorem and Theorem 1 we get the following.

Corollary 1 Let M be a Kripke structure and ϕ be a universal formula, both de-
fined over AP. Further, let γ be appropriate for AP and M̂ be an abstract model
derived from M by γ . Then [[ϕ]](M̂) implies [[ϕ]](M).

Note that, for exact abstractions, once Ŝ, γ , and AP are given, Î and R̂ are
uniquely determined. Thus, Ŝ, γ , and AP uniquely determine M̂ .

Example 4 Consider again the Kripke structure M of Fig. 2. An abstraction of M
can be defined by choosing AP1 = {C1,C2,F0}, Ŝ1 = {a1, a2, a3}, where γ1(a1)=
{s1, s2, s3, s5}, γ1(a2)= {s4, s7}, and γ1(a3)= {s6, s8}. The resulting abstract Kripke
structure M1 is shown in Fig. 3. In Example 2 we gave a simulation relation from
M toM1. By Theorem 3 we now know that such a simulation relation exists, by the
way M1 is constructed.

By Item 2 of Theorem 1, since the transition relation of M is total and since
M1 |= ∀G¬(C1 ∧C2) we conclude that M |= ∀G¬(C1 ∧C2) as well. �

Example 5 The abstraction above is suitable for proving the mutual exclusion prop-
erty forM . In order to prove another property, for instance a property of process P1

alone, we may need to use a different abstraction. Let AP2 = {N1, T1,C1}, Ŝ2 =
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Fig. 5 The abstract Kripke
structure M2

{b1, b2, b3}, and let γ2(b1)= {s1, s3, s6}, γ2(b2)= {s2, s5, s8}, and γ2(b3)= {s4, s7}.
The resulting abstract Kripke structure M2 is given in Fig. 5.

Consider the property ∀G(N1 →∀(¬C1WT1)), where W is the temporal operator
expressing “weak until.” It specifies that every path starting in the neutral state and
reaching the critical state must pass through the trying state. SinceM2 |= ∀G(N1 →
∀(¬C1WT1)), we conclude that the property holds for M as well.

On the other hand, we cannot prove non-starvation of P1 using the abstraction
M2. That is, we cannot prove M2 |= ∀G(T1 →∀FC1). In this case, model checking
will return an abstract counterexample of the form b+1 (b2)

ω . Our next goal is then
to determine whether there is a corresponding counterexample in M or whether the
abstract counterexample is spurious. In the latter case, we will apply refinement
in order to eliminate the spurious counterexample from the abstract model. The
refinement will result in an (abstract) model which is “closer” in some sense to M .
We discuss this topic in more detail in Sect. 13.5.

An alternative approach to checking whether non-starvation holds for P1 would
be to check the negation of the property, i.e., ∃F(T1 ∧∃G¬C1), onM2. We will find
out that indeed M2 |= ∃F(T1 ∧ ∃G¬C1). However, the existential abstraction pro-
vides no soundness guarantee for formulas that are not universal. Thus, we cannot
conclude potential starvation of P1 in the original modelM . In Sect. 13.6 we remedy
this problem by suggesting abstractions which are sound for the full μ-calculus.

13.4.1.1 Specific Abstractions: Examples

Several types of abstractions based on existential abstraction are defined and used.
The most commonly used are localization reduction [70], which is mostly used
for hardware verification (e.g., [6]), and predicate abstraction [47], which is more
suitable for software verification. The abstractions differ in their choice of abstract
states and the concretization function.

For a hardware design, localization reduction distinguishes between visible and
invisible Boolean variables, where only the visible variables are considered to be
relevant for the checked property. The abstract states are chosen to be all valuations
of the visible variables. γ maps each abstract state to the set of concrete states that
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agree with it on the valuation of the visible variables (while they may differ in their
valuation of the invisible variables). Usually, the visible variables are also chosen as
the set AP of atomic propositions.

Predicate abstraction chooses a set of predicates over the program variables. Ab-
stract states correspond to possible valuations of these predicates. An abstract state
represents all those concrete states which agree with it on the valuation of the pred-
icates. The predicates are also used as the atomic propositions in AP.

As mentioned before, onceM , Ŝ, γ , and AP are chosen, the exact abstract model
forM , defined by means of existential abstraction, is uniquely determined. Approx-
imated abstract models for M can be defined as well by allowing more initial states
and transitions.

Other types of abstractions can also be found in the literature, e.g., [34]. A more
detailed description of the abstractions mentioned above, including methods for
computing abstract models, and tools that implement them can be found in [48]
and elsewhere in this Handbook [65] (Chap. 15).

13.4.2 Additional Reading

Extensions, improvements, and applications of predicate abstraction in the context
of software verification are widely investigated [3, 5, 7, 29, 33, 36]. Predicate ab-
straction is also applied in hardware verification [63, 68], and in the verification of
sequential [77, 78] and concurrent [102] Linux device drivers.

An important question is how to compute the needed predicates. This can
be done, for instance, using theorem provers [86, 87], symbolic decision proce-
dures [71], interpolation [64], and interpolation sequences [58].

Some work aims to minimize the increase in size of abstract models due to refine-
ment. Lazy abstraction, for instance, adds new predicates to the model only when
needed and where needed [59, 60, 69, 78, 99, 100].

13.5 CounterExample-Guided Abstraction Refinement
(CEGAR)

Regardless of the type of abstraction we use, the abstract model M̂ generally con-
tains less information than the concrete model M . Thus, model checking the struc-
ture M̂ potentially produces incorrect results. Corollary 1 guarantees that if a univer-
sal property is true in M̂ then it is also true in M . On the other hand, the following
example shows that if the abstract model invalidates an �Lμ specification, the ac-
tual model may still satisfy the specification.

Example 6 The traffic light controller M , presented on the left-hand side of Fig. 6,
contains three states, red, green, and yellow. We define {ISred} to be the set of
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Fig. 6 Abstraction of a
traffic light

Fig. 7 Spurious
counterexample. The abstract
state c is a failure state

atomic propositions, where

ISred(red)= true and ISred(green)= ISred(yellow)= false.

We would like to prove forM the property “along every path, infinitely often (ISred)
holds.” This can be written in CTL as ψ = ∀G∀F(ISred). We choose the set of
abstract states to be {red′,go′}, where γ (red′)= {red} and γ (go′)= {green, yellow}.
Clearly,

ISred
(
red′

)= true and ISred
(
go′

)= false.

It is easy to see that M |= ψ while M̂ �|= ψ . There exists an infinite abstract path
red′,go′,go′, . . . that invalidates the property. However no corresponding concrete
trace exists in M . �

When an abstract counterexample does not correspond to any concrete coun-
terexample, we call it spurious. For example, red′,go′,go′, . . . in the above example
is a spurious counterexample.

Let us consider the situation outlined in Fig. 7. There, a, b, c, and d are ab-
stract states, where γ (a)= {1,2,3}, γ (b)= {4,5,6}, γ (c)= {7,8,9}, and γ (d)=
{10,11,12}. The arrows between concrete states describe concrete transitions where
the arrows between abstract states describe abstract transitions, defined according to
Definition 9. States 1,2,3 are initial states of the concrete model and a is the initial
state of the abstract model.

We see that the abstract path a, b, c, d does not have a corresponding concrete
path. Every concrete path that starts at the initial state and that reaches a state in
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γ (c) ends up in state 9, from which we cannot go further. Therefore, 9 is called a
dead-end state. On the other hand, state 7 is a bad state, since it made us believe
that there is an outgoing transition. Finally, state 8 is an irrelevant state since it is
neither dead-end nor bad. To eliminate the spurious path, the abstraction should be
refined in a way that separates dead-end states from bad states. These notions are
made precise in the next section.

13.5.1 The CEGAR Framework

In this section we present the framework of CounterExample-Guided Abstraction-
Refinement (CEGAR) [30, 35, 70], for universal temporal logics and existential ab-
straction. The framework is suitable, in principle, for logics such as �Lμ, ACTL∗,
ACTL, and LTL. In practice, however, most model-checking tools handle CTL or
LTL. They usually produce a counterexample in the form of a finite path leading to
a state violating the property. Alternatively, they produce a counterexample in the
form of a lasso (a finite path leading to a simple cycle), showing a behavior along
which a desired state is never reached. Most CEGAR implementations refer to these
forms of counterexamples.

The main steps of the CEGAR framework are presented below:

1. Given a system P (whose concrete model is M) and a universal temporal for-
mula ϕ, generate an initial abstract model M̂ .

This step is typically done by examining a high-level description of P . For
software, for instance, we may examine the program text and choose conditions
used in control statements such as if and while as predicates. Additional predi-
cates come from the atomic formulas in ϕ. Proceed to step 2.

2. Model check M̂ with respect to ϕ. If M̂ satisfies ϕ, then conclude that the con-
crete model M satisfies the formula and stop. If a counterexample T̂ is found,
check whether it is also a counterexample in the concrete model. If it is, con-
clude that the concrete model does not satisfy the formula and stop. Otherwise,
the counterexample is spurious. Proceed to step 3.

3. Refine the abstract model, so that T̂ will not be included in the new, refined
abstract model. Go back to step 2.

Refinement is typically done by partitioning an abstract state. By this we
mean that the set of concrete states represented by the abstract state, is parti-
tioned. The refinement can be accelerated at the cost of faster growth of the
abstract model if the criterion obtained for partitioning one abstract state (e.g.,
a new predicate) is used to partition all abstract states. By accelerating we mean
that fewer refinement iterations will be needed before CEGAR terminates with
either a verification of the checked property or with a concrete counterexample.

13.5.1.1 Identifying Spurious Path Counterexamples

Assume the counterexample T̂ is a path (not necessarily maximal) ŝ1, . . . , ŝn starting
at the initial abstract state ŝ1. We extend the concretization function γ to sequences
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of abstract states in the following way: γ (T̂ ) is the set of concrete paths defined as
follows:

γ (T̂ )=
{

〈s1, . . . , sn〉
∣
∣
∣

n∧

i=1

si ∈ γ (ŝi)∧ I (s1)∧
n−1∧

i=1

R(si, si+1)

}

.

Next, we describe an algorithm to compute a sequence of sets of states that corre-
spond to γ (T̂ ). Let S1 = γ (ŝ1) ∩ I . For 1 < i ≤ n, we define Si in the following
manner: Si := Image(Si−1,R)∩γ (ŝi), where Image(Si−1,R) is the set of succes-
sors, inM , of states in Si−1. The sequence of sets Si can be computed, for instance,
using BDDs and the standard image computation algorithm.

The following lemma explains how to use the sets of states computed by the
above algorithm in order to determine whether T̂ is spurious.

Lemma 3 ([30]) The following are equivalent:

1. The path T̂ corresponds to a concrete counterexample.
2. The set γ (T̂ ) of concrete paths is non-empty.
3. For all 1≤ i ≤ n, Si �= ∅.

Suppose that condition (3) of Lemma 3 is violated, and let i be the largest index
such that Si �= ∅. Then ŝi is called the failure state of the spurious counterexample T̂ .
Since Si+1 = ∅, Si is the set of dead-end states which are reachable in m from an
initial state but cannot go any further. preImage(Si+1,R) includes all predecessors
of states in Si+1. These are the bad states. In order to eliminate T̂ , refinement should
split γ (Ŝi) by separating dead-end states from bad states. It follows from Lemma 3
that if γ (T̂ ) is empty (i.e., if the counterexample T̂ is spurious), then there exists a
minimal i (1≤ i ≤ n) such that Si = ∅.

Example 7 Consider a program with only one variable over domain D = {1, . . . ,
12}. Assume that the concretization function is shown in Fig. 7 by the dotted
lines from Ŝ = {a, b, c, d}. Suppose that we obtain an abstract counterexample
T̂ = a, b, c, d . It is easy to see that T̂ is spurious. Using the terminology of
Lemma 3, we have S1 = {1,2,3}, S2 = {4,5,6}, S3 = {9}, and S4 = ∅. Since S4

is empty, c is the failure state. �

It should be noted that checking whether a counterexample is spurious and then
finding a splitting criterion involves computations on the concrete model. These
computations, however, are usually easier than applying model checking to the con-
crete structure. This is because they refer to the part of it which is relevant to a partic-
ular counterexample. BDD-based (e.g., [4, 30]) and SAT-based (e.g., [23, 62, 75])
CEGAR are typically used when the concrete model M is finite and moderately
large, while SAT-based methods can usually handle larger models. If the concrete
model is infinite-state then CEGAR usually applies SAT Modulo Theory (SMT)
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or theorem proving (e.g., [5, 60]) in order to determine whether the counterexam-
ple is spurious and in order to find a suitable refinement. In some works, though,
SAT-based CEGAR is applied to infinite-state concrete models as well [33, 36].

The refinement procedure refines the abstraction mapping by partitioning ab-
stract states (that is, the sets of concrete states represented by them). Refinement
is applied iteratively until a real counterexample is found, or the property is veri-
fied. If the concrete model is finite, then the refinement procedure is guaranteed to
terminate.

13.5.2 Additional Reading

Depending on the type of γ and the size ofM , and whetherM is finite or infinite, the
initial abstract model (i.e., abstract initial states and abstract transitions) can be built
using BDDs, SAT solvers or theorem provers. Similarly, the partitioning of abstract
states, performed in the refinement, can be done using BDDs (e.g., as in [30] and
[4]), SAT solvers (e.g., as in [23, 62, 75]), linear programming and machine learning
(e.g., as in [32]) or theorem provers (e.g., as in [5]).

While the focus in many papers is on counterexamples that are finite paths, [30]
also handles counterexamples consisting of a finite path followed by a loop (lasso).
In [35] CEGAR for all of ACTL is handled, with tree-like counterexamples.

There are many extensions, improvements, and applications of CEGAR, (e.g.,
[89]). The CEGAR framework is combined, for instance, with Bounded Model
Checking (BMC) [53, 54] and with learning assumption for compositional reason-
ing [11, 22, 95].

An iterative abstraction-based verification method which does not use counterex-
amples is presented in [79]; a combination of the latter with CEGAR is presented
in [2].

In [9] a technique is proposed for adjusting the level of abstraction during the
analysis, for example, in combination analyses, to make one abstract domain more
fine-grained and another more coarse.

Several tools have been developed based on predicate abstraction and on the
abstraction-refinement framework. They are successfully used both in academic re-
search and in practice, on industrial examples. A partial list includes SLAM [5],
BLAST [7], SATABS [33], KRATOS [28], and Wolverine [69].

13.6 Abstraction Based on Modal Simulation

The simulation-based abstraction framework from the previous sections is sound for
the universal fragment �Lμ of the μ-calculus.5 As shown in Example 5, soundness

5We focus on Lμ in this section, but the results can be extended to CTL∗-like logics.
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breaks when non-universal formulas (containing the ♦ operator) are considered.
Hence, a natural question is how to restore soundness in the presence of ♦s, i.e.,
soundness for the full μ-calculus. This problem has been investigated in several pa-
pers, e.g., [40, 46, 49, 61]. One way of summarizing their conclusions is as follows:
When abstracting a Kripke structure in the presence of both � and ♦ in the prop-
erty logic, the abstraction needs to have two transition relations, i.e., two types of
transitions between states: one over which to interpret �, and another for ♦. These
different types of transition are usually called may and must, respectively. They need
to obey the following requirements:

1. For every concrete transition (i.e., transition in the concrete Kripke structure),
there needs to be a corresponding may transition in the abstract structure.

2. For every must transition in the abstraction, there needs to be a corresponding
concrete transition.

The meaning of the word “corresponding” in these requirements is formalized in
Definition 11 below. For now, suffice it to say that it is just like in the definition of
simulation. Note that from the two requirements above, it follows that when there
is a must transition between two states, then there is also a may transition between
those two states; in other words, the must transition relation is a subset of the may
transition relation. Kripke structures with may and must transitions are called Kripke
Modal Transition Systems (KMTSs) [46, 61]. KMTSs differ from Kripke structures
in another aspect. Their propositional interpretation [[·]] (or labeling function) is de-
fined with respect to the set Lit of literals, which includes the propositions from AP
and their negations. In the abstraction framework presented in this section, KMTSs
play the role of the abstract objects.

Definition 10 A Kripke Modal Transition System (KMTS) over AP is a tuple M =
(AP, S, I,Rmust,Rmay, [[·]]), where S is a set of states, I ⊆ S is the set of initial
states, Rmust ⊆ S × S and Rmay ⊆ S × S are transition relations such that Rmust ⊆
Rmay, and [[·]] turns literals in Lit into state predicates, i.e., for p ∈ AP and s ∈ S,
[[p]](s) and [[¬p]](s) are values in {tt, ff}, with the requirement that they cannot
both be tt.

Example 8 Figure 8 describes the KMTSM3, where dotted lines represent the may
transitions in Rmay and solid lines represent the must transitions in Rmust. States are
labeled with all the literals that are true in those states. For example, [[F0]](b2)= tt
and [[¬F0]](b4) = tt. However, [[F0]](b3) and [[¬F0]](b3) are both false, meaning
that the value of F0 in state b3 is unknown (or undefined).

Consider again the Kripke structureM1 of Fig. 3. In Example 4,M1 is presented
as an abstract Kripke structure, obtained by existential abstraction from the Kripke
structure M in Fig. 2. M1 can also be viewed as a KMTS abstracting M by setting
Rmay = R1 and Rmust = ∅. In addition, [[·]]1 is extended to negated propositions by
setting [[¬p]]1(s)= tt if and only if [[p]]1(s)= ff. �

The concrete objects (the set C from Definition 1 of abstraction framework in
Sect. 13.2.1) are Kripke structures throughout this chapter. However, the following
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Fig. 8 A Kripke modal
transition system (KMTS)
M3 abstracting the mutual
exclusion program

definition of the abstraction relation based on modal simulation is not from Kripke
structures to KMTSs as might be expected, but from KMTSs to KMTSs. This is a
generalization, since a concrete Kripke structure can be seen as a KMTS in which
the may and must transition relations coincide, i.e., Rmust = Rmay. The advantage
of this generalization is that it allows us to take an abstract object and abstract it
further, so that the process of abstraction can be broken up into steps. Indeed, the
entire simulation-based framework can be recast as a special case of the framework
based on modal simulation: A Kripke structure that is used as an abstraction can be
seen as a KMTS in which all transitions are of type may and whose must transition
relation is empty, as is done with Kripke structure M1 in Example 8 above.

Definition 11 ([40, 46, 72]) Let M1 = (AP, S1, I1,R
1
must,R

1
may, [[·]]1) and M2 =

(AP, S2, I2, R2
must,R

2
may, [[·]]2) be KMTSs over AP and let H ⊆ S1 × S2 be a rela-

tion. H is a modal simulation from M1 to M2 if and only if for every s1 ∈ S1 and
s2 ∈ S2, we have that H(s1, s2) implies:

1. for every l ∈ Lit, if [[l]]2(s2)= tt then [[l]]1(s1)= tt; and
2. for every s′1 ∈ S1 such that R1

may(s1, s
′
1), there is some s′2 ∈ S2 such that

R2
may(s2, s

′
2) and H(s′1, s′2); and

3. for every s′2 ∈ S2 such that R2
must(s2, s

′
2), there is some s′1 ∈ S1 such that

R1
must(s1, s

′
1) and H(s′1, s′2).

If H is a modal simulation from M1 to M2 and furthermore ∀s1 ∈ I1 ∃s2 ∈ I2:
(s1, s2) ∈H , then M1 is modal-simulated by M2, and M2 modal-simulates M1, de-
noted M1 3M2. In this case we write s1 3 s2 for H(s1, s2).

In the abstraction framework of this section, modal simulation between KMTSs
(3) plays the role of the abstraction relation (ρ) from Definition 1.

So far, we have defined the concrete and abstract objects, as well as the abstrac-
tion relation between them. Next, we define the evaluation of formulas from the full
μ-calculus over KMTSs. As usual, this is done via a definition of how to evaluate a
formula over a state of a KMTS.
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Definition 12 Let M = (AP, S, I,Rmust,Rmay, [[·]]) be a KMTS. The definition of
[[·]] is extended as follows. For any formula ψ ∈Lμ and any s ∈ S, [[ψ]](s) is as in
Definition 6, with the clauses for the modalities replaced by the following:

[[�ψ]](s) =
{

tt if ∀t ∈ S :Rmay(s, t) implies [[ψ]](t)= tt
ff otherwise

[[♦ψ]](s) =
{

tt if ∃t ∈ S :Rmust(s, t) and [[ψ]](t)= tt
ff otherwise

The following theorem states a soundness result for abstraction based on modal
simulation.

Theorem 4 Let M1 and M2 be as in Definition 11, s1 ∈ S1, s2 ∈ S2, ϕ ∈Lμ, and
assume that M1 3 M2 and s1 3 s2. Then [[ϕ]](s2) = tt implies [[ϕ]](s1) = tt and
[[ϕ]](M2)= tt implies [[ϕ]](M1)= tt.

Example 8 (Continued) We note that M of Fig. 2 is modal-simulated by M3
of Fig. 8, by observing that the relation H = {(s1, b1), (s2, b2), (s3, b2), (s4, b3),

(s5, b3), (s6, b3), (s7, b4), (s8, b4)} is a modal simulation from M to M3.
Consider the CTL formula ϕ3 = ∃G∀F(F0) which means that there exists a path

along which it is always true that all its continuations eventually reach a state in
which F0 holds. By Theorem 4, since [[ϕ3]](M3)= tt we conclude that [[ϕ3]](M)=
tt as well.

13.6.1 A Three-Valued Setting

Recall that the notion of soundness that we have used so far (Definition 2 in
Sect. 13.2.1) is called soundness for true, since negative results (i.e., finding that
[[ϕ]]α(M̂) is false when checking ϕ via some abstraction M̂ of a concrete Kripke
structure M) do not carry over from the abstract to the concrete side. In the
simulation-based framework from Sect. 13.4, when verification via an abstraction
fails, another abstraction needs to be constructed, possibly by a refinement approach
such as CEGAR, on which the verification attempt is then repeated. In the frame-
work based on modal simulation, there is another thing that may be attempted when
we find that [[ϕ]]α(M̂) is false. Namely, we may try to verify ¬ϕ via the same ab-
straction M̂ . If we find that [[¬ϕ]]α(M̂) is true, then, by soundness for true, we may
conclude that [[¬ϕ]](M) is true, which is equivalent to [[ϕ]](M) being false. Note
that this additional option is generally not possible in the simulation-based frame-
work, because in that case the soundness result is for the universal fragment of the
logic only; the negation of the formula will then not be universal, except when it
does not contain modal operators, which is, arguably, not an interesting case.

Think of the abstract object M̂ as the set γ (M̂) of concrete objects that it ab-
stracts. When verification of [[ϕ]]α(M̂) returns true, then we know that [[ϕ]](M ′) is
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true for all M ′ in γ (M̂). If, on the other hand, [[ϕ]]α(M̂) returns false, then it can
either be that [[ϕ]](M ′) is false for allM ′ in γ (M̂), or that [[ϕ]](M ′) is true for some
and false for other objects M ′ in the set γ (M̂). Thus, getting false on the abstract
side means “false or don’t know” when carried over to the concrete side. The addi-
tional check that can be performed in the modal-simulation framework then serves
as an attempt to separate false from don’t know.6

Indeed, the definition of how to evaluate ϕ ∈Lμ on a KMTS (Definition 12) can
be extended to include this additional check. More formally, it is altered so as to
evaluate ϕ and ¬ϕ together, and return the result as a truth value from {tt, ff,⊥},
with ⊥ representing don’t know.

In this 3-valued setting, some adjustments need to be made to Definition 1 of
abstraction framework. In particular, [[ϕ]] can no longer be viewed as the set of
objects for which ϕ is true; instead, it should be a function that maps objects to
3-valued truth values.

Definition 13 The 3-valued semantics [[ϕ]] of ϕ ∈Lμ w.r.t. a KMTS M is a map-
ping from S to {tt, ff,⊥} [16, 61]. The interesting cases in the definition are again
those of the modalities.

[[�ψ]](s) =
⎧
⎨

⎩

tt if ∀t ∈ S :Rmay(s, t) implies [[ψ]](t)= tt
ff if ∃t ∈ S :Rmust(s, t) and [[ψ]](t)= ff
⊥ otherwise

[[♦ψ]](s) =
⎧
⎨

⎩

tt if ∃t ∈ S :Rmust(s, t) and [[ψ]](t)= tt
ff if ∀t ∈ S :Rmay(s, t) implies [[ψ]](t)= ff
⊥ otherwise

A model-checking algorithm based on this adapted definition can be viewed as
making better use of the modal information (the “mays and musts”) that is available
in a KMTS.

In particular, Definition 11 can be applied to a (concrete) Kripke structure M
and an (abstract) KMTS M̂ , by viewing the Kripke structure as a KMTS where
Rmust = Rmay = R. For a Kripke structure, the 3-valued semantics then agrees with
the concrete semantics. Thus, preservation of Lμ formulas is guaranteed by the
following theorem.

Theorem 5 ([46]) LetM1 andM2 be as in Definition 11, s1 ∈ S1, s2 ∈ S2, ϕ ∈Lμ,
and assume that s1 3 s2. Then [[ϕ]](s2) �= ⊥⇒ [[ϕ]](s1)= [[ϕ]](s2).

This theorem can be extended to be about whole KMTSs (“[[ϕ]](M2) �=⊥⇒
. . .”). This is left as an exercise for the reader.

6Getting a don’t know in this case is no guarantee that in the concretization there are elements
which do and elements which do not satisfy the formula. It may still be the case that the formula is
true in all concretizations, or that in all concretizations it is false. This depends on the thoroughness
of the model-checking algorithm, among other things. See the additional reading in Sect. 13.6.3.
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It is interesting to note that even though both bisimulation and modal simulation
preserve full Lμ, modal simulation is more flexible and allows us to define several
abstract models for a given concrete model and AP. Each of the abstractions allows
to prove and refute a different subset of Lμ (returning ⊥ for the rest). For modal
simulation there is a trade-off between the size of the model (in terms of the num-
ber of states) and the number of Lμ formulas for which a definite answer can be
obtained. Bisimulation, on the other hand, allows no such flexibility.

13.6.2 Refinement

We may now develop an iterative abstraction-refinement framework for KMTSs and
specifications in the full μ-calculus. However, now the refinement does not involve
spurious counterexamples since falsification obtained in the abstract model is guar-
anteed to hold also in the concrete model. Instead, the refinement is aimed at elim-
inating indefinite results from which no conclusion can be drawn on the concrete
model. A CEGAR-like framework, called TVAR, is described in [49, 50, 93].

Example 9 Consider again the KMTSM3 of Fig. 8. Let R3 be its 3-valued transition
relation where a must transition is evaluated to tt, a may transition to ⊥ and no
transition is evaluated to ff. According to this convention,

R3(b1, b2)=R3(b2, b3)=R3(b3, b4)=R3(b4, b2)= tt, and R3(b3, b1)=⊥ .
R3 on any other pair of states is ff.

The property ϕ = ∀G∃F(N1 ∧N2 ∧ F0) means that the initial state is reachable
from any other reachable state in the model. Checking [[ϕ]](M3) results in the in-
definite value ⊥. A 3-valued model-checking algorithm such as [49] will return the
abstract state b3 as the state to be refined, where the transition R3(b3, b1)=⊥ is the
cause of the indefinite result.

Figure 9 demonstrates the KMTS M4, obtained by splitting b3 into states c3 and
c4, where γ (c3)= {s5} and γ (c4)= {s4, s6}. After refinement, we get [[ϕ]](M4)= tt.

13.6.3 Additional Reading

Extensions of KMTS propose hyper-must [82, 90] and hyper-may transitions [94].
The idea of abstractions based on 3-valued semantics (sometimes extended to 4-

valued) appeared for software verification in [55], and for hardware verification in
the widely used methodology of (G)STE [19]. Refinement for this framework has
been suggested in [26, 27, 52, 97]. The 3-valued semantics has been exploited to
suggest a compositional framework in [92].

Multi-valued model checking, abstraction, and refinement have been investigated
in [18, 24, 25, 80, 91].
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Fig. 9 The refined Kripke
modal transition system M4
for the mutual exclusion
program

Other relevant works include [17, 46] (introducing the notion of thorough seman-
tics) and [85, 103] (using 3-valued logic with shape analysis).

13.7 Completeness

This chapter has reviewed the use of Kripke Structures and Kripke Modal Transition
Systems as abstractions of Kripke Structures. In the first case, simulation serves as
the abstraction relation; in the second, modal simulation does. The move from us-
ing Kripke structures to using KMTSs as abstractions was motivated by the wish
to extend the soundness result to include existential formulas, containing the ∃ path
quantifier (in CTL∗-like logics) or the ♦ modality (in the μ-calculus). In Exam-
ple 8, it was suggested that KMTSs generalize Kripke structures as abstract objects:
Any Kripke structure M that is used as an abstraction can be viewed as a KMTS
in which all transitions of M are may transitions of the KMTS, and there are no
must transitions. This reinterpretation of a Kripke structure (used as an abstraction)
as a KMTS actually suffices to extend the soundness result to the full μ-calculus.
Namely, by viewing the Kripke structure as a KMTS, we know how to interpret any
formula in Lμ over it (see Definition 12). It is just that, since there are no must
transitions, any formula that contains a ♦ modality will evaluate to false on such a
Kripke-structure-viewed-as-KMTS.

This observation leads to a reconsideration of what it is that we want from an
abstraction. Do we want soundness for the full μ-calculus? We already have that
with the reinterpretation provided above, even in the simulation-based framework.
The unsatisfactory point is that this generalized soundness result for the simulation-
based framework will still not help us to verify any formula that contains a ♦. Do
we want more formulas with ♦s to evaluate to true on the abstraction? We can now
have that: Once we are in the world of KMTSs, we can add must transitions to our
abstraction to make it more informative (as long as it keeps modal-simulating the
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concrete structure, of course). And the more must transitions we add to the abstrac-
tion, the more formulas with ♦s will evaluate to true on it.

Now that we do not have to worry about “extending the soundness to more types
of formulas,” the focus shifts to the question of which of the formulas that are true in
a given concrete system can be verified via an abstraction, relative to an abstraction
framework of choice. Clearly, the modal-simulation-based framework, introducing
must transitions, extends the reach of verification-via-abstraction to certain existen-
tial formulas (as shown in the examples), whereas no existential formula could be
verified in the simulation-based framework. Can any μ-calculus formula that is true
on a given concrete structure be verified via a modal abstraction? If not, what else is
needed, beyond must transitions? These questions motivate the introduction of the
notion of completeness.

Definition 14 An abstraction framework is complete if and only if for every con-
crete object c ∈ C and every property ϕ ∈ L such that [[ϕ]](c) = v (v ∈ {tt,⊥, ff}),
there exists a finite abstract object a ∈A such that ρ(c, a) and [[ϕ]]α(a)= v.

The requirement that the abstract object be finite may be interpreted somewhat
loosely as saying that the evaluation of [[ϕ]]α(a) must be effectively computable.
In practice, efficient computability will usually be required. Note that this definition
takes into account the 3-valuedness that is inherent in working with abstractions.
Furthermore, also on the concrete side, [[ϕ]](c) may evaluate to one of {tt,⊥, ff};
this is to accommodate composition of abstractions, in which the concrete objects
are already abstractions of some form.

A review of the abstraction frameworks presented so far in the light of the notion
of completeness is beyond the scope of this chapter. We refer to the bibliographic
notes for a brief overview of the results in this area and for pointers to other notions
of abstraction for Kripke structures that have been suggested as a result of the quest
for completeness.

13.7.1 Additional Reading

In [82], a completeness result is given for the verification of branching-time prop-
erties of programs, modeled by Labeled Transition Systems (LTS), via abstractions.
Abstraction is applied to the product of the program LTS and the property, expressed
as an Alternating Transition System (ATS).

A notion of abstraction framework that is similar to the one used in this chapter,
and the notion of completeness of such a framework, are introduced in [41] and
[42]. In the former, several incompleteness results are given for branching-time log-
ics. In particular, it is shown that a framework based on reverse simulation, which
can be understood as using KMTSs with only must transitions, is incomplete for the
existential fragment of branching-time logics, which is the dual of the universal frag-
ment defined in this chapter. From this, it follows that the framework based on modal
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simulation as presented in Sect. 13.6 is incomplete. This incompleteness is traced
back to two shortcomings in KMTSs. These are then fixed by extending abstract
objects with focus operators and fairness, resulting in an abstraction framework for
branching-time properties, based on Focused Transition Systems and a game-based
definition of the abstraction relation, that is shown to be complete. In [42], tree au-
tomata are suggested as an alternative complete abstraction framework.

The addition of focus operators to KMTSs is arguably equivalent to the gener-
alization of must transitions to must hyper-transitions. This generalization is pro-
posed in [73] in the context of bisimulation equation solving, extending the Modal
Transition Systems of [72] to Disjunctive Modal Transition Systems. In [90], must
hyper-transitions extend KMTSs to Generalized KMTSs with the goal of making the
abstraction framework monotonic, meaning that refinement of an abstraction may
cause formulas that are unknown in the original abstraction to become true or false
in the refinement, but never the opposite (from a definite value to unknown).

The abstract transition structures introduced in [1] are also motivated by the
need for must hyper-transitions, and they allow for a completeness result similar in
spirit to that of [41].

In [45], completeness is studied in the context of another notion from abstraction
theory, expressiveness. Under one of the considered definitions of expressiveness,
KMTSs are shown to be strictly less expressive than Generalized KMTSs.

Whereas the generalization to must hyper-transitions is needed to achieve com-
pleteness specifically for the case of branching-time logics, the addition of fairness
to abstractions, though equally necessary, is independent in that it arises in the case
of linear-time logics as well [66, 98].
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Chapter 14
Interpolation and Model Checking

Kenneth L. McMillan

Abstract In this chapter we consider applications of logical proofs in model check-
ing. Here we are not concerned with using model checking to verify steps in a larger
proof but rather with ways in which logical proof methods can aid model checking,
particularly in focusing model-checking methods on relevant facts. We introduce a
framework for abstraction refinement based on a concept of deductive generaliza-
tion. We then show how various abstraction refinement schemes can be understood
in this framework in terms of local proofs and Craig interpolation. This unifying
view exposes the trade-offs made in different systems between the quality and cost
of refinements, and also leads to novel model-checking approaches.

14.1 Introduction

In this chapter we consider applications of logical proofs in model checking. Here
we are not concerned with using model checking to verify steps in a larger proof
(see Chap. 20 of this Handbook [38]) but rather with ways in which logical proof
methods can aid model checking, particularly in focusing model-checking methods
on relevant facts.

As we saw in Chap. 13 of this Handbook [13], abstraction is crucially impor-
tant in applying model checking to large and complex systems. Abstraction reduces
complexity by focusing on information relevant to a desired property of a system
while ignoring irrelevant facts. All known abstraction approaches apply a simple
heuristic to determine what is relevant: generalization from particular cases. That is,
we consider some simple fragment of the system’s behavior (a case) and we assume
that the steps used to verify this case, suitably generalized, will be relevant to the
verification of the full system behavior.

This brings us to the consideration of proofs in model checking. The purpose of
the proof in this case is not to act as a certificate of correctness. Rather, we wish to
use proofs as explanations of correctness that we can use to form generalizations.
As a simple example, suppose that we use Bounded Model Checking (see Chap. 10
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of this Handbook [6]) to verify that a property holds within some fixed number of
execution steps. Further, suppose we obtain a proof of unsatisfiability of the BMC
instance (that is, a proof that the bounded property holds). We may conjecture that
the components of the system referred to in this proof are sufficient to verify the
property in the unbounded sense. This provides us with a localization abstraction
(see Chap. 13 of this Handbook [13]). In effect, we are generalizing an explana-
tion of a case, since we are proposing that the information needed to ensure the
property in the bounded case is sufficient for the unbounded case. In fact, a SAT
solver can be instrumented to generate a proof of unsatisfiability. Using this proof
to generate a localization abstraction is an example of a method called proof-based
abstraction [34].

There are also substantially less coarse ways of applying proofs as explanations
for the purpose of generalization in model checking. Proofs for special cases can
be generated by SAT solvers, SMT solvers [5], and other sorts of constraint solvers
and theorem provers. These tools can provide proofs for particular cases of system
execution, such as bounded executions, control-flow paths, program fragments, and
so on. From these proofs, we can derive explanations for correctness of the special
cases that can be used to guide abstraction refinement, or other forms of invariant
generation, allowing us to verify a property in the general case.

For a proof to act as an explanation, it must meet two key criteria that we will call
utility and generality. The utility criterion requires that explanations be in a form or
language that is usable in a more general context or proof system. For example,
for proofs by invariant, we require explanations in terms of program state. By con-
trast, proofs of bounded executions will likely be expressed in terms of facts about
bounded execution sequences and therefore unusable. To bridge this gap, we rely
on the Craig interpolation property of the underlying logic. A feasible interpola-
tion result for a given proof system allows us to translate proofs about sequences
into proofs about program state, allowing them to be generalized beyond particular
execution lengths.

The generality criterion is more heuristic in nature, requiring that explanations
for cases actually do generalize, in the sense that they do not rely on specific ir-
relevant aspects of the case considered, such as the number of iterations of a loop.
To achieve this, we rely essentially on Occam’s razor. According to this principle,
simpler explanations (those employing fewer concepts) are more likely to general-
ize. The simplicity of the explanation that can be obtained will depend on the proof
system (as will the computational difficulty of finding a simple proof). In general,
a richer proof system can provide simpler explanations, but may involve greater
difficulty in searching the space of proofs.

In this chapter, we will elaborate these two key concepts, and observe that they
can explain many of the techniques of abstraction refinement and invariant gen-
eration in the literature. We will view these methods as instances of a model of
abstraction refinement in which both the abstractor and the refiner are proof sys-
tems with different capabilities. We will explain the notion of feasible interpolation
and the closely related notion of local proof . In this framework, we will observe
that most of the extant abstraction refinement methods are actually different local
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proof systems that make the key trade-off between simplicity of explanation and
computational difficulty in different ways.

14.2 Preliminaries

In this chapter we will use standard unsorted first-order logic, with which we assume
the reader is familiar. We assume a signature Σ of function and predicate symbols
of defined arities. A symbol with arity zero is called a constant. Terms and formulas
are built in the usual way using the symbols of Σ , individual variables, and the
standard connectives ∧, ∨, ¬,⇒, ∀, and ∃. We write � for true and ⊥ for false. We
write φ[t/a] for the result of substituting term t for every occurrence of symbol a
in formula φ.

A structure consists of a universe U and an assignment of functions and pred-
icates over U (of appropriate arity) to each symbol in Σ . A sentence is a formula
without free variables. We say a structure M is a model of a sentence φ, written
M |� φ, when φ is true in M according to the customary semantics of first-order
logic.

A theory is a set of sentences. We say a sentence φ is valid in theory T , written
|�T φ, when φ is true in all models of T . In this chapter, we will assume a fixed
background theory T . Thus, when we say a formula is valid or satisfiable, we mean
respectively that is true in all models of T or some model of T . We say that φ entails
ψ when φ⇒ψ is valid. We will assume that Σ contains a binary predicate symbol
= that is interpreted as equality in all models of T .

We will identify a subset ΣI of the signature Σ that is considered to be inter-
preted by the background theory. This set includes the predicate = and possibly
other symbols, such as arithmetic operators. The vocabulary of a formula φ is the
subset ofΣ \ΣI occurring in it, and is denoted V (φ). For example, ifΣI is {=,+},
then the vocabulary of formula x = f (y)+ z is {x,f, y, z}.

An inference consists of a finite sequence of sentences called the premises and a
sentence called the conclusion. An inference is usually written like this:

P1 . . . Pk

C

where P1, . . . ,Pk are the premises and C is the conclusion. The inference is sound
when P1 ∧ · · · ∧ Pk entails C.

A derivation is a sequence of inferences. The conclusion of a derivation is the
conclusion of the last inference in the sequence. A formula is a hypothesis of the
derivation when it occurs as the premise of some inference in the sequence, but
is not the conclusion of any earlier inference. A derivation is closed if it has no
hypotheses. It is easy to see by induction on the derivation length that if the infer-
ences are sound, then the hypotheses entail the conclusion (hence if the derivation
is closed, the conclusion is valid).

A proof system S is a set of rules or patterns whose instances are inferences.
A rule with no premises is called an axiom. The system is sound when every in-
stance of a rule is a sound inference. An S -derivation is a derivation in which every
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Fig. 1 Abstractor and refiner
as proof systems

inference is an instance of a rule in S . A proof system S is complete if every valid
formula φ is the conclusion of some closed S -derivation.

14.3 Model of Abstraction Refinement

In this section we will introduce an overall perspective on abstraction and refine-
ment that will allow us to step back from the details of particular methods to see the
commonalities. This framework will allow us make explicit the trade-offs involved
in different approaches. For the sake of simplicity, we will focus only on the verifi-
cation of safety properties. In all the methods considered, this amounts to inductive
invariant generation. Moreover, we will use sequential programs as example sys-
tems, primarily because it is easy to give simple expository examples in this form.
However, the concepts illustrated are applicable in other domains, such as hardware,
protocols, concurrent programs, and so on.

As stated above, we will view abstraction refinement as an interaction of two
provers: the abstractor and the refiner. This interaction is diagrammed in Fig. 1. The
abstractor is a general prover that is able to prove properties of a class of systems
we wish to verify (for example safety properties of sequential programs). However,
the abstractor is incomplete, in the sense that it may fail to produce a proof in cases
when the property is true. This incompleteness is intentional, its purpose being to
restrict the space of proofs to be searched.

The refiner on the other hand is a specialized prover that can only handle certain
special cases. For example, the refiner may be restricted only to bounded executions
or straight-line programs. Unlike the abstractor, however, the refiner is complete. If
the property is not true in the given special case, the refiner can produce a concrete
execution in which the property is false. When the abstractor fails to prove a prop-
erty, it must produce an explanation of its failure in the form of some special case
or fragment of the program that it is unable to prove. For example, the abstractor
might produce, as an explanation of failure, a particular control-flow path that it
cannot verify. It is the refiner’s job to produce either a counterexample or a proof for
this special case. Abstraction refinement then consists of augmenting the abstrac-
tor’s proof system so that it can replicate the refiner’s proof. In this case, we can say
that “refinement progress” has been made, since the abstractor no longer fails on the
given case.

Of course, refinement progress is not sufficient to guarantee convergence. We
hope that eventually the abstractor will have enough information to prove the pro-
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Fig. 2 Hoare semantics of
simple program statements

gram, but except in the finite-state case, it is always possible to diverge by generating
an infinite sequence of cases and refinements.

14.3.1 A Simple Programming Language and Proof System

To make these ideas more concrete, we will consider a very simple programming
language and its proof system. The language has three kinds of simple statements:
a guard, [ψ], that terminates exactly when formula ψ is true, an assignment, x := e,
that sets variable x to the value of expression e, and a non-deterministic assignment
havoc x that sets x to a non-deterministic value.

We can define the semantics of our simple programming language in terms of
Hoare axioms. These are triples of the form {P }σ {Q}, meaning that if P is true
of the program state before executing σ , and if σ terminates, then Q is true after
executing σ . The Hoare axioms that define the semantics of these statements are
shown in Fig. 2.

A compound statement is a sequence of simple statements σ1; . . . ;σk . The se-
mantics of the sequence is defined by the usual Hoare logic rule for sequential exe-
cution:

{P }σ1{Q} {Q}σ2{R}
{P }σ1;σ2{R}

.

We also admit the rule of consequence:

P ′ ⇒ P {P }σ {Q} Q⇒Q′

{P ′}σ {Q′} .

We will model a program as a non-deterministic finite automaton (NFA) whose
alphabet is the set of compound program statements. Thus, it is a finite-state graph
with a defined initial state and a set of final states, whose edges are labeled with
sequences of simple statements. The final states represent safety failures. As an
example, Fig. 3 shows a simple program with a while loop and its representation as
an NFA. The program contains an assertion, which is modeled by a transition to an
error state guarded with the negation of the assertion. A string in the language of
the NFA is a sequence of statements leading to a safety failure. To prove safety, we
must show that no such sequence can actually terminate (which means that always
one of the guards must be false). This is what we will ask our abstractor to prove.

The abstractor will construct proofs by inductive invariant. Suppose we fix a
logical language L (a subset of first-order logic) whose vocabulary consists of the
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Fig. 3 A simple program and
its control-flow automaton

Fig. 4 Safety invariant of
simple program

program variables. A safety invariant for program C is a map from the vertices of
C to formulas in L such that

1. The initial vertex is labeled �,
2. The final vertices are labeled ⊥, and
3. Each arc in the graph is a provable Hoare triple.

The last condition means that the pre-condition of each arc guarantees the post-
condition after executing the given statement. Existence of a safety invariant guar-
antees that the final vertices are not reachable from the initial vertex.

As an example, Fig. 4 shows a safety invariant of the program of Fig. 3.

14.3.2 The Abstractor

Whether or not our abstractor can produce this proof depends on whether the lan-
guage L contains the predicate x ≥ 0. If not, we would like the abstractor to produce
a case that it cannot prove. Under some assumptions, we can show that a program
path always suffices for this purpose. That is, if there is no safety invariant for a
program L then there is an accepting run of the program automaton that also has no
safety invariant in L. We will refer to this property as path-reductiveness. It says that
absence of a proof can always be explained with reference to a single program path.
We can show that this property holds if L is finite and closed under conjunction and
disjunction.1

1The proof of this is simple, though not directly relevant to our discussion. The key is that the
language L is closed under arbitrary conjunctions and disjunctions. This means that every program
has a strongest inductive invariant in L, which is the conjunction of all the inductive invariants. In
particular, every finite path has a strongest inductive invariant (we can obtain it by computing
the strongest post-condition in L along the path). The disjunction over all paths of the strongest
inductive invariants is an inductive invariant of the program, necessarily the strongest. If a final
state is not labeled with a formula equivalent to ⊥ in the strongest inductive invariant, there is a
finite path in which this state is also not labeled ⊥.
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Fig. 5 Increment/decrement program and control-flow automaton

Fig. 6 Failure path in
increment/decrement
program

As an example, consider the program and corresponding automaton shown in
Fig. 5. In this program, two variables x and y are initialized to zero. In the first
loop, while a non-deterministic condition holds, both are incremented. In the second
loop, while x is non-zero, both are decremented. When this loop exits, we assert the
safety condition that y is zero. Now suppose we are using predicate abstraction to
prove this property (see Chap. 15 of this Handbook [22]). We begin with a set of
atomic predicates P containing x = 0 and y = 0. From our perspective, predicate
abstraction with predicates P means that our logical languageL is the set of Boolean
combinations over P . That is, the abstractor can prove the property exactly when
there is a safety invariant expressible as a Boolean combination of predicates in P .
In this case, however, no such proof exists, so the abstractor must fail. Since our
language L is finite and closed under conjunction and disjunction, our abstractor is
path-reductive. This means that we can exhibit a single program path that has no
proof in language L. One such path is shown in Fig. 6(a). In this path, both loops
have been executed twice. The path has been labeled with its strongest inductive
invariant expressible in L. Notice that after one iteration of the loop, we can infer
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that both variables are non-zero, but after two iterations, we can infer nothing in L
(except�). As a result, we fail to prove⊥ at the error state, hence this path provides
an explanation of the failure of the abstractor.

14.3.3 The Refiner

This case can be given to a refiner. The refiner is a specialized prover that can handle
only single-path programs. If the case is safe, the refiner can produce a proof as an
explanation of the case to the abstractor. Such a proof is shown in Fig. 6(b). It
uses an atomic predicate x = y that is not in the abstractor’s language L. Given this
explanation, the abstractor’s proof system can be augmented by adding the predicate
x = y to P . The abstractor using L can now replicate the refiner’s proof for this case
(in fact it can generate a slightly stronger proof, since it can infer that x �= 0 and
y �= 0 after the first loop iteration). Hence, after this refinement, the abstractor will
never produce this particular path as a failure case and we can say we have made
refinement progress.

In this case, augmenting the abstractor’s proof system was simple. This might
not always be the case, however. We have assumed a class of possible abstractor
proof systems, parameterized over a class of finite logical languages. Moreover,
we have assumed that the abstractor and refiner have equal deductive power over
the same set of formulas. Thus in the case of predicate abstraction it is easy to
augment the language of the abstractor to allow it to replicate the refiner’s proof, by
simply adding the atomic predicates that occur in the refiner’s proof (assuming it is
quantifier-free, or that we allow quantified predicates in P ).

Consider as an alternative, however, the Cartesian abstraction [2]. This abstractor
can only deduce post-conditions of statements that are literals over a fixed set of
predicates P . As a result, it can only replicate path proofs that consist of cubes over
P (conjunctions of literals).2 If the refiner’s proof contains a disjunction, we would
have to treat the disjunction as an atomic predicate.

In general, it might be a non-trivial problem to find a small (let alone minimal)
augmentation to the abstractor’s proof system that replicates the refiner’s proof.

14.4 Refinement, Local Proofs, and Interpolants

Now we will consider the problem of creating refiners in the above schema. Fun-
damentally, in this approach we are producing generalizations from explanations of
cases. That is, the refiner produces the explanations, in the form of Hoare proofs

2Using disjunctive completion, disjunctions may occur as the result of joining multiple paths, but
they do not occur in single path proofs. Disjunctive completion is needed for path-reductiveness,
and in fact is used in tools such as SLAM [1, 3] that refine Cartesian abstractions.
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for cases, and the abstractor generalizes these explanations by producing an induc-
tive invariant from aspects of the refiner’s proof. One way to think of this is that
the refiner has produced a vocabulary of deductive steps from which the abstractor
attempts to assemble a proof in a more general setting.

From this point of view, we can see immediately that there are two important cri-
teria for the refiner’s explanation. First, it must consist of steps that are meaningful
in the abstractor’s framework (the utility criterion). Second, the refiner’s proof must
generalize, in the sense that it may not rely on deductions that can only be made
in the particular case at hand, but must be useful in the more general setting (the
generality criterion).

14.4.1 Craig Interpolation

To meet the first criterion in our example we have required that the refiner pro-
duce explanations in the form of Hoare logic proofs. However, standard verification
methods (i.e., bounded model checking or verification condition checking) will not
produce proofs in this form. In these methods, the proof is achieved by translating
the proposed error path into a set of logical constraints (formulas) and using some
decision procedure (e.g., SAT or SMT) to show infeasibility of these constraints.
These decision procedures can potentially produce proofs, but the proofs will not
generally be in the desired form. To obtain proofs in a form that is useful to the
abstractor, we rely on the Craig interpolation property of the underlying logic.

Craig’s interpolation lemma [12] says that, given two formulas A and B in first-
order logic, if A⇒ B is valid, then there exists a formula I such that A⇒ I and
I ⇒ B , where I is expressed using the common vocabulary of A and B . That is,
we must have V (I) ⊆ V (A) ∩ V (B). This means that any symbol occurring in I
that is not interpreted must occur in both A and B . The formula I is referred to as
an interpolant for the implication A⇒ B . The interpolation lemma applies to plain
first-order logic and to first-order logic with interpreted equality. Other theories may
or may not have the interpolation property.

The interpolant formula I in effect gives us a modular proof of A⇒ B . That is,
we can show A⇒ I reasoning only in the vocabulary of A and I ⇒ B reasoning
only in the vocabulary of B . Thus, finding an interpolant is essentially factoring the
proof of A⇒ B into a modular form. We will see that modularity has important
consequences for abstraction refinement.

Of course, the existence of an interpolant is of little use if we can’t find one or if
the formula is too complex. It turns out, however, that a number of useful theories
and proof systems have the property of feasible interpolation. This means in effect
that if we can find a non-modular proof of A⇒ B , we can obtain an interpolant
(hence a modular proof) in polynomial time. To be more precise, a proof system S
has the feasible interpolation property if, given a closed S -derivation of A⇒ B ,
we can derive an interpolant for A⇒ B in polynomial time. Different proof systems
for the same theory may or may not allow feasible interpolation.
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Fig. 7 Short program path
(a) and its SSA form (b)

The proof systems we will be dealing with are refutation systems, meaning they
are designed to derive ⊥ from a conjunction of hypotheses. For such proof systems,
it is more convenient to speak of an interpolant for an inconsistent conjunction.
That is, an interpolant I for an inconsistent conjunction of formulas A ∧ B is a
formula over the common vocabulary of A and B such that A⇒ I and I ⇒¬B .
The convention of negating B when dealing with refutation systems was introduced
by McMillan [28] and is common in the literature on interpolation in model check-
ing. A refutation system has the feasible interpolation property if an interpolant for
A∧B can be derived from a refutation from premises A and B in polynomial time.

Feasible interpolation provides of way of deriving Hoare logic proofs about pro-
gram paths from the proofs generated by decision procedures. One way to view this
is that Craig interpolants are precisely Hoare logic proofs for program paths in static
single assignment (SSA) form. To obtain this result, we need a simple generalization
of the notion of Craig interpolant to formula sequences.

As an example, consider the short program path in Fig. 7. This path is not feasi-
ble, since, upon reaching the guard [y ≤ x], we have y = x+1. We can prove this by
converting the path into a sequence of logical constraints in SSA form. To do this,
we rewrite each assignment to a logical equality by giving the assigned variable a
fresh subscript. For example the assignment y := y + 1 could become the logical
constraint y1 = y0+1. Note that in this form, each variable is “assigned” only once,
thus we can think of the assignment as logical equality. The resulting set of con-
straints is feasible exactly when the original program path can terminate (i.e., when
there is an assignment of initial values to the variables that makes all the guards
true). We can now ask a decision procedure whether the set of SSA constraints is
satisfiable. If not, a proof-producing decision procedure will produce a refutation in
a suitable proof system. This is not a Hoare logic proof, since, for example, it may
contain predicates that mix variables that represent different program states, it may
reason both backward and forward in time, and so forth. The root of this problem is
that the decision procedure is reasoning about the entire path rather than individual
program states.

Given a feasible interpolation result, however, we can always translate this non-
modular proof into a modular proof. An interpolant for our example is shown in
Fig. 7(b). This is a sequence of predicates beginning with � and ending with ⊥,
such that each predicate implies the next (given the corresponding constraint) and
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each is written in the common vocabulary between the preceding and following con-
straints. This is known as a sequence interpolant and was introduced in [18]. The
sequence interpolant has the property that each predicate is written using the vari-
able instances that are “in scope” at a particular point in the path, and thus represent
the program state at that point. The interpolants thus form a Hoare refutation of the
SSA sequence. The reader can verify that simply dropping the subscripts from the
variables yields a Hoare logic refutation of the original path.

14.4.2 Feasible Interpolation in Model Checking

The fact that interpolants are Hoare proofs for SSA programs (or equivalently for
BMC unfoldings) allows us to build refiners from various decision procedures, in-
cluding SAT and SMT solvers. This idea was originally used to allow finite-state
model checking using only a proof-producing SAT solver [28]. This method con-
structs a BMC unfolding of a circuit to depth k. A SAT solver is used to refute
the unfolding formula (i.e., the SSA form). From the resulting proof using the res-
olution rule, a feasible interpolation procedure is used to construct an interpolant
(i.e., a Hoare proof) in linear time. Various methods can then be used to attempt
to construct an inductive invariant from the interpolant. In the original method, the
one-step interpolant is iterated until it becomes inductive. Intuitively, this iteration
gives the SAT solver many chances to generalize (to eliminate irrelevant informa-
tion applying only to short paths). It is shown that for large enough k, the solver may
not overgeneralize, and therefore must eventually converge to an inductive invari-
ant, yielding a complete model-checking procedure using only SAT. Other kinds
of abstractors are also possible. For example, it is possible to construct inductive
invariants as conjunctions or disjunctions of the interpolant formulas [30, 32].

Proofs generated from SMT solvers can also be translated into interpolants for
various theories. For example, McMillan gave an interpolation calculus for linear
rational arithmetic with uninterpreted functions [29]. This was used as a refiner for
predicate abstraction in the BLAST software model checker [18]. The system has
the property that it produces quantifier-free interpolants from quantifier-free formu-
las. We will observe shortly the advantage of this property.

This scheme of interpolating proofs from SMT solvers has been extended in
various ways. Yorsh and Musuvathi describe a general framework for interpolation
with combined theories that are equality interpolating [40]. Interpolation calculi
have been extended to richer theories, including integer arithmetic [7, 10, 16, 20,
25], the theory of arrays and sets [9, 21, 23] and bit vectors [15, 27]. Some schemes
also handle logics with quantifiers [8, 31, 33].

14.4.3 Interpolants and Local Proofs

An interpolant can be viewed as an example of a local proof [31]. In a local proof,
we define a set of local vocabularies and we restrict every inference to use just one
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Fig. 8 Flow of a forward
local proof, providing an
interpolant

local vocabulary. We can think of feasible interpolation as rewriting a proof into a
local form. That is, an interpolant I for A ∧ B provides us with a cut in the proof,
allowing us to reason locally (i.e., we can prove A⇒ I only in the vocabulary of
A and I ⇒¬B only in the vocabulary of B). Conversely, local proofs provide us
a means of producing interpolants. By applying feasible interpolation results for
resolution proofs, we can show that any local refutation for A∧B can be translated
into an interpolant for A and B in linear time. This interpolant can be formed as a
Boolean combination of formulas occurring in the local proof [21].

In this section, we will define the notion of local proof, and observe that many of
the refiners described in the literature can be viewed as specific local proof systems,
with the refinements being the resulting interpolants.

As an example, consider the sequence of SSA constraints in Fig. 7(b). We will
call each constraint in this sequence a “frame”. In a local refutation, we might use
the following sequence of inferences. From x1 = y0, we infer x1 ≤ y0. This infer-
ence is local to the first frame. From this, and y1 = y0 + 1, we derive x1 + 1 ≤ y1

by summing inequalities. This inference is local to the second frame. Summing this
with y1 ≤ x1, we obtain 1≤ 0, a contradiction. Figure 8 shows the flow of inferred
predicates in this proof. That is, we have drawn an arrow from each premise of an
inference to its conclusion. In our proof, these arrows cross the frame boundaries
only in the forward direction. Moreover, the predicates that are passed across the
boundary use only the symbols that are “in scope” at the boundary. The result is
that these predicates (shown on the right) form an interpolant. Note there are vari-
ous possible proofs that result in different possible interpolants (for example, using
equalities rather than inequalities).

Now let’s define more precisely what we mean by a local proof. Suppose we are
given a sequence of frames σ = φ1 . . . φk . We will say that a symbol is in scope in
frame i when it occurs in the vocabularies of some φl and some φh such that l ≤
i ≤ h. In our example, the variables in scope in the successive frames are {x1, y0},
{x1, y0, y1} and {x1, y1}. Notice that when we assign a variable in a given frame,
both the new and the old instance of that variable may be in scope. Notice also
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Fig. 9 Flow of a reverse
local proof, negated,
providing an interpolant

that the intersection of the scopes of two consecutive frames is precisely the set of
variables carrying the program state between those frames.

We will say that the vocabulary of an inference is the union of the vocabularies
of its premises and its conclusion. An inference is local for σ if its vocabulary is in
scope at some frame of σ . A derivation is local if all of its inferences are local. The
reader can confirm that in Fig. 8, each inference is local to the frame in which we
have placed its conclusion.

We can also distinguish forward local and reverse local proofs. In a forward
local proof, we can assign each derivation step to a frame, such that the flow of
information is only forward. That is, an inference’s premises may not be conclusions
or hypotheses from later frames. Conversely, in a reverse local proof, the flow of
information is only backward (so no inference uses a conclusion or hypothesis from
an earlier frame).

Above we saw an example of a forward local proof. The facts flowing forward in
this proof formed an interpolant. Consider on the other hand a reverse local proof.
First, from y1 ≤ x1 and y1 = y0 + 1, we derive y0 + 1 ≤ x1. This we can assign
to the second frame (but not the third, since it uses y0). From this and x1 = y0, we
derive the contradiction 1 ≤ 0. This we can assign to the first frame (but not the
second, since it uses a hypothesis from the first). Figure 9 shows the information
flow in this proof. Reverse proofs are the De Morgan dual of forward proofs. That
is, an interpolant can be obtained as the negation of the facts flowing backward.

Now we will define what we mean by flow of premises in a proof, and consider
the general case of local proofs. We assume that each inference s in a derivation
P has been assigned to a frame f (s) in which s is local. Consider the boundary
between consecutive frames i and i + 1. We can divide the derivation P into two
sub-sequences. The first, P≤i , consists of the inferences of P assigned to frames
before the boundary and the second, P>i , consists of those assigned to frames after
the boundary. For convenience, we will add a special terminal step to P , which has
the conclusion ⊥ and is assigned to the imaginary frame k+ 1.

The forward flow at the boundary is the set of conclusions of inferences in P≤i
or frames ≤ i that are used as hypotheses of P>i . Conversely, the reverse flow is the
set of conclusions from P>i or frames > i that are used as hypotheses of P≤i . Now
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consider any formula ψ in the forward flow. In proof P≤i , this conclusion depends
on some subset dep(ψ) of the reverse flow. Thus, the frames before the boundary
can be used to prove dep(ψ)⇒ψ . Note that this fact is in scope in both frames i and
i + 1, so it uses the common vocabulary. Moreover, from these implications in P>i ,
we can construct a proof of ⊥. Thus, if we collect the conjunction of dep(ψ)⇒ ψ

for each ψ in the forward flow, we have an interpolant.
Note that in the forward local case, the sets dep(ψ) are empty. Thus the inter-

polant is just the conjunction of the formulas in the forward flow. In the reverse
local case, the only formula in the forward flow is ⊥, so the interpolants are effec-
tively the negation of the reverse flow. In the general case, however, the interpolant
might be a conjunction of Horn clauses over the formulas in the proof.

This flow-based approach to generating interpolants from local proofs was intro-
duced by Kovács and Voronkov [24]. The interpolants generated are in the worst
case quadratic in the proof size, since each implication is linear in the reverse flow
size and the number of implications is linear in the forward flow size. By applying
feasible interpolation methods for resolution proofs, Jhala and McMillan showed
that linear-size interpolants can be obtained [21].

This result means that we can think of Craig interpolants as a kind of normal
form for local proofs. That is, an interpolant is the forward flow of a local proof, and
every local proof can be translated into an interpolant. Moreover, if a proof system
has the feasible interpolation property, we can translate any proof in the system into
a local form.

14.5 Refiners as Local Proof Systems

Now we will consider several refiners from the literature and show that they can be
viewed as local proof systems.

14.5.1 Strongest Post-condition

The SLAM model checker [1, 3] was an early implementation of software model
checking based on predicate abstraction and has been highly influential on sub-
sequent systems. SLAM’s refiner, Newton [4], is based on the computation of
strongest post-conditions. Given a formula φ and a program statement σ , the
strongest post-condition (SP) of φ with respect to σ is the strongest ψ such that
{φ} σ {ψ} is a valid Hoare triple. This can also be viewed as the set of states
reachable from φ by executing σ , or the forward image of φ with respect to σ ,
if we view σ as a transition relation. As an example, if we start with {�} and
compute strongest post-conditions for the path of Fig. 7(a), we get the sequence
{�}, {x = y}, {y = x + 1}, {⊥}. Since this sequence ends with {⊥}, it is a Hoare
refutation of the path.
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Fig. 10 Rules for SP (a) and WP (b)

Fig. 11 Local proof system
for SP and WP

Strongest post-conditions can be computed syntactically. For our simple lan-
guage, the axioms in Fig. 10(a) suffice. This computation is also known as symbolic
execution. For SSA paths, we can also think of the syntactic SP computation as a
simple forward local proof system based on ordered rewriting. That is, let us define
a total elimination order 6 that puts the SSA variables in the order in which they go
out of scope. In our example, we would have y0 6 x1 6 y1. Now consider the local
proof system of Fig. 11. There is one rule that allows replacement of equals with
equals in a formula. However, a side condition states that we replace only the earli-
est SSA variable occurring in either premise. We may also deduce a contradiction,
provided that all the premises are local. Finally, we require that in the SSA form,
each occurrence of havoc v be replaced by the equation v =Θi whereΘi is a fresh
logical constant symbol. We can think of the Θi symbols as representing symbolic
“inputs” to the program, and the proof system as a rewrite system that computes the
state of the program at each step as a function of these inputs. That is, if we view
the substitutions as rewrites (replacing φ with φ[e/v]) then we have a confluent and
terminating system that reduces the SSA program P to a normal form N(P ) con-
sisting of a set of equations v = e, where v is an SSA variable and e is over just the
inputs, and guards expressed only in terms of inputs. This normal form represents a
set of program states: the valuations of the variables that make N(P ) true for some
valuation of the inputs, or ∃Θ. N(P ).

Moreover, the requirement that the rewrites respect the elimination order guaran-
tees that the proofs are forward local. That is, we can assign each rewrite the later of
the frames of its two premises, ensuring forward information flow in the proof. After
rewriting terminates, the forward flow of the proof at each boundary is precisely the
strongest post-condition at that boundary (i.e., projected onto the variables in scope
at the boundary).

As an example, Fig. 12 shows the derivation obtained by terminal rewriting for
our short example, and the corresponding forward flow. After existentially quantify-
ing the input symbols, we obtain the interpolant sequence shown on the right in the
figure. Eliminating the quantifiers, we obtain the equivalent formulas �, x1 = y0,
y1 = x1 + 1, ⊥, that is, precisely the sequence of strongest post-conditions we ex-
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Fig. 12 Forward flow for
proof using SP system

pect. This gives us a Hoare proof of a particular path, which can act as a refinement
in predicate abstraction.

Using SP as a refiner, though it has the advantage of simplicity, leaves much to
be desired from the point of view of utility and generality. Though SP produces
Hoare proofs, it introduces existential quantifiers over the input symbols. This is
a significant utility issue when using predicate abstraction, for two reasons. First,
predicate abstraction can synthesize only Boolean combinations of the given predi-
cates P , and not quantifiers. This means that a quantified formula must be treated as
atomic for predicate abstraction. Second, quantifiers in the predicates make the de-
cision problems involved in predicate abstraction undecidable, and in practice much
more difficult for SMT solvers. In our simple example, the quantifiers were eas-
ily eliminated. However, in general the underlying theory may not admit quantifier
elimination, or quantifier elimination may produce intractably large formulas (for
linear rational arithmetic, the result is doubly exponential). The original refiner in
SLAM tried to finesse this issue by, in effect, introducing auxiliary program vari-
ables that witness the existential quantifiers (a subject that is beyond the scope of
this chapter). Ultimately, however, this is a futile effort. One easily constructs loops
for which the number of such variables diverges to infinity.

A related difficulty is one of generality. That is, the strongest post-condition, by
its very definition, fails to generalize away from irrelevant details of a path. For this
reason, real refiners (including SLAM) do not actually compute the strongest post-
condition. Rather they weaken SP in an attempt to eliminate irrelevant predicates.
This weakening is easily understood by viewing SP as a local proof system.

That is, when constructing a proof, it is natural to eliminate steps that are pos-
sible, but on which the ultimate conclusion does not depend. Moreover, we require
only one derivation of any given fact, and may eliminate redundant derivations. If
one performs this natural reduction on proofs generated by the SP system of Fig. 11,
the result is to eliminate irrelevant facts from the forward flow, and hence from the
interpolant. In fact, SLAM does precisely this to improve the generality of refine-
ments.

Another natural way to improve the generality of a proof is to weaken the hy-
potheses. In the case of SSA programs, one can, for example, replace an assignment
v = e, where e is a complex but potentially irrelevant expression, by v =Θi . Since
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Fig. 13 Reverse flow for
proof using WP system,
negated

Θi is implicitly existentially quantified, this is a weaker hypothesis. In fact, this kind
of weakening can greatly improve the generality of the interpolants, in some cases
making it possible to abstract away from the number of iterations of a loop. SLAM
and other model checkers perform this step.

14.5.2 Weakest Pre-condition

The time-reversal dual of strongest post-condition is weakest pre-condition (WP).
Given a formula φ and a program statement σ , the weakest (liberal) pre-condition
of φ with respect to σ is the weakest ψ such that {ψ} σ {φ} is a valid Hoare triple.
This can also be viewed as the set of states that cannot reach ¬φ by executing σ . As
an example, if we start with {⊥} at the path end and compute weakest pre-conditions
backward for the path of Fig. 7(a), we get the sequence {T rue}, {x < y + 1},
{x < y}, {⊥}, another possible Hoare refutation of the path, using weaker facts.

Weakest pre-conditions can be computed syntactically. For our simple language,
the axioms in Fig. 10(b) suffice. Note that when computing weakest precondition,
we may introduce a universal quantifier, but only in case of a havoc statement.
Given the difficulties involved in quantifiers, this may be an advantage for WP, rel-
ative to SP.

The WP computation may also be viewed as a local proof system. In fact, it is
exactly the proof system of Fig. 11, except that the elimination order is replaced by
an introduction order. For our example, we have y1 6 x1 6 y0, the reverse of the
order in which the variables are introduced (or their order of elimination in a reverse
execution). Again, we must encode havoc v by the equation v =Θi where Θi is a
fresh logical constant symbol.

The time reversal of the elimination order results in a reverse local proof (where
each step is assigned to the frame of its latest premise). After rewriting terminates,
the reverse flow of the proof at each boundary is precisely the negation of the weak-
est pre-condition of ⊥.

As an example, Fig. 13 shows the derivation obtained by terminal reverse rewrit-
ing for our example, and the corresponding reverse flow. Taking the negation of the
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reverse flow, we obtain the interpolant sequence shown on the right in the figure.
Modulo subscripts, this is equivalent to the WP sequence we obtained above. In this
case, we were lucky. Because the only input occurred in the first frame, there were
no quantified input variables in the interpolant. In general, though, the input vari-
ables will occur existentially quantified in the reverse flow, and thus after negation
will be universally quantified in prenex form. Note that proof reductions and hypoth-
esis weakening can also be applied to WP proofs to improve the generality of the
interpolants. Moreover, there is no reason why the SP and WP proof systems cannot
be mixed (allowing both forward and reverse rewriting). The result will be a general
local proof, which can still be interpolated. Finally, note that for SP, the interpolants
are conjunctions of the facts in the flow, while for WP they are disjunctions (be-
cause of the negation). This may make SP better suited as a refiner for the Cartesian
abstractor (used in SLAM), since the latter can only reproduce conjunctions in path
proofs.

14.5.3 Bounded Provers

The SP and WP proof systems are quite weak (allowing only substitution of equals
for equals). As a result, the local proofs they produce tend not to generalize even
in simple cases. Consider, for example, the simple program of Fig. 5 and the path
of this program illustrated in Fig. 6. As we saw, the simple predicate x = y is suf-
ficient to construct an inductive invariant for this program. However, to do this,
our refinement proof must abstract away from a particular number of executions
of the loop. For the example path, both SP and WP yield the interpolant sequence
{�}, {y = 0}, {y = 1}, {y = 2}, {y = 1}, {y = 0}, {⊥} after proof reduction. Clearly,
these predicates are only relevant to the case of exactly two loop iterations, and do
not generalize to longer paths. Moreover, there is no obvious way to weaken these
proofs to promote generality, since we know x must somehow be involved in the
inductive invariant. Thus, using SP or WP as a refiner, we will diverge, generating
an infinite sequence of refinements, for longer and longer paths.

The failure here can be put down to the weakness of the proof system and a
failure to apply Occam’s razor. That is, we need a refinement proof that is not only
in the right form (meeting the utility criterion) but that is in some sense simple,
using as few constructs as possible in order to have a better chance to generalize. In
our example, a simpler proof would use only the predicate x = y.

A straightforward approach to this is to search for the simplest proof according
to some metric. This approach was introduced in [26] in the context of abstraction
refinement for hardware verification.

It uses a so-called bounded prover, defined by the following two components:

1. A local proof system, defined by an ad hoc set of proof rules, and
2. A cost metric for proofs.
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For the cost metric, we might count, say, the number of distinct atomic predicates
in the proof after dropping subscripts. Note this means that our notion of simplicity
is relative to the intended use of the proof.

We can now simply search the space of possible proofs for a proof of lowest
cost. In performing this search, we can take a branch-and-bound approach, since
each successful proof gives an upper bound on the cost.

As an example of such a system, consider the system of Fig. 11 with two modifi-
cations: we remove the ordering constraint on substitutions, and we allow solving an
arithmetic equation for a chosen variable. Now consider two possible refutations for
the path of Fig. 6 using this system. The first uses y0 = 0 to rewrite y1 = y0 + 1 in
the second frame, yielding y1 = 1. Similarly, in the next frame, we have y2 = 2, then
y3 = 1, y4 = 0 and finally 0 �= 0 in the last frame. If we expand the example path
to N iterations of the loop, this proof has a cost of N + 1, since it generates N + 1
distinct predicates. On the other hand, consider a proof in which y0 = 0 is used to
rewrite x0 = 0, obtaining x0 = y0. In the second frame, this rewrites x1 = x0 + 1
to obtain x1 = y0 + 1. Solving for y0, we have y0 = x1 − 1, which then rewrites
y1 = y0 + 1 to yield x1 = y1, and so on. The number of distinct predicates we ob-
tain in this proof, ignoring subscripts, is just four for anyN . Thus, for a long enough
path, we prefer the second proof. Note that the simpler proof (in terms of predicates
used) generalizes to an inductive invariant. However, the SP and WP systems are
too restricted to yield this proof.

There are trade-offs to be made in such a system. A richer proof system may
yield a simpler proof, but the cost of searching for the proof may be higher. More-
over, the proof system itself constitutes an inductive bias, since it determines what
facts have simple proofs. Thus, the choice of proof rules might provide a means of
introducing domain knowledge into the system (see, for example, [31]). We saw in
the case of WP and SP that a very simple proof system can be complete (given the
local contradiction rule). We might need a much richer system, however, to produce
generalizations in a given domain.

Compromises can also be made. For example, the method of [26] doesn’t find
a globally optimal proof. Rather, it finds optimal proofs only for particular truth
assignments to the atomic propositions, rather in the style of an SMT solver. This
trades off quality of the proof for a considerable reduction in cost of the search.

14.5.4 Split Provers and Language Stratification

An alternative approach to applying Occam’s razor uses local proof search in a dif-
ferent way [21]. In the “split prover” approach, an infinite logical language L is
stratified into a hierarchy of finite languages L1 ⊆ L2 · · ·. For example, language Lk
might be restricted to terms of nesting depth k, perhaps using only some fixed set
of constructors for constants. We can guarantee to find a proof for a given path in
the lowest possible Lk (i.e., the simplest language) provided the local prover has a
property called completeness for consequence finding. This means that, given a set
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Γ of formulas in Lk that are in scope at frame i, we must be able to infer all the
consequences of Γ expressible in Lk that are in scope in frame i + 1. The stratifi-
cation of the language constitutes a very explicit inductive bias, and is arguably less
natural than a simple proof cost metric. On the other hand, this approach provides
a kind of completeness guarantee. That is, if there is an inductive invariant proving
the property in language L, then the refinement sequence is guaranteed to eventually
produce one.

14.5.5 Constraint-Based Interpolation

Another approach to searching for simple proofs is to define a class of proofs and
pose the question of existence of a proof as a constraint-solving problem. One such
approach [37] is based on Farkas’ lemma. This result states that if a set of linear
inequalities over the rationals is inconsistent, then one can obtain a refutation by
simply summing up the inequalities with non-negative coefficients, to obtain the
result 0≤−1.

It is easily shown that Farkas proofs are local [36]. That is, given two sets A
and B of inequalities, if we order the summation so that the inequalities from A are
added first, then the intermediate sum we obtain is only over the common variables
(that is, if it contained a variable not occurring in B , we would be unable to cancel
it out by adding inequalities from B). It follows that the intermediate sum is an
interpolant.

It is well known that Farkas proofs can be obtained by setting up a linear pro-
gramming (LP) problem in which the Farkas coefficients are the variables. This
allows us to search the space of proofs using LP techniques. Since the coefficients
in the interpolants are just linear functions of the Farkas proof coefficients, we can
attach constraints or objective functions to these coefficients. For example, we could
even require that the interpolant coefficients at two given points in the path be the
same, if this helps to construct an invariant for a loop. We can also increase the space
of proofs by adding any valid inequalities to the set (for example, adding 0 ≤ 1 to
each frame would allow us to find the inductive invariant in Fig. 6).

This approach is limited, in the sense that it only handles linear inequalities over
the rationals. However, it provides a good example of trading off the cost of search-
ing for an optimal proof against the richness of the proof system.

14.5.6 Feasible Interpolation and Refinement

As we have seen, many methods of refinement can be viewed as search for a proof in
a suitable local proof system. We have also observed that there is a trade-off between
cost of the search and quality of the proof, which in turn determines the likelihood
that a proof will generalize. Proof search in the SP and WP systems is quite straight-
forward (we simply run rewriting to termination and check the resulting formulas for
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satisfiability with a decision procedure). However, the poverty of the proof system
can result in proofs that do not generalize away from features specific to a given
case, such as number of iterations. A richer deduction system can produce a higher
quality proof, but at a cost.

This also puts the approach of feasible interpolation in context. This method
converts a non-local proof to a local proof. It is better than the SP and WP systems
in terms of utility, as long as we have quantifier-free interpolation, since it does not
unnecessarily introduce quantifiers. However, from the generality point of view, it
relies on a decision procedure’s inbuilt heuristics to generate a simple proof. This
can be far from optimal, as a simple proof in the decision procedure’s system may
be much less so after interpolation. Thus, the feasible interpolation approach makes
proof search relatively easy (allowing efficient SAT and SMT solvers to be used)
but at the possible expense of generality of the result.

14.5.7 Improving Interpolants

For a given proof, there are various ways in which we can adjust the interpolation
process in order to improve the resulting interpolants. Given a local proof, for ex-
ample, we can adjust the assignment of inferences to frames [19]. This changes
the flow of premises across frame boundaries, which can in turn affect the vocabu-
lary or complexity of the interpolant. Given a non-local proof, we can, for example,
adjust the rules used for interpolant generation [14]. This affects the propositional
strength of the interpolant produced. The flexibility obtained in these ways is some-
what limited however. For example, in Fig. 6, if we obtained the interpolant se-
quence {�}, {y = 0}, {y = 1}, {y = 2}, {y = 1}, {y = 0}, {⊥}, these methods would
not allow us to obtain the more parsimonious sequence using x = y. For this a fun-
damentally different proof is required.

14.6 Abstractors as Proof Generalizers

In our model, the abstractor can be viewed as constructing general proofs from the
raw material of the proofs of special cases. We will briefly consider some of the
strategies used in the literature for this purpose.

Abstractors fall generally into two categories. The first and most common uses
standard fixed-point computation methods (typically either Symbolic Model Check-
ing of an abstract system or explicit-state predicate abstraction) to construct the
strongest inductive invariant that can be expressed using a vocabulary provided
by the refiner. Example systems in this category include SLAM, BLAST, SA-
TABS [11], Yogi [35], and many others. These abstractors provide a large space of
possible proofs. For example, in predicate abstraction, the space of possible safety
invariants in L is of size O(22N ), where N is the number of atomic predicates oc-
curring in the refinement proofs. For this reason, various systems either weaken the
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proof system (for example, using a Cartesian abstraction) or localize refinement of
the proof system to particular paths in the reachability tree or particular abstract
states (see Lazy Abstraction [18] and Synergy [17]).

A weaker but less costly alternative to this approach constructs invariants from
interpolants in a more direct fashion. Usually this is as either a conjunction or a
disjunction of interpolants obtained from special cases. One advantage of this ap-
proach is that it avoids the expensive image computation in predicate abstraction,
which may involve an exponential number of calls to a decision procedure.

The simplest direct method would be to unwind a loop k times, and to test
whether any formula in the sequence interpolant is inductive. This approach is taken,
for example in [39]. Slightly more sophisticated would be to find the strongest con-
junction or weakest disjunction of the interpolants that is inductive. This is a fixed-
point computation, but note that it is in a much smaller space than the one obtained
in predicate abstraction (of size 2k rather than 22|P | ). Thus, the number of fixed-
point iterations is linear instead of exponential in the worst case, and each iteration
involves just a linear number of decision procedure calls.

On the other hand, the space of invariants which can be constructed in this way
is less rich. For this reason, direct methods generally weaken the refinement paths
in some way in order to encourage the refinement prover to generalize. A good ex-
ample of this is the finite-state Interpolant-Based Model Checking (IBMC) method
of [28]. In this method (the first to explicitly use the notion of interpolation in model
checking) a path of k iterations is used. A new path is then constructed, weakening
the initial condition by replacing it with the previous one-step interpolant.

As mentioned above, weakening of the hypotheses is one method of inducing
generalization. It is hoped that some small number of iterations of this process will
result in irrelevant information about the initial state being abstracted away, yielding
an inductive invariant. On the other hand, over-weakening may result in a failed
proof. It can be shown however, that in the finite-state case, a sufficiently large
value of k will prevent this. This method provides a complete approach to finite-
state model checking using only a SAT solver.

An alternative direct approach is Lazy Abstraction With Interpolants (LAWI) in
which the paths in the reachability tree are labeled only with interpolants, and no
predicate post-image step is performed [30]. In this technique, a weakening method
called forced covering is used to encourage generalization.

Finally, abstractors differ in the class of failure cases they produce. In place of
“path” in the above discussion, we could have used other sorts of program frag-
ments. For example, we might consider program paths restricted with additional
guards, or program fragments containing loops or procedure calls. The choice of
failure cases can impact the generality of refinements. As might be expected, more
specific cases result in less general refinements, but on the other hand may reduce
the cost of searching for a refinement proof.
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14.7 Summary

Abstraction means eliminating information that is not relevant to a particular task,
such as checking a temporal property of a system model. Here, we have viewed an
abstraction as a limited or incomplete proof system. By limiting the proof system,
we hope to reduce the proof effort by focusing on relevant facts. When the abstrac-
tion fails, we take an approach of generalizing from particular cases to refine it.

In this framework, providing suitable proofs of special cases is the responsibility
of the refiner. We have identified two key criteria for refinement proofs. First, they
must be expressed in a suitable form to be generalized by the abstractor, a criterion
we named utility. This means that we must have some effective way to augment
the abstractor’s proof system to allow it to replicate the refiner’s proof. For path-
reductive abstractors, we saw that a sufficient condition for utility is a feasible inter-
polation result for the refiner’s proof system. We observed that local proof systems
always support feasible interpolation, and moreover that a number of refiners from
the literature can in fact be viewed as local proof systems. We can also consider
utility in terms of the cost of replicating a refinement proof in the abstractor. For
example, refiners such as SP and WP that unnecessarily introduce quantifiers may
be considered to have lower utility.

The other important criterion for refinement proofs is the ability to abstract away
irrelevant details of special cases. We noted that, according to Occam’s razor, sim-
pler proofs are more likely to generalize. Here, we observed a fundamental trade-off.
That is, a richer proof system is more likely to allow simple proofs, but on the other
hand entails a greater cost in proof search. The various refiners in the literature make
this trade-off in different ways.

Another important trade-off is in the space of proofs that the abstractor can con-
struct from the raw material provided by the refiner. Predicate abstraction provides a
large space of generalizations, and thus may converge with fewer refinements when
compared to IBMC or LAWI. However, this richness comes at a high computational
cost, thus predicate abstraction is often weakened. On the other hand, methods that
use smaller abstraction spaces generally must put more effort into forcing generality
of the refinement proofs.

In a broader sense, this view of “proofs in the aid of model checking” also pro-
vides us with some insight into the question “What good is a proof?” We can view a
proof as a certificate of correctness. However, in an engineering sense, such a certifi-
cate is of questionable value, since at best it guarantees absence of failures that can
be captured with a particular model and specification of a system. It can be argued
that only “falsification” is of practical interest, since only the discovery of errors
leads to actual design changes. Here, however, we have a different view of proof:
when searching for errors, a proof guides us away from parts of the space where
the errors are not. Conversely, the search for errors directs our proof effort. From a
practical point of view, proof and disproof are two sides of the same coin. Strength
in one requires strength in the other.
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Chapter 15
Predicate Abstraction for Program Verification

Safety and Termination

Ranjit Jhala, Andreas Podelski, and Andrey Rybalchenko

Abstract We present basic principles of algorithms for the verification of safety
and termination of programs. The algorithms call procedures on logical formulas in
order to construct an abstraction and to refine an abstraction. The two underlying
concepts are predicate abstraction and counterexample-guided abstraction refine-
ment.

15.1 Introduction

In this chapter, we are interested in program verification algorithms, i.e., in algo-
rithms that take a program and a correctness property and try to answer the question
whether the program is correct. Correctness is expressed by one of two properties
of program executions: safety (which we formalize as the non-reachability of given
error states), and termination. We are interested in a general class of programs for
which safety and termination are not decidable. As a consequence, the algorithms
must be based on abstraction.

The distinguishing feature of the algorithms is a specific way to call procedures
over logical formulas in order to effectively construct an abstraction and to effec-
tively refine this abstraction. The two underlying concepts are predicate abstraction
and counterexample-guided abstraction refinement.

An abstraction maps a set of states to a superset. The terminology predicate ab-
straction refers to the fact that the superset is constructed from a basis of so-called
predicates (pre-selected formulas that define sets of states). Now, with more predi-
cates one has a larger choice for the construction of the superset, and the abstraction
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can be more precise. In this sense, adding more predicates refines the abstraction.
The terminology abstraction refinement refers to the process of adding new predi-
cates. The crux of the verification algorithms is the counterexample-guided proce-
dure to select new predicates.

In an analogous way, we use transition predicates in order to construct the ab-
straction of a transition relation (a set of pairs of states).

Program verification with predicate abstraction is an ongoing research topic. We
can expect a great number of variations and optimizations to be proposed in the fu-
ture. Yet, a few basic principles have emerged which will remain the basis for further
developments even in the long term. Those few basic principles keep reappearing
in different settings, each setting being motivated by a specific application scenario.
The idea of this chapter is to abstract away from specific application scenarios and to
present the few basic principles in the shortest possible way in the simplest possible
formalism. For an exposition of the wealth of existing work in this area we refer to
the survey in [42]. An account of the history of counterexample-guided abstraction
refinement is given in [19].

15.2 Definitions

In this section, we use a formal setting based on logical formulas in order to intro-
duce programs, computations, and two representative properties of computations,
namely safety and termination.

15.2.1 Programs

We specify a program formally through logical formulas. For an example, see Fig. 1.
We assume a set V of logical variables that we call program variables. Each

program variable comes with a domain (a set of values, e.g., integers).
The program counter pc is a distinguished program variable of every program,

i.e., pc ∈ V . The domain of the program counter is a (finite) set Loc of special values
called the control locations of the program.

A program state s is a function that assigns each program variable a value from
its respective domain. Let $ be the set of program states.

We sometimes fix an order on the variables by writing V as a tuple of variables,
say V = (pc, x, y, z), and then use a tuple of values to denote a state, e.g., s =
(�1,1,3,2).

A formula ϕ with free variables in V represents a set of program states. For
example, the formula pc= � represents the set of all states at the control location �.
The formula x > 0 represents the set of states (at any program location) where the
program variable x has a value strictly greater than 0.

Each program variable (including pc) comes with its primed version. That is, for
each program variable x in V , we have another variable x′. We write V ′ for the tuple



15 Predicate Abstraction for Program Verification 449

Fig. 1 An example program (a), its control flow graph (b), and its transition relations (c).
Formally, the program is P = (V ,pc, ϕinit,T , ϕerr) where V = (pc, x, y, z) is the tuple of pro-
gram variables, pc is the program counter variable, T = {ρ1, ρ2, ρ3, ρ4, ρ5} is the set of tran-
sition relations, ϕinit = at_�1 is the initial condition, and ϕerr = at_�5 is the error condi-
tion. The primed variables are V ′ = (pc′, x′, y′, z′). We use goto and unchanged as abbrevia-
tions. For example goto(�1, �2) stands for (pc = �1 ∧ pc′ = �2) and unchanged(x, y, z) stands
for (x′ = x ∧ y′ = y ∧ z′ = z)

of primed versions of program variables. A formula ψ with free variables in V and
V ′ represents a set of pairs of states, i.e., a binary relation over states.

Formally, the pair (s1, s2) defines a valuation ν of variables in V ∪ V ′ where
ν(x)= s1(x) and ν(x′)= s2(x) for each variable x in V (and thus x′ in V ′). A for-
mula ψ in unprimed and primed variables represents the set of pairs of states (s1, s2)
such that the corresponding valuation ν satisfies ψ .

For example, the formula pc= �1 ∧ pc′ = �2 represents the set of pairs of states
(s1, s2) whose first component s1 is a state at the control location �1 and whose
second component s2 is a state at the control location �2. The formula x′ = x rep-
resents the set of pairs of states (s1, s2) (at any program location) where the pro-
gram variable x has the same value in the state s1 and in the state s2. The formula
x > 0∧ x′ > x represents the set of pairs of states (s1, s2) where the program vari-
able x has a value greater than 0 in the state s1 and its value in the state s1 is smaller
than in the state s2.

The formula x′ > 0 represents the set of pairs of states (s1, s2)where the program
variable x has a value greater than 0 in the state s2 and its value in the state s1 is
unconstrained. Symmetrically, the formula x > 0 represents the set of pairs of states
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(s1, s2) where the program variable x has a value greater than 0 in the state s1 and
its value in the state s2 is unconstrained.

We can use a formula ϕ in unprimed variables to represent both a set of states
and a binary relation over states. Thus, we can represent the restriction of the binary
relation ψ to the set ϕ by the conjunction ψ ∧ ϕ.

To simplify the notation for transition relations, we introduce the following ab-
breviations (here �, �1, and �2 are control locations and x1, . . . , xn are program
variables).

at_�= (pc= �),
at′_�= (

pc′ = �),
goto(�1, �2)=

(
at_�1 ∧ at′_�2

)
,

unchanged(x1, . . . , xn)=
(
x′1 = x1 ∧ · · · ∧ x′n = xn

)
.

(1)

A program P is specified by the tuple P = (V ,pc, ϕinit,T , ϕerr) consisting of the
set of program variables V , the program counter pc, the initiation condition ϕinit, the
set of transition relations T = {ρ1, . . . , ρn}, and the error condition ϕerr .

The initiation condition ϕinit and the error condition ϕerr are formulas over vari-
ables in V . They represent the set of initial states and the set of error states, respec-
tively.

The elements ρ1, . . . , ρn are formulas over the program variables in V and their
primed versions V ′. If the formula ρi contains a conjunct of the form goto(�1, �2)

for two locations �1 and �2, we say that ρi is a transition from �1 to �2.
The set of transition relations T = {ρ1, . . . , ρn} defines the program transition

relation of P , which is represented by the formula

ρP = ρ1 ∨ · · · ∨ ρn . (2)

The formula ρP thus represents the union of the transition relations represented by
the transitions ρ1, . . . , ρn.

Example 1 Our example program has an initiation condition ϕinit = (at_�1) and an
error condition ϕerr = (at_�5). That is, every state at control location �1 is an initial
state and every state at control location �5 is an error state. The set of program
transitions T = {ρ1, ρ2, ρ3, ρ4, ρ5} corresponds to the graph as shown in Fig. 1(b).
We call this graph the control flow graph of the program. The transition relations
ρ1, ρ2, ρ3, ρ4, and ρ5 are defined in Fig. 1(c). The transition relation of the program
is the disjunction ρP = ρ1 ∨ ρ2 ∨ ρ3 ∨ ρ4 ∨ ρ5. �

It is convenient to identify formulas with the sets and relations that they represent.
Accordingly, we identify the logical consequence relation (entailment) between for-
mulas |= with the set inclusion relation ⊆ between the sets that they represent. (All
examples presented in this chapter use the theory of linear rational arithmetic.) Fur-
thermore, we identify the satisfaction relation between a valuation and a formula
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(which is also denoted by |=) with the membership relation ∈ between the corre-
sponding state and the represented set of states (or between the corresponding pair
of states and the represented relation between states).

Often, a formal setting for program verification is based on the notion of a control
flow graph, i.e., a graph whose nodes correspond to the program locations and whose
edges are labeled by statements. This may reflect a particular design decision in a
practical implementation. It is clear, however, that one can derive the logical formula
denoting the transition relation of the program from a control flow graph, and vice
versa. As in the example, the logical formula denoting the transition relation of
the program induces a graph where, e.g., each edge (�1, �2) arises from a conjunct
goto(�1, �2) in the logical formula. By starting directly with logical formulas, we
obtain a uniform setting.

Example 2 Consider the program shown in Fig. 1. Let s be the program state given
by the tuple (�1,1,3,2) (which stands for the mapping that assigns 1, 3, 2, and �1
to the program variables x, y, z, and pc, respectively). Then, we have s |= y ≥ z (or,
written differently, s ∈ y ≥ z). Furthermore, we have y ≥ z |= y + 1≥ z (or, written
differently, y ≥ z⊆ y + 1≥ z). �

15.2.2 Correctness: Safety and Termination

Given a program P with the program transition relation ρP , the set of initial states
ϕinit, and the set of error states ϕerr , we formalize program correctness as a property
of program computations. A program computation of P is either a finite sequence
s1, . . . , sn or an infinite sequence s1, s2, . . . of states that is generated by the program
transition relation ρP , starts in an initial state, and if it is finite then it cannot be
continued after the last state (sn is a deadlock state). This means:

• each pair of consecutive states si and si+1 in the sequence is an element of the
program transition relation, i.e., (si , si+1) ∈ ρP ,

• the first element of the sequence is an initial state, i.e., s1 ∈ ϕinit,
• if the sequence is finite with sn as its last element, then the state sn does not have

any successor state w.r.t. the program transition relation ρP , i.e., there is no state s
such that (sn, s) ∈ ρP .

We will write s1, s2, . . . for program computations, whether finite or infinite.

Example 3 The (finite) sequence of states below is a program computation in our
example program P .

(�1,1,3,2), (�2,1,3,2), (�2,2,3,2), (�2,3,3,2), (�3,3,3,2), (�4,3,3,2)

The sequence of states starts in an initial state and follows the sequence of transitions
ρ1, ρ2, ρ2, ρ3, ρ4. The last state in the sequence does not have any successor state
w.r.t. the program transition relation ρP . �
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The verification of a large class of properties of program computations can be
reduced to reasoning about safety and termination.

A program is safe if no error state occurs in any program computation. A program
terminates if every program computation is finite.

A finite-state program terminates if and only if the length of program computa-
tions is bounded. In general, the length of program computations is unbounded even
if the program is terminating (see, for example, the program in Fig. 1).

15.3 Characterizing Correctness via Reachability

We will next characterize safety and termination by conditions that are suitable for
the abstraction-based verification of safety and termination. The conditions are de-
fined in terms of reachability of states and, respectively, reachability of pairs of
states (binary reachability).

15.3.1 Safety and Reachability

A state s is reachable if there exists a program computation s1, s2, . . . with an oc-
currence of s (i.e., there exists a position i such that si = s). We use

ϕreach

for the set of all reachable states.
An invariant is a set ϕ that contains all reachable states, i.e., ϕreach ⊆ ϕ.
The program P is safe if and only if the complement of the set of error states is

an invariant, i.e., if

ϕreach ⊆$ \ ϕerr. (3)

Example 4 For our example program, the set of reachable states is shown below.

ϕreach =
(
at_�1 ∨ (at_�2 ∧ y ≥ z)
∨ (at_�3 ∧ y ≥ z∧ x ≥ y)∨ (at_�4 ∧ y ≥ z∧ x ≥ y)

)
.

This set does not contain any error states, i.e., we have

ϕreach ⊆¬at_�5. �

In Sect. 15.4.1, we show that one can construct the set ϕreach by an iterative
application of a function on sets of states. In general, one needs to iterate the ap-
plication of the function infinitely many times. In Sect. 15.5.1, we show that one
can construct a superset of ϕreach by an iterative application of an abstraction of the
function. We construct the abstract function automatically using predicate abstrac-
tion. With predicate abstraction, one needs to iterate the application of the abstract
function only finitely many times.
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15.3.2 Termination and Binary Reachability

We extend the notion of reachability from states to pairs of states. A pair of states
(s, s′) is reachable if s is reachable from the initial state and s′ is reachable from s,
that is, if there exists a program computation in which s is followed by s′ (i.e., the
program computation is of the form s1, . . . , si , . . . , sj , . . . where si = s and sj = s′
for positions i and j such that 1≤ i < j ). We use

ψreach

for the set of reachable pairs of states and call it the binary reachability relation.
A transition invariant is a binary relation over states ψ that contains the binary

reachability relation, i.e., ψreach ⊆ψ .
Just as we used the notion of invariant to characterize safety, we will use the

notion of a transition invariant to characterize termination. The interest of the char-
acterization of termination in this way lies in a proof method for termination which
parallels the proof method for safety. As we show in Sect. 15.4.2, one can construct
the set ψreach by an iterative application of a function on sets of pairs of states. In
general, one needs to iterate the application of the function infinitely many times.
In Sect. 15.5.2, we show that one can construct a superset of ψreach by an itera-
tive application of an abstraction of the function. We construct the abstract function
automatically using the analogue of predicate abstraction for transition predicates.
One needs to iterate the application of the abstract function only finitely many times.

The termination of a program can be equivalently expressed as the well-
foundedness of its program transition relation. A binary relation ψ is defined to be
well-founded if it does not generate any infinite sequence (i.e., if there is no infinite
sequence s1, s2, . . . such that (si , si+1) ∈ψ for all i = 1,2, . . .). For example, the re-
lation x > 0∧x′ < x is well-founded. The union of well-founded relations is in gen-
eral not well-founded (take, for example, the union of the relations x > 0 ∧ x′ < x
and y > 0∧ y′ < y).

Assume we are given a number of well-founded relationsψ1, . . . ,ψn (each corre-
sponding, for example, to the program transition relation of a terminating program).
The program P is terminating if the union of the n well-founded relations, which
we call a disjunctively well-founded relation, is a transition invariant, i.e., if

ψreach ⊆ψ1 ∪ · · · ∪ψn. (4)

The proof of this fact relies on Ramsey’s theorem on combinatorics for infinite
graphs, see [52].

Just as we used the notion of invariant to characterize safety, we have used the
notion of a transition invariant to characterize termination. The interest of the char-
acterization of termination by transition invariants lies in a proof method for ter-
mination which parallels the proof method for safety. As we show in Sect. 15.4.2,
one can construct the set ψreach by an iterative application of a function on sets of
pairs of states. In general, one needs to iterate the application of the function in-
finitely many times. In Sect. 15.5.2, we show that one can construct a superset of
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ψreach by an iterative application of an abstraction of the function. We construct the
abstract function automatically using the analogue of predicate abstraction for tran-
sition predicates. One needs to iterate the application of the abstract function only
finitely many times.

To be precise, we have characterized termination by the fact that the union of a
(finite) number of well-founded relations forms a transition invariant. We have not
said where the well-founded relations come from. For the purpose of this presenta-
tion, we assume that they are given. There are, however, many strategies to obtain
formulas that represent the required well-founded relations; see, e.g., [20, 52].

15.4 Characterizing Correctness via Inductiveness

In order to check reachability (or binary reachability), we need to construct the set of
reachable states (or the set of reachable pairs of states). The construction is possible,
in theory, by the iterative application of a function over sets of states (or a function
over sets of pairs of states). This construction may need infinitely many iterations.
It defines the smallest set that is inductive, i.e., closed under the application of the
function. We may not need to construct the smallest set; it may be sufficient to
construct a superset. In order to show that a given set is indeed a superset of the set
of reachable states (or the set of reachable pairs of states), it is sufficient to show
that it is inductive.

15.4.1 Safety and Closure Under post

Let ϕ be a formula over V and let ρ be a formula over V and V ′. We define a
post-condition function post as follows.

post(ϕ,ρ)= ∃V ′′ : ϕ[V ′′/V ]∧ ρ[V ′′/V ][
V/V ′

]
. (5)

Here ϕ[V ′′/V ] represents the result of replacing V by V ′′ in ϕ, while ρ[V ′′/V ]
[V/V ′] requires first replacing V by V ′′ and then replacing V ′ by V . An application
post(ϕ,ρ) computes the image of the set ϕ under the relation ρ. We observe the
following useful property of the post-condition function.

∀ϕ ∀ρ1 ∀ρ2 : post(ϕ,ρ1 ∨ ρ2)=
(
post(ϕ,ρ1)∨ post(ϕ,ρ2)

);
∀ϕ1 ∀ϕ2 ∀ρ : post(ϕ1 ∨ ϕ2, ρ)=

(
post(ϕ1, ρ)∨ post(ϕ2, ρ)

)
.

(6)

This property states that the post-condition computation distributes over disjunction
w.r.t. each argument.
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Furthermore, for a natural number nwe define postn(ϕ,ρ) to represent the n-fold
application of the post function to ϕ with respect to ρ. Formally, we have:

postn(ϕ,ρ)=
{
ϕ if n= 0

post(postn−1(ϕ,ρ), ρ) otherwise.
(7)

Example 5 Given the transition relation ρ2 and the program variables V =
(pc, x, y, z) from our example program, we compute the following post-condition.

post(at_�2 ∧ y ≥ z,ρ2)

= (∃V ′′ : (at_�2 ∧ y ≥ z)
[
V ′′/V

]∧ ρ2
[
V ′′/V

][
V/V ′

])

= (∃V ′′ : (pc′′ = �2 ∧ y′′ ≥ z′′
)

∧ (
pc′′ = �2 ∧ pc′ = �2 ∧ x′′ + 1≤ y′′ ∧ x′ = x′′ + 1

∧ y′ = y′′ ∧ z′ = z′′)[V/V ′])

= (∃V ′′ : (pc′′ = �2 ∧ y′′ ≥ z′′
)

∧ (
pc′′ = �2 ∧ pc= �2 ∧ x′′ + 1≤ y′′ ∧ x = x′′ + 1

∧ y = y′′ ∧ z= z′′))

= (pc= �2 ∧ y ≥ z∧ x ≤ y).

We compute the 2-fold application by reusing the above result.

post2(at_�2 ∧ y ≥ z,ρ2)

= post
(
post(at_�2 ∧ y ≥ z,ρ2), ρ2

)

= post(pc= �2 ∧ y ≥ z∧ x ≤ y,ρ2)

= (∃V ′′ : (pc′′ = �2 ∧ y′′ ≥ z′′ ∧ x′′ ≤ y′′
)

∧ (
pc′′ = �2 ∧ pc= �2 ∧ x′′ + 1≤ y′′ ∧ x = x′′ + 1

∧ y = y′′ ∧ z= z′′))

= (pc= �2 ∧ y ≥ z∧ x − 1≤ y ∧ x ≤ y)
= (pc= �2 ∧ y ≥ z∧ x ≤ y). �

We characterize ϕreach using post as follows.

ϕreach = ϕinit ∨ post(ϕinit, ρP )∨ post
(
post(ϕinit, ρP ), ρP

)∨ . . .
=

∨

i≥0

posti (ϕinit, ρP ). (8)
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The above disjunction (over every number of applications of the post-condition
function) ensures that all reachable states are taken into consideration.

Example 6 We compute ϕreach for our example program. We first obtain the post-
condition after applying the transition relation of the program once.

post(at_�1, ρP )

= (
post(at_�1, ρ1)∨ post(at_�1, ρ2)∨ post(at_�1, ρ3)

∨ post(at_�1, ρ4)∨ post(at_�1, ρ5)
)

= post(at_�1, ρ1)

= (at_�2 ∧ y ≥ z).

Next, we obtain the post-condition for one more application.

post(at_�2 ∧ y ≥ z,ρP )
= (

post(at_�2 ∧ y ≥ z,ρ2)∨ post(at_�2 ∧ y ≥ z,ρ3)
)

= (at_�2 ∧ y ≥ z∧ x ≤ y ∨ at_�3 ∧ y ≥ z∧ x ≥ y).

We repeat the application step once again.

post(at_�2 ∧ y ≥ z∧ x ≤ y ∨ at_�3 ∧ y ≥ z∧ x ≥ y,ρP )
= (

post(at_�2 ∧ y ≥ z∧ x ≤ y,ρP )∨ post(at_�3 ∧ y ≥ z∧ x ≥ y,ρP )
)

= (
post(at_�2 ∧ y ≥ z∧ x ≤ y,ρ2)∨ post(at_�2 ∧ y ≥ z∧ x ≤ y,ρ3)

∨ post(at_�3 ∧ y ≥ z∧ x ≥ y,ρ4)∨ post(at_�3 ∧ y ≥ z∧ x ≥ y,ρ5)
)

= (at_�2 ∧ y ≥ z∧ x ≤ y ∨ at_�3 ∧ y ≥ z∧ x = y
∨ at_�4 ∧ y ≥ z∧ x ≥ y).

So far, by iteratively applying the post-condition function to ϕinit we obtained the
following disjunction.

at_�1 ∨
at_�2 ∧ y ≥ z ∨
at_�2 ∧ y ≥ z∧ x ≤ y ∨ at_�3 ∧ y ≥ z∧ x ≥ y ∨
at_�2 ∧ y ≥ z∧ x ≤ y ∨ at_�3 ∧ y ≥ z∧ x = y ∨
at_�4 ∧ y ≥ z∧ x ≥ y.
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We present this disjunction in a logically equivalent, simplified form as follows.

at_�1 ∨
at_�2 ∧ y ≥ z ∨
at_�3 ∧ y ≥ z∧ x ≥ y ∨
at_�4 ∧ y ≥ z∧ x ≥ y.

Any further application of the post-condition function does not produce any addi-
tional disjuncts. Hence, ϕreach is the above disjunction. �

Inductive Proof of Safety
An inductive invariant ϕ contains the initial states and is closed under succes-

sors [30, 40]. Formally, an inductive invariant is a formula over the program vari-
ables that represents a superset of the initial program states and is closed under the
application of the post function w.r.t. the relation ρP , i.e.,

ϕinit |= ϕ and post(ϕ,ρP ) |= ϕ.

A program is safe if there exists an inductive invariant ϕ that does not contain any
error states, i.e., ϕ ∧ ϕerr |= false.

Example 7 For our example program, the weakest inductive invariant consists of
the set of all states and is represented by the formula true. The strongest inductive
invariant was obtained in Example 6. The strongest inductive invariant does not
contain any error states. We observe that the slightly weaker inductive invariant
below also proves the safety of our examples.

at_�1 ∨ (at_�2 ∧ y ≥ z)∨ (at_�3 ∧ y ≥ z∧ x ≥ y)∨ at_�4. �

15.4.2 Termination and Transitive Closure

Let ρ1 and ρ2 be formulas over V and V ′. We define a relational composition func-
tion ◦ as follows.

ρ1 ◦ ρ2 = ∃V ′′ : ρ1
[
V ′′/V ′

]∧ ρ2
[
V ′′/V

]
. (9)

Example 8 Given the transition relations ρ1, ρ2, and the program variables V =
(pc, x, y, z) from our example program we obtain the following relational composi-



458 R. Jhala et al.

tion.

ρ1 ◦ ρ2 =
(∃V ′′ : (pc= �1 ∧ pc′ = �2 ∧ y ≥ z
∧ x′ = x ∧ y′ = y ∧ z′ = z)[V ′′/V ′]

∧ (
pc= �2 ∧ pc′ = �2 ∧ x + 1≤ y

∧ x′ = x + 1∧ y′ = y ∧ z′ = z)[V ′′/V ])

= (∃V ′′ : (pc= �1 ∧ pc′′ = �2 ∧ y ≥ z
∧ x′′ = x ∧ y′′ = y ∧ z′′ = z)

∧ (
pc′′ = �2 ∧ pc′ = �2 ∧ x′′ + 1≤ y′′

∧ x′ = x′′ + 1∧ y′ = y′′ ∧ z′ = z′′))

= (
pc= �1 ∧ pc′ = �2 ∧ y ≥ z∧ x + 1≤ y
∧ x′ = x + 1∧ y′ = y ∧ z′ = z). �

For a given ρP , a binary relation ψ and a natural number n, we define the n-time
transition composition compn(ρP ) of ρP with ψ as follows.

compn(ψ)=
{
ψ if n= 0

compn−1(ψ) ◦ ρP otherwise.

We can compute the (irreflexive) transitive closure ρ+P using comp as follows.

ρ+P = ρP ∨ ρP ◦ ρP ∨ ρP ◦ ρP ◦ ρP ∨ . . .
=

∨

i≥1

compi (ρP ). (10)

We will be using a restriction of ρ+P to reachable states ϕreach. For this reason,
we define

ψti =
∨

i≥1

compi
(
ϕreach ∧ V ′ = V

)
. (11)

That is, ψti is a transition invariant that is characterized using iteration of relational
composition.

Inductive Proof for Termination
The restriction of the program transition relation ρP to the reachable program

states is given by ρP ∧ ϕreach (the conjunction of a formula over V and V ′ and a
formula over V ). A program terminates if and only if the binary relation ρP ∧ϕreach

is well-founded.
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Example 9 For our example, we obtain the following restriction of the program
transition relation to reachable states.

ρP ∧ ϕreach

= (
goto(�1, �2)∧ y ≥ z∧ unchanged(x, y, z)

∨ goto(�2, �2)∧ y ≥ z∧ x + 1≤ y ∧ x′ = x + 1∧ unchanged(y, z)

∨ goto(�2, �3)∧ y ≥ z∧ x ≥ y ∧ unchanged(x, y, z)

∨ goto(�3, �4)∧ y ≥ z∧ x ≥ y ∧ x ≥ z∧ unchanged(x, y, z)
)
.

The restriction consists of four disjuncts, since the transition relation ρ5 does not
intersect with ϕreach. Furthermore, the restriction is well-founded, i.e., our program
terminates. Any attempt to construct an infinite sequence leads to unbounded in-
crease of the values of the variable x, which contradicts the condition that x is
bounded from above by y whenever the loop execution is carried out. �

An inductive transition invariant ψ contains the restriction of the program tran-
sition relation to reachable states and is closed under relational composition with
the program transition relation [52]. Formally, given an inductive invariant ϕ, we
require that an inductive transition invariant ψ satisfies the following conditions:

ϕ ∧ ρP |=ψ and ψ ◦ ρP |=ψ.
A program terminates if there exist a finite number of well-founded relations

ψ1, . . . ,ψn whose union contains an inductive transition invariant, i.e., ψ |= ψ1 ∨
· · · ∨ψn.

15.5 Abstraction

The computation of the set of reachable program states requires the iterative ap-
plication of the post-condition function on the initial program states, see Eq. (8).
The iteration stops when no new disjuncts are being added. Unfortunately, in many
cases, the iteration will never stop.

Example 10 We consider the iterative computation of the set of states that is reach-
able from at_�2 ∧ x ≤ z by applying the transition ρ2 of our example program. We
obtain the following sequence of post-conditions (where V = (pc, x, y, z)).

post(at_�2 ∧ x ≤ z,ρ2)=
(∃V ′′ : (pc′′ = �2 ∧ x′′ ≤ z′′

)

∧ (
pc′′ = �2 ∧ pc= �2 ∧ x′′ + 1≤ y′′

∧ x = x′′ + 1∧ y = y′′ ∧ z= z′′))

= (at_�2 ∧ x − 1≤ z∧ x ≤ y)
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post2(at_�2 ∧ x ≤ z,ρ2)= (at_�2 ∧ x − 2≤ z∧ x ≤ y)
post3(at_�2 ∧ x ≤ z,ρ2)= (at_�2 ∧ x − 3≤ z∧ x ≤ y)

. . .

postn(at_�2 ∧ x ≤ z,ρ2)= (at_�2 ∧ x − n≤ z∧ x ≤ y).
In this sequence, we observe that each iteration yields a set of states that contains
states not discovered before. For example, the set of states reachable after applying
the post-condition function once is not included in the original set, i.e.,

(at_�2 ∧ x − 1≤ z∧ x ≤ y) �|= (at_�2 ∧ x ≤ z).
The set of states reachable after applying the post-condition function twice is not
included in the union of the above two sets, i.e.,

(at_�2 ∧ x − 2≤ z∧ x ≤ y) �|= (at_�2 ∧ x − 1≤ z∧ x ≤ y ∨ at_�2 ∧ x ≤ z).
Furthermore, we observe that the set of states reachable after n-fold application of
post, where n≥ 1, still contains previously unreached states, i.e.,

∀n≥ 1 : (at_�2 ∧ x − n≤ z∧ x ≤ y)

�|=
(

at_�2 ∧ x ≤ z ∨
∨

1≤i<n
(at_�2 ∧ x − i ≤ z∧ x ≤ y)

)

.
�

A similar example can be used to show the possibility of non-termination for the
procedure which constructs the strongest transition invariant.

15.5.1 Safety and Predicate Abstraction

Instead of computing ϕreach, we compute an over-approximation of ϕreach by
a superset ϕ#

reach. Then, we check whether ϕ#
reach contains any error states. If

ϕ#
reach ∧ ϕerr |= false holds then ϕreach ∧ ϕerr |= false. Hence the program is safe.

Similarly to the iterative computation of ϕreach, we compute ϕ#
reach by applying

iteration. However, instead of iteratively applying the post-condition function post
we use its over-approximation post# such that

∀ϕ ∀ρ : post(ϕ,ρ) |= post#(ϕ,ρ). (12)

We decompose the computation of post# into two steps. First, we apply post and
then we over-approximate the result using a function α such that

∀ϕ : ϕ |= α(ϕ). (13)
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Table 1 Predicate abstraction example

at_�1 at_�2 at_�3 at_�4 at_�5 y ≥ z x ≥ y
at_�2 ∧ y ≥ z∧ x + 1≤ y �|= |= �|= �|= �|= |= �|=

That is, given an over-approximating function α we define post# as follows.

post#(ϕ,ρ)= α(post(ϕ,ρ)
)
. (14)

Finally, we compute ϕ#
reach as follows.

ϕ#
reach = α(ϕinit)

∨ post#
(
α(ϕinit), ρP

)

∨ post#
(
post#

(
α(ϕinit), ρP

)
, ρP

)∨ . . .
=

∨

i≥0

(
post#

)i(
α(ϕinit), ρP

)
. (15)

We will formalize the over-approximation-based reachability computation
through the iterated application of the abstract post-condition operator as indi-
cated by Eq. (15). Its result contains the set of reachable program states. Formally,
ϕreach |= ϕ#

reach.

Predicate Abstraction
We construct an over-approximation using a finite number of building blocks, the

so-called predicates p1, . . . , pn. Each predicate is set of states denoted by a formula
over the program variables V .

We fix a finite set of predicates Preds= {p1, . . . , pn}. Given Preds, we can con-
struct an over-approximation of ϕ as follows [23, 31].

α(ϕ)=
∧
{p ∈ Preds | ϕ |= p}. (16)

That is, the over-approximating function α maps a set of states ϕ to the conjunc-
tion of all predicates that are entailed by ϕ.

If the set of entailed predicates is empty then the result of applying predicate
abstraction is

∧∅ and is equivalent to true.

Example 11 Consider a set of predicates Preds= {at_�1, . . . ,at_�5, y ≥ z, x ≥ y}.
We compute α(at_�2 ∧ y ≥ z ∧ x + 1 ≤ y) as follows. First, we check the logi-
cal consequence between the argument to the abstraction function and each of the
predicates. The results are presented in Table 1.

Then, we take the conjunction of the entailed predicates as the result of the ab-
straction.

α(at_�2 ∧ y ≥ z∧ x + 1≤ y)=
∧
{at_�2, y ≥ z} = at_�2 ∧ y ≥ z. �
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The predicate abstraction function in Eq. (16) approximates ϕ using a conjunc-
tion of predicates, which requires n entailment checks where n is the number of
given predicates.

Example 12 We use predicate abstraction to compute ϕ#
reach for our exam-

ple program following the iterative scheme presented in Eq. (15). Let Preds =
{false,at_�1, . . . ,at_�5, y ≥ z, x ≥ y}. First, let ϕ1 be the over-approximation of
the set of initial states ϕinit:

ϕ1 = α(at_�1)=
∧
{at_�1} = at_�1.

We apply post# on ϕ1 w.r.t. each program transition and obtain

ϕ2 = post#(ϕ1, ρ1)= α(at_�2 ∧ y ≥ z︸ ︷︷ ︸
post(ϕ1,ρ1)

)=
∧
{at_�2, y ≥ z} = at_�2 ∧ y ≥ z,

whereas post#(ϕ1, ρ2)= · · · = post#(ϕ1, ρ5)=∧{false, . . . } = false.
Now we apply program transitions on ϕ2 using post#. The application of ρ1, ρ4,

and ρ5 on ϕ2 result in false for the following reason. ϕ2 requires at_�2, but the
transition relations ρ1, ρ4, and ρ5 are applicable if either at_�1 or at_�3 holds. For
ρ2 we obtain

post#(ϕ2, ρ2)= α(at_�2 ∧ y ≥ z∧ x ≤ y)=
∧
{at_�2, y ≥ z} = at_�2 ∧ y ≥ z.

The resulting set above is equal to ϕ2 and, therefore, is discarded, since we are
already exploring states reachable from ϕ2. For ρ3 we obtain

post#(ϕ2, ρ3)= α(at_�3 ∧ y ≥ z∧ x ≥ y)
=

∧
{at_�3, y ≥ z, x ≥ y} = at_�3 ∧ y ≥ z∧ x ≥ y

= ϕ3.

We compute an over-approximation of the set of states that are reachable from ϕ3
by applying post#. The transitions ρ1, ρ2, and ρ3 result in false due to an inconsis-
tency caused by the program counter valuations in ϕ3 and the respective transition
relations. For the transition ρ4 we obtain

post#(ϕ3, ρ4)= α(at_�4 ∧ y ≥ z∧ x ≥ y ∧ x ≥ z)
=

∧
{at_�4, y ≥ z, x ≥ y} = at_�4 ∧ y ≥ z∧ x ≥ y

= ϕ4.

For the transition ρ5, which corresponds to the assertion violation, we obtain

post#(ϕ3, ρ5)= α(at_�5 ∧ y ≥ z∧ x ≥ y ∧ x + 1≤ z)
= false.
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Fig. 2 Algorithm
ABSTREACH for abstract
reachability computation
w.r.t. a given finite set of
predicates

Any further application of program transitions does not compute any additional
reachable states. We conclude that ϕ#

reach = ϕ1∨· · ·∨ϕ4. Furthermore, since ϕ#
reach∧

at_�5 |= false the program is safe. �

Algorithm ABSTREACH

We combine the characterization of abstract reachability using Eq. (15) with
the predicate abstraction function given in Eq. (16) and obtain an algorithm AB-
STREACH for computing ReachStates#. The algorithm is shown in Fig. 2.

ABSTREACH takes as input a finite set of predicates Preds and computes a set of
formulas ReachStates# that represents an over-approximation ϕ#

reach. Furthermore,
ABSTREACH records its intermediate computation steps in a labeled tree Parent. (In
the next section we will show how this tree can be used to discover new predicates
when a refined abstraction is needed.)

The initialization steps of ABSTREACH are shown in lines 1–5 of Fig. 2. First,
we construct the abstraction function α according to Eq. (16), and then use it to
construct an over-approximation post# of the post-condition function according to
Eq. (14). We initialize ReachStates# with an over-approximation of the initial pro-
gram states, which corresponds to the first disjunct in Eq. (15). Since the initial
states do not have any predecessors, Parent is initially empty. Finally, we create a
worklist Worklist that contains sets of states on which post# has not been applied
yet.

The main part of ABSTREACH in lines 6–14 implements the iterative applica-
tion of post# in Eq. (15) using a while loop. The loop termination condition checks
whether Worklist has any items to process. In case the worklist is not empty, we
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Fig. 3 Applying ABSTREACH on the program in Fig. 1 and the set of predicates Preds =
{false,at_�1, . . . ,at_ �5, y ≥ z, x ≥ y}. The nodes ϕ1, . . . , ϕ4 represent elements of ReachStates#.
Labeled edges connecting the nodes represent Parent. The dotted edge denotes the entailment re-
lation between post#(ϕ2, ρ2) and ϕ2

choose such an item, say ϕ, and remove it from the worklist. For brevity, we leave
the selection procedure unspecified, but note that various strategies are possible, e.g.,
breadth- or depth-first search. Then, we apply post# w.r.t. each program transition,
say ρ, on ϕ. Let ϕ′ be the result of such an application. We add ϕ′ to ReachStates#

if ϕ′ contains some program states that are not already contained in one of the for-
mulas in ReachStates#. We formulate the above test as an entailment check between
ϕ′ and the disjunction of all formulas in ReachStates#. Often, there is a formula ψ
in ReachStates# such that ϕ′ |= ψ . Otherwise, that ϕ is added to ReachStates#, and
we record that ϕ′ was computed by applying ρ on ϕ by adding a tuple (ϕ,ρ,ϕ′)
to Parent. Finally, ϕ′ is put on the worklist.

The loop execution terminates after a finite number of steps, since the range of
post# is finite (and is of size 2n where n is the size of Preds). The disjunction of
formulas in ReachStates# is logically equivalent to ϕ#

reach.

Example 13 We describe the application of ABSTREACH on our example program
when Preds= {false,at_�1, . . . ,at_�5, y ≥ z, x ≥ y}. Figure 3 provides a pictorial
illustration. Example 12 provides details on computed over-approximations of post-
conditions.

After constructing α and post# for the given predicates, we compute ϕ1 =
(at_�1) and put it into ReachStates# and into Worklist. See the node ϕ1 in Fig. 3.

During the first loop iteration, we choose ϕ1 to be the element taken from the
worklist. Now we compute post# w.r.t. each program transition. For ρ1 we ob-
tain ϕ2 = (at_�2 ∧ y ≥ z). The entailment check ϕ2 |=∨

ReachStates# fails, since∨
ReachStates# is equal to ϕ1 and ϕ2 �|= ϕ1. Hence, ϕ2 is added to ReachStates#. As

a result, the tuple (ϕ1, ρ1, ϕ2) is added to Parent and ϕ2 becomes a worklist item.
See the node ϕ2 as well as the edge between ϕ1 and ϕ2 in Fig. 3. We continue with
applying program transitions on ϕ1. For ρ2 we obtain post#(ϕ1, ρ2) = false. Since
false |=∨

ReachStates# there is no addition to ReachStates#. Similarly, applying
ρ3, . . . , ρ5 does not modify ReachStates#.
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We start the second loop iteration with ReachStates# = {ϕ1, ϕ2}, Worklist= {ϕ2},
and Parent= {(ϕ1, ρ1, ϕ2)}. We choose ϕ2 from the worklist. When applying post#

on ϕ2 only ρ2 and ρ3 result in sets of successor states that are not equal to false.
We obtain post#(ϕ2, ρ2) = (at_�2 ∧ y ≥ z). Since (at_�2 ∧ y ≥ z) entails ϕ2 and
hence

∨
ReachStates#, nothing is added to ReachStates# and we proceed directly

with ρ3. For ϕ3 = post#(ϕ2, ρ3) = (at_�3 ∧ y ≥ z ∧ x ≥ y) we observe that ϕ3 �|=∨
ReachStates#. Hence, we add ϕ3 to ReachStates# and Worklist, while (ϕ2, ρ3, ϕ3)

is recorded in Parent. See the node ϕ3 as well as the edge between ϕ2 and ϕ3 in
Fig. 3.

At the beginning of the third loop iteration we have ReachStates# = {ϕ1, ϕ2, ϕ3},
Worklist = {ϕ3}, and Parent = {(ϕ1, ρ1, ϕ2), (ϕ2, ρ3, ϕ3)}. We choose ϕ3 from
the worklist. After computing ϕ4 by applying ρ4 and discovering that ϕ4 �|=∨

ReachStates#, we add ϕ4 following the algorithm. See the node ϕ4 as well as
the edge between ϕ3 and ϕ4 in Fig. 3. Since all other program transitions yield false
we proceed with the next iteration.

The fourth loop iteration removes ϕ4 from the worklist, but does not add any
new elements to it. Hence ABSTREACH terminates and outputs ReachStates# =
{ϕ1, . . . , ϕ4} as well as Parent= {(ϕ1, ρ1, ϕ2), (ϕ2, ρ3, ϕ3), (ϕ3, ρ4, ϕ4)}. �

Discussion
We have presented predicate abstraction and the abstract reachability algorithm

in the framework of abstract interpretation [23] (where predicate abstraction is for-
malized through the concept of Moore families). This presentation is very general.
It allows us to leave open many design choices.

One such design choice, conceptually and technically, is to split the algorithm
into two steps. The first (“offline”) step is to compute the function post#. The second
step is to iterate post# until a fixpoint is reached. Often, e.g., in [2–4, 17], conjunc-
tions of predicates are viewed as abstract states (which can possibly be represented
as bitvectors). Instead of constructing the function post# directly, one may first con-
struct a relation between abstract states. If one views this relation as the transition
relation of an abstract program P# (the “abstraction of the program P”), then the
abstraction of the post operator for the program P can be phrased as the post oper-
ator of the (finite-state) abstract program P#, formally

post#P = postP# .

Our definition of the over-approximating function α in Eq. (16) combines pred-
icates into a conjunction. That is, the over-approximating function α maps a set
of states ϕ to the strongest conjunction e of predicates p in Preds such that e is
still entailed by ϕ. The name Cartesian abstraction was coined for this approach
in [3] (in analogy to the abstraction of a set of tuples by the Cartesian product of
its component sets; each predicate is treated independently from the others, like
the components in the tuples in the Cartesian product). The alternative approach of
Boolean abstraction is to combine predicates into a Boolean expression (of a gen-
eral form). Then, the over-approximating function α maps a set of states ϕ to the
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strongest Boolean expression e over the given set of predicates such that that e is
still entailed by ϕ. The gain in precision is usually not worth the higher cost of com-
puting the abstraction function. We point out, however, the technique of so-called
large-block encoding which operates on compound program transitions with rich
Boolean structure and which can leverage the advances in state-of-the-art decision
procedures and thus can offer both precision and efficiency [8, 11].

15.5.2 Termination and Transition Predicate Abstraction

In this section, we show how predicate abstraction can be used for computing tran-
sition invariants, and thus proving program termination.

In principle, transition invariants can be computed by applying the iterative
scheme in Eq. (10) and then restricting the obtained result to reachable states by
relying on Eq. (11). The iteration of comp finishes when no new pair of program
states is discovered. Unfortunately, such an iteration process does not terminate in
finite time, for similar reasons to those presented in Sect. 15.5.1.

Instead of computing ψti we compute its over-approximation by a superset ψ#
ti .

Then, we check whether ψ#
ti is disjunctively well-founded. If ψ#

ti satisfies the dis-
junctive well-foundedness condition then ψti is disjunctively well-founded as well.
Hence the program terminates.

Similarly to the computation of ψti, we compute ψ#
ti by applying iteration. How-

ever, instead of iteratively applying the relational composition function comp we
use its over-approximation comp# such that

∀ψ : comp(ψ) |= comp#(ψ). (17)

We decompose the computation of comp# into two steps. First, we apply comp and
then we over-approximate the result using a function α̈ such that

∀ψ :ψ |= α̈(ψ). (18)

That is, given an over-approximating function α̈ we define comp# as follows.

comp#(ψ)= α̈(comp(ψ)
)
. (19)

Finally, we can obtain ψ#
ti by using a previously computed over-approximation of

reachable states ϕ#
reach as follows.

ψ#
ti = comp#(ϕ#

reach ∧ V ′ = V
)

∨ comp#(comp#(ϕ#
reach ∧ V ′ = V

))∨ . . .
=

∨

i≥1

(
comp#)i(ϕ#

reach ∧ V ′ = V
)
. (20)
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We formalize our over-approximation-based transition invariant computation as
follows. The strongest transition invariant of the program is contained in the result
of the abstract computation given by Eq. (20). Formally, ψti |=ψ#

ti .

Transition Predicate Abstraction
We construct an over-approximation ψ#

ti using a given set of building blocks, so-
called transition predicates. Each transition predicate is a formula over the program
variables V and their primed verions V ′, which represents a binary relation over
program states [53].

We fix a finite set of transition predicates TransPreds= {p̈1, . . . , p̈n}. Then, we
define an over-approximation of ψ that is constructed using TransPreds as follows.

α̈(ψ)=
∧
{p̈ ∈ TransPreds |ψ |= p̈}. (21)

If the set of entailed transition predicates is empty then the result of applying tran-
sition predicate abstraction is

∧∅, which is equivalent to true.

Example 14 Consider a set of predicates TransPreds = {at_�1, . . . ,at_�5,

at′_�1, . . . ,at′_�5, x ≥ 0, x′ ≥ x + 1, x′ ≥ x, y′ ≥ y, y′ ≥ y + 1}. We will apply
transition predicate abstraction on the transition ρ2 in the program shown in Fig. 1.
We compute α̈(goto(�2, �2) ∧ x + 1 ≤ y ∧ x′ = x + 1 ∧ unchanged(y, z)) as fol-
lows. First, we check the logical consequence between the argument to the abstrac-
tion function and each of the predicates and obtain the following set of entailed
predicates:

{
at_�2,at′_�2, x ≥ 0, x′ ≥ x + 1, x′ ≥ x, y′ ≥ y}.

Then, we take the conjunction of the entailed predicates as the result of the abstrac-
tion.

∧{
at_�2,at′_�2, x ≥ 0, x′ ≥ x + 1, x′ ≥ x, y′ ≥ y}

= at_�2 ∧ at′_�2 ∧ x ≥ 0∧ x′ ≥ x + 1∧ y′ ≥ y. �

The transition predicate abstraction function in Eq. (21) approximates ψ using a
conjunction of transition predicates, which requires n entailment checks where n is
the number of given transition predicates.

Example 15 We use transition predicate abstraction to compute ψ#
ti for our example

program from Fig. 1 following the iterative scheme presented in Eq. (20). Since we
are interested in proving termination we will ignore the assertion statement occur-
ring in the program. As a consequence, in this example we will not take transitions
ρ4 and ρ5 into account.

For simplicity, we use ϕ#
reach = true, which states that the set of reachable

states is contained in the set of all possible program states represented by true.
Let TransPreds = {false,at_�1, . . . ,at_�3,at′_�1, . . . ,at′_�3, x ≤ y, y′ − x′ ≤
y − x − 1}.
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First, we compute the first step of the over-approximation comp#(ϕ#
reach ∧

V ′ = V ):
comp#(ϕ#

reach ∧ V ′ = V
)= α̈((ϕ#

reach ∧ V ′ = V
) ◦ ρP

)

= α̈((ϕ#
reach ∧ V ′ = V

) ◦ (ρ1 ∨ ρ2 ∨ ρ3)
)

= α̈(ρ1 ∨ ρ2 ∨ ρ3).

We obtain the following abstractions for each of the transitions:

ψ1 = α̈(ρ1)= goto(�1, �2),

ψ2 = α̈(ρ2)=
(
goto(�2, �2)∧ x ≤ y ∧ y′ − x′ ≤ y − x − 1

)
,

ψ3 = α̈(ρ3)= goto(�2, �3).

We apply comp# on ψ1, . . . ,ψ3 and obtain the following non-empty abstractions.

ψ4 = α̈(ψ1 ◦ ρ2)= goto(�1, �2),

ψ5 = α̈(ψ1 ◦ ρ3)= goto(�1, �3),

ψ6 = α̈(ψ2 ◦ ρ2)=
(
goto(�2, �2)∧ x ≤ y ∧ y′ − x′ ≤ y − x − 1

)
,

ψ7 = α̈(ψ2 ◦ ρ3)=
(
goto(�2, �3)∧ x ≤ y ∧ y′ − x′ ≤ y − x − 1

)
.

We observe that ψ4 |= ψ1, ψ6 |= ψ2, and ψ7 |= ψ3, hence, ψ4, ψ6, and ψ7 can
be ignored. We apply comp# on ψ5 and observe that the resulting abstractions are
empty. Hence, we finish the iterative computation and obtain

ψ#
ti =ψ1 ∨ψ2 ∨ψ3 ∨ψ5.

The computed transition invariantψ#
ti is disjunctively well-founded. Each disjunct in

ψ#
ti whose start and finish locations are not equal, e.g., ψ1 with the start location �1

and finish location �2, is well-founded. The remaining disjunct ψ2 is well-founded
since the value of y−x is greater than zero whenever ψ2 makes a step and decreases
during each step of ψ2. Hence, we conclude that ψ#

ti is contained in a finite union of
well-founded relations. Thus, the program terminates.

We represent the above computation pictorially in Fig. 4. �

Algorithm TRANSABSTREACH

We combine the characterization of abstract transition invariants using Eq. (20)
with the transition predicate abstraction function given in Eq. (21) and obtain an al-
gorithm TRANSABSTREACH for computing ReachTrans#. The algorithm is shown
in Fig. 5.

TRANSABSTREACH takes as input a finite set of transition predicates TransPreds
and computes a set of formulas ReachTrans# that represents an over-approxima-
tion ψ#

ti . Furthermore, TRANSABSTREACH records its intermediate computation
steps in a labeled tree TransParent. In the next section we will show how this tree
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Fig. 4 Abstract transitions computed in Example 15. Solid edges connecting the nodes represent
how nodes were computed. Dotted edges denote the entailment relation

Fig. 5 Abstract transitive closure computation

can be used to discover new transition predicates when a refined abstraction is
needed.

The initialization steps of TRANSABSTREACH are shown in lines 1–4 in Fig. 5.
First, we construct the abstraction function α̈ according to Eq. (21), and then use it
to construct an over-approximation of the relational composition of program tran-
sitions. ReachTrans# is initially empty, which corresponds to the fact that we are
interested in the irreflexive transitive closure following Eq. (20). Since the initial
relations do not have any predecessors, TransParent is initially empty. Finally, we
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initialize the worklist Worklist with a set of identity relations over program states
that are restricted to the sets of states represented by elements of ReachStates#.
Such initialization together with the first iteration of the while loop correspond to
the first disjunct in Eq. (20).

The main part of ABSTREACH in lines 5–13 implements the iterative applica-
tion of comp# in Eq. (20) using a while loop. Since we are interested in applying
individual program transitions one by one, we rely on a direct application of rela-
tional composition ◦ and transition predicate abstraction α̈. The loop termination
condition checks whether Worklist has any items to process. In case the worklist
is not empty, we choose such an item, say ϕ̈, and remove it from the worklist. For
brevity, we leave the selection procedure unspecified, but note that various strategies
are possible, e.g., breadth- or depth-first search. Then, we apply ◦ and α̈ w.r.t. each
program transition, say ρ, on ϕ̈. Let ϕ̈′ be the result of such an application. We add
ϕ̈′ to ReachTrans# if ϕ̈′ contains some pairs of program states that are not already
contained in one of the formulas in ReachTrans#. We formulate the above test as
an entailment check between ϕ̈′ and the disjunction of all formulas in ReachTrans#.
Often, there is a formula ψ̈ in ReachStates# such that ϕ̈′ |= ψ̈ . Otherwise, ϕ̈ is added
to ReachTrans#, and we record that ϕ̈′ was computed by applying ρ on ϕ̈ by adding
a tuple (ϕ̈, ρ, ϕ̈′) to TransParent. Finally, ϕ̈′ is put on the worklist.

The loop execution terminates after a finite number of steps, since the range of
α̈ is finite (and is of size 2n where n is the size of TransPreds). The disjunction of
formulas in ReachTrans# is logically equivalent to ψ#

ti .

Example 16 We illustrate TRANSABSTREACH by showing how it automates
the computation presented in Example 15. We again consider our example pro-
gram from Fig. 1 together with a set of transition predicates TransPreds =
{false,at_�1, . . . ,at_�3,at′_�1, . . . ,at′_�3} and an over-approximation of reach-
able states ReachStates# = {true}. After executing the initialization steps in TRANS-
ABSTREACH we obtain ReachTrans# = ∅, TransParent= ∅, and Worklist= {true∧
unchanged(x, y, z)}.

The first iteration of the while loop chooses ϕ̈ = (true∧ unchanged(x, y, z)) and
removes it from Worklist. Now TRANSABSTREACH iterates through the transitions
of the program. First, we consider ρ = ρ1 and obtain

ϕ̈′ = α̈((true∧ unchanged(x, y, z)
) ◦ ρ1

)= goto(�1, �2).

Since ReachTrans# = ∅, we obtain

ReachTrans# = {
goto(�1, �2)

}
,

TransParent= {(
true∧ unchanged(x, y, z), ρ1,goto(�1, �2)

)}
,

Worklist= {
goto(�1, �2)

}
,

and proceed with the remaining program transitions. For ρ = ρ2 we obtain ϕ̈′ =
goto(�2, �2). Since ϕ̈′ does not entail the transition relation already contained in
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ReachTrans#, we obtain (in this example, “. . . ” denotes the previously assigned
value)

ReachTrans# = {
goto(�2, �2), . . .

}
,

TransParent= {
(true∧ unchanged(x, y, z), ρ2,goto(�2, �2), . . .

}
,

Worklist= {
goto(�2, �2),goto(�1, �2)

}
.

After applying ρ = ρ3 we obtain ϕ̈′ = goto(�2, �3), which leads to

ReachTrans# = {
goto(�2, �3), . . .

}
,

TransParent= {(
true∧ unchanged(x, y, z), ρ3,goto(�2, �3)

)
, . . .

}
,

Worklist= {
goto(�2, �3),goto(�2, �2),goto(�1, �2)

}
.

Now, we proceed with the second iteration of the while loop. We choose ϕ̈ =
goto(�1, �2) and proceed with applying program transitions. Applying ρ1 yields
ϕ̈′ = false. For ρ = ρ2 we obtain ϕ̈ = goto(�1, �2). Since there exists an element
of ReachTrans# that is entailed by ϕ̈′, namely goto(�1, �2), the computed ϕ̈′ is dis-
carded. Applying ρ3 yields ϕ̈′ = goto(�1, �3) and leads to

ReachTrans# = {
goto(�1, �3), . . .

}
,

TransParent= {(
goto(�1, �2), ρ3,goto(�1, �3)

)
, . . .

}
,

Worklist= {
goto(�1, �3),goto(�2, �3),goto(�2, �2)

}
.

Subsequent iterations of the while loop proceed similarly and modify neither
ReachTrans# nor TransParent. Finally, Worklist becomes empty and TRANSAB-
STREACH terminates. We obtain the following output:

ReachTrans# = {
goto(�1, �3),goto(�2, �3),goto(�2, �2),goto(�1, �2)

}
,

TransParent= {(
goto(�1, �2), ρ3,goto(�1, �3)

)
,

(
true∧ unchanged(x, y, z), ρ3,goto(�2, �3)

)
,

(
true∧ unchanged(x, y, z), ρ2,goto(�2, �2)

)
,

(
true∧ unchanged(x, y, z), ρ1,goto(�1, �2)

)}
. �

15.6 Abstraction Refinement

The algorithm ABSTREACH requires a set of predicates in order to compute an
over-approximation of the set of reachable program states. Similarly, the algorithm
TRANSABSTREACH requires a set of transition predicates in order to compute an
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Fig. 6 Abstract reachability computation with Preds= {false,at_�1, . . . ,at_�5, y ≥ z}

over-approximation of the set of reachable pairs of program states. Finding the right
set of predicates (or of transition predicates) that yields a sufficiently precise over-
approximation is a difficult task.

15.6.1 Refinement of Predicate Abstraction

The procedure for refining predicate abstraction considers certain program paths as
the main source of information. By exploring such paths we can obtain an adequate
set of predicates to prove the program correct.

Analysis of Counterexample Paths
We start with an example that illustrates the impact of over-approximation and

how it can be eliminated.

Example 17 In Example 13, the provided set of predicates was adequate for prov-
ing program safety. Omitting just one predicate, e.g., provide the predicates Preds=
{false,at_�1, . . . ,at_�5, y ≥ z} without x ≥ y, leads to an over-approximation
ϕ#

reach that has a non-empty intersection with the error states. As shown in Fig. 6,
we have ϕ5 ∧ ϕerr �|= false. That is, ABSTREACH fails to prove the property without
the predicate x ≥ y.

We analyse the reason for the excessive over-approximation. Figure 6 shows that
the Parent relation records a sequence of three steps leading to the computation
of ϕ5. First, we apply ρ1 to ϕ1 and compute ϕ2. Then, ϕ3 is obtained by applying ρ3

to ϕ2. Finally, ρ5 is applied to ϕ3 and results in ϕ5. Thus, we note that the sequence
of program transitions ρ1, ρ3, and ρ5 determined ϕ5. We refer to this sequence as a
counterexample path. Using this path and the functions α and post# corresponding
to the current set of predicates we obtain

ϕ5 = post#
(
post#

(
post#

(
α(ϕinit), ρ1

)
, ρ3

)
, ρ5

)
.
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Table 2 Example solution to
the over-approximation
condition

ψ1 ψ2 ψ3 ψ4

at_ �1 at_�2 ∧ y ≥ z at_�3 ∧ x ≥ z false

That is, ϕ5 is equal to the over-approximation of the post-condition computed along
the counterexample path.

Now we check whether the counterexample path also leads to an error state when
no over-approximation is applied. First we compute

post
(
post

(
post(ϕinit, ρ1), ρ3

)
, ρ5

)= post
(
post(at_�2 ∧ y ≥ z,ρ3), ρ5

)

= post(at_�3 ∧ y ≥ z∧ x ≥ y,ρ5)

= false.

Hence, by executing the program transitions ρ1, ρ3, and ρ5 it is not possible to reach
any error state. We conclude that the over-approximation is too coarse, at least when
dealing with the above path.

We need a more precise over-approximation that will prevent post# from includ-
ing states that lead to error states along the path ρ1, ρ3, and ρ5. Concretely, we need
a refined abstraction function α and a corresponding post# such that the execution
of ABSTREACH along the counterexample path does not compute a set of states that
contains some error states:

post#
(
post#

(
post#

(
α(ϕinit), ρ1

)
, ρ3

)
, ρ5

)∧ ϕerr |= false.

We consider the intermediate steps of the above condition and define sets of states
ψ1, . . . ,ψ4 that provide an adequate over-approximation along the path as follows.

ϕinit |=ψ1,

post(ψ1, ρ1) |=ψ2,

post(ψ2, ρ3) |=ψ3,

post(ψ3, ρ5) |=ψ4,

ψ4 ∧ ϕerr |= false.

The over-approximation given by ψ1, . . . ,ψ4 is adequate since it guarantees that
no error state is reached, while still allowing additional states to be reachable. For
example, consider the solution to the above condition given in Table 2.

We can use the obtained solution to refine α in the following way. By adding
ψ1, . . . ,ψ4 to the set of predicates Preds we guarantee that the resulting α and post#

are sufficiently precise to show that no error state is reachable along the path ρ1, ρ3,
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Fig. 7 Path computation

and ρ5. Formally, we obtain

α(ϕinit) |=ψ1,

post#(ψ1, ρ1) |=ψ2,

post#(ψ2, ρ3) |=ψ3,

post#(ψ3, ρ5) |=ψ4,

ψ4 ∧ ϕerr |= false. �

We put the above approach for analyzing counterexamples computed by AB-
STREACH into algorithms MAKEPATH, FEASIBLEPATH, and REFINEPATH.

The algorithm MAKEPATH is shown in Fig. 7. It takes as input a reachable ab-
stract state ψ together with a Parent relation. We view Parent as a tree where ψ
occurs as a node. MAKEPATH outputs a sequence of program transitions that labels
the tree edges connecting ψ with the root of the tree. The sequence is constructed
iteratively by a backward traversal starting from the input node. The variable path
keeps track of the construction.

Example 18 For our example tree in Fig. 6 we construct the path by making a
call MAKEPATH(ϕ5,Parent). Then, path is extended with the transitions ρ5, ρ3, and
ρ1 by considering the edges (ϕ3, ρ5, ϕ5), (ϕ2, ρ3, ϕ3), and (ϕ1, ρ1, ϕ2), respectively.
Finally, path= ρ1ρ3ρ5 is returned as output. �

The algorithm FEASIBLEPATH is shown in Fig. 8. It takes as input a sequence
of program transitions ρ1 . . . ρn and checks whether there is a computation that is
produced by this sequence. The check uses the post-condition function and the re-
lational composition of transitions.

Example 19 When applying FEASIBLEPATH on our example path ρ1ρ3ρ5 we ob-
tain the following intermediate results. First, the relational composition of transi-
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Fig. 8 Feasibility of a path

tions yields

ρ1 ◦ ρ3 ◦ ρ5 = false.

Hence, FEASIBLEPATH sets ϕ to false and then returns false. �

The algorithm REFINEPATH is shown in Fig. 9. It takes as input a sequence of
program transitions ρ1 . . . ρn and computes sets of states ϕ0, . . . , ϕn satisfying the
following conditions. First, we have ϕinit |= ϕ0 and ϕn∧ϕerr |= false. Then, for each
i ∈ 1..n we obtain post(ϕi−1, ρi) |= ϕi . Thus, ϕ0, . . . , ϕn computed by REFINEPATH

can be used for refining predicate abstraction. If ϕ0, . . . , ϕn are added to Preds then
the resulting α and post# guarantee that the following conditions hold.

α(ϕinit) |= ϕ0,

post#(ϕ0, ρ1) |= ϕ1,

. . . ,

post#(ϕn−1, ρn) |= ϕn,
ϕn ∧ ϕerr |= false.

Fig. 9 Counterexample-guided discovery of predicates
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Fig. 10 Predicate abstraction and refinement loop

Here, we omit the details of a particular algorithm for finding ϕ0, . . . , ϕn that satisfy
the above conditions. We discuss possible alternatives in Sect. 15.7.

Example 20 As discussed in Example 17, the application of REFINEPATH on
ρ1ρ3ρ5 yields a sequence of sets of states that can refine the abstraction to become
sufficiently precise at least for dealing with the considered path. �

In our high-level presentation of the algorithm, we leave open many issues for
optimization. For example, the precision of the abstraction may be adapted to the
different control locations by using different sets of predicates Preds for the defi-
nition of the over-approximating function α. The corresponding approach is called
lazy abstraction [39].

Algorithm for Counterexample-Guided Abstraction Refinement
We put together the building blocks described in the previous section into an

algorithm ABSTREFINELOOP that verifies reachability properties using predicate
abstraction and its counterexample-guided refinement. See Fig. 10.

Given a program, ABSTREFINELOOP discovers a proof or a counterexample by
repeatedly applying the following steps. First, we compute an over-approximation
ϕ#

reach of the set of reachable states using an abstraction function defined w.r.t. the
set of predicates Preds, which is empty initially. The over-approximation ϕ#

reach is
represented by a set of formulas ReachStates#, where each formula represents a set
of states. If the set of error states is disjoint from the computed over-approximation,
then ABSTREFINELOOP stops the iteration process and reports that the program
is correct. Otherwise, we consider a formula ψ in ReachStates# that witnesses the
intersection with the error states and use ψ in an attempt to refine the abstraction.
Refinement is only possible if the discovered intersection is caused by the impreci-
sion of the currently applied abstraction function. We clarify this question by first
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Fig. 11 Abstract reachability computation with Preds= {false,at_ �1, . . . ,at_ �5}

constructing the sequence of program transitions that was traversed during the com-
putation of ψ . This sequence, called path, is analyzed using FEASIBLEPATH. If
there is a program computation that follows path, then ABSTREFINELOOP stops
the iteration and reports that path is a counterexample. In case path is not feasible,
we compute a set of predicates that refines the abstraction function by applying an
algorithm REFINEPATH on path.

We observe that ABSTREFINELOOP never analyzes the same counterexample
twice, i.e., the abstraction refinement process using REFINEPATH makes progress at
each iteration.

Example 21 We illustrate ABSTREFINELOOP using our example program from
Fig. 1. To make the illustration more vivid, we assume that Preds= {false,at_�1,. . .,

at_�5} is the initial set of predicates, i.e., we anticipate that for proving our example
correct we need to keep track of the program counter.

We start the first iteration by applying ReachStates#. The result is the set of for-
mulas ReachStates# connected by the relation Parent as shown in Fig. 11. In this
figure, Parent is denoted by solid arrows that connect the formulas. We observe that
ϕ5 has a non-empty intersection with ϕerr , hence we proceed by setting ψ to ϕ5. By
applying MAKEPATH we obtain path= ρ1ρ3ρ5. At the next step, FEASIBLEPATH

reports that this path is not feasible, hence we proceed with the abstraction refine-
ment. REFINEPATH discovers that the predicates y ≥ z and x ≥ z are sufficient to
refine the abstraction such that path no longer leads to an error state even under
abstraction.

We start the second iteration of ABSTREFINELOOP with the new set of pred-
icates Preds = {false,at_�1, . . . ,at_�5, y ≥ z, x ≥ z}, which contains the predi-
cates that were discovered during the first iteration. See Fig. 12 for the obtained
set ReachStates# and relation Parent. We observe that each formula in ReachStates#

has an empty intersection with ϕerr , hence ABSTREFINELOOP reports that the pro-
gram is correct. �
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Fig. 12 Applying ABSTREACH on the program in Fig. 1 and the set of predicates Preds =
{false,at_�1, . . . ,at_ �5, y ≥ z, x ≥ z}

15.6.2 Refinement of Transition Predicate Abstraction

The algorithm TRANSABSTREACH requires a set of transition predicates in order
to compute an over-approximation of the transition invariant. Finding the right set
of transition predicates that yields a sufficiently precise over-approximation is a
difficult task.

Analysis of Counterexample Lassos
We present a notion of lasso-shaped counterexample that is suitable for refining

transition predicate abstraction. Such counterexamples consist of a stem and a loop.
The stem part represents a sequence of program transitions that leads to a loop in
the program, while the loop part is a sequence of program transitions that represents
a possible execution through such a loop.

First, we illustrate counterexample lassos using an example.

Example 22 We consider the transition invariant computed in Example 16 by
applying TRANSABSTREACH. We assume that ReachStates# = {true} used for
this computation was obtained by applying ABSTREACH and that Parent =
{(true, ρ1, true)} was obtained as a result.

We observe that ReachTrans# is not disjunctively well-founded, since it con-
tains goto(�2, �2), which is not well-founded. Similarly to the treatment of
counterexamples in predicate-abstraction-based invariant computation, we use
TransParent to determine the sequence of program transitions that led to the compu-
tation of goto(�2, �2), which we call loop. We observe that (true ∧
unchanged(x, y, z), ρ1,goto(�1, �2)) ∈ TransParent, hence the last element of loop
is the transition ρ2. Furthermore, since true ∧ unchanged(x, y, z) does not appear
in the third position of any element of TransParent, we conclude that no more el-
ements appear in loop. Now we determine the stem part by applying MAKEPATH

on true, which is obtained from true ∧ unchanged(x, y, z) by omitting equalities
unchanged(x, y, z), and Parent. The result is a stem that consists only of ρ1, which
finishes the computation of the counterexample lasso. �
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Fig. 13 Lasso computation

The algorithm MAKELASSO shown in Fig. 13 implements the lasso construction
as described in the above example. MAKELASSO proceeds similarly to MAKEPATH

and calls it as a sub-routine in line 7 after the loop part is constructed. We de-
tect that the loop construction is finished when there is no predecessor according
to TransParent. The stem part is constructed using the information collected during
the abstract reachability computation and provided as Parent. The starting point for
the stem computation is obtained using pattern matching in line 6. Here, we exploit
how Worklist is initialized by TRANSABSTREACH in line 4; see Fig. 5.

Once the lasso counterexample is constructed, we analyse whether the transition
predicate abstraction can be refined in order to rule out the discovered counterex-
ample. First, we illustrate this step by using an example.

Example 23 We consider the lasso computed in Example 22, which consists of
the stem ρ1 and the loop ρ2. We compute the set of states ϕ that are reachable by
applying the stem and obtain

ϕ = post(ϕinit, ρ1)= (at_�1 ∧ y ≥ z).
We use this set of states when initializing the relational composition of program
transitions along the loop part with

at_�2 ∧ y ≥ z∧ unchanged(x, y, z).

The result of the composition—this time without applying transition predicate
abstraction—is

ϕ̈ = (
at_�2 ∧ y ≥ z∧ unchanged(x, y, z)

) ◦ ρ2

= (
goto(�2, �2)∧ y ≥ z∧ x + 1≤ y ∧ x′ = x + 1∧ unchanged(y, z)

)
.
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Fig. 14 Feasibility of a lasso

The obtained relation ϕ̈ is well-founded, which can be easily checked since it is rep-
resented by a simple program loop without further nesting or branching statements.
A ranking function that witnesses the termination of ϕ̈ is y− x. Every time the rela-
tion is applied, the value of y − x decreases. Furthermore, ϕ̈ can be applied only if
y − x ≥ 0. We conclude that the discovered counterexample lasso is spurious, i.e.,
there is no infinite program computation that follows the stem and then repeats the
loop part forever. �

The algorithm FEASIBLELASSO shown in Fig. 14 automates the steps executed
in the above example. FEASIBLELASSO takes as input a lasso obtained by applying
MAKELASSO and performs a check that the given lasso can yield an infinite com-
putation. The implementation of the predicate well-founded is out of the scope of
this chapter. There exist efficient algorithms for this task that exploit the lasso shape,
e.g., [51].

Finally, we show how transition predicates can be discovered from a spurious
counterexample lasso.

Example 24 We consider the feasibility check presented in Example 23. We observe
that the following implications were established.

post(ϕinit, ρ1) |= (at_�1 ∧ y ≥ z),
(
at_�2 ∧ y ≥ z∧ unchanged(x, y, z)

) ◦ ρ2 |= y − x ≥ 0∧ y′ − x′ ≤ y − x − 1.

Hence, to eliminate the spurious counterexample we can use the assertions true and
y−x ≥ 0∧y′ −x′ ≤ y−x−1. When y−x ≥ 0 and y′ −x′ ≤ y−x−1 are included
in the set of transition predicates TransPreds used by the abstraction function α̈ the
algorithm TRANSABSTREACH will not discover the spurious lasso consisting of
ρ1 and ρ2 again. Example 14 shows the outcome of applying TRANSABSTREACH

when using a refined set of transition predicates TransPreds. �

We present an algorithm REFINELASSO in Fig. 15 that discovers transition pred-
icates from a spurious counterexample lasso. The algorithm is presented in a declar-
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Fig. 15 Abstraction refinement guided by a lasso

ative way and we omit details of a particular implementation of line 1. There exist
efficient implementations for this task that rely on similar techniques to those pre-
sented in Sect. 15.7, e.g., [32].

Algorithm for Counterexample-Guided Transition Predicate Abstraction Refinement
We put together the algorithms for the construction and analysis of lasso-shaped

counterexamples presented above together with the algorithm for transition predi-
cate abstraction. The resulting algorithm TRANSABSTREFINELOOP can find a dis-
junctively well-founded transition invariant automatically by automatically discov-
ering an adequate set of transition predicates. See Fig. 16.

TRANSABSTREFINELOOP proceeds in similar steps to ABSTREFINELOOP pre-
sented earlier in this section. In fact, we use ABSTREFINELOOP to compute an
over-approximation of reachable program states. We start with the empty set of
predicates and transition predicates and extend them every time a counterexample
lasso is discovered. The counterexample discovery takes place during the computa-
tion of a transition invariant using TRANSABSTREACH. If a counterexample lasso
is found, its stem part is used to refine the set of predicates Preds. The set of addi-
tional transition predicates is determined by considering both the stem and the loop
parts.

Similarly to abstraction refinement for safety, we observe that TRANSABSTRE-
FINELOOP never analyzes the same counterexample twice, i.e., the abstraction re-
finement process using REFINELASSO makes progress at each iteration.

15.7 Solving Refinement Constraints for Predicate Abstraction

The algorithm REFINEPATH in Fig. 9 takes as input an infeasible sequence of pro-
gram transitions ρ1 . . . ρn and computes sets of states ϕ0, . . . , ϕn satisfying the fol-
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Fig. 16 Transition predicate abstraction and refinement loop

lowing conditions.

ϕinit |= ϕ0,

post(ϕ0, ρ1) |= ϕ1,

. . . ,

post(ϕn−1, ρn) |= ϕn,
ϕn ∧ ϕerr |= false.

Since ρ1 . . . ρn is infeasible, the above conditions are satisfiable. In general, several
solutions may exist. We describe how the least, the greatest, and an intermediate
solution can be computed.

15.7.1 Least Solution

We obtain the least solution by applying the post-condition function in the following
way.

ϕ0 = ϕinit,

ϕ1 = post(ϕ0, ρ1),

. . . ,

ϕn = post(ϕn−1, ρn).

(22)
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Note that the least solution ensures that for each 1≤ i ≤ n we have

ϕi = post(ϕinit, ρ1 ◦ · · · ◦ ρi),
and guarantees that ϕn ∧ ϕerr |= false.

Sometimes the least solution is not useful for refining the abstraction, since the
resulting abstraction is too precise. As a result, the iteration in ABSTREFINELOOP

may not terminate as the abstract reachability computation is almost equivalent to
the reachability computation without abstraction.

Example 25 We illustrate how a least solution is computed using the example pro-
gram shown in Fig. 1.

Let ρ1ρ3ρ5 be a counterexample path discovered by ABSTREFINELOOP. For
this path, we obtain the following least solution of the constraints defined by RE-
FINEPATH.

ϕ0 = ϕinit = at_�1,

ϕ1 = post(ϕ0, ρ1)= (at_�2 ∧ y ≥ z),
ϕ2 = post(ϕ1, ρ3)= (at_�3 ∧ y ≥ z∧ x ≥ y),
ϕ3 = post(ϕ2, ρ5)= false.

The obtained refinement will ensure that the path ρ2ρ3ρ5 will not be considered a
counterexample during subsequent iterations of the refinement loop in ABSTRE-
FINELOOP. �

15.7.2 Greatest Solution

First, we define an auxiliary weakest pre-condition function wp as follows. Let ϕ be
a formula over V and let ρ be a formula over V and V ′. Then, we define:

wp(ϕ,ρ)= ∀V ′ : ρ→ ϕ
[
V ′/V

]
. (23)

For example, the transition ρ2 from Fig. 1 results in the following weakest pre-
condition.

wp(at_�2 ∧ x ≥ z,ρ2)

= ∀V ′ : pc= �2 ∧ x + 1≤ y ∧ x′ = x + 1∧ y′ = y ∧ z′ = z∧ pc′ = �2

→ pc′ = �2 ∧ x′ ≥ z
=¬(∃V ′ : pc= �2 ∧ x + 1≤ y ∧ x′ = x + 1∧ y′ = y ∧ z′ = z∧ pc′ = �2 ∧
¬(pc′ = �2 ∧ x′ ≥ z

))

=¬(∃V ′ : pc= �2 ∧ x + 1≤ y ∧¬(�2 = �2 ∧ x + 1≥ z))
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= (pc= �2 ∧ x + 1≤ y→ �2 = �2 ∧ x + 1≥ z)
= (at_�2 ∧ x + 1≤ y→ x + 1≥ z).

We obtain the greatest solution of the refinement constraints for a given coun-
terexample path as follows.

ϕn =¬ϕerr,

ϕn−1 = wp(ϕn,ρn),

. . . ,

ϕ0 = wp(ϕ1, ρ1).

(24)

That is, the greatest solution is computed incrementally by traversing the counterex-
ample path backwards.

Similarly to the least solution, sometimes the greatest solution is not useful for
refining the abstraction, since the resulting abstraction is too coarse. As a result,
the iteration in ABSTREFINELOOP may not terminate as the abstract reachability
computation is almost equivalent to the backward reachability computation without
abstraction that expands the set of states definitely leading to an error state.

Example 26 We illustrate how a greatest solution is computed using an example
program shown in Fig. 1.

Let ρ1ρ3ρ5 be a counterexample path discovered by ABSTREFINELOOP. For this
path, we obtain the following greatest solution of the constraints in REFINEPATH.

ϕ3 =¬ϕerr =¬at_�5,

ϕ2 = wp(ϕ3, ρ5)= (at_�3 → x ≥ z),
ϕ1 = wp(ϕ2, ρ3)= (at_�2 ∧ x ≥ y→ x ≥ z),
ϕ0 = wp(ϕ1, ρ1)= true.

Again, the obtained refinement will result in the discovery of the counterexample
path ρ1ρ3ρ5 during the next iteration of ABSTREFINELOOP, as witnessed by the
following validities.

ϕinit |= ϕ0,

post(ϕ0, ρ1)= (at_�2 ∧ y ≥ z) |= ϕ1,

post(ϕ1, ρ3)= (at_�3 ∧ x ≥ y ∧ x ≥ z) |= ϕ2,

post(ϕ2, ρ5)= false |= ϕ3.

We observe that the reachability computation using refined abstraction does not
reach any error states along the path ρ1ρ3ρ5. �
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15.7.3 Intermediate Solution Using Interpolation

We illustrate how an intermediate solution can be computed by a technique called
interpolation [25, 38]. Interpolation takes as input two mutually unsatisfiable for-
mulas ϕ1 and ϕ2, i.e., ϕ1 ∧ ϕ2 |= false, and returns an interpolant, a formula ϕ
such that (i) ϕ is expressed over common symbols of ϕ1 and ϕ2, (ii) ϕ1 |= ϕ, and
(iii) ϕ ∧ ϕ2 |= false. Let inter be an interpolation function such that inter(ϕ1, ϕ2) is
an interpolant for ϕ1 and ϕ2.

The following sequence of interpolation computations can be used to find a so-
lution for constraints defined by REFINEPATH.

ϕ0 = inter
(
ϕinit, (ρ1 ◦ · · · ◦ ρn)∧ ϕerr

[
V ′/V

])
,

ϕ1 = inter
(
post(ϕ0, ρ1), (ρ2 ◦ · · · ◦ ρn)∧ ϕerr

[
V ′/V

])
,

. . . ,

ϕn−1 = inter
(
post(ϕn−2, ρn−1), ρn ∧ ϕerr

[
V ′/V

])
,

ϕn = inter
(
post(ϕn−1, ρn),ϕerr

[
V ′/V

])
.

(25)

Intermediate solutions can avoid the deficiencies of least and greatest solutions de-
scribed above, although they still do not guarantee convergence of the abstraction
refinement loop.

Example 27 We illustrate how an intermediate solution is computed using the ex-
ample program shown in Fig. 1.

Let ρ1ρ3ρ5 be a counterexample path discovered by ABSTREFINELOOP. For
this path, we obtain the following intermediate solution of the constraints in RE-
FINEPATH.

ϕ0 = inter
(
ϕinit, (ρ1 ◦ ρ3 ◦ ρ5)∧ ϕerr

[
V ′/V

]) = true,

ϕ1 = inter
(
post(ϕ0, ρ1), (ρ3 ◦ ρ5)∧ ϕerr

[
V ′/V

])= y ≥ z,
ϕ2 = inter

(
post(ϕ1, ρ3), ρ5 ∧ ϕerr

[
V ′/V

]) = x ≥ z,
ϕ3 = inter

(
post(ϕ2, ρ5), ϕerr

[
V ′/V

]) = false.

The following validities show that ρ1ρ3ρ5 will not be considered a counterexample
during subsequent refinement iterations.

ϕinit |= ϕ0,

post(ϕ0, ρ1)= (at_�2 ∧ y ≥ z) |= ϕ1,

post(ϕ1, ρ3)= (at_�3 ∧ x ≥ y ∧ y ≥ z) |= ϕ2,

post(ϕ2, ρ5)= false |= ϕ3. �
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15.8 Tools

We have presented the base algorithm for predicate abstraction and transition pred-
icate abstraction. Practical tools introduce a variety of optimizations of the base
algorithm.

Predicate Abstraction
SLAM [5], BLAST [38, 39], Magic [15], Murϕ [27], and SatAbs [18] imple-

ment different levels of precision, ranging from Cartesian to full Boolean predi-
cate abstraction [3]. CPAChecker [10], F-Soft [41], and UFO [1] integrate predi-
cate abstraction with data flow analysis and abstract interpretation. Synergy [33]
and Yogi [50] integrate predicate abstraction with under-approximation based on
dynamic execution. ARMC [54] implements Cartesian predicate abstraction and
uses constraint-based interpolation to discover predicates. SLAB [28] implements
the refinement of an abstract transition system in a top-down way. Impact [49] and
Wolverine [45] resort to a particular form of predicate abstraction where each re-
finement step adds a single predicate. Ultimate Automizer [36] uses predicates to
construct a proof in the form of a finite automaton that approximates the language
of program traces.

Arrays and Heaps
BLAST [43], Indexed Predicate Abstraction [46], and universally quantified

Horn solver [12] compute universally quantified array invariants with predicate ab-
straction in order to deal with the ranges of array indices and properties of values
stored in arrays. Bohne [55, 56] verifies complex data structures that are imple-
mented on the heap (modeled as a graph) by inferring node predicates in the style
of TVLA [58].

Beyond Procedural Programs
HSF [32] relies on predicate abstraction to solve recursive Horn constraints,

which serves as a back-end solver for proving temporal properties of programs
with procedures, multi-threaded programs, and higher-order functional programs.
Threader [34, 35] relies on predicate abstraction to compute rely-guarantee and
Owicki-Gries proofs for multi-threaded programs. Liquid Types [57] uses a form
of predicate abstraction in the style of Houdini [29] to infer refinement types for
proving safety of higher-order functional programs.

Beyond Safety
ARMC [54] uses transition predicate abstraction as described in [53] to prove

termination and other liveness properties. Terminator [20, 21] reduces transition
predicate abstraction to predicate abstraction via a syntactic transformation of the
program in order to prove termination of systems code. T2 [13, 22] computes transi-
tion invariants using the same techniques as Impact [49]. LoopFrog computes tran-
sition invariants to analyze termination of programs using a bit-level semantics.
LTA [48] uses algorithmic-learning-based techniques for the generation of transi-
tion predicates. CTA [44] computes ‘compositional’ transition invariants. Ultimate
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Automizer [36] uses transition predicates to construct a proof in the form of a finite
Büchi automaton that approximates the language of infinite program traces. Sev-
eral tools including AProVe [14] and ACL2 [16] use the size-change principle [47],
whose formal connection to transition predicate abstraction (without refinement)
is studied in [37]. An explanation for why transition predicate abstraction works
for termination analysis is given in the abstract interpretation framework in [24].
HSF [32] relies on transition predicate abstraction in combination with abstract in-
ference to find well-founded models for Horn constraints.

Beyond Verification
Existentially quantified Horn solver [7] uses predicate abstraction to discover

witness existential quantification in Horn constraints and to synthesize winning
strategies for LTL games [6].

15.9 Conclusion

We have presented an automated over-approximation technique called predicate ab-
straction and we have shown how it can be applied for proving non-reachability
and termination, the two base properties to which many correctness specifications
for programs can be reduced. The implementation of predicate abstraction relies on
decision procedures for entailment. Given a verification problem, an adequate set
of predicates can be discovered automatically, namely by exploring spurious coun-
terexamples.

Our presentation aims at the basic principles of predicate abstraction. It leaves
uncovered the variations of predicate abstraction that are studied in the literature
and implemented in tools. We refer to [42] for a survey. Chapter 13 of this Hand-
book [26] shows how the process of computing an over-approximation of a given
transition relation for a given set of predicates can be decoupled from the fixpoint
computation. Chapter 16 of this Handbook [9] shows how predicate abstraction can
be combined with data flow analysis, thus only requiring decision procedure calls
for intricate reasoning that is difficult to support in classical data flow domains.
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Chapter 16
Combining Model Checking and Data-Flow
Analysis

Dirk Beyer, Sumit Gulwani, and David A. Schmidt

Abstract Until recently, model checking and data-flow analysis—two traditional
approaches to software verification—were used independently and in isolation for
solving similar problems. Theoretically, the two different approaches are equiva-
lent; they are two different ways to compute the same solution to a problem. In
recent years, new practical approaches have shown how to combine the approaches
and how to make them benefit from each other—model-checking techniques can
make data-flow analyses more precise, and data-flow-analysis techniques can make
model checking more efficient. This chapter starts by discussing the relationship
(differences and similarities) between type checking, data-flow analysis, and model
checking. Then we define algorithms for data-flow analysis and model checking in
the same formal setting, called configurable program analysis. This identifies key
differences that make us call an algorithm a “model-checking” algorithm or a “data-
flow-analysis” algorithm. We illustrate the effect of using different algorithms for
running certain classic example analyses and point out the reason for one algorithm
being “better” than the other. The chapter presents combined verification techniques
in the framework of configurable program analysis, in order to emphasize tech-
niques used in data-flow analysis and in model checking. Besides the iterative al-
gorithm that is used to illustrate the similarities and differences between data-flow
analysis and model checking, we discuss different algorithmic approaches for con-
structing program invariants. To show that the border between data-flow analysis
and model checking is blurring and disappearing, we also discuss directions in tool
implementations for combined verification approaches.
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16.1 Introduction

In the context of software verification, model checking is considered a semi-
decidable, exhaustive, and precise analysis of an abstract model of a program,
whereas data-flow analysis is considered a terminating, imprecise abstract interpre-
tation of a concrete model of a program.

For example, to validate a safety property, abstraction-refinement-based model
checking creates an abstract model of the program and precisely analyzes every
reachable abstract state for the property, repeatedly refining and rechecking the
model until validation is achieved, whereas a classic data-flow analysis computes
abstract values of the states that arrive at the program locations of the concrete pro-
gram, repeatedly computing and combining the abstract values until convergence
at all program locations is achieved. Classic data-flow analyses are efficient (as re-
quired for compiler optimization) at the cost of precision. Model checkers aim at
being precise (as required for proof construction) at the cost of efficiency.

Precisely defining the difference between model checking and data-flow analysis
is not easy, and indeed the two approaches have been proven to be “the same” in
that each can be coded in the framework of the other. This chapter illustrates why
the two approaches are theoretically equivalent—they are two fashions of comput-
ing the same solution. In practice, the two approaches are extremes in a spectrum
of many possible algorithms, and the spectrum can be defined by a few parameters
that describe the different implementation techniques. As soon as we set the param-
eters differently from the extremes that define the two approaches, we see how new
combinations are possible. While in most of the chapter we assume that the popular,
iteration-based algorithm is used, we later also provide a comparative overview of
other algorithmic approaches for constructing program invariants.

In this chapter, we restrict ourselves to verifying safety properties of software.

16.2 General Considerations

For background, we compare and contrast three techniques that are widely used
for static (pre-execution) program validation: type checking, data-flow analysis, and
model checking. These techniques come with different representations of program,
property, and analysis algorithm. We describe here the commonly used versions, but
with small extensions it is possible for each technique to express the other two [108].

16.2.1 Type Checking

Type checking is an analysis of a program’s syntax tree that attaches properties
(“types”) to the phrases that are embedded in the tree. Types might be primitive (int,
f loat, string, void) or compound (int[ ], string×f loat, {"name" : string, "age" : int})



16 Combining Model Checking and Data-Flow Analysis 495

or phrase-type (command(int), declaration(ident, f loat)). For example, the C com-
mand float x= y+ 1.5 might be parsed and type checked like this:

(
float x = (

yint + 1.5f loat)f loat)declaration(x, f loat)

provided that y’s declaration was typed by declaration(y, int).
Type checking can validate safety properties (“a well-typed program cannot go

wrong at execution”) and can help a compiler generate target code.

Program Representation. A program’s syntax tree (parse tree) is used for type
checking. The tree is often accompanied by a symbol table that holds typings of
free (global) variables.

Property Representation. There is no firm designation as to what types are, but a
type should have semantic significance. Types are typically defined inductively. The
earlier example used types derived from this grammar:

p : PhraseType a : ExpressionType

p ::= command(a) | declaration(ident, a)
a ::= int | f loat | a[ ]

The type language resembles a propositional logic, where primitive types
(int, string) define the primitive propositions and compound types (command(a),
declaration(ident, a)) define the compound propositions. Data structures, such as
arrays, tuples, structs, and function closures, are annotated with compound types.

The “type logic” need not be a mere propositional logic. Languages that support
templates or parametric polymorphism, e.g., Standard ML [43], include Prolog-style
logical variables in the syntax of types; the logical variables are placeholders for
types that are inserted later, or they are understood as universally quantified vari-
ables. For example, α→ (α× α) is a typing of this function definition:

define f(x)= makePair(x,x).

The occurrences of α are placeholders that can be filled later, e.g., as in f (1.5) (α is
replaced by f loat) or f ("hello") (α is replaced by string). Indeed, the type can
be read as the predicate-logic formula ∀α(α→ (α ∧ α)) [93].

At the other extreme, the type language can be an ad hoc collection of labels,
provided there is some significance as to how the labels annotate the syntax tree.
An example is value numbering, where each expression node is annotated by the set
of expression nodes in the tree whose run-time values will equal the present node’s
[101].

Analysis Algorithm. A finite (usually, left-to-right, one- or two-pass) tree-traversal
algorithm attaches types to the nodes of the syntax tree. In the language of Knuthian
attribute grammars [82], properties that are inherited are carried from parent nodes
to child nodes for further computation, and properties that are synthesized are com-
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municated from child nodes to parent nodes. In the first example in this section, vari-
able y’s type is inherited information that is passed to the phrase (y+ 1.5), which
synthesizes the type f loat. The algorithm for attaching properties can be written
with attribute-grammar equations [86] or inference rules [97].

The equations (or rules) are meant to be deterministic, but some program phrases
might be annotated with multiple acceptable choices (e.g., 2 : int and also 2 : f loat).
In this case, an ordering, ≤, as in int≤ f loat, lets one deduce a most precise prop-
erty for a phrase. This concept, called subtyping [1], is central to type checking for
object-oriented languages. Using logical variables, ML’s Algorithm W [43] deduces
a most general typing for an ML program that can be correctly typed in multiple
ways.

Extensions. If the typing language is complex enough, it can express any or all
semantic properties of a program, e.g., a phrase’s “type” might be its compiled code
or it might be the input-output function that the phrase denotes! (The former is
called a syntax-directed translation [2] and the latter is the program’s denotational
semantics [106].)

When the typing language is a logic, a type checker reads a syntax tree as a
“proof” of a “proposition,” namely, the program’s type—the type checker does proof
checking [95].1

The algorithm that attaches properties to the program tree might repeatedly tra-
verse the tree and compute the types attached to the program locations until a con-
vergence is achieved. (The iteration is a least-fixed-point computation, requires that
the property language is partially ordered, and uses a join (union) operation to re-
fine types.) This algorithm leads to the next analysis form, because it is a structured
data-flow analysis [2].

Further, if the type language is a temporal logic, the iterative traversal computes
the temporal properties that are valid at each node of the tree—from here, it is a
small step to branching-time model checking on Kripke structures. Further examples
of fixed-point computation on parse trees are discussed in the literature [40].

16.2.2 Data-Flow Analysis

Data-flow analysis predicts the “flow” of information through the locations of a pro-
gram. The flow can be computed either forward or backward and is often set-like,
e.g., predicting the set of arithmetic expressions that have been previously evaluated
at a program location, or the set of variables that will be needed for future computa-
tion, or the set of variables that definitely have constant values, or the set of aliased
pointers. Because the analysis over-approximates a program’s possible execution
sequences, its results are imprecise.

The information gathered by a data-flow analysis can be used to validate safety
properties or to help a compiler generate efficient target code. For example, if a

1The connection between model checking and theorem proving is discussed in Chap. 20.



16 Combining Model Checking and Data-Flow Analysis 497

constant-propagation analysis calculates that a variable has a known constant value
at a program location, a constant-load instruction can replace the storage-lookup
instruction.

Program Representation. A program is portrayed as a directed graph, whose nodes
represent program locations. An edge connects two nodes if execution can transfer
control from one location to the next; the initial node represents the program en-
try; final nodes represent the program exits. The edges are labeled by the primitive
action (assignment, assume operation) that transfers control—the directed graph is
a control-flow automaton (CFA),2 which displays the program’s operations and its
semantics of control. Figure 1 shows an example C function (a) together with its
CFA (b). The CFA might be further condensed [9] or unrolled (“expanded”) [115]
so that more precise properties can be computed for its nodes.

Property Representation. Data-flow analysis annotates the CFA’s locations with
properties, which are usually sets that have semantic significance. A program loca-
tion’s property set might indicate the variables or expressions whose values were
transferred along a control path to the program location [78]. For example, an
available-expressions analysis predicts which arithmetic expressions (that appear
in the program’s text) will definitely be evaluated and be ready for use at subsequent
program locations. The property language for available-expressions analysis is the
collection of all subsets of expressions that appear in the program.

Another example is a constant-propagation analysis, which predicts which vari-
ables possess specific, constant values at the program locations. The property lan-
guage consists of sets of the form {(x0, c0), . . . , (xn, cn)}, where each xi is a vari-
able name in the program, all xi are unique, and ci is a fixed, constant value (e.g.,
1.5 or 2) or the “unspecific value” �, which indicates that xi is defined but cannot
be validated as having a constant value.

Analysis Algorithm. An iterative algorithm computes the properties that annotate the
program locations. Starting from an initial configuration, where some program loca-
tions are annotated with input information, the algorithm propagates the properties
along the CFA’s edges. Recall that each edge from program location l to program
location l′ is labeled by an action. The semantics of the action is defined by a trans-
fer function fl→l′ , which defines how properties are updated when they traverse the
edge [38]. There are two important versions of the analysis algorithm [2, 77, 78]:

1. Maximal Fixed Point (MFP): Properties for each program location are computed
directly on the CFA. The information computed for program location l′ is defined

2Although in principle equivalent to the classical control-flow graphs [2], assigning the program
operations to the edges is more compatible with the model-checking view (cf. the more detailed
discussion by Steffen [113, 114]). The notion of control-flow automata is meanwhile established as
a standard representation for programs (cf. the implementation in BLAST [13] and other verifiers).
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by an equation of the following form [78]:

propertyAtNode
(
l′
)=

⋃

l∈pred(l′)
fl→l′

(
propertyAtNode(l)

)

where pred(l′) is the set of all predecessor locations for location l′ in the CFA,
and fl→l′ is the transfer function. The equations for the CFA’s program locations
are initialized to a minimal value, e.g., {}, and are iterated until they stabilize.
To ensure finite convergence, the property language can be made finite and par-
tially ordered (say, by subset, ⊆). More generally, the property language can be
a lattice of finite height [38].

2. Meet Over all Paths (MOP): The iterative analysis algorithm enumerates the
paths within the CFA. Properties are computed for all program locations on each
individual path, and the results of all the analyses on all paths are joined. Since a
program might have an infinite number of paths, path generation must be made
convergent, say by bounding the expansion of loops3 and procedure calls.

This example shows the distinction: For the program

where each program location li corresponds to the line i before the line is executed,
an MOP analysis enumerates this path set: {l1 l2 l3 l6 l7, l1 l4 l5 l6 l7}. If the properties
that are computed are the constant values (constant propagation), the MOP analysis
generates these properties for the first path:

L1a = {}
L2a = {}

L3a = {(x,2), (y,3)}
L6a = {(x,2), (y,3)}
L7a = {(x,2), (y,3), (z,5)}

and these for the second path:

L1b = {}
L4b = {}

L5b = {(x,3), (y,2)}
L6b = {(x,3), (y,2)}
L7b = {(x,3), (y,2), (z,5)}.

The sets are joined (Lk = Lka7Lkb), giving the following annotations for the labels:

L1 = {}
L2 = {}
L4 = {}

L3 = {(x,2), (y,3)}
L5 = {(x,3), (y,2)}
L6 = {(x,�), (y,�)}
L7 = {(x,�), (y,�), (z,5)}.

3More details on treating loops during the construction of program invariants are given in
Sect. 16.6.
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The analysis determines that z is constant 5 at l7. In contrast, an MFP analysis
calculates the properties directly on the program locations, like this:

L1 = {}
L2 = {}
L4 = {}

L3 = {(x,2), (y,3)}
L5 = {(x,3), (y,2)}
L6 = L3 7L5 = {(x,�), (y,�)}
L7 = {(x,�), (y,�), (z,�)}.

In particular, the value of z at program location l7 is calculated from the set L6,
and the transfer function for z= x+ y computes �+�=�. The example shows
that an MOP analysis can be more precise than an MFP analysis, but the two results
coincide if the transfer functions distribute over 7 [77]. In practice, a hybrid ap-
proach is often taken, where the MFP algorithm is augmented by a limited program
expansion and MOP computation, e.g., “property-oriented expansion” [22, 28, 115].

Extensions. The previous presentation used forward analysis, where input proper-
ties generate output properties, which are combined with union as the join opera-
tion. Iteration-until-convergence is a least-fixed-point calculation. It is possible to
compute properties in a backward analysis (e.g., definitely-live-variables analysis),
where intersection is the join operation; this is usually a greatest-fixed-point calcu-
lation (cf. Sect. 16.6.1).

Some analyses, e.g., partial redundancy elimination (PRE) [89] use both forward
and backward analysis. PRE can be simplified into a two-step fixed-point computa-
tion, where the results of a backward analysis are complemented and used as input
to a forward analysis [114]. This reformulation reveals several crucial insights:

1. A program’s control-flow automaton can be defined as a Kripke structure, and
expansion (unrolling) of the automaton is analogous to exploring the program’s
state space.

2. The value sets computed by a data-flow analysis can be represented as temporal-
logic formulas, where the meaning of a formula is a value set.

3. The MFP algorithm operates like the algorithm for branching-time model check-
ing, and the MOP algorithm operates like the algorithm for linear-time model
checking.

These insights were documented earlier [81, 114, 115], and form the foundation for
the remainder of this chapter.

16.2.3 Model Checking

Model checking enumerates the sequences of states that arise during a program’s ex-
ecution and decides whether the sequences of states satisfy a safety property. Other
chapters in this Handbook develop several variants of the notions program, prop-
erty, and algorithm for model checking, so here we merely compare and contrast
model checking to data-flow analysis.
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Program Representation. Rather than a syntax tree or a control-flow automaton,
classic model checking operates on a directed graph whose nodes are the program’s
run-time states, connected by edges that define sequencing. The directed graph is
typically infinite and must be represented by a recursively enumerable set of transi-
tion rules. There are three variants of the transition rules:

1. A Kripke structure (S,R, I) consists of a set S of states, a transition relation R ⊆
S×S, and a map I : S→ 2Φ that assigns to each state a subset of properties from
property set Φ that hold for the state.

2. A labeled transition system (S,Act,→) consists of a set S of states, a set Act of
actions (transfer functions), and a transition relation→⊆ S ×Act × S.

3. A Kripke transition system (S,Act,→, I ) combines the components of the two
previous forms.

The details needed to represent even one state can be practically prohibitive,
therefore states are often abstracted by forgetting details of the state’s “content” or
even by replacing a state by a set of propositions that hold true for the state—this is
often done with the Kripke-structure representation.

At the other extreme, if the set S of states is defined as exactly the program
locations, then a control-flow automaton is readily expressed [114] and program
expansion is easily done [115]. The notion of abstract reachability graphs (ARGs)
is often used in the context of software verification (cf. BLAST [13]).

Property Representation. Model checking uses a temporal logic as its property
language—it is a logic because it includes conjunction, disjunction, and (usually)
negation; it is temporal because it uses operators that are interpreted on the se-
quences of nodes in a path or graph. The properties might be

1. path-based (linear time), e.g., Eφ might mean “there exists a state along a path
that validates proposition φ,” or

2. graph-based (branching time), e.g., EFψ might mean “there exists a path gen-
erated from the current state that includes a state that validates ψ .”

More details about temporal logics are provided in Chap. 2. The two variants re-
call the property languages used for MOP- and MFP-based data-flow analyses. The
connection stands out when one reconsiders classic definitions, like this one for
MFP-based live-variable calculation [78]:

LiveVarsAt(l)=UsedAt(l)∪
(

NotModifiedAt(l)∩
( ⋃

l′∈succ(l)
LiveVarsAt

(
l′
)
))

where l is a program location and succ(l) is the set of all successor locations for
location l in the control-flow automaton. The equation defines the set of possibly live
variables at a program location l. Compare the definition to the following, coded in
branching-time temporal logic, which holds for a program location when variable x
is possibly live at that program location [107, 113]:

isLiveVarx = isUsedx ∨
(¬isModifiedx ∧EF(isLiveVarx)

)
.
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We have that x ∈ LiveVarsAt(l) iff l |= isLiveVarx for every program vari-
able x [113]—the temporal-logic formula defines the data-flow set.

Analysis Algorithm. A model-checking algorithm answers queries, posed in tempo-
ral logic, about a program representation. The algorithm generates a graph or path
set from the program representation (transition rules) and applies the interpretation
function to the nodes in the graph (respectively, paths) to answer the query. There
are numerous algorithms for performing this activity, but with the perspective pro-
vided in this chapter, we can say that a model-checking algorithm is an MFP (resp.,
MOP) calculation of the graph (resp., paths) generated from a program’s transition
rules for answering the branching-time (resp., linear-time) query.

The generated graph or paths might be infinite, thus answering queries is semi-
decidable. A bound can be placed on the number of iterations or graph size
(“bounded model checking”) or a join operation (“widening” [38]) might be used
to force the generated graph to be finite. (When the latter is used, the technique is
sometimes called “abstract model checking.”)

The remainder of this chapter develops several variations of property and algo-
rithm that are inspired by the deep correspondence between data-flow analysis and
model checking.

16.3 Unifying Formal Framework/Comparison of Algorithms

The previous section has outlined the differences, and similarities, between the three
static-analysis techniques type checking, data-flow analysis, and model checking.
The discussion was structured by the components of every static analysis: program
representation, property representation, and analysis algorithm. In the following,
we explain the unifying formal framework of configurable program analysis, which
has successful implementations in software-verification tools (CPACHECKER [21],
CPALIEN [91], CPATIGER [20], JAKSTAB [73]). The framework makes it possible to
formalize each of the three techniques in the same formal setting.4 In order to con-
cretely explain the differences, we model the algorithms that were traditionally used
for data-flow analysis and software model checking as instances of the framework.

16.3.1 Preliminaries

Control-Flow Automaton (CFA). A program is represented by a control-flow au-
tomaton. We restrict our formal presentation to simple imperative programming,
where all operations are either assignments or assume operations (conditional ex-

4Other approaches have been proposed that address similar goals, for example, the fixed-point
analysis machine [79, 80, 116].
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Fig. 1 Example C function and corresponding CFA; the program locations in the CFA (b) corre-
spond to the line numbers in the program text (a) before the line of code is executed

ecutions), all variables range over integers, and no function calls occur,5 while we
use C syntax to denote example program code. A CFA (L, l0,G) consists of a set L
of program locations (models the program counter pc), an initial program loca-
tion l0 (models the program entry), and a set G ⊆ L × Ops × L of control-flow
edges (models program operations that are executed when control flows from one
program location to another). Program operations from Ops are either assignment
operations or assume operations. The set of program variables that occur in program
operations from Ops is denoted by X. A concrete state of a program is a variable
assignment c that assigns a value to each variable from X∪{pc}. The set of all con-
crete states of a program is denoted by C. A set r ⊆ C of concrete states is called a
region. Each edge g ∈G defines a (labeled) transition relation

g→⊆ C × {g} × C,
which defines how concrete states of one program location (source) are transformed
into concrete states of another program location (target). The complete transition
relation→ is the union over all control-flow edges:→=⋃

g∈G
g→. We write c

g→c′
if (c, g, c′) ∈ →, and c→c′ if there exists a g with c

g→c′. A concrete state cn is
reachable from a region r , denoted by cn ∈ Reach(r), if there exists a sequence
of concrete states 〈c0, c1, . . . , cn〉 such that c0 ∈ r and for all 1 ≤ i ≤ n, we have
ci−1→ci .

Example 1 Figure 1 shows an example program (a) and the corresponding CFA (b).
The CFA has seven program locations (L = {2,3,4,5,7,9,10}, l0 = 2) and three
program variables (X = {x,y,z}). The initial region r0 of this program is the set
{c ∈ C | c(pc)= 2}. The only concrete state at program location 5 (i.e., before line 5
is executed) that is reachable from the initial region is the following variable assign-
ment: c(pc)= 5, c(x)= 0, c(y)= 1, c(z)= 0. The set of concrete states at program

5Tool implementations usually support interprocedural analysis, either via function inlining, func-
tion summaries, or other techniques [100, 116]. More information on this topic is given in Chap. 17.
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Fig. 2 Example lattice

location 9 that are reachable from the initial region can be represented by the predi-
cate pc= 9∧ ((x= 1∧ y= 1∧ z= 0)∨ (x= 0∧ y �= 1∧ z= 1)).

Semi-lattices. A partial order 8 ⊆ E × E over a (possibly infinite) set E is a
binary relation that is reflexive (e8 e for all e ∈E), transitive (if e8 e′ and e′ 8 e′′
then e 8 e′′), and antisymmetric (if e 8 e′ and e′ 8 e then e = e′). The least upper
bound for a subsetM ⊆E of elements is the smallest element e such that e′ 8 e for
all e′ ∈M . The partial order 8 induces a semi-lattice6 (defines the structure of the
semi-lattice) if every subsetM ⊆E has a least upper bound e ∈E (cf. [94] for more
details). We denote a semi-lattice that is induced by a set E and a partial order 8
using the tuple (E,8,7,�), in order to assign symbols to special components: the
join operator 7 :E×E→E yields the least upper bound for two elements (we use
the set notation

⊔ {e1, e2, . . .} to denote e1 7 e2 7 . . .) and the top element � is the
least upper bound of the set E (�=7E).

Example 2 Let us consider the semi-lattice (V ,8,7,�) that can be used for
a constant-propagation analysis over two Boolean variables. The set V of lat-
tice elements consists of variable assignments: V =X→{⊥V ,0,1,�V }, X =
{x1, x2}. The partial order 8 is defined as v 8 v′ if ∀x ∈ X : v(x)= v′(x) or
v(x)=⊥V or v′(x) = �V . Figure 2 depicts this simple lattice as a graph. The
nodes represent lattice elements, where a pair (c1, c2) denotes the variable assign-
ment {x1 �→ c1, x2 �→ c2}. The edges represent the partial order (if read in the
upwards direction), where reflexive and transitive edges are omitted. The top ele-
ment � is the variable assignment with �(x)=�V for all x ∈X.

6Sometimes, complete lattices are used in formalizations of data-flow analyses, but most practical
analyses require only one operator: either the least upper bound or the greatest lower bound.
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Program Analysis. A program analysis for a CFA (L, l0,G) consists of an abstract
domain D and a transfer relation �. The abstract domain D = (C,E , [[·]]) is de-
fined by the set C of concrete states, a semi-lattice E = (E,8,7,�), and a con-
cretization function [[·]]. The lattice elements are used as (components of) abstract
states in the program analysis. Each abstract state represents a (possibly infinite)
set of concrete states. The concretization function [[·]] :E→ 2C assigns to each ab-
stract state its meaning, i.e., the set of concrete states that it represents. The abstract
domain determines the objective of the analysis, i.e., the aspects of the program that
are analyzed. The transfer relation �⊆E×G×E assigns to each abstract state e
possible new abstract states e′ that are abstract successors of e, and each transfer is
labeled with a control-flow edge g. We write e

g�e′ if (e, g, e′) ∈�, and e�e′ if
there exists a g with e

g�e′. A program analysis has to fulfill certain requirements
for soundness, i.e., to guarantee that no violations of the property are missed by the
analysis [17, 38, 94].

Example 3 Considering the example in Fig. 2 again, the concretization function [[·]]
relates the lattice elements to sets of variable assignments. For example, lattice el-
ement (1,0) maps the first variable to value 1 and the second variable to value 0.
The lattice element � represents all concrete states. Given a variable x, we use
the bottom element ⊥V to denote the variable assignment that assigns no value to
variable x (representing the empty set of concrete states). Note that in a program
analysis, there might be several (strictly speaking different) lattice elements that
represent the empty set of concrete states: every variable assignment that has (at
least) one variable assigned to ⊥V cannot represent any concrete state.7

16.3.2 Algorithm of Data-Flow Analysis

We now present an iteration algorithm for MFP data-flow analysis. According to
classic definitions of data-flow analysis [94], the algorithm computes, for a given
abstract domain, a function reached that assigns to each analyzed program location
an abstract data state (i.e., the abstract states consist of a program location and an
abstract data state, the latter represented by a lattice element).

Algorithm 1(a) operates on a partial function and a set: the function reached rep-
resents the result of the data-flow analysis, i.e., the mapping from program locations
to abstract data states; the set waitlist represents the program locations for which the
abstract data state was changed, i.e., the fixed point is not reached as long as waitlist
is not empty. Algorithm 1(a) is guaranteed to terminate if the semi-lattice has finite
height; the run time depends on the height of the semi-lattice and the number of
program locations. The algorithm starts by assigning the initial abstract data state

7This leads to the notion of “smashed bottom,” where all variable assignments with at least one
variable assigned to ⊥V are subsumed by one representative (⊥). We do not emphasize this notion
in our chapter.
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Algorithm 1 Typical differences of data-flow analysis (Algorithm DFA) and soft-
ware model checking (Algorithm Reach)
Input: set L of locations, an abstract domain E, transfer relation �,

initial abstract state (l0, e0) with l0 ∈L,e0 ∈E
Output: set of reachable abstract states (pairs of location and abstract data state)

(a) Algorithm DFA(L,E,�, e0)

Variables: function reached : L⇀E,
set waitlist⊆ L

1: waitlist := {l0}
2: reached(l0) := e0
3: while waitlist �= {} do
4: choose l from waitlist
5: waitlist := waitlist \ {l}
6: for each (l′, e′) with (l, e)�(l′, e′) do
7: // if not already covered
8: if e′ �8 reached(l′) then
9: // join with existing abstract data state

10: reached(l′) := reached(l′) 7 e′
11: waitlist := waitlist∪ {l′}
12: return reached

(b) Algorithm Reach(L,E,�, e0)

Variables: set reached⊆ L×E,
set waitlist⊆ L×E

1: waitlist := {(l0, e0)}
2: reached := {(l0, e0)}
3: while waitlist �= {} do
4: choose (l, e) from waitlist
5: waitlist := waitlist \ {(l, e)}
6: for each (l′, e′) with (l, e)�(l′, e′) do
7: // if not already covered
8: if �(l′, e′′) ∈ reached : e′ 8 e′′ then
9: // add as new abstract state

10: reached := reached∪ {(l′, e′)}
11: waitlist := waitlist∪ {(l′, e′)}
12: return reached

to the initial program location. Then it iterates through the while loop until the
set waitlist is empty. In every loop iteration, one program location is taken out of
the waitlist and abstract successors are computed for the corresponding successor
program locations. The abstract data element for the successor program location in
function reached is added for the program location, or the old abstract data state is
replaced by the join of the old and new abstract data states. Because we operate on
a partial function reached, we extend e′ �8 reached(l′) to return false if reached(l′)
is undefined, and we extend reached(l′) 7 e′ to

⊔
({e′′ | (l′, e′′) ∈ reached} ∪ e′).8

Example 4 Consider the example program from Fig. 1 and an abstract domain
for constant propagation; suppose the verification task is to ensure that no divi-
sion by zero occurs. The data-flow analysis computes a function reached with
the following entries: 2 �→ {x=�,y=�,z=�}, 3 �→ {x= 0,y=�,z=�},
and 4 �→ {x= 0,y=�,z= 0}. Following the then branch from program lo-
cation 4, the algorithm computes the entries 5 �→ {x = 0,y = 1,z = 0} and
9 �→ {x= 1,y= 1,z= 0}, and stores them in the function reached. For the
else branch, the algorithm computes the entries 7 �→ {x = 0,y = �,z = 0}
and 9 �→ {x= 0,y=�,z= 1}. Since reached already has an entry for program
location 9, the two abstract data states are joined, which results in the entry
9 �→ {x=�,y=�,z=�}. The correctness of the program (in terms of division
by zero) cannot be established.

8Alternative formalizations use total functions for reached and require some lower bound ⊥ to
exist in the (semi-) lattice, which is used as the initial abstract state to make reached total.
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16.3.3 Algorithm of Model Checking

We now consider an iteration algorithm for software model checking. According to
the classic reachability algorithm, the algorithm computes the nodes of an abstract
reachability tree [13], which contains all reachable abstract states according to the
transfer relation. In difference to the data-flow analysis, the join operation is never
applied.

Algorithm 1(b) operates on two sets reached and waitlist, which are initialized
with a pair of the initial control-flow location and the initial abstract data state.
In every iteration of the while loop, the algorithm takes one abstract state from
the set waitlist and computes successors, as long as the fixed point is not reached.
Algorithm 1(b) is not guaranteed to terminate if the semi-lattice is infinite; software
model checking in general is a semi-decidable analysis. If there is no abstract state
in the set reached that entails the new abstract state, then the new abstract state is
added to the sets reached and waitlist. The join operation is never called, and thus,
the set of reached abstract states contains all nodes that an abstract reachability tree
(ART) [13] would contain (the edges of the actual tree are not necessarily stored;
but many model-checking algorithms do store an ART to support certain features,
such as error-path analysis [34]).

Example 5 We reconsider the example program from Fig. 1 and an abstract domain
for constant propagation. The model-checking algorithm computes a set reached
with the following entries: (2, {x=�,y=�,z=�}), (3, {x= 0,y=�,z=�}),
and (4, {x = 0,y = �,z = 0}). Following the then branch from program loca-
tion 4, the algorithm computes the entries (5, {x= 0,y= 1,z= 0}) and (9, {x= 1,
y = 1,z = 0}), and stores them in the set reached. For the else branch, the al-
gorithm computes the entries (7, {x= 0,y=�,z= 0}) and (9, {x = 0,y = �,
z= 1}). Although reached already has an entry for program location 9, this second
entry is stored in the set reached, and the correctness of the example program (in
terms of division by zero) is established: the value of variable x is always different
from the value of variable z.

16.3.4 Unified Algorithm Using Configurable Program Analysis

In theory, data-flow analysis and model checking have the same expressive
power [108]. In this section, we explain the unifying framework of configurable
program analysis [17, 18], a formalism and algorithm that makes it possible to
practically unify the approaches. Comparing the two Algorithms 1(a) and (b) again
reveals the similarity that motivates a unified algorithm, and also the differences that
motivate the configurable operators merge and stop, which we will define below as
part of the configurable program analysis and then use in the unified Algorithm 2.
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Configurable Program Analysis (CPA). A configurable program analysis D =
(D,�,merge, stop) for a CFA (L, l0,G) consists of an abstract domain D, a trans-
fer relation �, a merge operator merge, and a termination check stop, which are
explained in the following. These four components configure our algorithm and in-
fluence the precision and cost of a program analysis.

1. The abstract domain D = (C,E , [[·]]) is defined by the set C of concrete states,
a semi-lattice E = (E,8,7,�), and a concretization function [[·]].

2. The transfer relation �⊆ E ×G× E assigns to each abstract state e possible
new abstract states e′ that are abstract successors of e, and each transfer is labeled
with a control-flow edge g.

3. The merge operator merge : E × E→ E combines the information of two ab-
stract states. The operator weakens the abstract state (also called widening) that
is given as second parameter depending on the first parameter (the result of
merge(e, e′) can be anything between e′ and �).

Note that the operator merge is not commutative, and is not necessarily
the same as the join operator 7 of the lattice, but merge can be based on 7.
Later we will use the following merge operators: mergesep(e, e′) = e′ and
mergejoin(e, e′)= e 7 e′.

4. The termination check stop : E × 2E → B checks whether the abstract state e
that is given as first parameter is covered by the set R of abstract states given
as second parameter, i.e., every concrete state that e represents is represented by
some abstract state from R. The termination check can, for example, go through
the elements of the set R that is given as second parameter and search for a
single element that subsumes (8) the first parameter, or—if D is a power-set
domain9—can join the elements of R to check whether

⊔
R subsumes the first

parameter.
Note that the termination check stop is not the same as the partial order 8 of

the lattice, but stop can be based on 8. Later we will use the following termina-
tion checks (the second requires a power-set domain): stopsep(e,R)= (∃e′ ∈R :
e8 e′) and stopjoin(e,R)= (e8⊔

R).

The abstract domain on its own does not determine the precision of the analysis;
each of the four configurable components (abstract domain, transfer relation, merge
operator, and termination check) independently contribute to adjusting both preci-
sion and cost of the analysis.

Unified Algorithm. In order to experiment with both data-flow analysis and model
checking in one single algorithm, we unify the two algorithms using the operators
merge and stop of the configurable program analysis.

Algorithm 2 abstracts from program locations and operates on two sets of ab-
stract states (abstract-domain elements), i.e., the program location is represented in
the abstract domain and is not specially treated anymore (classic data-flow analyses

9A power-set domain is an abstract domain such that [[e1 7 e2]] = [[e1]] ∪ [[e2]].
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Algorithm 2 CPA(D, e0)

Input: a CPA D= (D,�,merge, stop),
an initial abstract state e0 ∈E, where E denotes the set of elements of the lattice of D

Output: a set of reachable abstract states
Variables: a set reached⊆E, a set waitlist⊆E
1: waitlist := {e0}
2: reached := {e0}
3: while waitlist �= {} do
4: choose e from waitlist
5: waitlist := waitlist \ {e}
6: for each e′ with e�e′ do
7: for each e′′ ∈ reached do
8: // combine with existing abstract state
9: enew :=merge(e′, e′′)

10: if enew �= e′′ then
11: waitlist := (waitlist∪ {enew}) \ {e′′}
12: reached := (reached∪ {enew}) \ {e′′}
13: if ¬ stop(e′, reached) then
14: waitlist := waitlist∪ {e′}
15: reached := reached∪ {e′}
16: return reached

rely on an explicit representation of the program location). The sets reached and
waitlist are initialized with the initial abstract state for the given configurable pro-
gram analysis. As in the previous algorithms, every iteration of the loop processes
one element from the set waitlist, and computes all abstract successors for that ab-
stract state. The set waitlist is empty if the fixed point of the iteration is reached.

Now, for every abstract successor state, the algorithm merges the new abstract
state with every existing abstract state in the set reached. It depends solely on the
merge operator how often abstract states from reached are combined and how ab-
stractly they are combined. In the case that the merge operator does not produce a
new combined state, it simply returns the existing abstract state that was given as
second parameter. Otherwise, it returns a new abstract state that entails the exist-
ing abstract state. In the latter case, the existing abstract state is removed from the
sets reached and waitlist and the new abstract state is added to the sets reached and
waitlist. (Obviously, an efficient implementation of the algorithm applies optimiza-
tion to the for each loop from line 7 to line 12, e.g., using partitions or projections
for the set reached.)

After the current abstract successor state has been merged with all existing ab-
stract states, the stop operator determines whether the algorithm needs to store the
current abstract state in the sets reached and waitlist. For example, if all concrete
states that are represented by the current abstract state are covered (i.e., also repre-
sented) by existing abstract states in the set reached, then the current state may be
ignored.

The set reached, at the fixed point of the iteration, represents the program in-
variant. Such fixed-point iterations and several other algorithms for constructing
program invariants are discussed in Sect. 16.6.



16 Combining Model Checking and Data-Flow Analysis 509

16.3.5 Discussion

Effectiveness. The effectiveness of an analysis refers to the degree of precision with
which the analysis determines whether a program satisfies or violates a given spec-
ification (number of false positives and false negatives). Model checking has a high
degree of precision, due to the fact that all reachable abstract states are stored sep-
arately in the set of reachable states, i.e., model checking is automatically path-
sensitive due to never applying join operations (if the set of reachable abstract states
is seen as the reachability tree that represents execution paths). Data-flow analysis
is often imprecise, when join operations are applied in order to reduce two abstract
states to one. In comparison to standard data-flow analysis, power-set constructions
for increasing the precision (e.g., for making an analysis path-sensitive) are not nec-
essary in a configurable program analysis: the effect can easily be achieved by set-
ting the merge operator to not join.

This is the strength of defining program analyses as CPA: the components ab-
stract domain, transfer relation, merge operator, and stop operator separate concerns
and provide a flexible way of tuning these components or exchanging them with
others. For example, the merge operator encodes whether the algorithm works like
MFP, or MOP, or uses a hybrid approach (cf. the merge operator used in adjustable-
block encoding [22]). Each of the components has an important impact on the pre-
cision and performance of the program analysis.

Efficiency. The efficiency (also called performance) of an analysis measures the re-
source consumption of an algorithm (in time or space). The resources required for
an analysis often decide whether the analysis should be applied to the problem or
not. For example, the run time of a data-flow analysis is determined by the height of
the abstract domain’s lattice, the size of the control-flow automaton, and the number
of variables in the program. Most of the classic data-flow analyses are efficient (low
polynomial run time) and can be used in compilers for optimization. Model check-
ing sometimes requires resources exponential in the program size (if terminating at
all). Due to the high precision of typical model-checking domains, such as predi-
cate abstraction, the sub-problem of computing an abstract successor state is often
NP-hard already.

Iteration Order. The iteration order defines the sequence in which abstract states
from the set waitlist are processed by the exploration algorithm. We did not discuss
this parameter because it is orthogonal to the difference between data-flow analysis
and model checking, i.e., most iteration orders can be used for both techniques. In
Algorithm 2, the iteration order is implemented in the operator choose. The most
simple iteration orders are breadth-first search (BFS) and depth-first search (DFS).
The iteration order DFS is often not advisable for data-flow analysis, because after
each join operation, the algorithm has to re-explore all successors of abstract states
that represent more concrete states after the join. For model checking, both orders
are applicable, while some existing implementations of model-checking tools prefer
the DFS order (e.g., BLAST [13]). The best iteration order is often a combination of
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both, for example by using a topological (reverse post-order) algorithm in which
DFS is performed until a meet point, while further exploration has to wait for the
control flow to arrive via all other branches [22]. Also chaotic iteration orders [29]
were investigated and found to be useful. More details can be found in Sect. 16.6.1.

16.3.6 Composition of Configurable Program Analyses

Different CPAs have different strengths and weaknesses, and therefore, we need
to construct combinations of component analyses to pick the advantages of several
components, in order to achieve more effective program analyses.

Composite. A configurable program analysis can be composed of several config-
urable program analyses [17]. A composite program analysis C = (D1,D2,�×,
merge×, stop×)10 consists of two configurable program analyses D1 and D2 shar-
ing the same set C of concrete states with E1 and E2 being their respective sets of
abstract states, a composite transfer relation �× ⊆ (E1 × E2)×G× (E1 × E2),
a composite merge operator merge× : (E1 × E2)× (E1 × E2)→ (E1 × E2), and
a composite termination check stop× : (E1 × E2)× 2E1×E2 → B. The three com-
posites �×, merge×, and stop× are expressions over the components of D1 and D2
(�i ,mergei , stopi , [[·]]i ,Ei,8i ,7i ,�i ), as well as the operators ↓ and 3 (defined
below). The composite operators can manipulate lattice elements only through those
components, never directly (e.g., if D1 is already a result of a composition, then we
cannot access the tuple elements of abstract states from E1, nor redefine merge1).
The only way of using additional information is through the operators ↓ and 3.

Strengthen. The strengthening operator ↓ :E1×E2 →E1 computes a stronger ele-
ment from the lattice set E1 by using the information of a lattice element from E2;
it has to meet the requirement ↓(e, e′)8 e. The strengthening operator can be used
to define a composite transfer relation �× that is stronger than a direct product
relation. For example, if we combine predicate analysis and constant propagation,
the strengthening operator ↓CO,P can “sharpen” the explicit-value assignment of the
constant propagation (cf. Sect. 16.4.2) by considering the predicates in the predicate
analysis (cf. Sect. 16.4.4).

Compare. Furthermore, we allow the definitions of composite operators to use the
compare relation 3⊆E1 ×E2, to compare elements of different lattices.

Composition. For a given composite program analysis C = (D1,D2,�×,merge×,
stop×), we can construct the configurable program analysis D× = (D×,�×,
merge×, stop×), where the product domain D× is defined as the direct product

10We extend this notation to any finite number of Di .



16 Combining Model Checking and Data-Flow Analysis 511

of D1 and D2: D× = D1 × D2 = (C,E×, [[·]]×). The product lattice is E× =
E1 × E2 = (E1 ×E2,8×,7×, (�1,�2)) with (e1, e2) 8× (e′1, e′2) if e1 81 e

′
1 and

e2 82 e
′
2 (and for the join operation the following holds (e1, e2)7× (e′1, e′2)= (e1 71

e′1, e2 72 e
′
2)). The product concretization function [[·]]× is such that [[(d1, d2)]]× =

[[d1]]1 ∩ [[d2]]2.
The literature agrees that this direct product itself is often not sharp enough [36,

39]. Even improvements over the direct product (e.g., the reduced product [28, 39]
or the logical product [61]) do not solve the problem completely. However, in a
configurable program analysis, we can specify the desired degree of “sharpness” in
the composite operators �×, merge×, and stop×. For a given product domain, the
definitions of the three composite operators determine the precision of the resulting
configurable program analysis. In previous approaches, a redefinition of basic op-
erations was necessary, but using configurable program analysis, we can reuse the
existing abstract interpreters. For certain numerical abstract domains, the composite
transfer relation can be automatically constructed: if the abstract domains of two
given CPAs fulfill certain requirements (convex, stably infinite, disjoint) then the
most precise abstract transfer relation can be computed [61].

16.4 Classic Examples (Component Analyses)

We now define and explain some well-known classic example analyses, in order to
demonstrate the formalism of configurable program analysis. We use the notations
that were introduced in Sects. 16.3.1, 16.3.4, and 16.3.6.

16.4.1 Reachable-Code Analysis

The reachable-code analysis (also known as dead-code analysis) identifies all lo-
cations of the control-flow automaton that can be reached from the program entry
location. This classic analysis tracks only syntactic reachability, i.e., the operations
are not interpreted.

The location analysis is a configurable program analysis L= (DL,�L,mergeL,
stopL) that tracks the reachability of program locations and consists of the following
components:

1. The abstract domain DL is based on the semi-lattice for the set L of program
locations: DL = (C,L , [[·]]), with L = (L ∪ {�},8,7,�) (also called a “flat
semi-lattice”), l 8 �, and l �= l′ ⇒ l �8 l′ for all elements l, l′ ∈ L (this implies
�7 l =�, l 7 l′ = � for all elements l, l′ ∈ L, l �= l′), and [[�]] = C, and for all
l ∈ L: [[l]] = {c ∈ C | c(pc)= l}.

The element � represents the fact that the program location is not known.
2. The transfer relation �L has the transfer l

g�Ll
′ if g = (l,op, l′), and has the

transfer � g�L� for all g ∈G.
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The transfer relation determines the syntactic successor in the CFA without
considering the semantics of the operation op.

3. The merge operator does not combine elements when the control flow meets:
mergeL =mergesep.

4. The termination check considers abstract states individually: stopL = stopsep.

This (simple) abstract domain can be used to perform a syntactic reachability
analysis, for example to eliminate control-flow operations that can never be exe-
cuted. More importantly, this CPA can be used to track the program location when
combined with other CPAs, in order to separate the concern of location tracking
from other analyses. In practice, a semantic reachable-code analysis would be pre-
ferred to search for dead code, for example using a predicate analysis, as was done
in the context of model-checking-based test-case generation [7]. More details about
the connection between model checking and testing are provided in Chap. 19.

16.4.2 Constant Propagation

The constant-propagation analysis identifies variables that store constant values at
certain program locations, i.e., at a given program location, the value is always the
same. This classic domain of data-flow analysis can be used to reduce the number
of variables in a program by substituting constants for variables.

The constant-propagation analysis is a configurable program analysis CO =
(DCO,�CO,mergeCO, stopCO) that tries to determine, for each program location,
the value of each variable, and consists of the following components (we use the
set L of program locations, the set X �= {} of program variables, and the set Z of
integer values):

1. The abstract domain DCO = (C,E , [[·]]) consists of the following three compo-
nents. The set C is the set of concrete states. The semi-lattice E represents the
abstract states, which store for a program location an abstract variable assign-
ment. Formally, the semi-lattice E = ((L∪ {�L})× (X→Z ),8,7, (�L, v�)),
with Z = Z ∪ {�Z }, is induced by the partial order 8 that is defined as
(l, v)8 (l′, v′) if (l = l′ or l′ = �L) and ∀x ∈X : v(x)= v′(x) or v′(x)=�Z .
(The join operator 7 yields the least upper bound, and v� is the abstract variable
assignment with v�(x) = �Z for each x ∈ X.) A concrete state c matches a
program location l if c(pc)= l or l = �L. Similarly, a concrete state c is com-
patible with an abstract variable assignment v if for all x ∈ X, c(x) = v(x) or
v(x) = �Z . The concretization function [[·]] assigns to an abstract state (l, v)
all concrete states that match the program location l and are compatible with the
abstract variable assignment v.

2. The transfer relation �CO has the transfer (l, v)
g�(l′, v′) if

(1) g = (l,assume(p), l′) and φ(p, v) is satisfiable and for all x ∈X:

v′(x)=
⎧
⎨

⎩

c if c is the only satisfying assignment of φ(p, v)
for variable x

v(x) otherwise
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where, given a predicate p over variables in X and an abstract variable as-
signment v, we define φ(p, v) := p ∧ ∧

x∈X,v(x)�=�Z
x = v(x) or

(2) g = (l,w := e, l′) and for all x ∈X:

v′(x)=
{

eval(e, v) if x = w
v(x) otherwise

where, given an expression e over variables in X and an abstract variable
assignment v,

eval(e, v) :=
⎧
⎨

⎩

�Z if v(x)=�Z for some x ∈X that occurs in e
z otherwise, where expression e evaluates to z when

each variable x is replaced by v(x) in e

or
(3) l = l′ = �L and v′ = v�.

3. The merge operator is defined by

mergeCO
(
(l, v),

(
l′, v′

))=
{
(l, v) 7 (l′, v′) if l = l′
(l′, v′) otherwise

(The two abstract variable assignments are combined where the control flow
meets.)

4. The termination check is defined by stopCO = stopsep.

Example 6 Consider the C function in Fig. 1(a) again, and construct a CPA for con-
stant propagation. The following lattice element is an example of an abstract state
that is reachable in the program code from Fig. 1(a): (4, {x �→ 0, y �→ �Z , z �→ 0}).

Note that CPA CO performs an MFP computation, which is not precise enough
for proving the correctness of the function in Fig. 1(a). If we change the merge
operator mergeCO to mergesep, then we move from MFP to what corresponds to
abstract reachability trees (never join). This changed analysis is similar to explicit-
value analysis [24]. Explicit-state model checking is discussed in Chap. 5.

Example 7 Considering the example from Fig. 1 again, but using mergesep as
merge operator, we obtain the following two different abstract states for program
location 9: (9, {x �→ 1,y �→ 1,z �→ 0}) and (9, {x �→ 0,y �→ �Z ,z �→ 1}). This
proves that a division by zero is not possible.

16.4.3 Reaching Definitions

The reaching-definitions analysis computes for every program location and for ev-
ery variable a set of assignment operations that may have defined the value of the
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variable (i.e., definitions that “reach” the location). This classic domain of data-flow
analysis (very similar to use-def analysis) is used in compiler optimization to in-
fer dependencies between operations [2], and in code-structure analysis to quan-
titatively measure the data-flow [12]. Furthermore, in selective test-case genera-
tion [102], an efficient use-def analysis is necessary to determine which program
locations need to be covered by a test case (for a given changed definition, we need
to compute all uses of that definition).

An assigning CFA edge e is a reaching definition for program location l and
variable x if there exists a path in the CFA through edge e to program location l
without any (re-)definition of x (compare with Sect. 16.2.3).

The reaching-definitions analysis is a configurable program analysis RD =
(DRD,�RD,mergeRD, stopRD), which computes the set of reaching definitions for
each program location, and consists of the following components (X is the set of
program variables):

1. The abstract domain DRD = (C,E , [[·]]) consists of the set C of concrete states,
the semi-lattice E , and the concretization function [[·]]. The semi-lattice is given
by E = ((L ∪ {�L})× 2E,8RD,7RD, (�L,E)), where E ⊆ X × (L× L) is the
set of definitions (variables paired with their defining edge) in the program, and
we define (l, S)8RD (l

′, S′) if (l = l′ or l′ = �L) and S ⊆ S′, which implies the
join operator:

(l, S) 7RD
(
l′, S′

)=
{
(l, S ∪ S′) if l = l′
(�L, S ∪ S′) otherwise.

2. The transfer relation �RD has the transfer (l, S)�(l′, S′) if

(1) there exists a CFA edge g = (l,op, l′) ∈G and

S′ =
⎧
⎨

⎩

(S \ {(x, k, k′) | k, k′ ∈ L})∪ {(x, l, l′)} if op has the form
x :=<expr>;

S otherwise

or
(2) l = l′ = �L and S′ =E.

3. The merge operator is defined as

mergeRD
(
(l, S),

(
l′, S′

))=
{
(l′, S ∪ S′) if l = l′
(l′, S′) otherwise.

(The two sets of reaching definitions are united where the control flow meets.)
4. The termination check is defined as stopRD = stopsep.

Example 8 In the program of Fig. 1, variable x has the following reaching defini-
tions at location 9: {(x,2,3), (x,5,9)}.
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16.4.4 Predicate Analysis

For a given formula φ and a set π of predicates, the Cartesian predicate abstrac-
tion (φ)πC is the strongest conjunction of predicates from π that is implied by φ,
and the Boolean predicate abstraction (φ)πB is the strongest Boolean combination
of predicates from π that is implied by φ.

Predicate analysis is a program analysis that uses predicate abstraction to con-
struct abstract states. The precision π of the predicate analysis is a finite set of
predicates that controls the coarseness of the over-approximation of the abstract
states. The precision can be refined during the analysis using CEGAR [34] and in-
terpolation [69], and there can be different values for the precision at different pro-
gram locations using lazy abstraction refinement [13, 71], however, for simplicity of
presentation, we assume a fixed set of predicates. This classic domain of software
model checking became popular and successful in the last decade due to the recent
breakthroughs in decision procedures (SMT solvers) for Boolean formulas over ex-
pressions in the theory of linear arithmetic (LA) and equality with uninterpreted
functions (EUF).

The Cartesian predicate analysis is a configurable program analysis P =
(DP,�P,mergeP, stopP), which uses Cartesian predicate abstraction and consists
of the following components (where the precision is given by the finite set π of
predicates over the set X of program variables, with false ∈ π , that are tracked by
the analysis; for a set r ⊆ π of predicates, we write ϕr to denote the conjunction of
all predicates in r , in particular ϕ{} = true):
1. The domain DP = (C,P, [[·]]) is based on the idea that regions are repre-

sented by conjunctions over a finite set of predicates. The semi-lattice is given
as P = (2π ,8,7,�), where the partial order 8 is defined as r 8 r ′ if r ⊇ r ′
(note that if r 8 r ′ then ϕr implies ϕr ′ ). The least upper bound r 7 r ′ is given
by r ∩ r ′ (note that ϕr7r ′ is implied by ϕr ∨ ϕr ′ ). The element � = {} leaves
the abstract state unconstrained (true), i.e., every concrete state is represented.
We used the subsets of π as the lattice elements and their subset relationship as
the partial order; alternatively, one could define a lattice for predicate abstrac-
tion using conjunctions over predicates from π as the lattice elements and their
formula-implication relationship as partial order. The concretization function [[·]]
is defined by [[r]] = {c ∈ C | c |= ϕr}.

2. The transfer relation �P has the transfer r
g�Pr

′ if post(ϕr , g) is satisfiable
and r ′ is the largest set of predicates from π such that ϕr implies pre(p,g)
for each p ∈ r ′, where post(ϕ, g) and pre(ϕ, g) denote the strongest post-
condition and the weakest pre-condition, respectively, for a formula ϕ

and a control-flow edge g. The two operators post and pre are defined
such that [[post(ϕ, g)]] = {c′ ∈ C | ∃c ∈ C : c g→c′ ∧ c |= ϕ} and [[pre(ϕ, g)]] =
{c ∈ C | ∃c′ ∈ C : c g→c′ ∧ c′ |= ϕ}. The Cartesian abstraction of the successor
state is obtained by separate entailment checks for each predicate in π , which
can be implemented by |π | calls of a theorem prover.11

11A more efficient formulation of the same problem is based on the weakest pre-condition in order
to avoid existential quantification.
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3. The merge operator does not combine elements when the control flow meets:
mergeP =mergesep.

4. The termination check considers abstract states individually: stopP = stopsep.

Note that the CPA P cannot run alone: it is a component analysis that works in a
composite analysis with the location analysis from Sect. 16.4.1 as another compo-
nent CPA. The analysis could in principle be designed such that the predicates in π
also constrain the program location, but this is not considered here.

The first practical implementations of a program analysis with Cartesian pred-
icate abstraction were developed more than ten years ago (cf. SLAM [3, 4]
and BLAST [13, 71]). More recent advancements in predicate analysis use Boolean
abstraction [9] instead of Cartesian abstraction, and a complete temporal separation
of the computation of the predicate abstraction for a formula from the computa-
tion of the strongest post-condition for a program operation [22]. An overview of
Cartesian predicate abstraction is also given in Chap. 15, and of SAT solving in
Chap. 9.

16.4.5 Explicit-Heap Analysis

In the following, we outline a simple analysis of dynamic data structures on the heap
(as an extension of the simple programming language that we used so far), which is,
for example, used as a basis for an accelerated abstraction in shape analysis [18, 19];
we give only a coarse overview here.

The explicit-heap analysis is a configurable program analysis H = (DH,�H,

mergeH, stopH), which tracks explicit heap structures up to a certain size and con-
sists of the following components:

1. The domain of the explicit-heap analysis stores concrete instances of data struc-
tures in its abstract states. Each abstract state represents an explicit, finite part
of the memory. An abstract state H = (v,h) of an explicit-heap analysis con-
sists of the following two components: (1) the variable assignment v :X→ Z�
is a total function that maps each variable identifier (integer or pointer vari-
able) to an integer (representing an integer value or a structure address) or the
special value � (representing the value “unknown”); and (2) the heap assign-
ment h : Z⇀(F → Z�) is a partial function that maps every valid structure ad-
dress to a field assignment, also called a structure cell (memory content). A field
assignment is a total function that maps each field identifier f ∈ F of the struc-
ture to an integer, or the special value �. We call H an explicit heap. The initial
explicit heap H0 = (v0, {}), with v0(x)=� for every program variable x, repre-
sents all program states. Given an explicit heap H and a structure address a, the
depth of H from a, denoted by depth(H,a), is defined as the maximum length
of an acyclic path whose nodes are addresses and where an edge from a1 to a2
exists if h(a1)(f ) = a2 for some field f , starting from v(a). The depth of H ,
denoted by depth(H), is defined as maxa∈X depth(H,a).
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Fig. 3 Sample explicit heap for a doubly-linked list

2. The transfer relation �H has the transfer H
g�HH

′ if H ′ = (v′, h′) is the ex-
plicit heap that results from applying the control-flow edge g = (l,op, l′) to the
explicit heap H = (v,h) according to the semantics of op. The new variable
assignment v′ maps every pointer variable p to � for which depth(H,p) > c,
where c is an analysis-dependent constant maximal depth value of the heap struc-
tures.12 (The analysis stops tracking structures that have a depth greater than the
maximal depth value.)

3. The merge operator does not combine elements when the control flow meets:
mergeH =mergesep.

4. The termination check considers abstract states individually: stopH = stopsep.

Besides explicit-heap analysis, which can only serve as an auxiliary analysis or
for bounded bug finding, several approaches for symbolic-heap analysis were pro-
posed in the literature [16, 19, 32, 45, 75, 103].

Example 9 Figure 3 graphically depicts an explicit heap (v,h) that can occur in a
program operating on a structure elem {int data; elem∗ succ; elem∗ prev}, with
v = {l1 �→ 1} and h= {
1 �→ {data �→ �,succ �→ 2,prev �→ 0},
2 �→ {data �→ �,succ �→ 3,prev �→ 1},
3 �→ {data �→ �,succ �→ 4,prev �→ 2},
4 �→ {data �→ �,succ �→ 5,prev �→ 3},
5 �→ {data �→ �,succ �→ 0,prev �→ 4}
}.

16.4.6 BDD Analysis

Binary decision diagrams (BDDs) [31] are a popular data structure in model-
checking algorithms. In the following, we define a configurable program analysis
that uses BDDs to represent abstract states. For the details, we refer to an article
on the topic [25]. An introduction to BDDs is given in Chap. 7 and to BDD-based
model checking in Chap. 8. Given a first-order formula ϕ over the set X of program
variables, we use Bϕ to denote the BDD that is constructed from ϕ, and [[ϕ]] to
denote all variable assignments that fulfill ϕ. Given a BDD B over X, we use [[B]]
to denote all variable assignments that B represents ([[Bϕ]] = [[ϕ]]).

12The analysis has to apply garbage collection in heap assignments of the abstract states.
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The BDD analysis is a configurable program analysis BPA = (DBPA,�BPA,

mergeBPA, stopBPA) that represents the data states of the program symbolically, by
storing the values of variables in BDDs. The CPA consists of the following compo-
nents (taken from [25]):

1. The abstract domain DBPA = (C,EB, [[·]]) is based on the semi-lattice EB of
BDDs, i.e., every abstract state consists of a BDD. The concretization func-
tion [[·]] assigns to an abstract state B the set [[B]] of all concrete states that
are represented by the BDD. Formally, the semi-lattice EB = (B̂,8,7,�)—
where B̂ is the set of all BDDs and � =Btrue is the BDD that represents all
concrete states (1-terminal node)—is induced by the partial order 8 that is de-
fined as: B 8B′ if [[B]] ⊆ [[B′]]. The join operator 7 for two BDDs B and
B′ yields the least upper bound B ∨B′.

2. The transfer relation �BPA has the transfer B
g�B′ with

B′ =
{

B ∧Bp if g = (l,assume(p), l′) and [[B ∧Bp]] �= {}
(∃w :B)∧Bw=e if g = (l,w := e, l′).

3. The merge operator is defined by mergeBPA =mergejoin.
4. The termination check is defined by stopBPA = stopsep.

A complete program analysis can be instantiated by composing the CPA BPA

for BDD-based analysis with the CPA L for location analysis, in order to also track
the program locations.

16.4.7 Observer Automata

Many software verifiers require the user to encode the safety property to be veri-
fied as a reachability problem inside the program source code. It has been shown
that tools can provide more convenient and elegant specification languages for ex-
pressing safety properties separately from the program [5, 8]. This approach has
the advantages that the property need not be present in the program source code,
and that different properties can be checked independently (and possibly simultane-
ously). The software model checker BLAST [8] provides a transformation technique
that takes as input the original program and the specification, and produces an in-
strumented program. The instrumented program is then given to the standard model
checker, which simply checks for reachability of an error label.

This approach can be realized even more elegantly using a composite analysis
that transforms the specification into an observer automaton that runs in parallel
with the other analyses of the verifier in a composition. Such a strategy was imple-
mented, for example, in the software verifiers BLAST [120], CPACHECKER [21], and
ORION [44].

A specification is an abstract description of a set of valid program paths for a
given program. We represent such a specification as an observer automaton that
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Fig. 4 Simple observer automaton

observes whether an invalid program path is encountered. Observer automata are
also called “monitors” in the literature and can be generated from temporal-logic
specifications. This idea is also used in test-case generation, where (temporal) cov-
erage criteria are transformed into test-goal automata [20], and for re-playing error
witnesses [11, 26].

Example 10 Consider as specification that each user input that the program reads
(e.g., via scanf) must be validated by a call to a function validate before it is
consumed (e.g., via function consume). The observer automaton in Fig. 4 starts in
accepting state qinit, and switches to another accepting state qcheck when scanf is
called. From there, the automaton switches back to state qinit if function validate
is called, but it switches to a non-accepting sink state if the input value is consumed
without validation.

An observer automaton A = (Q,Σ, δ, qinit,F ) for a CFA (L, l0,G) is a non-
deterministic finite automaton, with the finite set Q of control states, the alphabet
Σ ⊆ 2G ×Φ consisting of pairs that consist of a finite set of CFA edges and a state
condition, the transition relation δ ⊆Q×Σ ×Q, the initial control state qinit ∈Q,
and the set F of final control states (usually, all control states except the error control
state qerr ∈Q are accepting control states, i.e., F =Q \ {qerr}). Let p ∈Q be the
current state of an automaton A. The meaning of a transition (p, (D,ψ), q) ∈ δ is
as follows: for a given control-flow edge g of the program analysis, the successor
control state is control state q if the edge g matches one of the edges in the set D
of edges. In combination with another CPA, using a strengthening operator, the
successor state can be required to fulfill condition ψ (a later section will describe
this). The observer automaton A accepts all program paths that have not reached the
error control state, and rejects all program paths that reach the error control state.
The specification that the observer automaton represents is fulfilled if all program
paths are accepted by the observer automaton.

The observer analysis for an observer automaton A is a configurable program
analysis O= (DO,�O,mergeO, stopO), that tracks the control state of the observer
automaton A= (Q,Σ, δ, qinit,F ), with Σ ⊆ 2G×Φ , and consists of the following
components (for a given CFA (L, l0,G)):

1. The abstract domain DO = (C,Q, [[·]]) consists of the set C of concrete states,
the semi-lattice Q, and a concretization function [[·]]. The semi-lattice Q =
(Z,8,7,�Q), with Z = (Q ∪ {�}) × Φ , consists of the set Z of abstract
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data states, which are pairs of a control state from Q (or special lattice ele-
ment) and a condition from Φ , a partial order 8, the join operator 7, and the
top element �Q . The partial order 8 is defined such that (q,ψ) 8 (q ′,ψ ′) if
(q ′ = � or q = q ′) and ψ ⇒ ψ ′, the join 7 is the least upper bound of two ab-
stract data states, and the top element �Q = (�, true) is the least upper bound
of the set of all abstract data states. The concretization function [[·]] : Z→ 2C is
a mapping that assigns to each abstract data state (q,ψ) the set [[ψ]] of concrete
states.

2. The transfer relation �O has the transfer (q,ψ)
g�O(q

′,ψ ′) if the observer au-
tomatonA has a transition (q, (D,ψ ′), q ′) ∈ δ such that g ∈D. The condition ψ ′
of the state transition is stored in the successor in order to enable a compos-
ite strengthening operator to strengthen the successor abstract data state of an-
other component analysis in the composite analysis using information from con-
dition ψ ′.

3. The merge operator combines elements with the same control state:

mergeO
(
(q,ψ),

(
q ′,ψ ′

))=
{
(q ′,ψ ∨ψ ′) if q = q ′
(q ′,ψ ′) otherwise.

4. The termination check considers control states and conditions of the automaton
individually: stopO = stopsep.

16.5 Combination Examples (Composite Analyses)

We describe several examples in which component analyses are assembled into
composite analyses that are neither pure data-flow analyses nor pure model check-
ing. We show that such combinations are relatively easy to express in the CPA for-
malism, and explain what is taken from which approach and why it is useful to
combine them.

16.5.1 Predicate Analysis + Constant Propagation

“Predicated lattices” are a practical combination of the predicate-abstraction do-
main with a classic data-flow domain [49]. The predicate analysis behaves as in
model checking: abstract predicate states are never joined. The composite analysis
performs a merge of two composite abstract states as follows: if the two component
abstract states of the predicate analysis are equal, then the two component abstract
states of the data-flow analysis are joined and the composite analysis stores one
composite abstract state, otherwise the composite analysis stores two separate com-
posite abstract states.
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Given the CPA P for predicate analysis and any CPA for data-flow analysis,
for example, the CPA CO for constant propagation. The composite program anal-
ysis CPCO = (L,P,CO,�×,merge×, stop×) for a predicated constant propaga-
tion consists of the following components: the CPA L for location tracking from
Sect. 16.4.1, the CPA P for predicate analysis from Sect. 16.4.4, the CPA CO for
constant propagation from Sect. 16.4.2, the composite transfer relation �×, the
composite merge operator merge×, and the composite termination check stop×.
The composite transfer relation �× has the transfer (e1, e2, e3)

g�×(e′1, e′2, e′3) if
e1
g�Le

′
1 and e2

g�Pe
′
2 and e3

g�COe
′
3. The composite merge operator merge× is de-

fined by

merge×
(
(e1, e2, e3),

(
e′1, e′2, e′3

))

=
{
(e1, e2,mergeCO(e3, e

′
3)) if e1 = e′1 and e2 = e′2

(e′1, e′2, e′3) otherwise.

The composite termination check is defined by stop× = stopsep.
For the combination of predicate analysis with a data-flow analysis for pointers,

it has been shown that this configuration can significantly improve the verification
performance [49].

16.5.2 Predicate Analysis + Constant Propagation + Strengthen

Now we extend the above composite program analysis by using a strengthening
operator in the transfer relation. Again, a strengthening operator ↓ :E1 ×E2 →E1
takes an abstract state e1 ∈ E1 as input and uses information stored in an abstract
state e2 ∈E2 from another CPA to constrain (“strengthen”) the set of concrete states
that the resulting abstract state ↓(e1, e2) represents.

We use a strengthening operator of the concrete type ↓CO,P :ECO×EP→ECO,
i.e., it strengthens a variable assignment from the constant propagation with an ab-
stract state from the predicate analysis (set of predicates that are satisfied). The
strengthening operator ↓CO,P(v, r) is defined, if φv ∧ φr is satisfiable, as follows,
for every variable x:

↓CO,P(v, r)(x)=
{
c if c is the only satisfying assignment of φv ∧ φr for x
v(x) otherwise

where φv :=∧
x∈X,v(x)�=�Z

x = v(x).
We now define the transfer relation for the new composite program analysis:

The composite transfer relation �× has the transfer (e1, e2, e3)
g�×(e′1, e′2, e′3) if

e1
g�Le

′
1, and e2

g�Pe
′
2, and e3

g�COe
′′
3 , and ↓(e′′3 , e′2) is defined, and e′3 =↓(e′′3 , e′2).

This combined analysis is more precise than the component analyses alone,
which will be illustrated in the following example. A more flexible extension of this
combination was presented using the concept of dynamic precision adjustment [18].
Experiments with this extension have shown that combinations with strengthening
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Fig. 5 Example C function, used to illustrate predicated lattices with strengthening. Neither pred-
icate analysis, nor constant propagation, nor a predicated lattice without strengthening are precise
enough to prove the correctness of this function, but the combination with strengthening is

operators can be more effective and more efficient than Cartesian products of analy-
ses. While the effects of such “reduced products” [39] have been known for decades,
the framework of configurable program analysis enables us to express such combi-
nations in a simple and elegant implementation.

Example 11 Consider the example program in Fig. 5, which extends the previous
example with a non-linear expression. The safety property to be checked is that no
division by zero is executed. Suppose we use a predicate analysis for the theory of
linear arithmetics (LA) and equalities with uninterpreted functions (EUF), with the
precision (i.e., set of predicates to track) {x= 1,z= 1,z= 5,y≥ 1,y≤ 1} and a
constant-propagation analysis.

The predicate analysis with location tracking does not succeed in proving this
example safe: At program location 7, we have the predicate abstract data state
x= 1 ∧ z= 1 ∧ y≥ 1. At program location 10, we have the abstract data
state x= 1 ∧ z= 1 ∧ y≥ 1 ∧ y≤ 1. At program location 11, however, we
have no information about z, due to the fact that the non-linear operation “*” is
modeled as an uninterpreted function, resulting in the following abstract data state:
x= 1 ∧ y≥ 1 ∧ y≤ 1. Thus, the analysis conservatively assumes that the program
can fail with a division by zero. This cannot be remedied by adding other predicates.

The constant propagation stores the value � for program variable y after the
assume operations from the if statements in lines 4 and 7, and thus, also cannot
determine the value of z before the division is computed, and conservatively reports
that the division might fail.

Also the “predicated lattice” (without strengthening) from Sect. 16.5.1 is not pre-
cise enough to prove that a division by zero cannot occur. Although the analysis is
now path-sensitive with respect to the predicates, the constant propagation (which
can precisely interpret the multiplication) cannot determine the value of program
variable y, and the predicate analysis cannot determine the result of the multiplica-
tion, regardless of the predicates used.

The composite analysis with strengthening can transfer information from
the predicate abstract data states to the variable assignments of the constant-
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Fig. 6 Example observer automaton with conditions

propagation analysis. At program location 10, we have the abstract data state
x= 1 ∧ z= 1 ∧ y≥ 1 ∧ y≤ 1 for the predicate analysis and {x �→ 1,y �→ �,
z �→ 1} for the constant-propagation analysis. Now, the composite analysis does
not store the direct product of these two abstract data states as a composite abstract
state, but first strengthens the variable assignment, in particular, of variable y: the
only value for y that satisfies the predicate abstract data state is 1, and therefore,
the new variable assignment after strengthening is {x �→ 1,y �→ 1,z �→ 1}. The
constant-propagation analysis can now compute a value not equal to � for program
variable z for the assignment from location 10 to 11, and thus, is able to prove the
program correct, i.e., that there is no division by zero.

16.5.3 Predicate Analysis + Explicit-Heap Analysis

Similarly to the analysis that incorporates the results of an inexpensive constant-
propagation analysis into a predicate analysis, we can enhance the analysis by us-
ing the result of the explicit-heap analysis. Of course, in order to keep the analysis
practically relevant, the threshold for the heap analysis should be small. This way,
information about the heap that is normally not tracked by the predicate analysis
can be fed to the predicate analysis via a composite strengthening operator, in order
to make the path decisions of the predicate analysis more precise. A combination
of an abstract domain with an explicit-heap analysis was used already in a differ-
ent context [19], where a symbolic abstract shape representation was extracted from
the explicit-heap results. The combination was shown to be able to verify more
programs than the component analyses alone. This direction of combinations of
program analyses is largely unexplored in the literature.

16.5.4 Predicate Analysis + Observer Automata

The following example observer automaton contains conditions at the transitions,
but the observer analysis from Sect. 16.4.7 is not able to respect the conditions.
After the motivating example, we introduce a combination analysis that is able to
consider the conditions during the state-space exploration.

Example 12 Let us consider a specification that requires the pre-condition x > 0∧
y < 0 to be fulfilled whenever function foo is called. Figure 6 shows an observer
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automaton for this specification, with initial state qinit and error state qerr . The
observer automaton starts in control state qinit . As long as the exploration of the
program encounters only control-flow edges different from gfoo, the automaton stays
in control state qinit . Once a control-flow edge gfoo is taken in the exploration, our
observer automaton has to consider the conditions at the transitions for gfoo: if the
condition ψ = x > 0∧ y < 0 is fulfilled (specification satisfied) then the automaton
stays in (accepting) control state qinit , otherwise the observer automaton switches
to (non-accepting) control state qerr . The error state qerr is a sink state and thus the
explored program path will be rejected (because it violates the specification).

We construct a composite program analysis that runs both the predicate analysis
and the observer analysis as components. The resulting program analysis combines
the abstract data states in such a way that (1) it uses information from the predicate
analysis to determine the actual transition switch of the observer automaton, and
(2) it marks all paths through the program that violate the specification with the
control state qerr:

1. The composite domainD× =DP×DO is the product of the component domains
DP for the predicate analysis and DO for the observer analysis.

2. The transfer relation �× has the transfer (ϕ, (q,ψ))
g�×(ϕ′, (q ′,ψ ′))

if ϕ
g�Pϕ

′, and (q,ψ)
g�O(q

′,ψ ′), and ↓P,O(ϕ′, (q ′,ψ ′)) is defined. The strength-
ening operator ↓P,O is defined only if ϕ′ ∧ψ ′ is satisfiable, in which case it re-
turns ϕ′ ∧ψ ′ as the abstract data state of the predicate analysis. In other words,
the strengthening operator (a) eliminates successors of the observer automaton
with conditions that contradict the abstract state of the predicate analysis and
(b) restricts the abstract state of the predicate analysis to those concrete states
that satisfy the condition of the observer automaton. The strengthening operator
is necessary because both (a) and (b) can be evaluated only after the successors
of all participating CPAs are known.

3. The merge operator keeps different abstract states separate: merge× =mergesep.
4. The termination check considers abstract states individually: stop× = stopsep.

Note on Soundness. The strengthening operator might replace the original abstract
state by a new abstract state that represents fewer concrete states. To guarantee
soundness of the composition program analysis, the observer automaton must not
restrict the program exploration of other analyses, i.e., for all control states q ∈Q,
the disjunction of the conditions ψ ′i of all transitions (q, (Di,ψ ′i ), qi) that leave
control state q must be equivalent to true.13

There are applications for which the soundness requirement is not desirable and
the automata are used to control (restrict) the program exploration of the other
analyses, for example, as used in test-goal automata [20] and error-witness au-
tomata [11, 26].

13This soundness requirement is easy to fulfill on the syntactical level by using a SPLIT operation
in the definition of transitions of the automaton. The transition syntax SPLIT(x > 0∧ y < 0, qinit ,
qerr), for example, defines the two transitions from control state qinit to qinit and to qerr (cf. Fig. 6).
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16.6 Algorithms for Constructing Program Invariants

While the previous section focuses on abstract domains and how to practically com-
bine abstract domains from data-flow analysis with abstract domains from model
checking in a unifying, configurable framework, this section discusses different al-
gorithmic styles that are used to compute program invariants in data-flow analysis
and model checking.

The general idea is to construct a witness that proves the correctness or incor-
rectness of the program. To show that a program violates a property, an error path
(counterexample [34], exchangeable error witness [11]) is constructed. To show that
a program satisfies a property, a program invariant (main ingredient of a correct-
ness proof ) is constructed; program invariants can be stored as certificates [70] or
exchangeable correctness witnesses [10]. The program invariants look different de-
pending on the algorithm that is used to construct it.

Both data-flow analysis and model checking construct over-approximations of
the reachable concrete states (Algorithm 1). For data-flow analysis, the program
invariant is a function reached, which assigns to each reachable program location
an over-approximation of all concrete data states that can occur at that location.
For model checking, the program invariant is a set reached, which contains a set
of abstract states that contain all concrete states of the program (possibly many
abstract states for the same program location, depending on how path-sensitive the
analysis is).

If the program invariant is computed via a fixed-point iteration, then the pro-
gram invariant is called the solution for the fixed-point problem. In the follow-
ing, we describe different algorithmic approaches to compute program invariants
(fixed points).

16.6.1 Iterative and Monotonic Fixed-Point Approaches

The most commonly known and used algorithm for computing a program invariant
consists of an iteration that initializes the unknown program invariants to a lower
bound (or upper bound) of the abstract values and then updates them monotonically
to compute a least (or greatest) fixed point over the underlying abstract domain or
invariant language (cf. Sects. 16.2.2 and 16.3.2). This technique is used in various
standard approaches to data-flow analysis and model checking. One notable dimen-
sion for analyses in this category is whether the analysis is forward or backward.

Forward analyses start from pre-conditions and propagate them forward (iter-
atively across loops until a fixed point is reached) to compute invariants at vari-
ous program locations. Forward analyses have the advantage of not requiring the
code to be annotated with post-conditions and hence can generate invariants not
only for program verification but also for applications such as compiler optimiza-
tion. The key challenge in designing a forward analysis is to design abstract trans-
fer relations and merge operators (including join and widen) that can compute
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over-approximations of strongest post-conditions (cf. Sect. 16.3.5). Such trans-
fer relations are known for a variety of abstract domains, including linear arith-
metic [41, 92], uninterpreted functions [57], combination of linear arithmetic and
uninterpreted functions [61], heap-shape domains [16, 45, 103], combination of
arithmetic and heap-shape domains [55], and quantified array properties [56].

Backward analyses typically require post-conditions to start with, but have the
advantage of being goal-directed. The key challenge in backward analysis is to
have an abduct procedure for computing under-approximations of weakest pre-
conditions (as opposed to forward abstract transfer relations, which perform over-
approximations of strongest post-conditions). Such procedures are known for some
abstract domains including linear arithmetic [62], uninterpreted functions [62], com-
binations of linear arithmetic and uninterpreted functions [60], and heap shapes [32].
Backward analyses have received less attention in terms of research projects com-
pared to forward analyses, but become more important in the context of combination
of forward and backward reachability analysis [119].

Another notable dimension for analyses in this category is the order of itera-
tion (cf. Sect. 16.3.5). In Algorithm 2, the iteration order is encoded in the operator
choose, which selects the next abstract state to explore from the set waitlist of ab-
stract states that are still to be processed. Besides the two simple graph-traversal or-
ders depth-first search (DFS) and breadth-first search (BFS), there are many possible
implementations of the choose operator, such as random order, chaotic order [29],
post-order, reverse post-order [22], topological order, and many more (e.g., [88]).

16.6.2 Counterexample-Guided Abstraction Refinement

One of the challenges in data-flow analysis and model checking is to automatically
construct an abstract model of a program, or more precisely, the level of abstraction
for a given abstract domain. Many classic analyses hard-wire the abstraction level
into the abstract domain, but the precision of the analysis can also be treated as a
separate concern [18]. For example, if the abstract domain is taken from constant
propagation, then the precision can be a set of variables and determine which vari-
ables are tracked; if the abstract domain is predicate abstraction, the precision is the
set of predicates that are tracked.

The problem of computing an appropriate precision can be solved by counter-
example-guided abstraction refinement (CEGAR) [34]. This technique works or-
thogonally to the above-mentioned iteration techniques. The analysis approach (e.g.,
iterative) starts with a coarse precision (very abstract model), and successively re-
fines the abstract model by adding information to the precision. If the analysis finds
a violation of the property to be verified, then the abstract error path is analyzed. If
the abstract error path represents a concrete error path (executable violation), then
the analysis can stop and report the violation. If the abstract error path does not
represent a concrete error path (infeasible path) then that path was found due to a
too-coarse (too imprecise) abstract model, and the abstract error path can be used
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to find out what information is necessary to track in the abstract model in order to
eliminate this abstract error path from further explorations. The extracted informa-
tion is added to the precision, the set of reached abstract states is updated, and the
analysis continues.

While CEGAR is most popular for predicate analysis, the technique has also been
explored for value analysis [24, 96] and symbolic execution [23]. There are several
techniques to extract information from counterexamples, for example, extraction
from syntax and weakest pre-conditions using a set of heuristics [4, 13, 21, 35],
using Craig interpolation [13, 21, 42, 69], and using invariant synthesis [15]. More
details are provided in Chap. 14 on interpolation and in Chap. 13 on CEGAR.

16.6.3 Template- and Constraint-Based Approaches

Constraint-based approaches construct the program invariant by guessing a second-
order template for each necessary loop invariant such that the only unknowns in
the second-order template are first-order quantities. Then, the approach generates
constraints over those first-order unknowns (after substituting the guessed form into
the program invariant). The generated constraints are existentially quantified in the
first-order unknowns, but universally quantified in the program variables. The chal-
lenge of solving these constraints is to have a procedure to eliminate the universally
quantified variables from the constraints, and then solve the constraints for the exis-
tentially quantified variables by using some off-the-shelf constraint solver.

Consider the following example program:

Suppose we guess that the loop invariant that is required to prove the assertion is of
the form ax+by+ cn+d = 0, where a, b, c, and d are unknown integer constants.
Substituting this loop-invariant template into the program invariant for the above
program yields the following constraints for the loop head, where all program vari-
ables x, y, and n are universally quantified:

n> 0 ∧ x= 0 ∧ y= 1 ⇒ ax+ by+ cn+ d = 0

ax+ by+ cn+ d = 0 ∧ x= n ⇒ y= 2n+ 1

ax+ by+ cn+ d = 0 ∧ x �= n ⇒ (ax+ by+ cn+ d = 0)[x�→(x+1),y�→(y+2)].

Farkas’ lemma can be used to eliminate universally quantified variables from the
above constraint, thereby obtaining the following constraint:

c= 0 ∧ b+ d = 0 ∧ 2b+ a + c= 0 ∧ b �= 0.

An off-the-shelf first-order constraint solver may now generate the solution
a =−2, b= 1, d =−1, thereby yielding the invariant y = 2x + 1.
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This kind of invariant-computation technique has been developed for a variety of
abstract domains including linear inequalities [104], disjunctions of linear inequal-
ities [58], non-linear inequalities [63, 105], combination of linear inequality and
uninterpreted functions [14], predicate abstraction [15, 59], and quantified invari-
ants [111]. The key component in the algorithms for these domains is often a novel
procedure to eliminate universal quantification.

16.6.4 Proof-Rule-Based Approaches

Approaches that are based on proof rules require the analysis designer to have a
good understanding of the design patterns (for loop behaviors) that occur in practice,
and then to develop proof rules for each of these design patterns. The beauty of this
approach is that it usually enables the analysis of program loops by simply reasoning
about their (loop-free) bodies in order to identify the appropriate design pattern and
apply the corresponding rule. The reasoning about loop-free code fragments can be
done using off-the-shelf SMT solvers. This approach has been applied for a variety
of program analyses, including symbolic computational-complexity analysis [64],
continuity analysis [33], and variable-bound analysis [54].

Example 13 If the transition system of a loop implies that x′ = x<< 1 ∧ x �= 0 or
x′ = x&(x− 1) ∧ x �= 0, then LSB(x) is a ranking function for that loop (where x
is any loop variable, x′ denotes the update to that loop variable, and LSB(x) returns
the least significant bit of x, and << and & represent bitwise-left-shift and bitwise-
and operators respectively) [64]. As another example, if the transition system of
a loop is of the form s1 ∨ s2, and r1 and r2 are ranking functions for s1 and s2,
respectively, and s1 (resp., s2) implies that r2 (resp., r1) is non-increasing, then the
number of iterations of the loop above is bounded by Max(0, r1)+Max(0, r2) [64].
Note that these judgments about loop properties require discharging standard SMT
queries that are constructed using transition systems that represent loop-free code
fragments.

16.6.5 Iterative, but Non-monotonic Approaches

There are techniques for computing fixed points that are iterative and converging,
but have non-monotonic progress towards a fixed-point solution [50]. In each of the
two techniques that we explain below, the non-monotonic iteration has the unifying
property that the distance between the iterated abstract states and a fixed-point so-
lution (according to some underlying distance measure) decreases in each iteration
(as in the case of Newton’s method for computing the roots of an equation).

Probabilistic Inference. Inspired by techniques from machine learning, we can pose
the problem of computing a program invariant as an inference in probabilistic graph
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models, which allows the use of probabilistic inference techniques like belief prop-
agation, in order to perform the fixed-point computation. This technique requires us
to develop appropriate distance measures between any two abstract states of an ab-
stract domain (which traditionally is equipped with only a partial order) to guide the
progress of the probabilistic inference algorithm. This technique has been applied to
discovering disjunctive quantifier-free invariants on numerical programs [53]. The
algorithm iteratively selects a program location randomly and updates the current
abstract state to make it more locally consistent with respect to the abstractions at
the neighboring program locations (as per the underlying distance measure, until
convergence). Interestingly, this simple algorithm was shown to converge in a few
rounds for the chosen benchmark examples, yielding the desired invariants. The dis-
tance measure, for a pair of abstract states e1 and e2, was chosen to be proportional
to the number of pairs (i, j) such that ei1 does not imply ej2 , where

∨n
i=1 e

i
1 is the

disjunctive normal form representation of e1 and
∧m
j=1 e

j

2 is the conjunctive normal

form representation of e2. (Note that if e1 implies e2 then each ei1 implies each ej2 .)
Observe that the local inconsistency of the abstract state at a program location is
thus a monotonic measure of the set of abstract states that are not consistent with
the abstract states at the neighboring program locations.

Learning. Inspired by techniques from concept learning, we can pose the problem of
computing a program invariant as an instance of algorithmic learning that requires
an oracle to answer simpler questions about the invariant, such as whether a given in-
variant is the desired one (equivalence question), or whether a given state is a model
of the desired invariant (membership question). This technique has been applied to
discover quantifier-free invariants [76] as well as quantified invariants [83].

16.6.6 Comparison with Standard Recurrence Solving

The three techniques “iterative monotonic,” “template-based,” and “proof-rule-
based” for computing program invariants bear striking similarity to the three stan-
dard techniques that have long been known in the area of algorithms for generating
closed form upper/lower approximations for recurrences [37]. A recurrence is an
equation or inequality that describes a function in terms of its value on smaller in-
puts. Recurrences are useful to describe the run time of recursive algorithms.

Substitution Method. The substitution method guesses the template of the solution
and then generates constraints (over the first-order unknowns in the guessed tem-
plate) after substituting the guessed template into the recurrence relation. Any solu-
tion to the generated constraints is a valid solution to the recurrence relation. This
method is powerful, but requires a template of the answer to be guessed, which takes
experience and sometimes requires creativity.



530 D. Beyer et al.

Example 14 Consider the problem of computing a closed form solution for the re-
currence T (n) = T (n − 1) + 6n with the boundary condition T (1) = 2. Suppose
we guess that the solution is of the form T (n)= an3 + bn2 + cn+ d , for some (un-
known) constants a, b, c, and d . Substituting the guessed form into the recurrence
relation and the boundary conditions yields the following constraints:

an3 + bn2 + cn+ d ≡ a(n− 1)3 + b(n− 1)2 + c(n− 1)+ d + 6n,

a + b+ c+ d ≡ 2.

These constraints imply a = 0, c = b = 3, and d = −4. This yields the solution
T (n)= 3n2 + 3n− 4.

Iteration Method. The idea of the iteration method is to expand (iterate) the recur-
rence and express it as a sum of terms that are dependent only on n and the initial
conditions. Techniques for evaluating sums can then be used to provide bounds on
the solution.

Example 15 Consider the recurrence T (n)= 3T (/n/40)+ n. We iterate it and then
express it as a summation as follows (using the observation that the sub-problem
size hits n= 1 when i exceeds log4 n):

T (n) = n+ 3T
(/n/40)

= n+ 3
(/n/40 + 3T

(/n/160))

= n+ 3
(/n/40 + 3

(/n/160 + 3T
(/n/640)))

= n+ 3 /n/40 + 9 /n/160 + 27T /n/640
≤ n+ 3n/4+ 9n/16+ 27n/64+ · · · + 3log4 nΘ(1)

≤ n
∞∑

i=0

(3/4)i +Θ(
nlog4 3)

= 4n+ o(n)
= O(n).

Master Method. The master method relies on the following theorem, which provides
a case-based method for solving recurrences of the form T (n)= aT (n/b)+ f (n).

Theorem 1 (Master Theorem [37]) Let a ≥ 1 and b > 1 be constants, let f (n) be
a function, and let T (n) be defined on the non-negative integers by the recurrence

T (n)= aT (n/b)+ f (n)
where we interpret n/b to mean either /n/b0 or (n/b). Then, T (n) can be bounded
asymptotically as follows:
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1. If f (n)=O(nlogb a−ε) for some constant ε > 0, then T (n)=Θ(nlogb a).
2. If f (n)=Θ(nlogb a) then T (n)=Θ(nlogb a lgn).
3. If f (n)=Ω(nlogb a+ε) for some constant ε > 0, and if a · f (n/b)≤ c · f (n) for

some constant c < 1 and all sufficiently large n, then T (n)=Θ(f (n)).

Example 16 (Using the Master Method [37]) To use the master method, we simply
need to determine which case (if any) of the master theorem matches the given
recurrence relation. For example, for the recurrence T (n)= 9T (n/3)+ n, we have
a = 9, b= 3, f (n)= n, and thus nlogb a =Θ(n2). Since f (n)=O(nlog3 9−ε), where
ε = 1, we can apply Case 1 of the master theorem to conclude that T (n)=Θ(n2).

Connections. The substitution method for solving recurrences is quite similar to the
template-based method for program invariant generation. The iteration method for
solving recurrences is similar to the iterative monotonic techniques for invariant
generation in that both require iteration (or unrolling) of the underlying recursive
system of equations to perform an appropriate generalization. The master method
for solving recurrences is in the same category as the proof-rule-based method for
invariant generation since both involve (manually) establishing non-trivial theorems
to allow easy automated reasoning of most instances by simply requiring a match-
ing engine to match the given instance against an existing small collection of general
rules. It is heartening to observe that two different communities have ended up dis-
covering similar classes of useful techniques for reasoning about recursive systems!

16.6.7 Discussion

We now briefly discuss the advantages and disadvantages of the different techniques.
The iterative monotonic techniques have been the most popular choice in the

domains of data-flow analysis and model checking, primarily because they are the
oldest and most well-understood techniques. These techniques have also been very
successful because they generally allow for selecting the right trade-off between
precision and scalability.

The CEGAR algorithm is popular mainly in model checking; it is not applicable
to path-insensitive data-flow analysis, because if a property violation is found, then
an error path needs to be constructed. The technique is orthogonal to the algorithm
that constructs the program invariant—it only requires a notion of precision in order
to determine and adjust the abstraction level of the analysis.

Template-based techniques are generally the least scalable because they often in-
volve the use of sophisticated constraint solvers; they are not successful in practice if
used in isolation because of the scaling problem. However, these techniques are most
effective in analyzing sophisticated properties of small programs, and can be practi-
cable if applied to smaller sub-problems in a larger verification setting, such as com-
puting invariants for path programs [15] during the verification of large programs.
The techniques also have further enabled synthesis of small programs [74, 112].
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Proof-rule-based techniques are the most scalable, and have been applied to the
analysis of large programs; they are limited in applicability because they require the
existence and knowledge of a small set of design patterns that occur in the programs
to be analyzed. When applicable, proof-rule-based techniques might be the best
choice (just as the master method is the most popular choice for analyzing the run
time of standard recursive algorithms as found in textbooks).

Probabilistic inference and learning-based techniques are not yet widely used,
and it remains to be seen whether they can produce new impactful results in the
area of program verification. Their true strength may lie in dealing with noisy or
under-specified systems, and especially in the synthesis of systems.

16.7 Combinations in Tool Implementations

During recent years, combining approaches from data-flow analysis and model
checking became state-of-the-art in tool implementations. To witness this devel-
opment, we give an overview of the techniques and features that modern software
verifiers implement. As a reference collection of tools for software verification, we
refer to the Competition on Software Verification. In 2014, a total of 15 verifiers
participated in the competition (including demo track); detailed results are available
in the competition report [6] and on the competition web site.14

Table 1 lists the features and technologies that are used in the verification
tools. This illustrates that techniques from data-flow analysis and model check-
ing are combined to achieve better results: Counterexample-guided abstraction re-
finement (CEGAR, cf. Chap. 13, [34]), predicate abstraction (cf. Chap. 15, [52]),
bounded model checking (BMC, cf. Chap. 10, [27]), abstract reachability graphs
(ARGs, cf. [13]), lazy abstraction (cf. [16, 71]), interpolation for predicate re-
finement (cf. Chap. 14, [69]), and termination checking via ranking functions
(cf. Chap. 15, [98]) are typical examples of techniques contributed by the model-
checking community. Value analysis (similar to constant propagation, cf. [24]), in-
terval analysis (cf. [94]), and shape analysis (cf. [32, 45, 75, 103]) are typical exam-
ples of abstract domains from the data-flow community.

16.8 Conclusion

In theory, there is no difference in expressive power between data-flow analysis
and model checking. This chapter describes the paradigmatic and practical differ-
ences of the two approaches, which are relevant especially for precision and per-
formance characteristics. The unifying formal framework of configurable program

14http://sv-comp.sosy-lab.org/.

http://sv-comp.sosy-lab.org/
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Table 1 Techniques that current verification tools implement (adapted from [6])

Verification tool C
E

G
A

R

Pr
ed

ic
at

e
ab

st
ra

ct
io

n

B
ou

nd
ed

m
od

el
ch

ec
ki

ng

E
xp

lic
it-

va
lu

e
an

al
ys

is

In
te

rv
al

an
al

ys
is

Sh
ap

e
an

al
ys

is

A
R

G
-b

as
ed

an
al

ys
is

L
az

y
ab

st
ra

ct
io

n

In
te

rp
ol

at
io

n

R
an

ki
ng

fu
nc

tio
ns

APROVE [51] ✓

BLAST [13, 109] ✓ ✓ ✓ ✓ ✓

CBMC [85] ✓

CPALIEN [91] ✓ ✓

CPACHECKER [21, 87] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

CSEQ [72, 117] ✓

ESBMC [90] ✓

FUNCTION [118] ✓ ✓

FRANKENBIT [66] ✓ ✓

LLBMC [48] ✓

PREDATOR [46] ✓

SYMBIOTIC [110]

T2 [30] ✓ ✓ ✓ ✓ ✓ ✓ ✓

TAN [84] ✓ ✓ ✓ ✓ ✓ ✓

THREADER [99] ✓ ✓ ✓ ✓

UFO [65] ✓ ✓ ✓ ✓ ✓ ✓ ✓

ULTIMATE [47, 67, 68] ✓ ✓ ✓ ✓ ✓

analysis makes the differences explicit. This framework enables an easy combina-
tion of abstract domains, no matter whether they were invented for data-flow anal-
ysis or for model checking. Several examples demonstrate that the combination of
abstract domains designed for data-flow analysis with abstract domains designed
for software model checking improves both effectiveness (precision) and efficiency
(performance) of such analyses. The new, configurable combinations make it pos-
sible to plug together composite program analyses that are strictly more powerful
than the component analyses. The chapter also provides an overview of the different
flavors of algorithms for computing the same solution: program invariants. There
are several different approaches, originating from different research communities,
and combinations have a large potential for further improving the state of the art.
Modern tools for software verification—as witnesses of our considerations—almost
always combine techniques from data-flow analysis with techniques from model
checking.
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Chapter 17
Model Checking Procedural Programs

Rajeev Alur, Ahmed Bouajjani, and Javier Esparza

Abstract We consider the model-checking problem for sequential programs with
procedure calls. We first present basic algorithms for solving the reachability prob-
lem and the fair computation problem. The algorithms are based on two techniques:
summarization, which computes reachability information by solving a set of fix-
point equations, and saturation, which computes the set of all reachable program
states (including call stacks) using automata. Then, we study formalisms to specify
requirements of programs with procedure calls. We present an extension of Linear
Temporal Logic allowing propagation of information across the hierarchical struc-
ture induced by procedure calls and matching returns. Finally, we show how model
checking can be extended to this class of programs and properties.

17.1 Introduction

We consider the model-checking problem for sequential programs consisting of pro-
cedures that call one another, possibly in a recursive manner. We assume that all
program variables have a finite range. These programs, called procedural programs
or Boolean programs [9], are used as abstractions of C programs in highly influen-
tial software verification tools like SLAM [8]. The state of a procedural program has
three parts: the current value of the program counter, the current values of the pro-
gram variables, and the current stack of procedure calls whose execution has not yet
finished. Since procedures may be recursive, and the recursion depth is not bounded
a priori, the state space of a procedural program may be infinite, and so procedural
programs cannot be verified using standard finite-state model-checking algorithms.
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We model procedural programs as recursive state machines (RSMs) [2]. Each
procedure of the program is modeled by a different machine. A machine has a finite
number of control states with some distinguished entry and exit points. Control
states are connected by edges that correspond to either a local change in the control
state, or to a full execution (from an entry to an exit point) of another state machine.
The latter case models a procedure call. Recursion is allowed since the dependencies
among state machines can be cyclic in general. RSMs with acyclic dependencies
among state machines are called hierarchical state machines [7].

The operational semantics of RSMs can be defined in terms of pushdown systems
(PDSs), state machines whose transitions are labeled with stack operations [12, 29].
Push and pop operations correspond to procedure calls and returns, respectively.
The PDS corresponding to a given RSM can be easily computed and has roughly
the same size as the RSM itself, and either representation can serve as an input to a
verification algorithm, depending on the computational task at hand.

We present two basic techniques for the reachability analysis of RSMs and PDSs.
The first one, called summarization, computes reachability information by solving
a set of fixpoint equations, and is closely related to inter-procedural data-flow anal-
ysis [25, 49]. Roughly speaking, summarization computes the pairs of program
counter and program variable values that can be reached from the initial state of
the program, but not the stack contents with which they can be reached. For exam-
ple, after applying summarization we may know that program location 13 can be
reached with x = 3 and y = 5, but not that this can only happen when the current
procedure is called from a procedure P . The complete set of reachable program
states (i.e., the set of all reachable triples consisting of the current value of the pro-
gram counter, the current values of the program variables, and the current stack of
procedure calls) can be obtained by employing the second technique, called satura-
tion. Saturation takes as input the PDS associated with the RSM, and computes its
set of reachable configurations. Since this set may be infinite, saturation does not
enumerate its elements, but computes a finite symbolic representation in the shape
of a finite automaton (compare with the BDD-based techniques of Chap. 8 [22] for
compactly representing a large but finite set of states). Summarization and saturation
can also be applied to the fair computation problem, a core computational problem
underlying the analysis of infinite program executions. They have been implemented
and extensively applied in tools like Bebop (the model checker inside SLAM) [9],
MOPED and jMOPED [28, 47, 52], and WALi [37].

In the second part of the chapter we discuss extensions of automata and log-
ics suitable for specifying properties of procedural programs. We show that many
natural specifications require relating the truth of propositions at a procedure call
with the matching return position. A typical example is the property “if the status
of a global variable x is locked when a procedure P is called, then its status is
guaranteed to be locked when the procedure P returns”. Asserting such properties
is not possible using formalisms defining regular languages of computations, such
as finite-state automata and Linear Temporal Logic (see Chap. 2 [42]). Aimed at
specifying such properties, the notion of nested words is introduced to represent
behaviors of RSMs. They correspond to (finite/infinite) words with additional hier-
archical edges that expose the matching between call and return positions. We define
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Fig. 1 A program, its
extended state machine, and
its state machine

automata and logics on nested words, and show that model-checking algorithms for
RSMs naturally extend to these formalisms.

In the last section of the chapter, we survey some further existing results concern-
ing RSMs/PDSs and their extensions that are relevant to the domain of verification.

17.2 Models of Procedural Programs

While programs, consisting of assignment statements, if-then-else statements and
while loops, can be modeled as extended state machines: state machines whose tran-
sitions are guarded by and operate on variables. The states or nodes of an extended
state machine correspond to the control points of the program. The transitions of the
machine are labeled either with assignments or with the Boolean conditions appear-
ing in the conditional statements and the while loops. Figure 1 shows an example
of a while program with two boolean variables x, y (top left), and its corresponding
extended state machine (top right). The nodes l1 and l5 are called the entry and exit
nodes, respectively.

An extended state machine with a set V of variables can be flattened into a state
machine. A node of the state machine is a pair 〈�, v〉, where � is a node of the
extended state machine, and v is a valuation of the variables of V . Figure 1 shows
at the bottom the state machine obtained by flattening the extended state machine.
For instance, the entry node l1 is split into four entry nodes, one for each possible
valuation of the variables x and y. Only the nodes of the state machine reachable
from the entry nodes are shown.

Procedural programs extend while programs with (possibly recursive) proce-
dures. They can no longer be faithfully modeled by state machines. For this reason
we introduce two abstract models of computation, recursive state machines, and
pushdown systems, which play for procedural programs the same role that state ma-
chines play for while programs.
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Fig. 2 A procedural program
and its extended recursive
state machine

17.2.1 (Extended) Recursive State Machines

Figure 2 shows a procedural program and its corresponding extended recursive state
machine (ERSM). The program has two global Boolean variables x and y, and con-
sists of two procedures P1 and P2. The ERSM reflects the structure of the program.
It consists of two components A1 and A2, modeling the procedures P1 and P2, re-
spectively. The nodes of A1 and A2 correspond to the control points of P1 and P2;
assignments, conditionals, etc. are modeled as for while programs. Moreover, for
each call in procedure Pi to the procedure Pj , the component Ai contains a box
labeled by Aj . In our example, component A1 contains two boxes, and component
A2 contains one box. Each box has an entry port and an exit port. Ports are pairs
(n, b), where b is a box, n is an entry or exit node of AY(b), and Y(b) denotes the
component called by the box b. A transition leads from the control point at which
the call is made to the entry port, and a second transition leads from the exit port to
the return address (the control point at which the computation of the caller continues
after the execution of the callee returns).

As in the case of extended state machines, ERSMs can be flattened into recur-
sive state machines. Flattening preserves the number of components and boxes, but
multiplies the number of nodes and ports. As for state machines, a node or a port
of a recursive state machine is a pair 〈�, v〉, where � is a state of the extended ma-
chine, and v is a valuation of the variables. Figure 3 shows the result of flattening
component A2 of Fig. 2.

Definition 1 A recursive state machine (RSM) is a tuple M = (A1, . . . ,Ak) of
components Ai = (Ni,Bi, Yi,Eni,Exi, δi), where:

• Ni is a finite set of nodes, with two distinguished subsets Eni and Exi of entry
and exit nodes.

• Bi is a finite set of boxes. A box b is labeled with an integer Y(b) ∈ {1, . . . , k},
and has a call port (en, b) for each entry node en of AY(b), and a return port
(ex, b) for each exit node ex of AY(b).
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Fig. 3 Result of flattening
component A2 of Fig. 2

• δi is a set of transitions u−→v where u is either a non-exit node or a return port,
and v is either a non-entry node, or a call port.

We denote by

En=
k⋃

i=1

Eni Ex =
k⋃

i=1

Exi N =
k⋃

i=1

Ni B =
k⋃

i=1

Bi

the set of all entry nodes, exit nodes, nodes, and boxes of M, respectively. The set
of all ports is Π = (En∪Ex)×B .

Observe that there are four kinds of transitions: n−→m (node-to-node),
n−→(en, b) (node-to-call-port), (ex, b)−→m (return-port-to-node), and
(ex, b)−→(en, b′) (return-port-to-call-port).

In the component of Fig. 3, the entry and exit nodes are the triples with m1
and m4 as first element, respectively. The only box is b3, and Y(b3) = 2. The
call ports are ((m1,0,0), b3), . . . , ((m1,1,1), b3). In the figure the ports are la-
beled just by (m1,0,0), . . . , (m1,1,1), and the return ports are ((m4,0,0), b3), . . . ,

((m4,1,1), b3).

17.2.2 Pushdown Systems

Intuitively, an RSM can be executed using a stack that at every point in the compu-
tation contains the sequence of boxes that have been entered but not yet exited. If a
component enters a box b (which corresponds to calling the procedure modeled by
the component AY(b)), then b is pushed onto the stack; if the component exits the
box b (which corresponds to a return from the called procedure), then b is popped.
This suggests an operational semantics for RSMs in terms of pushdown systems.

Definition 2 A pushdown system (PDS) is a triple P = (P,Γ,�), where P is a
finite set of control states, Γ is a finite stack alphabet, and � is a finite set of rules
of the form pX ↪→ qα with p,q ∈ P , X ∈ Γ ∪ {ε}, and α ∈ Γ ∗.
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Fig. 4 A PDS and its
transition system

A configuration of a PDS is a string of the form pσ , where p ∈ P and σ ∈ Γ ∗.
The transition system associated with a PDS is the graph having the configurations
as vertices, and an edge c→ c′ between two configurations c and c′ if there is a rule
pX ↪→ qα and a word σ ∈ Γ ∗ such that c = pXσ and c′ = qασ . We then say that
c is an immediate predecessor of c′ and c′ an immediate successor of c.

Figure 4 shows a PDS and a fragment of its transition system. Notice that the
transition system of a PDS may be infinite, even if we only consider the configura-
tions reachable from some initial configuration.

17.2.3 From RSMs to PDSs

Loosely speaking, the PDS associated with an RSM is the pushdown machine that
executes the RSM. In programming terms, an RSM is a formal model of a procedu-
ral program, and its corresponding PDS is a formal model of the executable code of
the program.

Formally, the PDS PM = (PM,ΓM,�M) corresponding to an RSM M =
(A1, . . . ,Ak) is defined as follows:

• PM =N is the set of all nodes of M;
• ΓM = B is the set of all boxes of M; and
• �M is the set containing

– a rule n ↪→m for each transition n−→m;
– a rule n ↪→ enb for every transition n−→(en, b);
– a rule ex b ↪→m for every transition (ex, b)−→m; and
– a rule ex b ↪→ enb′ for every transition (ex, b)−→(en, b′).

Observe that the PDS has exactly one rule for each transition of the RSM.
As an example, for the RSM obtained by flattening the ERSM of Fig. 2, we get

PM = {l1, . . . , l7,m1, . . . ,m4} × {0,1} × {0,1} and ΓM = {b1, b2, b3}. Examples
of rules of �M are

(m1,0,0) ↪→ (m4,0,0) derived from (m1,0,0)→ (m4,0,0)
(m3,0,0) ↪→ (m1,0,0) b3 derived from (m3,0,0)→ ((m1,0,0), b3)

(m4,0,1) b3 ↪→ (m4,0,1) derived from ((m4,0,1), b3)→ (m4,0,1)
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Observe that every rule pX ↪→ qα of a PDS associated with an RSM satisfies
|α| ≤ 2.

17.3 Basic Verification Algorithms

We proceed to define basic computational problems that are useful for checking
safety and liveness properties of RSMs.

Definition 3 Let M = (A1, . . . ,Ak) be an RSM, where Ai = (Ni,Bi, Yi,Eni,
Exi, δi) for each i ∈ {1, . . . , k}. Let ∗−→ be the reflexive-transitive closure of the re-
lation−→between configurations, i.e., ∗−→=⋃∞

n=0(→)n and let +−→=⋃∞
n=1(→)n.

The state reachability problem is to determine, given an entry node p ∈ En and
a node q ∈ PM, whether p ∗−→qσ for some σ ∈ Γ ∗M.

The configuration reachability problem is to determine, given two configurations
pσ and p′σ ′, where p,p′ ∈ PM and σ,σ ′ ∈ Γ ∗M, whether pσ ∗−→p′σ ′.

The fair computation problem is to determine, given an entry node p ∈En and a
finite set of repeat entry nodes F ⊆En, whether p has an F -fair computation, i.e.,
an infinite sequence of configurations p0σ0,p1σ1,p2σ2, . . . such that (1) p0 = p
and σ0 = ε, (2) piσi

+−→pi+1σi+1 for every i ≥ 0, and (3) pj ∈ F for infinitely
many j ≥ 0.

Consider the RSM of Fig. 3 on its own (not as part of the larger RSM obtained
by flattening the extended RSM of Fig. 2). Choose p as the entry node (m1,0,1),
and q as the node (m4,1,0). The state reachability problem for this choice of p and
q formalizes the question whether some computation of procedure P2 of Fig. 2 with
x = 0 and y = 1 can reach the point m4 with x = 1 and y = 0. However, since the
procedure P2 is recursive, m4 can be visited several times during a computation,
and so the question is whether at one of these visits x and y are equal to 1 and 0,
respectively, not whether these are the values after termination. To check this we
can use the configuration reachability problem: Procedure P2 terminates with x = 1
and y = 0 if and only if the RSM can reach the configuration with (m4,1,0) as
control state and empty stack. Notice that, in general, we cannot reduce termination
(a liveness property) to reachability (a safety property), but inspection of this pro-
gram shows that it terminates if and only if it reachesm4 with no pending procedure
calls.

The problem of checking liveness properties can be easily reduced to the fair
computation problem by means of the automata-theoretic techniques introduced in
Chap. 4 [38].

17.3.1 The State Reachability Problem: Computing Summaries

In this section we show how to solve the state reachability problem using the sum-
marization technique. We present the technique for RSMs.
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Let M= (A1, . . . ,Ak) be an RSM, and let ΘM =N ∪Π be the set containing
all nodes and all ports in M. For every i ∈ {1, . . . , k}, consider the relation Ri ⊆
ΘM ×ΘM given by

(p, q) ∈Ri iff p ∈Eni, q is a node or port of Ai, and p ∗−→q.

Further, for every i, j ∈ {1, . . . , k} consider the relation R(i,j) ⊆ΘM ×ΘM given
by

(p, q) ∈R(i,j) iff p ∈Eni, q is a node or port of Aj , and p ∗−→qσ

for some σ ∈ Γ ∗M.

We call these relations summaries, since they can be seen as the result of summariz-
ing executions by their initial and final states. Now, let R =⋃k

i,j=1R(i,j). Clearly,
given p ∈En and q ∈N , solving the state reachability problem consists of checking
whether (p, q) ∈R.

It is easy to see that for every i, j ∈ {1, . . . , k} the relations Ri and R(i,j) are the
smallest relations satisfying the following conditions (where we write Ri(p, q) and
R(i,j)(p, q) instead of (p, q) ∈Ri and (p, q) ∈R(i,j)):

S1: Ri(e, e) for every e ∈Eni .
S2: If Ri(e,p) and (p, q) ∈ δi , where e ∈Eni ,

then Ri(e, q).

S3: If Ri(e, (p, b)) and R�(p,q),
where e ∈Eni , Yi(b)= �, p ∈En�, and q ∈Ex�,
then Ri(e, (q, b)).

S4: If Ri(e, q)
then R(i,i)(e, q).

S5: If Ri(e, (p, b)) and R(�,j)(p, q),
where e ∈Eni , Yi(b)= �, p ∈En�, and q ∈Nj ,
then R(i,j)(e, q).

The relations Ri and R(i,j) can be simultaneously computed by, starting from the
empty relations, iteratively applying the rules S1-S5 until stabilization. Since the set
ΘM is finite, the computation necessarily terminates. This yields a decision proce-
dure of polynomial complexity for the state reachability problem. More precisely,
as shown in [2], reachability can be solved in timeO(|M|θ2

e ) and spaceO(|M|θe),
where |M| is the total number of nodes and transitions in the RSM, and θe is the
maximum number of entry nodes of a component, i.e., θe =maxki=1 |Eni |.

It is straightforward to define a dual algorithm that starts at the exit nodes and
computes the summaries backwards. For instance, in the dual algorithm the rule S2
is replaced by the dual rule

D2: If Ri(p, x) and (q,p) ∈ δi , where x ∈Exi ,
then Ri(q, x).

The dual algorithm runs in O(|M|θ2
x ) time, where θx is the maximum number of

exit nodes of a component, i.e., θx =maxki=1 |Exi |. The primal and dual rules can
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be combined component-wise: if the number of entry nodes of component Ai is
smaller than its number of exit nodes, then we compute Ri from the entry nodes
using the primal rules, otherwise from the exit nodes using the dual rules. The com-
plexity of this algorithm isO(|M|θ2), where θ = maxki=1 min (|Eni |, |Exi |). Since
θ ∈ O(|M|), the combined algorithm has cubic complexity in |M|. For the class
of RSMs in which θ is bounded by a constant (which contains in particular proce-
dural programs whose procedures can only return a fixed number of values, say a
Boolean), reachability can be decided in linear time.

As an example, we compute part of the relations for the RSMs obtained by flat-
tening the extended machines of Fig. 2. In particular, we show that

R1
(
(�1,1,0), (�7,0,0)

)

holds, i.e., if we start at location �1 with x = 1 and y = 0, we can reach location �7
with x = 0= y.

We first apply rule (S1) twice and obtain

R1
(
(�1,1,0), (�1,1,0)

)
(1)

R2
(
(m1,1,0), (m1,1,0)

)
(2)

Now we use rule (S2) to establish relations corresponding to single edges in the
graphs of the RSMs. From (1), ((�1,1,0), (�2,1,0)) ∈ δ1 and ((�2,1,0), ((m1,1,0),
b1)) ∈ δ1, and from (2) and ((m1,1,0), (m4,1,0)) ∈ δ2, respectively, we obtain

R1
(
(�1,1,0),

(
(m1,1,0), b1

))
(3)

R2
(
(m1,1,0), (m4,1,0)

)
(4)

Next we apply rule (S3) to (3) and (4). Together with Y1(b1)= 2 we get

R1
(
(�1,1,0),

(
(m4,1,0), b1

))
(5)

Then we apply rule (S2) to (5) using the transition (((m4,1,0), b1), (�3,1,0)) ∈ δ1,
to obtain

R1
(
(�1,1,0), (�3,1,0)

)
(6)

Finally, applying rule (S2) to (6) and ((�3,1,0), (�7,0,0)) ∈ δ1 yields

R1
(
(�1,1,0), (�7,0,0)

)
(7)

and we are done.
Let us now show

R(1,2)
(
(�1,0,1), (m3,1,1)

)

Applying rule (S1) and then (S2) to the entry nodes (�1,0,1) and (m1,1,1) we
obtain

R1
(
(�1,0,1),

(
(m1,1,1), b2

))
(8)

R2
(
(m1,1,1), (m3,1,1)

)
(9)
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Applying rule (S4) to (9) yields

R(2,2)
(
(m1,1,1), (m3,1,1)

)
(10)

Finally, applying rule (S5) to (8) and (10) we get

R(1,2)
(
(�1,0,1), (m3,1,1)

)
(11)

Next we show that calls to A2 starting from (m1,1,1) never return, i.e.,
that R2((m1,1,1), n) does not hold for any exit node n of A2. Since every
path from the entry node (m1,1,1) leads to (m2,1,1) and (m3,1,1), rule (S2)
only allows us to derive R2((m1,1,1), (m2,1,1)), R2((m1,1,1), (m3,1,1)), and
R2((m1,1,1), ((m1,1,1), b3)). Since no other rule can be applied, we are done.

Finally, similar reasoning shows that no exit node of A1 is reachable from
(�1,0,1). Indeed, this follows easily from the fact that rule (S3) cannot be applied
to (8).

17.3.2 The Fair Computation Problem

It is shown in [12] that the fair computation problem can be reduced to the state
reachability problem. The key observation, not difficult to prove, is that, given p ∈
En and F ⊆ En, the node p has an F -fair computation if and only if there exists
p′ ∈ F such that

p
∗−→p′σ for some σ ∈ Γ ∗M and p′ +−→p′σ ′ for some σ ′ ∈ Γ ∗M.

This reduction allows us to solve the fair computation problem using summa-
rization. We define a new reachability relation R′ ⊆ΘM ×ΘM (in addition to the
relation R defined in Sect. 17.3.1) as follows:

R′(p, q) holds if and only if p +−→qσ for some σ ∈ Γ ∗M.

Then, by the observation above, p has an F -fair computation if and only if there
exists p′ ∈ F such that R(p,p′) and R′(p′,p′).

The relation R′ can be computed similarly to the relation R in Sect. 17.3.1. For
every i ∈ {1, . . . , k}, define R′i ⊆ΘM ×ΘM by

R′i (p, q) iff p ∈Eni, q is a node or port of Ai, and p +−→q.

Further, for every i, j ∈ {1, . . . , k}, define R′(i,j) ⊆ΘM ×ΘM by

R′(i,j)(p, q) iff p ∈Eni, q is a node or port of Aj , and p +−→qσ for some σ ∈ Γ ∗M.

We clearly have R′ =⋃k
i,j=1R

′
(i,j).
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For all i, j ∈ {1, . . . , k}, the relations R′i and R′(i,j) are the smallest relations such
that:

S2’: If Ri(e,p) or R′i (e,p), and (p, q) ∈ δi , where e ∈Eni ,
then R′i (e, q).

S3’: If R′i (e, (p, b)) and R�(p,q),
where e ∈Eni , Yj (b)= �, p ∈En�, and q ∈Ex�,
then R′i (e, (q, b)).

S4’: If R′i (e, q), where e ∈Eni ,
then R′(i,i)(e, q).

S5’: If R′i (e, (p, b)) and R(�,j)(p, q),
where e ∈Eni , Yi(b)= �, p ∈En�, and q ∈Nj ,
then R′(i,j)(e, q).

The relations can again be computed by applying the rules until stabilization.
The time complexity is again cubic in |M|, and linear if each component has a
small number of either enter or exit nodes [2].

The model-checking problem for Linear Temporal Logic can be reduced to the
fair computation problem using the automata-theoretic techniques of Chap. 4 [38]
and Sect. 17.4.

17.3.3 The Configuration Reachability Problem: Saturating
Automata

In this section we solve the configuration reachability problem for RSMs and PDSs.
We present two decision procedures for PDSs. The procedures for RSMs are ob-
tained by applying the translation from RSMs to PDSs shown in Sect. 17.2.3.

Given two configurations pσ and p′σ ′ of a PDS, we can decide whether pσ ∗−→
p′σ ′ holds by computing the set of all configurations reachable from pσ and check-
ing whether p′σ ′ belongs to it, or by computing the set of all configurations from
which p′σ ′ can be reached and checking whether pσ belongs to it. Since these sets
may be infinite, we have to explain the meaning of “compute”. A configuration pσ
of a PDS can be seen as a word over the union of the set of control states and stack
symbols, and so a set of configurations is a language over the same alphabet. Recall
that a language is regular if it is recognized by a finite automaton. It turns out that,
given a regular set C of configurations, the set of configurations reachable from C

and the set of configurations from which C can be reached are again regular. This
theorem, which can be traced back to Büchi (see Chap. 5 of [15]), allows us to define
“computing the set” as “computing a finite automaton recognizing the set”.

We fix a PDS P = (P,Γ,�) for the rest of the section, and let C denote the set
of all configurations of P . The successor function post : 2C → 2C of P is defined
as follows: c belongs to post (C) if some immediate predecessor of c belongs to C.
The reflexive and transitive closure of post is denoted by post∗ and so, given a set
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C of configurations, post∗(C) denotes the set of configurations reachable from C.
Similarly, we define pre(C) as the set of immediate predecessors of elements in C
and pre∗ as the reflexive and transitive closure of pre.

It is convenient to define a variant of finite automata tailored for the task of rep-
resenting sets of configurations of P . A P-automaton is an automaton with Γ as its
alphabet, and P as the set of initial states. Formally, a P-automaton is an automaton
A= (Γ,Q, δ,P,F ) whereQ is the finite set of states, δ ⊆Q×Γ ×Q is the set of
transitions, P ⊆Q is the set of initial states and F ⊆Q the set of final states.

All the automata used in this section are P-automata, so we drop the P from now
on. An automaton accepts or recognizes a configuration pσ if p σ−→q for some
q ∈ F , where p σ−→q denotes that there is a path from state p to state q labeled
by σ . A set of configurations of P is regular if it is recognized by some automaton.

In the next sections we present algorithms that given an automaton recognizing a
set C of configurations compute automata recognizing post∗(C) and pre∗(C). We
start with pre∗(C), since in this case the algorithm is a bit simpler.

17.3.3.1 Computing pre∗(C) for a Regular Set C by Saturation

The input to our algorithm is an automaton A accepting C. Without loss of general-
ity, we assume that A has no transitions leading to an initial state (by adding new ini-
tial states if necessary, every automaton can be easily transformed into another one
satisfying this condition and recognizing the same language). We compute pre∗(C)
as the language accepted by an automaton Apre∗ obtained from A by means of a
saturation procedure. The procedure adds new transitions to A, but no new states.
New transitions are added according to the following saturation rule:

If pγ ↪→ p′σ and p′ σ−→q in the current automaton,
then add a transition (p, γ, q).

Notice that we can have σ = ε, in which case p′ = q , and that all new transitions
start at initial states.

Before explaining the intuition for the rule, let us illustrate the procedure by
means of an example. Let P be the pushdown system shown at the top of Fig. 5,
and let A be the automaton recognizing the singleton set C = {p0γ0γ0}, shown on
the left. The automaton Apre∗ is shown on the right. The saturation procedure adds
five additional transitions. The table at the bottom of the figure gives for each new
transition of the automaton the transition rule pγ ↪→ p′σ of the PDS and the path
p′ σ−→q of the current automaton used to apply the saturation rule. The procedure
eventually terminates because the number of possible new transitions is finite.

The intuition for the saturation rule is as follows. Imagine that before adding the
transition (p, γ, q) as indicated in the rule, the automaton accepts a configuration
p′στ by means of a run p′ σ−→q

τ−→q ′ leading to a final state q ′. This means that
p′στ ∈ pre∗(C). Since pγ ↪→ p′σ , we have pγ τ ∈ pre∗(C), and so the automaton
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Fig. 5 The automata A (left) and Apre∗ (right)

should also accept pγ τ . This is precisely what the saturation rule achieves: after
adding the transition (p, γ, q) the automaton has the run p

γ−→q
τ−→q ′, and so it

accepts pγ τ .
This argument shows that pre∗(L(A))⊆ L(Apre∗) holds. Proving the other in-

clusion requires some more care, and is outside the scope of this chapter. The proof
can be found in [12]. This direction relies on the assumption that A has no transi-
tions leading to an initial state. Notice that without this assumption the algorithm is
incorrect.

It is clear that the saturation procedure runs in time polynomial in the size of
the PDS P and the automaton A. An efficient implementation and a more careful
complexity analysis can be found in [26]:

Theorem 1 ([26]) Given P = (P,Γ,�) and A= (Γ,Q, δ,P,F ), the automaton
Apre∗ can be computed in O(n2

Qn�) time and O(nQn� + nδ) space, where nQ =
|Q|, nδ = |δ|, and n� = |�|.

17.3.3.2 Computing post∗(C) for a Regular Set C by Saturation

We provide an algorithm for the case in which each transition rule pγ ↪→ p′σ of
� satisfies |σ | ≤ 2. This restriction is not essential, but leads to a simpler solution.
Moreover, any PDS can be transformed into an equivalent one in this form, and the
PDSs derived from RSMs directly satisfy this condition.
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Fig. 6 The automata A (left) and Apost∗ (right)

Our input is an automaton A accepting C. Again, we assume that A has no tran-
sitions leading to an initial state. We compute post∗(C) as the language accepted

by an automaton Apost∗ with ε-moves. We denote the relation (
ε−→)∗ γ−→( ε−→)∗ by

γ�⇒. Apost∗ is obtained from A in two stages:

• Add to A a new state r for each transition rule r ∈� of the form pγ ↪→ p′γ ′γ ′′,
and a transition (p′, γ ′, r).

• Add new transitions to A according to the following saturation rules:

If pγ ↪→ p′ε ∈� and p
γ�⇒ q in the current automaton,

then add a transition (p′, ε, q).
If pγ ↪→ p′γ ′ ∈� and p

γ�⇒ q in the current automaton,
then add a transition (p′, γ ′, q).
If r = pγ ↪→ p′γ ′γ ′′ ∈� and p

γ�⇒ q in the current automaton,
then add a transition (r, γ ′′, q).

Figure 6 shows again the PDS and the automaton from Fig. 5, and, on the right,
the automaton Apost∗ obtained by applying the algorithm. Since the PDS has two
rules of the form pγ ↪→ p′γ ′γ ′′, namely r1 = p0γ0 ↪→ p1γ1γ0, and r2 = p1γ1 ↪→
p2γ2γ0, the first stage of the algorithm adds to Apost∗ two new states r1, r2, and
two new transitions (p1, γ1, r1) and (p2, γ2, r2). In the second stage the algorithm
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adds another five transitions. The table at the bottom of the figure gives for each

new transition the transition rule pγ ↪→ p′w of the PDS, the path p′ γ�⇒ q of the
current automaton, and the saturation rule used to produce it. Again, an efficient
implementation and a more careful complexity analysis can be found in [26].

Theorem 2 ([26]) Given P = (P,Γ,�) and A = (Γ,Q, δ,P,F ), the automaton
Apost∗ can be computed in O(nP n�(nQ + n�) + nP nδ) time and space, where
nP = |P |, n� = |�|, nQ = |Q|, and nδ = |δ|.

17.3.4 The Generalized Fair Computation Problem

Section 17.3.2 presents a summarization algorithm for the fair computation prob-
lem: given a node p and a set F ⊆ En of repeat nodes, decide whether p has an
F -fair computation. We now use saturation to solve a generalized version of the
problem: compute the set of all configurations of M having an F -fair computation,
i.e., an infinite computation that infinitely often visits nodes in F .

Let PM = (PM,ΓM,�M) be the PDS associated with M. It is easy to see
that pσ has an F -fair computation if and only if there exists p′ ∈ F such that
pσ

∗−→p′σ ′ for some σ ′ ∈ Γ ∗M and p′ +−→p′τ for some τ ∈ Γ ∗M. We first com-

pute the set Rep of states q ∈ F such that q +−→qσ for some σ ∈ Γ ∗M. The set of
configurations that have an infinite fair computation is then equal to pre∗(RepΓ ∗M),
which is regular and computable using the construction of Sect. 17.3.3.1.

To compute Rep we observe that for every state q we have q ∈ Rep if and only if
q ∈ pre+(qΓ ∗M), where pre+(C)= pre(pre∗(C)). We construct a finite automa-
ton Apre+ recognizing pre+(qΓ ∗M) from an automaton A recognizing C. Since in
Sect. 17.3.3.1 we already constructed an automaton Apre∗ recognizing pre∗(C), it
suffices to provide another construction doing the same for pre (instead of pre∗).
The construction for pre+ is the result of concatenating the two, i.e., of applying
the construction for pre to the result of applying the construction for pre∗.

The construction for pre is, not surprisingly, simpler than the one for pre∗. It
starts with some preprocessing. Given an input automaton A= (γ,Q, δ,P,F ), the
preprocessing adds to it a fresh set P̂ = {p̂ | p ∈ PM} of states, and changes the
set of initial states to P̂ . Formally, the preprocessing returns the automaton Â =
(γ,Q ∪ P̂ , δ, P̂ ,F ). After preprocessing, the construction exhaustively applies the
following modification of the saturation rule:

If pγ ↪→ p′σ and p′ σ−→q in the current automaton,
then add a transition (p̂, γ, q).

(The only change is the substitution of p̂ for p in the last line.) With this rule all
new transitions start from states in P̂ , and so new transitions cannot generate further
transitions. The correctness of the construction is easy to prove.
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This algorithm for computing Rep, presented in [12], has polynomial complexity,
but can be improved. A more efficient procedure involving Tarjan’s algorithm for
computing strongly connected components is presented in [26].

Theorem 3 ([26]) Given P = (P,Γ,�) and a set F ⊆ P of repeat states, the set
Rep can be computed in O(n2

P nδ) time and O(nP nδ) space.

Recall that the algorithm for the generalized fair computation problem first com-
putes Rep and then pre∗(RepΓ ∗M). By Theorem 1, pre∗(RepΓ ∗M) can be computed
inO(|PM|2|�M|) time andO(|PM||�M|) space, and so the generalized fair com-
putation problem can also be solved within the same time and space bounds.

17.4 Specifying Requirements

In order to specify requirements of programs modeled by RSMs, we first choose
a set Σ of observables. Each program statement, or transition of the RSM, is la-
beled with an observation σ ∈Σ . A (possibly infinite) execution of the RSM then
produces a sequence of observations. In this manner, we can associate a language
L(M) with the RSM M as its observational (linear) semantics. Requirements can
be written using linear-time specification formalisms such as Linear Temporal Logic
(LTL) (see Chap. 2 [42]). Given an LTL specification ϕ over the observablesΣ , and
an RSM model M, the model-checking question is to check whether every sequence
in L(M) satisfies the formula ϕ. To solve this problem, we can compile the nega-
tion of the specification into a Büchi automaton A¬ϕ that accepts all computations
that violate ϕ (see Chap. 4 [38]) and check that the intersection of the languages
of M and A¬ϕ is empty. This can be solved algorithmically using the analysis al-
gorithms discussed in Sect. 17.3. In this setup, even though the language L(M) is
context-free (since the underlying model is a pushdown system), the requirement is
given as an ω-regular language.

While many analysis problems such as identifying dead code and accesses to
uninitialized variables can be captured as regular requirements, many others re-
quire inspection of the stack or matching of calls and returns, and are context-free.
These include access control requirements such as “a procedure P should be in-
voked only if the procedure P ′ belongs to the call-stack,” bounds on stack size
such as “if the number of interrupt-handling procedures in the call-stack currently is
less than 5, then a property p holds,” and correctness specifications using pre- and
post-conditions such as “if the property p holds when a procedure P is invoked,
the procedure P must return, and the property q holds upon return.” When viewed
in isolation, each of these requirements is a context-free language, and checking
context-free requirements of RSMs (or pushdown systems) is undecidable in gen-
eral. However, the key feature of these example requirements is that the stacks in the
model and the requirement are correlated: while the stacks are not identical, the two
synchronize on when to push and when to pop, and are always of the same depth. To
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formalize this, we view an execution of the program as a nested word, which con-
sists of a linear sequence of states (or observations), augmented with nesting edges
connecting calls with matching returns, that impart a tree-like hierarchical structure
to the execution. Automata and logics over nested words can be used to express a va-
riety of requirements such as stack-inspection properties, pre- and post-conditions,
and interprocedural data-flow properties. Closure properties and decision problems
of these automata can then be used for algorithmic verification of procedural pro-
grams.

17.4.1 Nested Words

Nested words model data with both linear and hierarchical structure. Here we con-
sider only infinite nested words (which can model nonterminating executions of
programs).

Given a linear sequence, the hierarchical structure is added using edges that are
well nested (that is, they do not cross). We will use edges starting at −∞ and edges
ending at +∞ to model “pending” edges. Assume that −∞ < i < +∞ for every
integer i. A matching relation � is a subset of {−∞,1,2, . . .}×{1,2, . . .+∞} such
that (1) nesting edges go only forward: if i� j then i < j ; (2) no two nesting edges
share a position: for each natural number i, |{j | i� j}| ≤ 1 and |{j | j � i}| ≤ 1;
and (3) nesting edges do not cross: if i� j and i′ � j ′ then it is not the case that
i < i′ ≤ j < j ′.

When i� j holds, the position i is called a call position. For a call position i, if
i� +∞, then i is called a pending call, otherwise i is called a matched call, and
the unique position j such that i� j is called its return-successor. Similarly, when
i � j holds, the position j is called a return position. For a return position j , if
−∞� j , then j is called a pending return, otherwise j is called a matched return,
and the unique position i such that i� j is called its call-predecessor. A position i
that is neither a call nor a return is called internal.

A nested word w over an alphabetΣ is a pair (a1a2 · · · ,�) such that each ai is a
symbol inΣ , and � is a matching relation. Let us denote the set of all nested words
over Σ as NW(Σ). A language of nested words over Σ is a subset of NW(Σ).

As an example, consider the program of Fig. 2 again. Suppose we are inter-
ested in tracking read/write accesses to the global program variable x. Then, we
can choose the following set of symbols for the observables Σ : rd to denote a read
access to x, wr to denote a write access to x, cl to denote beginning of a new scope
(such as a call to the procedure P2), rt to denote the ending of the current scope,
and sk to denote all other actions of the program. Note that in any structured pro-
gramming language, in a given execution, there is a natural nested matching of the
symbols cl and rt. Figure 7 shows a sample execution of the program modeled as
a nested word (this execution corresponds to the initial state in which x is 0 and y
is 1). For example, the second symbol (labeled rd) corresponds to the execution of
the test “if x”, and the next corresponds to the assignment x := y. Both these steps
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Fig. 7 Sample execution as a
nested word

do not involve a change of context, and are internal positions. The procedure P2
is called at position 4, and this call has a nesting edge to the matching position 12
(labeled rt). The subword from position 5 to position 11 encodes the execution of
the called procedure. The main benefit of explicitly augmenting the linear structure
with the nesting edges is that using nesting edges one can skip calls to a procedure
entirely, and continue to trace a local path through the calling procedure. Consider
the property that “if a procedure writes to x then it later reads x.” This requires
keeping track of the context. If we were to model executions as words, the set of
executions satisfying this property would be a context-free language of words, and
hence, not specifiable in classical temporal logics. Soon we will see that when we
model executions as nested words, the set of executions satisfying this property is a
regular language of nested words, and is amenable to algorithmic verification.

17.4.2 Nested Word Automata

We define and study finite-state automata as acceptors of nested words. A nested
word automaton (NWA) is similar to a classical finite-state word automaton, and
reads the input from left to right according to the linear sequence. At a call, it can
propagate states along both linear and nesting outgoing edges, and at a return, the
new state is determined based on states labeling both the linear and nesting incom-
ing edges. Thus, an NWA combines the features of top-down and bottom-up tree
automata. It can also be viewed as a restricted form of a pushdown automaton: at a
call position, it pushes a symbol onto the stack; at a return position, it pops a symbol
from the stack; and at an internal position, it does not update or examine the stack.
Thus, the updates to the stack are determined by the call/return structure of the in-
put word, and that’s why a nested word automaton is also called a visibly pushdown
automaton.

In the context of program verification, we are interested in nondeterministic
NWAs: nondeterminism can arise due to inputs, due to abstraction, or when mul-
tiple states/transitions are associated with the same observation. We focus only on
automata over infinite words using the Büchi acceptance condition.

A nondeterministic Büchi nested word automaton (BNWA) A over an alphabet
Σ consists of

• a finite set of states Q,
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• a set of initial states Q0 ⊆Q,
• a set of Büchi states Qf ⊆Q,
• a finite set of hierarchical states P ,
• a set of initial hierarchical states P0 ⊆ P ,
• a call transition relation δc ⊆Q×Σ ×Q× P ,
• an internal transition relation δl ⊆Q×Σ ×Q, and
• a return transition relation δr ⊆Q× P ×Σ ×Q.

Given a nested word w, the automaton A starts in an initial state, and reads the
nested word from left to right according to the linear order. The state is propa-
gated along the linear edges as in the case of a standard word automaton. However,
at a call, the nested word automaton can also propagate a hierarchical state along
the outgoing nesting edge. At a return, the new state is determined based on the
states propagated along the linear edge as well as along the incoming nesting edge.
A pending nesting edge incident upon a pending return is labeled with an initial
hierarchical state. The run is accepting if one of the Büchi states repeats infinitely
often.

Formally, a run r of the BNWA A over a nested word w = (a1a2 · · · ,�) is an
infinite sequence qi ∈Q, for i ≥ 0, of states corresponding to linear edges, and a
sequence pi ∈ P , for call positions i, of hierarchical states corresponding to nesting
edges, such that q0 ∈ Q0, and for each position i ≥ 1, if i is a call position then
(qi−1, ai, qi,pi) ∈ δc; if i is an internal position then (qi−1, ai, qi) ∈ δl ; if i is a
matched return with call-predecessor j then (qi−1,pj , ai, qi) ∈ δr , and if i is a
pending return then (qi−1,p0, ai, qi) ∈ δr for some p0 ∈ P0. The run is accepting
if qi ∈Qf for infinitely many indices i ≥ 0. The automaton A accepts the nested
word w if A has some accepting run over w. The language L(A) is the set of nested
words A accepts. A set L of nested words is ω-regular iff there is a BNWA A such
that L(A)= L.

17.4.2.1 RSMs as NWAs

An RSM can be interpreted as a nested word automaton. Consider an RSM M =
(A1, . . . ,Ak) with components Ai = (Ni,Bi, Yi,Eni,Exi, δi). For the correspond-
ing NWA AM, for each component Ai , for every node, call-port, and return port
of Ai , there is a corresponding linear state in AM. The set of hierarchical states
is the set of boxes of all the components. The entry nodes of the main component
are the initial states, and the NWA does not rely on initial hierarchical states (since
there will be no pending returns in the nested words it generates). For every tran-
sition u→ v of each component Ai , there is a corresponding internal transition in
AM. For every call port (en, b) of Ai , the NWA has a call transition from the state
(en, b) to the state en (corresponding to the entry node of the component AY(b))
propagating the hierarchical state b along the nesting edge. For every return port
(ex, b) of Ai , the NWA has a return transition to the state (ex, b) from the state ex
(corresponding to the exit node of the component AY(b)) provided the hierarchical
state along the incoming nesting edge is b. The labels on the transitions correspond
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Fig. 8 Using NWA to
specify program requirements

to observations suitable for the analysis problem. In the example corresponding to
Fig. 7, each call transition is labeled with the symbol cl, each return transition is
labeled with the symbol rt , and each internal transition is labeled with either rd ,
wr , or sk, depending on the type of statement executed. The NWA is augmented
with a Büchi acceptance condition if needed (for instance, to ensure fair resolution
of choice when nondeterminism is used for abstraction).

17.4.2.2 NWAs for Requirements

The requirements of a program can also be described as an ω-regular language of
nested words. Let us revisit the example used in Fig. 7. Suppose we want to specify
that each write to x is followed by some read of x. We will consider two variations
of this requirement.

First, suppose we want to specify that a symbol wr is followed by rd, without
any reference to the procedural context. This can be captured by standard word au-
tomata, and also by NWAs. Figure 8(a) shows the two-state (deterministic) NWA for
the requirement. We use the prefix 〈 with a symbol to indicate a call transition, and
the suffix 〉 with a symbol to indicate a return transition. Call and return transitions
also have associated hierarchical states. In this example, hierarchical states are not
needed.

Now suppose, we want to specify that if a procedure writes to x, then the same in-
vocation should read it before it returns. That is, between every pair of matching call
and return, along the local path obtained by deleting every enclosed well-matched
subword between a call and its matching return, every wr is followed by rd. Viewed
as a property of words, this is not a regular language, and thus, not expressible in
the classical specification languages. However, over nested words, this can easily be
specified using an NWA, see Fig. 8(b). The initial state is q0, which has no pending
obligations, and is the only final state. The hierarchical states are {0,1}, where 0 is
the initial state. The state q1 means that along the local path of the current scope,
a write-access has been encountered with no following read access. While process-
ing the call, the automaton remembers the current state by propagating 0 or 1 along
the nesting edge, and starts checking the requirement for the called procedure by
transitioning to the initial state q0. While processing internal read/write symbols, it
updates the state as in the finite-state word automaton of case (a). At a return, if the
current state is q0 (meaning the current context satisfies the desired requirement), it
restores the state of the calling context. Note that there are no return transitions from
the state q1, and this means that if a return position is encountered while in state q1,
the automaton rejects the input word.
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We now review some key properties of nested word automata that are useful in
their application to model checking.

17.4.2.3 Closure Properties

The class of ω-regular (and regular) languages of nested words is closed under a
variety of operations including union, intersection, complementation, prefixes, suf-
fixes, concatenation, Kleene-*, and language homomorphisms. For verification, the
most relevant operation is language intersection: given two BNWAs A1 and A2,
one can construct a product BNWA A such that L(A) = L(A1) ∩ L(A2). If A1

captures the set of nested words generated by an RSM, and A2 captures the set of
nested words that violate a desired correctness requirement, then verification corre-
sponds to checking non-emptiness of the language of A. The product construction
for NWAs is a simple extension of the product construction for finite (word) au-
tomata. A linear state of A is a pair of linear states of A1 and A2, and a hierarchical
state of A is a pair of hierarchical states of A1 and A2. The call/internal/return tran-
sitions synchronize the transitions of A1 and A2 on a common input symbol, and
update the two state components. Ensuring that Büchi acceptance conditions of both
are satisfied can be done the same way as in the product construction for Büchi au-
tomata (see Chap. 4 [38]). It is worth noting that nested word automata can also
be complemented and determinized. Determinization requires maintaining a set of
“summaries” that capture executions of the nondeterministic automaton on the sub-
word between a call and its matching return, and the acceptance condition needed
is a parity condition over states that repeat infinitely often at the “top level” of the
input word (see [6] for details). The complexity of determinization as well as of
complementation is exponential.

17.4.2.4 Decision Problems

The emptiness problem for NWAs (given a BNWA A, is L(A) = ∅?) is solvable
in polynomial time (in time cubic in the size of the automaton). The technique is
the same as the one used in solving the fair computation problem for pushdown
systems discussed in Sect. 17.3.2. Problems such as universality (given a BNWA
A, is L(A) = Σω?), language inclusion (given BNWAs A1 and A2, is L(A1) ⊆
L(A2)?), and language equivalence (given BNWAsA1 andA2, is L(A1)= L(A2)?)
can all be solved in EXPTIME by employing the complementation construction.
Note that these problems are undecidable for pushdown automata (or context-free
languages). Thus, given two RSMs, checking whether they generate the same sets
of words is undecidable, while checking whether they generate the same sets of
nested words is decidable. The latter is a stronger requirement which considers two
executions equivalent when the two produce the same sequences of observations,
and also agree on entries to and exits from procedural contexts.
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17.4.2.5 MSO Equivalence

For word languages, the notion of regularity has many equivalent characterizations
using finite automata, monadic second-order logic, and regular expressions. The
notion of regularity for nested words also turns out to be robust. In particular, the
monadic second order logic (MSO) of nested words has the same expressiveness
as nested word automata. The vocabulary of nested sequences includes the linear
successor and the matching relation �. In order to model pending edges, we will
use two unary predicates call and ret corresponding to call and return positions.
The monadic second-order logic of nested words is given by the syntax:

φ := a(x) |X(x) | call(x) | ret(x) | x
= y + 1 | x� y | φ ∨ φ | ¬φ | ∃x.φ | ∃X.φ,

where a ∈ Σ , x, y are first-order variables, and X is a second-order variable. The
semantics is defined over nested words in a natural way. The first-order variables are
interpreted over positions of the nested word, while set variables are interpreted over
sets of positions. The formula a(x) holds if the symbol at the position interpreted
for x is a, call(x) holds if the position interpreted for x is a call, x = y + 1 holds
if the position interpreted for y is (linear) next to the position interpreted for x, and
x� y holds if the positions x and y are related by a nesting edge. For example,

∀x.( call(x) →∃y. x� y
)

holds in a nested word iff it has no pending calls;

∀x.∀y. (a(x)∧ x� y
)⇒ b(y)

holds in a nested word iff for every matched call labeled a, the corresponding return-
successor is labeled b.

For a sentence φ (a formula with no free variables), the language φ defines is the
set of all nested words that satisfy φ. It turns out that: a language L of nested words
over Σ is ω-regular iff there is an MSO sentence φ over Σ that defines L.

17.4.3 Temporal Logics

Over infinite words, Linear Temporal Logic (LTL) has long been considered the
temporal logic of choice for program verification, not only because its temporal
operators offer the right abstraction for reasoning about events over time, but also
because it provides a good balance between expressiveness (first-order complete),
conciseness (can be exponentially more succinct compared to automata), and the
complexity of model checking (time linear in the size of the finite transition system,
and PSPACE in the size of the temporal formula). This has motivated the study of
temporal logics over nested words such as CARET [4] and NWTL [1]. We briefly
review these logics in this section.
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Let us first recall the syntax and semantics of LTL (see Chap. 2 [42]). Given a
set AP of atomic propositions, a formula of propositional LTL is built from atomic
propositions, logical connectives (such as conjunction ∧, disjunction ∨, negation ¬,
implication →), and temporal operators (such as next ©, always �, eventually ♦,
and until U ). An LTL formula is evaluated with respect to an infinite sequence w =
a1a2 · · · over Σ = 2AP , that is, each observation aj is an assignment of truth values
to the propositions in AP . The semantics of LTL is defined using the satisfaction
relation (w, j) |� φ, which means that the formula φ is satisfied at position j in the
model w. Example rules for evaluation are: (w, j) |� p, for an atomic proposition
p, if the observation wj assigns the value 1 to p; (w, j) |�©φ if (w, j + 1) |� φ;
(w, j) |��φ if (w, k) |� φ for every position k ≥ j ; and (w, j) |� φ1U φ2 if there
exists a position k ≥ j such that (w, k) |� φ2 and (w, l) |� φ1 for all positions j ≤
l < k.

In the revised setting of nested words, a formula is interpreted over a nested word
w over the set Σ = 2AP of observations. To motivate the definition of new tempo-
ral operators, let us examine the nested word shown in Fig. 7. Notice that unlike a
linear sequence, the graph-like structure of a nested word means that one can define
different kinds of paths. If we ignore the nesting edges, and focus on the linear se-
quence of positions, we obtain the linear path, and we can continue to interpret LTL
operators over this linear path. In this example, the sequence 1,2,3,4, . . . ,13,14
of positions forms the linear path. Suppose we want to express the requirement that,
along a global program execution, every write to a variable is followed by a read
(see the automaton in Fig. 8(a)). If wr and rd denote the atomic propositions that
capture write and read operations, respectively, then the requirement is expressed
by the LTL formula:

� [ wr → ♦ rd ].

17.4.3.1 Abstract Next

In a nested word, a call position has two successors: a linear edge to the next po-
sition, and a nesting edge to the matching return. This motivates adding, besides
the original LTL operator © corresponding to the linear successor, another next
operator, called abstract-next, denoted©a . Its semantics is defined by the rule:

(w, j) |�©aφ holds if the position j is a call position, has a matching return
position l (that is, j � l), and (w, l) |� φ.

It is easy to establish that the abstract-next operator is not definable in LTL. In the
classical verification formalisms such as Hoare logic, correctness of procedures is
expressed using pre- and post-conditions. Partial correctness of a procedure P spec-
ifies that if the pre-condition p holds when the procedure P is invoked, if the pro-
cedure terminates, the post-condition q is satisfied upon return. Total correctness, in
addition, requires the procedure to terminate. Assume that all calls to the procedure
P are characterized by the proposition clP . Then, the requirement

�
[
(clP ∧ p) →©a q

]
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expresses total correctness, while

�
[ (
clP ∧ p ∧ ©a True

) →©a q
]

expresses partial correctness.

17.4.3.2 Abstract Paths

An abstract path in a nested word w is a sequence of positions i1, i2, . . . ij such
that, for each 1 ≤ l < j , either il is a call position with matching return position
il+1, or il is an internal or a return position and il+1 equals il + 1 and is not a return
position. For a nested word that models an execution of a procedural program, the
abstract path starting at a position inside a procedure P is obtained by successive
applications of internal and nesting edges, and skips over invocations of other pro-
cedures called from P . In the nested word of Fig. 7, examples of abstract paths are
1,14, and 2,3,4,12,13, and 5,6,7,10,11, and 8,9. We can now define the abstract
versions of temporal operators such as abstract-always �a , abstract-eventually ♦a ,
and abstract-until Ua . The semantics of these operators is defined by interpreting
them over abstract paths. For example,

(w, j) |� φ1Ua φ2 if there exists an abstract path j = i1, i2, . . . ik such that
(w, ik) |� φ2 and (w, il) |� φ1 for all 1≤ l < k.

That is, φ1Ua φ2 holds if there is abstract path leading to a position satisfying φ2
such that at all preceding positions along this abstract path φ1 holds. We can use
these abstract modalities to specify context-bounded requirements. Let us revisit
the requirement that if a procedure writes to a variable, then it (that is, the same
invocation of the same procedure) will later read it (see the NWA of Fig. 8(b)). The
requirement is expressed by the following formula over abstract paths:

�
[
wr → ♦a rd

]
.

17.4.3.3 Summary Paths

A summary path between positions i and j , with i < j , of a nested word w is a se-
quence i = i1, i2 . . . ik = j of positions such that for 1≤ l < k, if il is a matched call
with a matching return position r ≤ j then il+1 = r , else il+1 = il + 1. Intuitively, a
summary path between i and j is the “shortest” path from i to j that one can con-
struct using linear and nesting edges. For example, in the nested word of Fig. 7, the
summary path between positions 2 and 14 is the sequence 2,3,4,12,13,14, while
the summary path between positions 2 and 11 is the sequence 2,3,4,5,6,7,10,11.
The summary-versions of temporal operators, such as summary-until Uσ , are de-
fined by interpreting the temporal modalities over the summary paths. While not
particularly natural for specifying program requirements, interest in the summary
paths stems from their theoretical expressiveness: the expressiveness of the logic
with abstract-next, and its past dual, abstract-previous, and summary-until, and its
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past dual, summary-since, coincides exactly with first-order logic over nested words
(that is, logic with first-order variables, quantification over first-order variables, log-
ical connectives, binary predicates x = y + 1, x < y, x� y, and unary predicates
corresponding to call, ret, and atomic propositions) [1]. This result is the ana-
log of the result that the expressiveness of LTL coincides with first-order logic over
words. Global, abstract, and other versions of temporal modalities are definable us-
ing first-order logic over nested words, and this implies that requirements about ab-
stract paths can be defined using modalities over summary paths. It seems unlikely
that a similar completeness result holds for abstract modalities (more specifically, it
is conjectured, but not proved, that the logic CARET [4] is not first-order complete).

17.4.3.4 Model Checking

Chapter 4 [38] discusses the tableau-based approach to checking satisfiability and
model checking of LTL. This approach can be extended to temporal logics over
nested words. In the sequel, we use NWTL to denote the logic with all the con-
nectives we have discussed so far, and also their past duals. Given an NWTL for-
mula ϕ, we can construct a BNWA Aϕ such that (1) L(Aϕ) contains exactly those
nested words that satisfy ϕ, and (2) the size of Aϕ is 2O(|ϕ|). To check whether ϕ
is satisfiable, we can test whether the language of Aϕ is nonempty, and to check
whether all executions of an RSM M satisfy the NWTL specification ϕ, we can test
language-emptiness of the product of the automata AM and A¬ϕ . Both satisfiability
and model-checking problems for NWTL are EXPTIME-complete.

The construction of the BNWA Aϕ corresponding to the NWTL formula ϕ fol-
lows the same recipe as the tableau construction for LTL discussed in Chap. 4 [38].
We first define the set Closure(ϕ) of formulas; the linear and hierarchical states of
Aϕ are subsets of Closure(ϕ) that satisfy local consistency requirements; the tran-
sitions of Aϕ are defined so that next-time requirements are correctly propagated
along the linear edges, and abstract-next-time requirements are correctly propagated
along the nesting edges; and each until-formula in the closure gives a Büchi accep-
tance condition that ensures eventual fulfillment of the until obligations (this results
in a generalized Büchi acceptance condition, which can be translated into a Büchi
acceptance condition by introducing a counter as described in Chap. 4 [38]). We
refer the reader to [1] for details, but illustrate the essence of the construction by
focusing on abstract-until formulas of the form φ1Uaφ2.

The closure contains propositions call, ret, and int, that indicate the posi-
tion types. Additionally, a proposition top is used to indicate whether the current
position is “top level”: a position i of a nested word w is top level if it is not within
a pair of matching call-return positions, that is, there are no positions j and k such
that j < i < k and j � k.

The closure rule for the abstract-until formula says that if φ1Uaφ2 is in
Closure(ϕ) then so are the formulas φ1, φ2, ©(φ1Uaφ2) and ©a(φ1Uaφ2). The
size of the closure is linear in |ϕ|.
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States correspond to subsets of the closure that satisfy consistency requirements.
Sample consistency requirements on a state Φ ⊆ Closure(ϕ) are: exactly one of
call, ret, and int belongs to Φ , and φ1Uaφ2 ∈Φ iff either φ2 ∈Φ , or (φ1 ∈Φ
and call ∈Φ and ©a(φ1Uaφ2) ∈Φ) or (φ1 ∈Φ and call /∈Φ and ©ret /∈Φ
and ©(φ1Uaφ2) ∈Φ). Note this rule for the abstract-until formula captures its se-
mantics inductively: to satisfy the formula φ1Uaφ2 at a position either φ2 is satisfied
in that position, or at a call position, φ1 is satisfied and the formula is propagated
along the nesting edge, or at a return/internal position, φ1 is satisfied and the formula
is propagated along the linear edge, provided the linear successor is not a return.

The transitions of the automaton ensure that the desired propagation expressed by
next and abstract-next formulas in a state is enforced. If there is an internal transition
from state Φ to state Ψ , then it must be the case that top ∈Φ iff top ∈ Ψ and for
each ©ψ ∈ Closure(ϕ), ψ ∈ Ψ iff ©ψ ∈Φ . If there is a call transition from state
Φ to state Φl while propagating state Φh on the nesting edge, then it must be the
case that either none of Φ , Ψl and Ψh contain top, or top ∈ Φ and exactly one
of Ψl and Ψh contains top; and for each ©ψ ∈ Closure(ϕ), ψ ∈ Ψl iff ©ψ ∈Φ;
and for each©aψ ∈ Closure(ϕ), ψ ∈ Ψh iff©aψ ∈Φ . Finally, if there is a return
transition to state Ψ from state Φl using the incoming hierarchical state Φh, then
it must be the case that top /∈ Φl , and top ∈ Φh iff top ∈ Ψ ; for each ©ψ ∈
Closure(ϕ), ψ ∈ Ψ iff ©ψ ∈ Φl ; and for each ©aψ ∈ Closure(ϕ), ψ ∈ Φh iff
ψ ∈Φl .

The Büchi acceptance condition to ensure the eventual fulfillment of the abstract-
until formula φ1Uaφ2 demands that some state Φ exists such that top ∈ Φ and
either φ2 ∈Φ or φ1Uaφ2 /∈Φ repeats infinitely often. This is based on the fact that
the fulfillment of an abstract-until can be delayed forever by the propagation rules
only along an abstract path that contains only top-level positions.

17.5 Bibliographical Remarks

17.5.1 Summarization

Two early papers proposing general frameworks for computing procedure sum-
maries in the context of inter-procedural program analysis are [25] by Cousot and
Cousot and [49] by Sharir and Pnueli. There is a lot of subsequent work aimed at in-
vestigating efficient techniques for various kinds of abstract domains to account for
data manipulated by the program, and designing efficient and precise algorithmic
techniques for special classes of properties ([30, 40, 44, 46]). In particular, Reps et
al. propose in [44] efficient algorithms for inter-procedural data-flow analysis based
on graph reachability that is similar to checking reachability in pushdown systems.
The tool Bebop by Ball and Rajamani [9] allows verification of sequential Boolean
programs with procedure calls using basically the reachability analysis algorithm
of [44]. The model of recursive state machines was defined in [2] as a generaliza-
tion of the model of hierarchical state machines [7], and this work gives a detailed
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analysis of the complexity of solving reachability, fair computation, and model-
checking problems for temporal logics such as LTL and CTL∗, based on summa-
rization. Working directly with RSMs allows an understanding of the dependence
of the computational complexity on the number of entry/exit nodes per component.

17.5.2 Saturation

The regularity of pre∗(L) for a regular languageL seems to have been first observed
by Büchi in his work on regular canonical systems (see Chap. 5 of [15]), and has
been rediscovered many times in slightly different contexts, for instance by Caucal
in [21] and by Book and Otto in [10]. Book and Otto also present the saturation
algorithms for monadic string-rewriting systems, a model closely related to PDSs.

Saturation algorithms for computing sets of forward- and backward-reachable
configurations of PDSs were presented by Bouajjani et al. and Finkel et al. [12, 29].
Efficient versions with a detailed complexity analysis were obtained by Esparza et
al. [26] (see also [47]). Symbolic versions of the algorithms were implemented in the
MOPED tool by Schwoon and applied to verification problems of Linux drivers [28,
47]. The jMOPED tool adds to MOPED a front-end that transforms Java programs
into extended pushdown systems and allows MOPED [52] to be applied.

The saturation technique has been extended in a number of ways. We briefly
summarize some of the contributions.

Bouajjani et al. extend the technique to alternating pushdown systems, and apply
the algorithms to the global1 model-checking problem of CTL [12]. They show for
a given CTL formula φ and a PDS P how to compute the set of all configurations
of P satisfying φ. A different extension leading to a similar algorithm for CTL∗ is
described by Esparza et al. in [27]. An efficient algorithm for CTL model check-
ing based on solving emptiness of alternating Büchi pushdown automata has been
defined in [50].

Reps et al. show how to apply saturation to weighted pushdown systems, in
which transition rules are labeled with elements of an idempotent semiring [45].
The saturation algorithm is extended so that it returns not only the sets pre∗(C) and
post∗(C), but for each configuration c in them the total weight of the paths leading
from c to C or from C to c, respectively. The extensions are implemented in the
Weighted Automata Library WALi [37]. While the original motivation of this work
was to obtain a general framework for inter-procedural data-flow analysis, the devel-
oped framework and algorithms were shown to be also useful for other applications,
like modeling and verifying trust-management systems [36].

Cachat describes a saturation algorithm for computing the attractor of a regular
set C of configurations of a pushdown game system [20]. A pushdown game system
is a PDS whose states are partitioned into two sets under the control of two different

1Here global model checking means computing the set of all states in a given model that satisfy
some given formula.
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players. A play is a sequence of configurations, where the successor of the current
configuration is decided by the player owning its control state. The attractor is the
set of configurations such that the first player can force the play to visit C. Hague
and Ong extend Cachat’s ideas to algorithms for computing the winning regions
of a given parity game [32], and for a given PDS P and a given formula φ of the
μ-calculus the set of all configurations of P satisfying φ [33].

Higher-order pushdown systems (HPDSs) generalize PDSs by allowing nested
stacks, i.e., stacks whose elements can be stacks themselves. Bouajjani and Meyer
extend the saturation algorithm to HPDSs with one control state, also called higher-
order context-free processes [14]. Hague and Ong extend the results to general
HPDSs [31]. Seth gives an alternative construction for order 2 [48].

17.5.3 Temporal Logic Model Checking

Model checking of pushdown systems has been studied extensively for both linear-
and branching-time requirements (see e.g. [2, 12, 19, 26, 27, 29, 43, 55]). The decid-
ability of the model-checking problem of pushdown systems for the propositional
μ-calculus (which subsumes in expressiveness regular propositional temporal logics
such as LTL and CTL∗) follows from results in [39]. However, the model-checking
algorithm derived from this result, which is based on a reduction to the satisfiability
problem of the monadic second-order logic of two successors, has a non-elementary
complexity. In [16], an elementary algorithm is provided for the class of context-
free processes (equivalent to pushdown systems with a single control state) and
the alternation-free (branching-time) propositional μ-calculus. Basically, this algo-
rithm generalizes the summarization construction as it is based on computing pairs
of pre- and post-conditions of a process. The algorithm has been extended to the
full class of pushdown systems (but still for alternation-free μ-calculus) in [17], and
then later to the full propositional μ-calculus, but only for context-free processes,
in [18]. The algorithms defined in this work have been implemented in a tool called
“The Fixpoint-Analysis Machine” [51] that has been used in practice for tackling
various problems such as intra/inter-procedural data-flow analysis, model checking,
and behavioral equivalence checking. The first elementary model-checking algo-
rithm for the full class of pushdown systems and the full propositional μ-calculus
has been defined in [53]. The algorithm is based on solving pushdown parity games.
A global model-checking algorithm for this general case has been provided first
in [43]. In [53], the model-checking problem of pushdown systems for the full μ-
calculus is shown to be EXPTIME-complete. In [54], it is shown that the problem
is EXPTIME-complete even for CTL, and that it is PSPACE-complete for the EF
fragment. In [12], the problem is shown to be EXPTIME-complete for LTL and the
linear-time propositional μ-calculus.

Even though the general problem of checking context-free properties of push-
down automata is undecidable, algorithmic solutions have been proposed for check-
ing many different kinds of non-regular properties. For example, numerical proper-
ties have been considered in [11, 13] where model-checking algorithms are defined
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for extension of temporal logics with constraints on the number of occurrences of
events/states along computations. These logics allow for instance properties such as
“between every pair of events a and b, there is the same number of c’s as there are
d’s to be expressed”. The model-checking algorithms proposed for these logics are
based on reductions to the satisfiability of Presburger arithmetics, using the fact that
Parikh-images of context-free languages are semi-linear sets [41].

Non-numerical properties have also been considered in several works. For in-
stance, access control requirements such as “a module A should be invoked only if
the module B belongs to the call-stack”, and bounds on stack size such as “if the
number of interrupt-handlers in the call-stack currently is less than 5, then a prop-
erty p holds” require inspection of the stack, and decision procedures for certain
classes of stack properties have been proposed [23, 27, 35].

The idea of explicit modalities that can refer to the matching structure of calls
and returns first appears in the temporal logic CARET [4]. Subsequently, the model
of visibly pushdown automata [5] and the theory of regular languages of nested
words [6] were proposed as a unifying basis to explain which class of properties are
algorithmically checkable against pushdown models. [1] defines the temporal logic
NWTL, and presents a systematic study of linear temporal logics over nested words.
[24] describes a specification language called PAL that extends the query language
of the software model checker BLAST [34] for writing nested word monitors, along
with a tool to annotate C code.

The nested structure on words can be extended to trees, and automata on nested
trees are studied in [3]. A version of the μ-calculus on nested structures has been
defined in [3], and is shown to be more powerful than the standard μ-calculus, while
at the same time remaining robust and tractable.
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Chapter 18
Model Checking Concurrent Programs

Aarti Gupta, Vineet Kahlon, Shaz Qadeer, and Tayssir Touili

Abstract Concurrent programs are in widespread use for harnessing the comput-
ing power of multi-core hardware. However, it is very challenging to develop correct
concurrent programs. In practice, concurrency-related bugs such as data races, dead-
locks, and atomicity violations are very common. In this chapter, we describe efforts
based on model-checking for automatic verification and debugging of concurrent
programs. The emphasis is on core ideas for reasoning about synchronizations and
communication between threads and processes, while considering all possible be-
haviors due to their interactions.

We start by considering model-checking based on interacting pushdown system
(PDS) models. In these models, each component (thread or process) is modeled as
a pushdown automaton, where the stack is used to model recursion. Model check-
ing based on pushdown automata has a close correspondence with dataflow analy-
sis of programs, and this has been successfully used for verification of sequential
programs. However, applying these methods to a system of interacting pushdown
automata is not straightforward. Even the basic problem of reachability is undecid-
able in the general case. We describe some techniques that have been proposed to
get around this barrier, by restricting the patterns of synchronization and communi-
cation among components.

Although PDSs provide a natural model for concurrent programs, it is difficult
to apply PDS-based model-checking techniques directly to concurrent programs in
practice. In addition to the formidable decidability barrier, this is also due to the huge
gap between low-level PDS models and the feature-rich high-level programming
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languages in which concurrent programs are written. Fortunately, the successes of
model-checking on finite state systems and sequential programs have provided a
wealth of useful abstractions and techniques to bridge this gap. In the last part of
the chapter, we will describe verification techniques for concurrent programs that
are inspired by these models. They often abstract the effects of synchronization
and focus on handling the complexity of reasoning about all possible behaviors.
However, they can, and should, exploit insights and results of PDS-based model-
checking.

18.1 Introduction

Concurrent programming has a long and rich history, motivated by the goal of har-
nessing parallel hardware to derive faster performance on applications of interest.
These applications traditionally arose in the areas of operating systems, embedded
systems, distributed databases, and large-scale scientific applications. Since the ad-
vent of multi-core hardware platforms, concurrent programming has become ever
more popular, with applications in many other areas such as multi-media process-
ing, gaming, and mobile applications. Thus, concurrent programs have now emerged
outside the domains of experts. All programmers need to be aware of concurrency,
either within their applications or in the larger software systems of which their ap-
plications are a part.

Concurrent programs are very difficult to develop, as well as to debug. There
is a great need for systematic verification to complement (or supplement) tradi-
tional software testing, which suffers from insufficient coverage and lack of proofs.
Many verification techniques have been proposed based on theorem proving, static
analysis, and model-checking. This chapter will focus mainly on model-checking,
although many common ideas have influenced these techniques, as well as software
testing. Indeed the seminal work on model-checking [19] was proposed for synthe-
sizing correct synchronization skeletons for concurrent (finite state) processes with
respect to temporal logic specifications in CTL (Computational Tree Logic). Since
then, the core ideas in model-checking have been applied in various concurrent set-
tings, including finite state concurrent systems and concurrent multi-threaded pro-
grams. We will focus mainly on the latter in this chapter, and finite state systems are
covered well in other chapters in the Handbook.

The success of model-checking on sequential programs has also led to great in-
terest in applying it to concurrent programs. However, concurrent programs present
additional challenges on top of those in model-checking sequential programs (viz.
large or infinite state spaces, tradeoffs between precision and abstraction, handling
of heaps, etc.). There are subtle effects due to synchronization and communication
operations between threads or processes. These operations include use of locks and
semaphores for mutual exclusion, wait-notify or CCS-style pair-wise rendezvous
for synchronization, and multi-cast or broadcast for communication. Furthermore,
the underlying model of interleaving computations of individual components often
leads to an explosion in the number of system behaviors one has to reason about.
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This chapter will focus on these two main challenges: precise reasoning about syn-
chronization and communication operations, and efficient handling of component
interleavings. The ideas discussed here can be combined with other techniques de-
scribed elsewhere in the Handbook. (Pointers to specific related chapters are pro-
vided at the end of this section.)

We will start by considering pushdown automata models. Pushdown Systems
(PDSs) have emerged as a powerful unifying framework for static analysis of se-
quential programs [6, 49]. Given a sequential program, data abstractions are used to
derive a finite control structure, while recursion is modeled using a stack that tracks
function calls and returns. Pushdown systems provide a natural model for such ab-
stractly interpreted structures, and have in many cases led to strictly more expressive
frameworks than those provided by classical inter-procedural dataflow analysis (see
[49, 61]). These results highlight (i) the deep connection between dataflow analy-
sis and the model-checking problem for PDSs, and (ii) the usefulness of PDSs as a
natural framework for modeling programs.

The success of PDS-based models on sequential programs naturally led to an
interest in model-checking a system of interacting PDSs, where the individual pro-
gram components communicate and synchronize with each other, as in concurrent
programs. Again, a stack models the recursion in each PDS component, to keep
track of its calling context. However, a key undecidability result [60] showed that
even simple properties like reachability are undecidable for systems with just two
PDSs synchronizing via CCS-style pair-wise rendezvous. In [42], the undecidabil-
ity result was shown to hold also for PDSs interacting via locks. These undecid-
ability results pose a formidable barrier to extending PDS-based static analysis to
concurrent programs. Therefore, much of the work using PDS-based models focuses
on how to get around this undecidability barrier: by using abstractions, restricting
the patterns of synchronization/communication, and identifying fragments of tem-
poral logic for which model-checking is decidable. We describe some key results
and techniques in the main part of the chapter.

PDS-based model-checking can be viewed as providing a precise framework for
reasoning about both recursion and synchronization in concurrent programs. With
its close connection to static analysis, it provides useful theoretical insights for de-
lineating the decidability boundaries for various analyses, and for devising suitable
restrictions and abstractions. However, it has not been directly applied to concur-
rent programs in practice, except in small instances. This is due in large part to the
undecidability barrier. At the same time, there exists a huge gap between low-level
PDS models and the feature-rich high-level programming languages in which con-
current programs are developed. Additional abstractions and modeling techniques
are needed to bridge this gap for practical applications, and the challenges here are
similar to those in model-checking of sequential programs.

Since the core undecidability barrier in model-checking of concurrent programs
stems from a combination of recursion and synchronization, common strategies in
practice are to bound the recursion or abstract the synchronization. In the last part
of this chapter, we will describe efforts that use such strategies. They are inspired
by successful model-checking on other models: finite state concurrent systems (no
recursion) on one hand, and sequential programs (no synchronization) on the other.
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In the setting of models based on finite state concurrent systems, the recur-
sion in concurrent programs is typically ignored, either by inlining procedures
up to some bound, or by considering only terminating or bounded executions as
in systematic testing or bounded model-checking. In the setting of models based
on sequential programs, recursive procedures are handled as usual (e.g., through
summaries). Here, sequential program analysis (e.g., dataflow analysis, abstract
interpretation, or assume-guarantee reasoning) is lifted to a concurrent program
setting that deals implicitly or explicitly with interference, to account for synchro-
nization/communication with other components. In a sense, the PDS-based model-
checking framework grew out of this line of work. The difference is mainly in the
goals and the abstractions used—PDS-based model-checking algorithms deal pre-
cisely (or at least soundly) with synchronization/communication operations (while
they may use other data-based abstractions), whereas many of the other efforts using
program analysis abstract the effects of synchronization/communication (or handle
only some operations), sometimes even unsoundly when the goal is to find concur-
rency bugs such as data races, deadlocks, or atomicity violations.

We believe that PDS-based model-checking algorithms can (and should) be ju-
diciously combined with other program abstractions and analysis techniques to ad-
vance concurrent program verification in practice. Some examples of such work
are highlighted in Sect. 18.5. Finally, we also discuss trace-based dynamic model-
checking methods. These are more scalable than whole-program verification, but
provide non-exhaustive coverage over program inputs.

As mentioned earlier, the material covered in this chapter is related to some other
chapters in the Handbook. Specifically, the section on PDS-based model-checking
is related to Chap. 17, the subsection on use of partial-order reduction on finite
state models is related to Chap. 6, the subsection on techniques based on sequential
program models is related to Chaps. 15 and 13, with assume-guarantee reasoning
related to Chap. 12.

Organization. We start by describing notation for a concurrent system and
PDS-based models in Sect. 18.2. The next two sections cover PDS-based model-
checking, with Sect. 18.3 considering restricted patterns of synchronization, and
Sect. 18.4 considering restrictions on communication. Finally, Sect. 18.5 describes
techniques based on other models—finite state systems and sequential programs.

18.2 Concurrent System Model and Notation

We consider a general concurrent system model, comprising processes running in
parallel and interacting with each other, either via:

• Synchronization, i.e., by jointly executing a transition, e.g., rendezvous and broad-
casts, or

• Communication, i.e., by performing operations on shared objects.
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Formally, a concurrent system is defined as a tuple of the form (P,O,T , ν, s0),
where

• P = {P1, . . . ,Pn} is a finite set of processes
• O = {O1, . . . ,Om} is a finite set of objects
• T is a finite set of transitions
• ν :T →Σ is a labeling function, and
• s0 is the initial state of the system.

Each process Pi ∈P has a finite nonempty set of local states, or control loca-
tions. Processes are pair-wise disjoint.

Processes can access a finite set of objects. An object O is defined as a pair
(V ,OP), where V is the set of possible values of the object and OP is the set of op-
erations that can be performed on the object. Each operation opi ∈OP is a (possibly
partial) function INi × V → OUT i × V , where INi and OUT i represent, respec-
tively, the set of possible inputs and outputs of the operation.

A global state s of a concurrent system is an element of the set S = P1 × · · · ×
Pn×V1× · · ·×Vm. A state (s[1], . . . , s[n], v[1], . . . , v[m]) assigns to each process
Pi a local state s[i] ∈ Pi and associates a value v[j ] ∈ Vj with each object Oj . The
initial state s0 ∈ S. For control location l and global state s, we use l ∈ s to mean
that ∃i ∈ [1 . . . n] : l = s[i].

A transition t ∈ T is a tuple (L,G,C,L′), where, intuitively speaking, L and
L′ are, respectively, the initial and final local control locations of processes par-
ticipating in t , G is the guard expressing the condition under which t can be exe-
cuted, and C is a function capturing updates on the communication objects. For-
mally, L and L′ are nonempty subsets of ∪iPi such that for each i ∈ [1 . . . n],
|L ∩ Pi | = |L′ ∩ Pi | ≤ 1. The guard G is a conjunction of conditions cj , where
cj : V1 × · · · × Vm→ {true, f alse} is a Boolean function defined on the values
of the communication objects. The command C is a function C : V1 × · · · × Vn→
V1×· · ·×Vn defined as a sequential composition of operations on objects such that
an operation that updates the value ofOj cannot be followed by any other operation
on Oj .

A transition t = (L,G,C,L′) is enabled in a global state s if L⊆ s, i.e., for each
l ∈ L, l ∈ s, and G is true in s. If t is not enabled in s, it is said to be disabled
in s. A transition t that is enabled in a state s = (s[1], . . . , s[n], v[1], . . . , v[m])
can be executed. As a result of the execution the system reaches a state s′ =
(s′[1], . . . , s′[n], v′[1], . . . , v′[m]), where

1. {s′[1], . . . , s′[n]} = ({s[1], . . . , s[n]} \L)∪L′, and
2. the command C maps (v[1], . . . , v[m]) to (v′[1], . . . , v′[m]).

The state s′ is called the successor of s via t . We use s
t→ s′ to denote the fact

that global state s′ results from global state s via execution of transition t .
Note that this concurrent system model is general in that each process can be fur-

ther modeled as a finite state process, a sequential program, or a pushdown system.
We will consider the specific case of interacting pushdown systems in more detail
later.
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18.2.1 Synchronization and Communication

We consider the following standard primitives for communication and synchroniza-
tion that can be used to model available operations in specific programming lan-
guages:

• Locks: Locks are used to enforce mutual exclusion. Transitions acquiring and
releasing lock l are labeled with acquire(l) and release(l), respectively.

• Rendezvous (Wait-Notify): We consider two notions of rendezvous: CCS-style
Pair-wise Rendezvous and the more expressive Asynchronous Rendezvous (mo-
tivated by the wait() and notify() primitives of Java, but not identical).
Pair-wise send and receive rendezvous are labeled with a! and a?, respectively.

Let c11
a!→ c12 and c21

a?→ c22 denote the pair-wise send and receive transitions
of P1 and P2, respectively. For the pair-wise rendezvous to be enabled, both P1
and P2 must be in local control states c11 and c21 simultaneously, and the send
and receive transitions are taken synchronously in one step. If P1 is in c11 but
P2 is not in c12 then P1 cannot execute the send transition, and vice versa. The
asynchronous rendezvous send and receive transitions, labeled with a↑ and a↓,
respectively, do not require this synchronous operation. The difference between
pair-wise rendezvous and asynchronous rendezvous is that the send transition is
blocking in the former but non-blocking in the latter. Thus a transition of the form

c11
a↑→ c12 can be executed irrespective of whether a matching receive transition

of the form c21
a↓→ c22 is currently enabled or not. On the other hand, the execu-

tion of a receive transition requires a matching send transition to be enabled, with
both the send and receive then being executed synchronously.

• Broadcasts (Notify-All): Broadcast send and receive rendezvous (again, motivated
by the wait() and notifyAll() primitives of Java, but not identical) are la-

beled with a!! and a??, respectively. If b11
a!!→ b12 is a broadcast send transition

and b21
a??→ b22,. . . , bn1

a??→ bn2 are the matching broadcast receives, then the re-
ceive transitions block pending the enabling of the send transition. The send tran-
sition, on the other hand, is non-blocking and can always be executed. Its execu-
tion is carried out synchronously with all the currently enabled receive transitions
labeled with a??.

18.2.2 Specification Logic

We consider correctness properties expressed as multi-index temporal logic formu-
lae, where in a k-index formula, the atomic propositions are interpreted over the
local control states of k components. Many interesting properties can be expressed
as single- or double-index properties. For example, liveness can be expressed as a
single-index property, while for specifying the presence of a data race one needs a
double-index property.
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We use L(Op1, . . . ,Opk), where Opi ∈ {X,F,U,G,
∞
F }, to denote the fragment

of double-indexed linear temporal logic (LTL) comprising formulae of the form Ef .
Here, f is an LTL formula in positive normal form (PNF), viz., only atomic propo-
sitions are negated, built using the operators Op1, . . . ,Opk and the Boolean con-
nectives ∨ and ∧. Here X “next-time”, F “sometimes”, U, “until”, G “always”, and
∞
F “infinitely-often” denote the standard temporal operators and E is the “existential
path quantifier.” Note that L(X,U,G) is full LTL.

18.2.3 Interacting Pushdown System (PDS) Model

We consider multi-threaded programs wherein threads synchronize using the
standard primitives—locks, pair-wise rendezvous, asynchronous rendezvous, and
broadcasts. Each thread is modeled as a Pushdown System (PDS) [6]. A PDS has
a finite control part corresponding to the (abstract) valuations of the variables of
the thread and a stack which models recursion. The stack is used only to track the
context, i.e., the order in which functions are called in reaching a given control lo-
cation. The properties we consider refer only to valuations in control locations, not
the stack contents.

Formally, a PDS is a five-tuple P = (Q,Act,Γ, c0,�), whereQ is a finite set of
control locations, Act is a finite set of actions, Γ is a finite stack alphabet, and �⊆
(Q×Γ )×Act× (Q×Γ ∗) is a finite set of transition rules. If ((p, γ ), a, (p′,w)) ∈
� then we write 〈p,γ 〉 a

↪→ 〈p′,w〉. A configuration of P is a pair 〈p,w〉, where
p ∈ Q denotes the control location and w ∈ Γ ∗ the stack content. We call c0 the
initial configuration of P . The set of all configurations of P is denoted by C . For

each action a, we define a relation
a→⊆ C ×C as follows: if 〈q, γ 〉 a

↪→〈q ′,w〉, then
〈q, γ v〉 a→〈q ′,wv〉 for every v ∈ Γ ∗.

Let P be a multi-PDS system comprising of the PDSs P1,. . . ,Pn, where Pi =
(Qi,Acti,Γi, ci ,�i). In addition to Acti , we assume that each Pi has special ac-
tion symbols labeling transitions implementing synchronization primitives. These
synchronizing action symbols are shared commonly across all PDSs.

A concurrent program with n PDSs and m locks l1, . . . , lm is formally de-
fined as a tuple of the form P = (P1, . . . ,Pn, L1, . . . ,Lm), where for each i,
Pi = (Qi,Acti,Γi, ci,�i) is a pushdown system (thread), and for each j , Lj ⊆
{⊥,P1, . . . ,Pn} is the possible set of values that lock lj can be assigned. A global
configuration of P is a tuple c = (t1, . . . , tn, l1, . . . , lm) where t1, . . . , tn are, re-
spectively, the configurations of PDSs P1, . . . ,Pn and l1, . . . , lm the values of the
locks. If no thread holds lock li in configuration c, then li =⊥, else li is the thread
currently holding it. The initial global configuration of P is (c1, . . . , cn,⊥, . . . ,⊥),
where ci is the initial configuration of PDS Pi . Thus all locks are free to start with.
We extend the relation

a−→ to global configurations of P in the usual way.
The reachability relation ⇒ ∗ is the reflexive and transitive closure of the suc-

cessor relation → defined above. A sequence x = x0, x1, . . . of global config-
urations of P is a computation if x0 is the initial global configuration of P
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and for each i, xi
a→ xi+1, where either for some j , a ∈ Actj , or for some k,

a = release(lk) or a = acquire(lk) or pair-wise rendezvous send a = b! or receive
a = b?, or asynchronous rendezvous send a = b↑ or receive a = b↓, or broadcast
send a = b!! or receive a = b??. Given a thread Ti and a reachable global config-
uration c = (c1, . . . , cn, l1, . . . , lm) of P , we use Lock-Set(Ti, c) to denote the set
of locks held by Ti in c, viz., the set {lj | lj = Ti}. Also, given a thread Ti and a
reachable global configuration c= (c1, . . . , cn, l1, . . . , lm) of P , the projection of c
onto Ti , denoted by c ↓ Ti , is defined to be the configuration (ci, l′1, . . . , l′m) of the
concurrent program comprising solely the thread Ti , where l′i = Ti if li = Ti , and ⊥
otherwise (locks not held by Ti are released).

18.3 PDS-Based Model Checking: Synchronization Patterns

Dataflow analysis for sequential programs can exploit the fact that the model-
checking problem for a PDS is decidable for very expressive classes of properties—
both linear and branching time (cf. [6, 74]). Analogously to the sequential case,
inter-procedural dataflow analysis for concurrent multi-threaded programs can be
formulated as a model-checking problem for interacting PDSs. However, this prob-
lem is less robustly decidable than the one for a single PDS. Indeed, a key undecid-
ability result given in [60] showed that even simple properties like reachability are
undecidable for systems with just two PDSs synchronizing via CCS-style pair-wise
rendezvous. In [42], it was shown that reachability is undecidable for PDSs with
arbitrary lock accesses.

A fundamental obstacle here is the undecidability of checking the non-emptiness
of the intersection of two context-free languages. The implication is that if, in a
system comprising of two PDSs, the coupling between them is strong enough to
accept the intersection of the context-free languages accepted by these PDSs, then
the model-checking problem becomes undecidable. This strong coupling can result
from: (i) the synchronization primitives being sufficiently expressive, e.g., pair-wise
rendezvous or broadcasts, or (ii) the property being strong enough. Thus, to ensure
decidability, we need to limit the expressiveness of either the synchronization prim-
itives or the property being model-checked.

Interestingly, in practice concurrent programs have a lot of inherent structure
that can potentially be exploited. This has led to decidability results and efficient
PDS-based model-checking procedures for some problems of practical interest and
for various fragments of temporal logic. Another related problem is deciding static
pair-wise reachability of two individual control states in a dual-PDS system, which
provides a basic building block for various model-checking and dataflow analysis
procedures.

Specifically, it has been shown that the model-checking problems for L(F,G)
and L(U) are undecidable for dual-PDS systems wherein the PDSs do not interact
at all with each other [41]. Here, the logics are powerful enough to encode the
disjointness problem for context-free languages. For the sub-logic L(X,G), model-
checking is decidable for PDSs interacting via pair-wise rendezvous, asynchronous
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rendezvous, or broadcasts [41]. For the sub-logic L(X,F,
∞
F), the decidability of

model-checking depends on the synchronization primitives allowed. It is decidable
for nested locks [41] and for bounded lock chains [39], but is undecidable for pair-
wise rendezvous, asynchronous rendezvous, or broadcasts [41].

In this section, we consider in detail some results and procedures for model-
checking and pair-wise reachability problems for PDSs with restrictions on syn-
chronization primitives—nested locks, bounded lock chains, and rendezvous. In the
next section, we consider various model-checking procedures for various restric-
tions on the models of communication.

18.3.1 Programs with Nested Locks

Nested locks are a prime example of how programming patterns can be exploited
to yield decidability of the model-checking problem for several important temporal
logic fragments for interacting pushdown systems [40, 42].

We say that a concurrent program accesses locks in a nested fashion if and only
if along each computation of the program a thread can only release the last lock that
it acquired along that computation, and which has not yet been released. The case of
nested locks is practically important as most lock usage in concurrent programs is
nested. Indeed, standard programming practice guidelines typically recommend that
programs use locks in a nested fashion. This is even enforced in some languages,
e.g., Java (version 1.4) and C#, where locks are guaranteed to be nested.

18.3.1.1 Pair-wise Reachability for Nested Locks

We first consider the pair-wise reachability problem in a concurrent program with
nested locks. For this, it is useful to consider the notion of an acquisition history.

Definition 1 (Acquisition History) [42] Let x be a global computation of a concur-
rent program P leading to global configuration c. Then for thread Ti and lock lj
of P such that j ∈ Lock-Set(Ti, c), we define AH(Ti, lj , x) to be the set of locks
that were acquired (and possibly released) by Ti after the last acquisition of lj by Ti
along x.

The key feature of an acquisition history is that it can be computed in a thread-
local fashion, much like lock-sets. This makes possible a compositional decision
procedure for reachability, and also makes it amenable in other verification settings
(discussed later in Sect. 18.3.4).

Using the notion of an acquisition history, we can derive the following important
result regarding decomposition of the reachability problem for nested locks.
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Theorem 1 (Decomposition Result for Nested Locks) [42] Let P be a concurrent
program comprising two threads T1 and T2 with nested locks. Then two control
states a1 and b2 of T1 and T2, respectively, are backward reachable from configura-
tions d1 and d2 of T1 and T2 respectively if and only if there exist configurations c1

and c2 and computations x and y, from c1 and c2 to d1 and d2, respectively, such
that the acquisition histories of x and y are compatible.

The acquisition histories of x and y are compatible if there do not exist locks
l ∈ Lock-Set(P1,d1) and l′ ∈ Lock-Set(P2,d2) such that l ∈AH(P2, l

′, y) and l′ ∈
AH(P1, l, x).

Essentially, the Decomposition Result allows reduction of the problem of de-
ciding reachability of one global configuration from another in a dual-PDS system
to reachability problems for local configurations of the individual PDSs, thereby
avoiding the explosion in interleavings.

18.3.1.2 Model-Checking Programs with Nested Locks

For concurrent programs with threads synchronizing via nested locks, it has been
shown [40, 41] that:

• The model-checking problem is undecidable for L(U) and L(G). This implies
that in order to get decidability for dual-PDS systems (PDS systems with two
threads) interacting via nested locks, we have to restrict ourselves to the sub-logic

L(X,F,
∞
F ).

• For the fragment L(X,F,
∞
F ) of LTL, the model-checking problem is decidable.

The undecidability results for model-checking L(U) and L(G) follow via reduc-
tion to the disjointness problem for context-free languages.

Decidability of the model-checking problem for the fragment L(X,F,
∞
F ) of LTL

for concurrent programs with nested locks leverages the standard automata-theoretic

approach for model-checking. Given an L(X,F,
∞
F ) formula f , we build an au-

tomaton accepting global states of the given concurrent program satisfying f . As
usual, this automaton construction is defined for the basic temporal operators of

L(X,F,
∞
F ), i.e., F,

∞
F , and X, and the Boolean connectives ∧ and ∨. In other words,

we start by building, for each atomic proposition prop of f , an automaton accepting
the set of states of the given concurrent program satisfying prop. Then, we leverage
the constructions for the basic temporal operators and Boolean connectives to recur-
sively build the automaton accepting the set of states satisfying f via an inside-out
traversal of f . Finally, if the initial state of the given concurrent program is accepted
by the resulting automaton, the program satisfies f .

The above approach, which is standard for LTL model-checking of finite state
and pushdown systems, exploits the fact that for model-checking it suffices to reason
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Fig. 1 Program P with
threads P1 (a) and P2 (b)

about regular sets of configurations of these systems. These sets can be captured us-
ing regular automata, which then reduces model-checking to computing regular au-
tomata for each of the temporal operators and Boolean connectives. For general con-
current programs, the sets of configurations that we need to reason about for model-
checking are not regular, and therefore cannot be captured via regular automata.
However, for a dual-PDS system where PDSs interact via nested locks, we can
represent regular sets of configurations by using the notion of a Lock-Constrained
Multi-Automata Pair (LMAP) [40], which we briefly review next.

Lock-Constrained Multi-automata Pair (LMAP). The main motivation behind
defining an LMAP is to decompose the representation of a regular set of configu-
rations of a dual-PDS system P comprising PDSs P1 and P2 into a pair of regular
sets of configurations of the individual PDSs P1 and P2. An LMAP accepting a set
R of configurations of P is a pair of multi-automataM = (M1,M2), whereMi is a
multi-automaton accepting the regular set Ri of local configurations of Pi occurring
in a global configuration in R. A key advantage of this decomposition is that per-
forming operations on M , for instance computing the pre∗-closure of R, reduces
to performing the same operations on the individual MAs Mi . This avoids the state
explosion problem thereby making our procedure efficient.

The lock interaction among the PDSs is captured in the acceptance criterion for
the LMAP via the concept of Backward and Forward Acquisition Histories [40]
which we briefly describe next, followed by a formulation of the Decomposition
Result.

Motivating Example for Nested Locks. Consider a concurrent program P com-
prising the two threads shown in Fig. 1. We show that reasoning about pair-wise
reachability can be reduced to reasoning about reachability of control locations in
the individual threads.

Observe that P |= EF(4a ∧ 4b) but P �|= EF(4a ∧ 7b) even though disjoint
sets of locks, viz., {p} and {q}, are held at 4a and 7b, respectively. The key point
is that the simultaneous reachability of two control locations of P1 and P2 depends
not only on the lock-sets held at these locations, but also on the patterns of lock
acquisition along the computation paths of P leading to these control locations.
These patterns are captured using the notions of backward and forward acquisition
histories.
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Indeed, if P1 executes first, it acquires p and does not release it along any path
leading to 4a. This prevents P2 from acquiring p, which it requires in order to
transit from 1b to 7b. Similarly if P2 executes first, it acquires q thereby preventing
P1 from transiting from 1a to 4a, which would require it to acquire and release
lock q. This creates an unresolvable cyclic dependency. These dependencies can be
formally captured using the notions of backward and forward acquisition histories
described below.

Definition 2 (Forward Acquisition History) [41] For a lock l held by Pi at a control
location di , the forward acquisition history of l along a local computation xi of
Pi leading from ci to di , denoted by fah(Pi, ci, l, xi), is the set of locks that have
been acquired (and possibly released) by Pi since the last acquisition of l by Pi
in traversing forward along xi from ci to di . In case l is not acquired but held in
each state along xi then fah(Pi, ci, l, xi), is simply the set of locks that have been
acquired (and possibly released) by Pi along xi .

Observe that along any local computations x1 and x2 of P1 and P2 lead-
ing to control locations 4a and 7b, respectively, fah(P1,4a,p, x1) = {q} and
fah(P2,7b, q, x2)= {p, r}. Also, along any local computations x′1 and x′2 of P1 and
P2 leading to control locations 4a and 4b, respectively, fah(P1,4a,p, x′1) = {q}
and fah(P2,4b, q, x′2)= {r}. The reason EF(4a ∧ 7b) does not hold but EF(4a ∧
4b) does is the existence of the cyclic dependency that p ∈ fah(P2,7b, q, x2) and
q ∈ fah(P2,4a,p, x1) whereas no such dependency exists for the second case.

Definition 3 (Backward Acquisition History) [41] For a lock l held by Pi at a con-
trol location ci , the backward acquisition history of l along a local computation xi
of Pi leading from ci to di , denoted by bah(Pi, ci, l, xi), is the set of locks that were
released (and possibly acquired) by Pi since the last release of l by Pi in traversing
backwards along xi from di to ci . In case l is not released but held in each state
along xi then bah(Pi, ci, l, xi), is simply the set of locks that have been released
(and possibly acquired) by Pi along xi .

In [40], the notions of backward and forward acquisition histories were used to
decide, given two global configurations c and d of P , whether d is reachable from c.
The notion of forward acquisition history was used in the case where no locks are
held in c and that of backward acquisition history in the case where no locks are
held in d.

This is illustrated in Fig. 2 where we want to decide whether c is backward reach-
able from d. First, we assume that all locks are free in d (case (i) in the figure). In
that case, we track the bah of each lock. In our example, lock l, initially held at c, is
first released at c2. Then all locks released before the first release of l belong to the
bah of l. Thus, l1 belongs to the bah of l but l3 does not. On the other hand, if in c
all locks are free (case (ii) in the figure), then we track the fah of each lock. If a lock
l held at d is last acquired at c3 then all locks acquired since the last acquisition of
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Fig. 2 Forward vs. backward
acquisition history

l belong to the fah of l. Thus in our example, l2 belongs to the forward acquisition
history of l but l4 does not.

When testing for backward reachability of c from d in P , it suffices to test
whether there exist local paths x and y of the individual PDSs from states c1 =
c ↓ P1 to d1 = d ↓ P1 and from c2 = c ↓ P2 to d2 = d ↓ P2, respectively, such that
along x and y lock operations can be executed in an acquisition-history-compatible
fashion as formulated in the Decomposition Result below.

Theorem 2 (Decomposition Result) [41] Let P be a dual-PDS system comprising
the two PDSs P1 and P2 with nested locks. Then configuration c of P is backward
reachable from configuration d iff configurations c1 = c ↓ P1 of P1 and c2 = c ↓ P2
of P2 are backward reachable from configurations d1 = d ↓ P1 and d2 = d ↓ P2,
respectively, via local computation paths x and y of PDSs P1 and P2, respectively,
such that

1. Lock-Set(P1, c1) ∩ Lock-Set(P2, c2)= ∅,
2. Lock-Set(P1,d1) ∩ Lock-Set(P2,d2)= ∅,
3. Locks-Acq(x) ∩ Locks-Held(y)= ∅ and Locks-Acq(y) ∩ Locks-Held(x)= ∅,

where for path z, Locks-Acq(z) is the set of locks that are acquired (and pos-
sibly released) along z and Locks-Held(z) is the set of locks that are held in all
states along z.

4. there do not exist locks l ∈ Lock-Set(P1, c1)\Locks-Held(x) and l′ ∈ Lock-
Set(P2, c2) \Locks-Held(y) such that l ∈ bah(P2, c2, l′, y) and l′ ∈ bah(P1,
c1, l, x).

5. there do not exist locks l ∈ Lock-Set(P1,d1) \Locks-Held(x) and l′ ∈ Lock-
Set(P2,d2) \Locks-Held(y) such that l ∈ fah(P2, c2, l

′, y) and l′ ∈ fah(P1, c1,
l, x).

Intuitively, conditions 1 and 2 ensure that the locks held by P1 and P2 in a global
configuration of P must be disjoint; condition 3 ensures that if a lock held by a
PDS, say P1, is not released along the entire local computation x, then it cannot be
acquired by the other PDS P2 all along its local computation y, and vice versa; and
conditions 4 and 5 ensure compatibility of the acquisition histories, viz., the absence
of cyclic dependencies as discussed above.

The Decomposition Result allows us to reduce the pre∗-closure computation
of a regular set of configurations of a dual-PDS system to that of its individual
acquisition-history-augmented PDSs.

Towards that end, we first need to extend existing pre∗-closure computation pro-
cedures for regular sets of configurations of a single PDS to handle regular sets
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of acquisition-history-augmented (ah-augmented) configurations. An acquisition-
history-augmented configuration ci of Pi is of the form (〈pi , w〉, l1, . . . , lm, bah1,
. . . , bahm, fah1, . . . , fahm) where for each i, fahi and bahi are lock-sets storing,
respectively, the forward and backward acquisition history of lock li . Since the pro-
cedure is similar to the ones for fah- and bah-augmented configurations given in
[40], its formal description is omitted. The key result is the following.

Theorem 3 (ah-enhanced pre∗-computation) [41] Given a PDS P , and a regular
set of ah-augmented configurations accepted by a multi-automaton A , we can con-
struct a multi-automaton Apre∗ recognizing pre∗(Conf ( A )) in time polynomial
in the sizes of A and the control states of P and exponential in the number of locks
of P .

Acceptance Criterion for LMAPs. The absence of cyclic dependencies encoded
using bahs and fahs is used in the acceptance criterion for LMAPs to factor in lock
interaction among the PDSs that prevents them from simultaneously reaching cer-
tain pairs of local configurations.

As mentioned earlier, we construct LMAPs for each of the temporal and Boolean

operators in L(X,F,
∞
F ) for model-checking concurrent programs with nested locks

(details are available in related publications [40, 41]). This leads to the following
main decidability result.

Theorem 4 (L(X,F,
∞
F )-decidability) [41] The model-checking problem for

L(X,F,
∞
F ) is decidable for PDSs interacting via nested locks in time polynomial

in the sets of control states of the given dual-PDS system and exponential in the
number of locks.

18.3.2 Programs with Locks: Lock Causality Graph

In general, for reasoning about reachability on programs with locks, both nested as
well as non-nested, the concept of a Lock Causality Graph (LCG) is very useful. We
describe this next.

Consider the example concurrent program P comprising threads T1 and T2

shown in Fig. 3. Suppose that we are interested in deciding whether a6 and b8 are
simultaneously reachable. For that to happen there must exist local paths x1 and x2

of T1 and T2 leading to a6 and b8, respectively, along which locks can be acquired
in a consistent fashion. We start by constructing a lock causality graph G(x1,x2) that
captures the constraints imposed by locks on the order in which statements along x1

and x2 need to be executed in order for T1 and T2 to simultaneously reach a6 and
b8. The nodes of this graph are (the relevant) locking/unlocking statements executed
along x1 and x2. For statements c1 and c2 of G(x1,x2), there exists an edge from c1
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Fig. 3 An example program and lock causality graph

to c2, denoted by c1 � c2, if c1 must be executed before c2 in order for T1 and T2
to simultaneously reach a6 and b8, respectively.

Causality Constraints:
(a) Consider lock l1 held at b8. Note that once T2 acquires l1 at location b6,

it is not released along the path from b6 to b8. Since we are interested in the pair-
wise reachability of a6 and b8, T2 cannot progress beyond location b8 and therefore
cannot release l1. Thus we have that once T2 acquires l1 at b6, T1 cannot acquire it
thereafter. If T1 and T2 are to simultaneously reach a6 and b8, respectively, the last
transition of T1 that releases l1 before reaching a6, i.e., a4, must be executed before
b6. Thus a4 � b6.

(b) Causal constraints can be deduced in another way. Consider the constraint
a4 � b6. At location b6, lock l2 is held which was acquired at b2. Also, once l2 is
acquired at b2 it is not released till after T2 exits b6. Thus if l2 has been acquired by
T1 before reaching a4 it must be released before b2 (and hence b6) can be executed.
In our example, the last statement to acquire l2 before a4 is a2. The unlock statement
corresponding to a2 is a5. Thus, a5 � b2.

Computing the Lock Causality Graph. Given finite local paths x1 and x2 of
threads T1 and T2 leading to control locations c1 and c2, respectively, the proce-
dure (see Algorithm 1) to compute G(x1,x2), adds the causality constraints one by
one (of type (a) via steps 3–7, and of type (b) via steps 9–19) till we reach a fixpoint.
Throughout the description of Algorithm 1, for i ∈ [1 . . .2], we use i′ to denote an
integer in [1 . . .2] other than i. Note that condition 14 in the algorithm ensures that
we do not add edges representing causality constraints that can be deduced from
existing edges. Also, steps 21–23 preserve the local causality constraints along x1

and x2. The causality graph G(x1,x2) for paths x1 = a1, . . . , a6 and x2 = b1, . . . , b8
is shown in Fig. 3.

Necessary and Sufficient Condition for Pair-wise Reachability. Let x1 and x2 be
local computations of T1 and T2 leading to c1 and c2. Since each causality constraint
in G(x1,x2) is a happens-before constraint, we see that in order for c1 and c2 to be
pair-wise reachable G(x1,x2) has to be acyclic. In fact, it turns out that acyclicity is
also a sufficient condition.
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Algorithm 1 Computing the Lock Causality Graph

1: Input: Local paths x1 and x2 of T1 and T2 leading to c1 and c2, respectively
2: Initialize the vertices and edges of G(x1,x2) to ∅
3: for each lock l held at location ci do
4: if c and c′ are the last statements to acquire and release l occurring along xi

and xi
′
, respectively, then

5: Add edge c′� c to G(x1,x2)

6: end if
7: end for
8: repeat
9: for each lock l do

10: for each edge di′ � di of G(x1,x2) do

11: Let ai′ be the last statement to acquire l before di′ along xi
′

and ri′ the
matching release for ai′

12: Let ri be the first statement to release l after di along xi and ai the
matching acquire for ri

13: if l is held at either di or di′ then
14: if there does not exist an edge bi′ � bi such that ri′ lies before bi′

along xi
′

and ai lies after bi along xi then
15: add edge ri′ � ai to G(x1,x2)

16: end if
17: end if
18: end for
19: end for
20: until no new statements can be added to G(x1,x2)

21: for i ∈ [1..2] do
22: Add edges between all statements of xi occurring inG(x1,x2) to preserve their

relative ordering along xi

23: end for

Theorem 5 (Acyclicity) Locations c1 and c2 are pair-wise reachable if there exist
local paths x1 and x2 of T1 and T2 leading to c1 and c2, respectively, such that
G(x1,x2) is acyclic.

18.3.3 Programs with Bounded Lock Chains

While the use of nested locks remains the most popular pattern, there are niche ap-
plications where locks are non-nested and lock-chaining is required. Lock-chaining
occurs when the scopes of two mutexes overlap. While one mutex is held, the code
enters a region where another mutex is required. After successfully locking that
second mutex, the first one is no longer needed and is released. Lock chaining is an
essential device that is used for enforcing serialization. For instance, the two-phase
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commit protocol that lies at the heart of serialization in databases uses lock chain-
ing. Other classic examples where non-nested locks can occur are programs that
use both mutexes and (locks associated with) wait/notify primitives (condition vari-
ables), or threads that traverse concurrent data structures, e.g., arrays, in an iterative
fashion. Formally lock chains are defined as follows.

Definition 4 (Lock Chains) Given a computation x of a concurrent program, a lock
chain of thread T is a sequence of lock acquisition statements acq1, . . . , acqn per-
formed by T along x in the order listed such that for each i, the matching release of
acqi occurs after acqi+1 and before acqi+2 along x.

The length of a lock chain is defined to be the number of lock acquisition state-
ments occurring along it. We say that a concurrent program P uses bounded lock
chains if there exists B such that the length of each lock chain of a thread T of P
occurring along a computation x is bounded by B . Note that we do not insist that all
lock usage should be in the form of bounded lock chains. Rather what we require is
that any lock chain induced by a computation of P , irrespective of the locking pat-
tern used, be bounded in length. The bounded lock chain pattern covers most cases
of practical interest. It is worth pointing out that nested locks are a special case as
they form lock chains of length one.

The model-checking procedure for PDSs interacting via bounded lock chains for

the LTL fragment L(X,F,
∞
F ) is similar to the one for PDSs with nested locks. Given

an L(X,F,
∞
F ) formula f , we build automata accepting global states of the given

concurrent program satisfying f . Towards that end, we first construct automata for

the basic temporal operators F,
∞
F , and X, and the Boolean connectives ∧ and ∨.

Leveraging the constructions for the basic temporal operators and Boolean connec-
tives, we can then recursively build the automaton accepting the set of states satis-
fying f via an inside-out traversal of f . For reasoning about PDSs with bounded
lock chains we use the notion of Lock Causality Automata (LCAs) [39], which are
generalizations of LMAPs used for handling nested locks. As for nested locks, the
constructions of LCAs for the various temporal operators depend upon computing
an LCA accepting the pre∗-closure of the set of states accepted by a given LCA.
This in turn, hinges on deciding a set of static reachability queries between local
control states of PDSs as defined below.

Definition 5 (Static Reachability for Locks) A global state (c1, c2) is statically
reachable for locks, if there exist local paths x1 and x2 leading to control loca-
tions c1 and c2 in threads T1 and T2, respectively, and there exists an interleaving
x of x1 and x2 respecting only the scheduling constraints imposed by statements
using lock primitives in P (and ignoring constraints arising from data values and
other synchronization primitives).

Outline of Strategy for Deciding Static Reachability. In order to decide static
reachability we exploit a small model property. Let c1 and c2 be pair-wise reachable
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via a global computation x of P . If xi is the local computation of Ti along x then by
treating xi as a sequential computation and ignoring lock interactions with the other
thread, we can construct a small model yi from xi leading to ci . However, naively
applying the (sequential) small model property and ignoring lock interactions does
not guarantee that the resulting yis can be interleaved to form a valid global com-
putation of P leading to (c1, c2). In order to ensure that, during the construction
of yi we need to preserve key locking/unlocking statements occurring along xi that
impact reachability of (c1, c2). These statements can be precisely identified via the
use of a Lock Causality Graph. With the pair of local computations x1 and x2 of
threads T1 and T2, leading to control locations c1 and c2, respectively, we associate
the lock causality graphG(x1,x2) having the useful property that (c1, c2) is pair-wise
reachable via a global computation resulting from an interleaving of x1 and x2 if
and only if G(x1,x2) is acyclic (see Sect. 18.3.2). Our strategy is to exploit the se-
quential small model property to produce a small model yi for xi while ensuring
that G(y1,y2) is acyclic.

In fact, our small model property works by preserving the lock causality graph,
i.e., while constructing yi from xi we preserve all statements of G(x1,x2) occurring
along xi . Then sinceG(y1,y2) is the same asG(x1,x2), we have thatG(y1,y2) is acyclic
and so by the acyclicity result y1 and y2 can be interleaved to form a global com-
putation of P leading to (c1, c2). If the size of the lock causality graph G(x1,x2)

was unbounded then it would be hard to construct the desired small models yi of
bounded size. Thus it is crucial that the lock causality graph induced by x1 and x2

be bounded in size, which follows from the following key result.

Theorem 6 (Bounded Lock Causality Graph) [38] If the length of each lock causal-
ity sequence generated by local paths x1 and x2 of threads T1 and T2, respectively,
is bounded by B , then G(x1,x2) has at most |L|B+1 edges, where |L| is the number
of locks in P .

This leads to the desired small model property for static reachability.

Theorem 7 (Concurrent Small Model Property) [38] Let c1 and c2 be pair-wise
reachable control locations of PDSs T1 and T2, respectively, in concurrent pro-
gram P . Then if the length of each lock chain in T1 and T2 is bounded by b there
exists a bound B such that there is a computation of P of length at most B leading
to a global state with T1 and T2 in control states c1 and c2, respectively. Moreover,
B is a function of b and the number of locks in P .

A key implication of the above result is that the problem of deciding static reach-
ability for locks reduces to a reachability problem for a finite state system. This
immediately yields decidability of static pair-wise reachability for PDSs synchro-
nizing via bounded lock chains.
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18.3.4 Discussion: Lock Patterns

While the model-checking algorithms described for nested locks (Sect. 18.3.1.2) de-
pend on computing and representing regular configurations of multi-PDS systems,
note that the decomposition results essentially characterize these in terms of com-
patible (forward and backward) reachable computations in individual PDSs, aug-
mented by information related to (forward and backward) lock acquisition histories.
The compatibility conditions ensure that the semantics of locks (enforcing mutual
exclusion) are satisfied on the global computations, without explicitly considering
the interleavings. The same remark holds for the simpler case of deciding pair-wise
reachability for nested locks. The ideas of lock acquisition histories have been used
to develop new decision procedures for detecting atomicity violations for concur-
rent processes [46] and for reasoning about dynamic pushdown networks with well-
nested locks [51].

In general, efficient reasoning about threads synchronizing via locks hinges on
accurately and succinctly capturing the interactions between the threads resulting
from lock-induced mutual exclusion constraints. While lock interactions between
threads can be quite complex, not all of them may be relevant for reasoning about
the property at hand. Indeed, so as not to kill parallelism among threads, locks are
typically used in a very localized fashion. In this case, most of the lock interactions
that one cares about would be local to the program states of interest.

The key concept of a Lock Causality Graph (LCG, Sect. 18.3.2) exposes pre-
cisely those lock interactions that are pertinent to analyzing the property at hand. It
has proven to be very useful in reasoning about threads interacting via locks, and is
applicable to programs with nested as well as non-nested locks. It captures mutual
exclusion constraints imposed by locks in terms of causality, i.e., happens before,
edges [52]. Roughly speaking, the size of an LCG as measured by the number of
causality edges is a good measure of the complexity of interactions between threads
inducing the LCG. In general, the size of an LCG could be unbounded. In fact,
the undecidability result for threads interacting via locks [42] involves constructing
threads with lock chains of infinite length that induce infinite-sized LCGs. How-
ever, for programs with bounded lock chains (Sect. 18.3.3) it is shown that the sizes
of LCGs are bounded. This formalizes the intuition that one can reason efficiently
about threads as long as the interaction between them is limited. In the extreme case
of lock chains of length one, i.e., nested locks, LCGs reduce to acquisition histories.

The notions of lock acquisition histories and lock causality graphs are applicable
beyond the settings of PDS-based model-checking. Indeed, they do not depend on
PDS-specific machinery (regular configurations, or stack information). They can be
used in combination with other program abstractions to enable precise reasoning
about lock operations. An example of such a setting is the use of abstract domains
for static analysis of concurrent programs [43]. Here, lock-based reasoning is used
to eliminate global states that are unreachable, as part of an iterative procedure that
applies invariant generation techniques on the resulting transaction graph. In the
absence of precise reasoning about locks, the derived invariants may be too coarse
to be useful.
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Another example is the use of acquisition histories for tracking nested locks in
trace-based predictive analysis [25]. Here, alternate schedules with bugs are pre-
dicted from the observed traces, and acquisition histories are used to rule out in-
feasible interleavings. Similarly, a generalization of the lock causality graph, called
a universal causality graph (UCG) [44], has also been used for predictive analysis.
Precise reasoning about locks helps to reduce the number of false alarms reported
by predictive analysis, while improving the interleaving coverage to consider differ-
ent orders on acquiring locks. Without such reasoning, other predictive techniques
either ignore lock/unlock operations, or regard them as happens-before operations
in the observed trace, i.e., they do not consider alternate orders on acquiring locks.
These applications are highlighted in the last section of the chapter.

Finally, a different pattern called contextual locking has been identified for pro-
grams with locks. In contextual locking, locks are released in the same context
where they are acquired, and every lock acquired in a procedure is released be-
fore the procedure returns. For programs with contextual locking, the problem of
pair-wise reachability is shown to be polynomial-time decidable [15]. Note that this
allows unbounded lock accesses, unlike the bounded lock chains described earlier. It
is also shown that the problem becomes undecidable for re-entrant locks, i.e., where
the same thread can acquire a re-entrant lock multiple times [4].

18.3.5 Programs with Rendezvous

In this section we consider programs where processes communicate via rendez-
vous. The reachability problem being undecidable for such programs, analysis tech-
niques based on the computation of upper-approximations of the set of possible
program paths have been proposed.

A network of pushdown systems communicating via rendezvous is called a Com-
municating Pushdown System (CPDS in short) in [8, 9, 16]. In these works, the
reachability problem for CPDSs is reduced to deciding the emptiness question for
the intersection of two context-free languages as follows: Let (P1,P2) be a CPDS,
and let C1 × C2 and C′1 × C′2 be two sets of global configurations of the system.
C′1 ×C′2 is reachable from C1 ×C2 if and only if there exists at least one sequence
of synchronization actions that simultaneously leads P1 from a configuration in C1

to a configuration in C′1 and P2 from a configuration in C2 to a configuration in C′2.
This holds iff L(C1,C

′
1) ∩L(C2,C

′
2) �= ∅, where L(Ci,C′i ) is the context-free lan-

guage consisting of all the sequences of actions that lead Pi from Ci to C′i .
Because deciding the emptiness of two context-free languages is undecidable, a

semi-decision procedure [16] is used that, in case of termination, answers exactly
whether the intersection is empty or not. Moreover, if L(C1,C

′
1) ∩ L(C2,C

′
2) �= ∅,

the semi-decision procedure is guaranteed to terminate and return a sequence in the
intersection.
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The semi-decision procedure is based on a CounterExample Guided Abstraction
Refinement (CEGAR) scheme as follows.

1. Abstraction: Compute whether an over-approximation Ai of the path language
L(Ci,C

′
i ).

2. Verification: Check A1 ∩ A2 = ∅, and, if so, conclude that L(C1,C
′
1) ∩

L(C2,C
′
2)= ∅, i.e., that C′1×C′2 is unreachable from C1×C2. Otherwise, com-

pute the “counterexample” I =A1 ∩A2.
3. Counterexample Validation: Check whether I contains a sequence x that is in
L(C1,C

′
1)∩L(C2,C

′
2). In this case I is not spurious: conclude that L(C1,C

′
1)∩

L(C2,C
′
2) �= ∅, i.e., that C′1×C′2 is reachable from C1×C2. Otherwise, proceed

to the next step.
4. Refinement: If I is spurious, refine the over-approximations A1 and A2, i.e.,

compute other over-approximations A′1 and A′2 such that L(Ci,C′i )⊆ A′i ⊆ Ai .
Then continue from step 2.

In the remainder of this section, we discuss these steps in detail. We fix two sets
of global configurations C1×C2 and C′1×C′2. For the sake of simplicity, we denote
L(C1,C

′
1) by L1, and L(C2,C

′
2) by L2.

18.3.5.1 Computing Over-approximations of Path Languages

Consider an abstract lattice (D,≤,<,7,⊥,�) associated with an idempotent semir-
ing (D,⊕,>, 0̄, 1̄) such that ⊕=7 is an associative, commutative, and idempotent
(a ⊕ a = a) operation; > is an associative operation; 0̄ = ⊥; 0̄ and 1̄ are neutral
elements for ⊕ and >, respectively; 0̄ is an annihilator for > (a > 0̄= 0̄> a = 0̄);
and > distributes over ⊕. Finally, ≤ is such that x ≤ x ⊕ a.
D is related to the concrete domain 2Lab

∗
as follows:

• It contains an element va for every letter a ∈ Lab,
• It is associated with an abstraction function α : 2Lab∗ →D and a concretization

function γ :D→ 2Lab
∗

defined as follows:

α(L)=
⊕

a1···an∈L
va1 > · · · > van

and

γ (x)= {
a1 · · ·an ∈ Lab∗

∣
∣ va1 > · · · > van ≤ x

}
.

It is easy to see that for every language L⊆ Lab∗; α(L) ∈D, and γ (α(L))⊇ L.
In other words, γ (α(L)) is an over-approximation of L that is finitely represented
in the abstract domain D by the element α(L). Intuitively, the abstract operations
> and ⊕ correspond to concatenation and union, respectively; ≤ and < correspond
to inclusion and intersection, respectively; and the abstract elements 0̄ and 1̄ corre-
spond to the empty language and {ε}, respectively.
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Therefore, to compute the over-approximation γ (α(Li)), we need to compute its
representative α(Li) in the abstract domain D. Let a finite-chain abstraction be an
abstraction such that D does not contain an infinite ascending chain, and let h be
the maximal height of a chain in D. Then we have the following.

Theorem 8 ([9, 61]) Let P = (Q,Act,Γ,�) be a PDS and C,C′ be two regu-
lar sets of configurations of P , and let α be a finite-chain abstraction defined on
the abstract domain D. Then α(L(C,C′)) can be effectively computed in D in
O(h|�||Q|2) time.

To check the emptiness of the intersection of the over-approximations γ (α(L1))

and γ (α(L2)), it suffices to check whether α(L1) < α(L2) = ⊥. Indeed, using the
fact that α(∅)=⊥ and γ (⊥)= ∅, it can be shown that

∀L1,L2 ∈ Lab∗, α(L1) < α(L2)=⊥⇔ γ
(
α(L1)

)∩ γ (α(L2)
)= ∅.

18.3.5.2 Defining Refinable Finite-Chain Abstractions

To be able to apply our CEGAR scheme, we need to define refinable finite-chain
abstractions, i.e., a series (αi)i≥1 such that αi is more precise than αj if i > j ; i.e.,
for every language L⊆ Lab∗, if i > j then

L⊆ γi
(
αi(L)

)⊆ γj
(
αj (L)

)
.

For this we define the ith-prefix abstraction as follows: LetWi be the set of words
of Lab∗ of length less than or equal to i. The abstract lattice Di is equal to 2Wi ; for
every a ∈ Lab, va = a;⊕=∪; <= ∩; U >V = {(uv)i | u ∈U,v ∈ V }, where (w)i
is the prefix of w of length i; 0̄= ∅; 1̄= {ε}; ≤=⊆.

Let αi and γi be the abstraction and concretization functions associated with this
domain. It is easy to see that αi(L) is the set of words of L of length less than i,
union the set of prefixes of length i of L, i.e., αi(L) = {w | |w| < i and w ∈ L,
or |w| = i and ∃v ∈ Lab∗ s.t. wv ∈ L}. Therefore, γi(αi(L)) = {w ∈ αi(L) | |w|<
i} ∪ {wv |w ∈ αi(L), |w| = i, v ∈ Lab∗}.

Observe that it is possible to decide whether αi(L1) ∩ αi(L2) = ∅ because for
every L⊆ Lab∗, αi(L) is a finite set of words.

It is easy to see that if i > j , then αi is more precise than αj . Indeed, we have

L⊆ γi
(
αi(L)

)⊆ γj
(
αj (L)

)
.

We have thus defined a series of refinable finite-chain abstractions α1, α2, α3, . . ..

Remark 1 The ith-prefix abstraction is only one abstraction that can be used to
instantiate the framework. Others are possible, such as the ith-suffix or the ith-
subword abstractions (defined in an analogous way).
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18.3.5.3 Checking Whether the Counterexample Is Spurious

It remains to check whether I = γi(αi(L1))∩γi(αi(L2)) contains an element x such
that x ∈ L1∩L2. This amounts to deciding whether I ∩L1∩L2 = ∅. Unfortunately,
this problem is undecidable because I is a regular language (because for L⊆ Lab∗,
γi(αi(L)) is regular). To sidestep this problem, we check instead whether L1 and
L2 have a common word of length at most i. This amounts to checking whether

(
αi(L1)∩L1

)∩ (
αi(L2)∩L2

)= ∅.
This is decidable because αi(L) is a finite set.

18.3.5.4 The Semi-decision Procedure

Summarizing the previous discussion, we obtain the following semi-decision pro-
cedure:

1. Initially, i = 1.
2. Compute the common words of length less than i, and the common prefixes of

length i of L(C1,C
′
1) and L(C2,C

′
2): I

′ = αi(L(C1,C
′
1))∩ αi(L(C2,C

′
2)).

3. If I ′ = ∅, conclude that L(C1,C
′
1)∩L(C2,C

′
2)= ∅, and that C′1×C′2 is unreach-

able from C1 × C2. Otherwise, determine whether or not I ′ is spurious: Check
whether I ′ ∩L(C1,C

′
1)∩L(C2,C

′
2) �= ∅. If this holds, conclude that L(C1,C

′
1)

and L(C2,C
′
2) have a common word of length less than or equal to i, and there-

fore, that L(C1,C
′
1)∩L(C2,C

′
2) �= ∅, and C′1 ×C′2 is reachable from C1 ×C2.

4. Otherwise, increment i and proceed from step 2.

It is easy to see the following.

Theorem 9 If L(C1,C
′
1)∩L(C2,C

′
2) �= ∅, then the above semi-decision procedure

terminates with the exact solution.

18.4 PDS-Based Model-Checking: Communication Patterns

We now consider asynchronous communication with shared memory. We define a
model, called PDN, which is a collection of pushdown processes and an observation
relation R between these processes. A process P is able to observe the control state
of a process Q if P is related to Q in R. Intuitively, the control state of a process
represents the memory store it owns (i.e., that the process can access in both read
and write modes), and the observation relation defines its rights to read the memory
stores owned by the other processes in the network. An operation of a process can
be constrained by its observations, but the observed processes are never constrained
by the observer.
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18.4.1 Reasoning About Programs with State Observation

Formally, a Push Down Network (PDN for short) is given by a tuple N =
(P1, . . . ,Pn,R) where R ⊆ {(i, j) | 1 ≤ i, j ≤ n, i �= j} is a binary relation defin-
ing the communication structure of the network (R defines a directed graph whose
nodes are 1, . . . , n), and for every i ∈ {1, . . . , n}, Pi = (Qi,Γi,�i) is a communi-
cating pushdown system such that Qi is a finite set of control states, Γi is a finite
stack alphabet, and �i is a set of transition rules of the form: φ : (p, γ ) ↪→ (p′,w)
where p,p′ ∈ Qi are two control states, γ ∈ Γi is the symbol popped from the
stack, w ∈ Γ ∗i is the string pushed onto the stack, and φ ⊆⋃

(i,j)∈R Qj is a set of
constraints over the current control states of the other observed processes.

A local configuration of a process in the network, say Pi , is a word piwi ∈QiΓ ∗i
where pi is a state and wi is a stack content. A configuration of the network N is
a vector (p1w1, . . . , pnwn) ∈∏n

i=1QiΓ
∗
i , where piwi is the local configuration

of Pi .
We define a transition relation =⇒N between configurations such that we

have (p1w1, . . . , pnwn) =⇒N (p
′
1w
′
1, . . . , p

′
nw

′
n) if and only if there is an index

i ∈ {1, . . . , n} such that

• there is a rule φ : (p, γ ) ↪→ (p′,w) ∈ �i and there exists a word u ∈ Γ ∗i
such that pi = p, p′i = p′, wi = γ u, w′i = wu, and for every j ∈ {1, . . . , n}, if
(i, j) ∈R then pj ∈ φ.

• ∀j ∈ {1, . . . , n}. i �= j. pj = p′j and wj =w′j .

Let =⇒∗
N denote the reflexive transitive closure of =⇒N . Given a configura-

tion c, the set of immediate successors of c is postN(c) = {c′ ∈ ∏n
i=1QiΓ

∗
i :

c =⇒N c
′}. This notation can be generalized straightforwardly to sets of config-

urations. Let post∗N denote the reflexive transitive closure of postN .
Intuitively, a network N = (P1, . . . ,Pn,R) can be seen as a collection of “stan-

dard” pushdown systems that observe each other according to the structure R:
(i, j) ∈ R means that process Pi observes (reads) the states of process Pj . If a rule
φ : (p, γ ) ↪→ (p′,w) is in �i , then process Pi can apply the “standard” pushdown
rule (p, γ ) ↪→ (p′,w) iff every pushdown system Pj for j s.t. (i, j) ∈ R is in a
state pj ∈ φ ∩ Qj . The network is in the configuration (p1w1, . . . , pnwn) when
each pushdown system Pi is in configuration piwi .

A networkN = (P1, . . . ,Pn,R) is acyclic (resp. cyclic) if the graph of its relation
R is acyclic (resp. cyclic). A network consisting of a single process N = (P,∅) will
simply be denoted by P and corresponds to the standard pushdown system P .

18.4.1.1 Symbolic Representation of PDN Configurations

Let N = (P1, . . . ,Pn,R) be a PDN where Pi = (Qi,Γi,�i). Since a configuration
of N can be seen as a word of dimension n in Q1Γ

∗
1 × · · · × QnΓ ∗n , a natural

way to represent infinite sets of PDN configurations is to consider recognizable
languages, i.e., languages that can be described as a finite union of products of n
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regular languages (i.e., L=⋃m
j=1L(A

j

1)× · · · ×L(Ajn) for some m ∈N, where Aji
is a finite state automaton over Σi ).

18.4.1.2 Reachability Analysis of PDNs

The reachability problem for PDNs is undecidable. It becomes decidable for acyclic
networks.

Theorem 10 ([2]) The reachability problem is decidable for acyclic PDNs. How-
ever, acyclic PDNs do not preserve recognizability.

Definition 6 Let N = (P1, . . . ,Pn,R) be an acyclic PDN where for every i ∈
{1, . . . , n}, Pi = (Qi,Γi,�i). For i ∈ {1, . . . , n}, let ρi be a binary relation in
Qi × Qi defined by (p,p′) ∈ ρi iff there exists in �i a rule of the form φ :
(p, γ ) ↪→ (p′,w). Let ρ∗i be the reflexive transitive closure of ρi .
N is stable iff whenever (i, j) ∈R, then for every p,p′ ∈Qj , if (p,p′) ∈ ρ∗j and

(p′,p) ∈ ρ∗j , then for every rule φ : (q, γ ) ↪→ (q ′,w) in �i , p ∈ φ iff p′ ∈ φ.

Intuitively, N is stable iff whenever Pj can go from a state p to a state p′ and
then back to p, for some index j ∈ {1, . . . , n}; we have that if (i, j) ∈ R then the
rules of �i do not distinguish between the states p and p′.

Theorem 11 ([3, 69]) Let N = (P1, . . . ,Pn,R) be a stable acyclic PDN and C be
a recognizable set of configurations. Then, post∗N(C) is an effectively recognizable
set.

The construction underlying this theorem is based on the iterative application
of the standard post∗ algorithm for standard pushdown systems [6, 23] for each
pushdown component in the network. The stability of the network guarantees the
termination of the iterative procedure.

18.4.2 Multiphase Acyclic Pushdown Networks

A Multiphase Acyclic Pushdown Network (MAPN) [3, 69] is given by a tuple
M = (N1, . . . ,Nm,T ) where for every j ∈ {1, . . . ,m}, Nj = (P j1 , . . . ,P jn ,Rj ) is

an acyclic PDN where for i ∈ {1, . . . , n}, P ji = (Qi,Γi,�ji ). T is a set of transi-
tions of the form (Ni,Φ,Nj ) where i, j ∈ {1, . . . ,m} and Φ ⊆∏

k≤nQkΓ ∗k is a
recognizable set of configurations.

We can think of the network Nj as an acyclic network over the processes

(P1, . . . ,Pn), where each process Pi (i ∈ {1, . . . , n}) executes only the rules �ji ,
and where these processes observe each other according to the structure Rj . T is a
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phase graph: a transition (Ni,Φ,Nj ) ∈ T means that if the acyclic PDN Ni is in
a configuration (p1w1, . . . , pnwn) ∈ Φ , then the network can move from a phase
where the processes behave according to the network Ni to a phase where they
behave according to Nj , i.e., from Ni to Nj .

Let G be the underlying graph of T , i.e., (i, j) ∈ G iff there exists in T a transi-
tion of the form (Ni,Φ,Nj ). We say that T is cyclic (resp. acyclic) iff G is cyclic
(resp. acyclic). The network M is said to be cyclic (resp. acyclic) iff T is cyclic
(resp. acyclic). In other words, a network is acyclic iff when the processes stop be-
having according to a network Ni and start behaving like another network Nj with
j �= i, they will never behave like Ni again (there is no cycle involving Ni in T ).

An indexed configuration of the MAPN is a pair 〈(p1w1, . . . , pnwn), i〉 where
(p1w1, . . . , pnwn) ∈∏n

k=1QkΓ
∗
k , and i ∈ {1, . . . ,m}. The index i records the cur-

rent phase of the network. A configuration of the MAPN is a tuple (p1w1, . . . ,

pnwn) ∈∏n
k=1QkΓ

∗
k .

We define a transition relation ⇒M between indexed configurations as follows:
〈(p1w1, . . . , pnwn), i〉⇒M 〈(p′1w′1, . . . , p′nw′n), j 〉 if and only if:

• (p1w1, . . . , pnwn) = (p′1w′1, . . . , p′nw′n), and there is (Ni,Φ,Nj ) ∈ T such that
(p1w1, . . . , pnwn) ∈Φ , or

• (p1w1, . . . , pnwn)=⇒Nj (p
′
1w
′
1, . . . , p

′
nw

′
n) and i = j .

We extend ⇒M to configurations in
∏n
k=1QkΓ

∗
k as follows: (p1w1, . . . ,

pnwn)⇒M (p
′
1w
′
1, . . . , p

′
nw

′
n) iff there exist two phase indices i and j in {1, . . . ,m}

such that 〈(p1w1, . . . , pnwn), i〉 ⇒M 〈(p′1w′1, . . . , p′nw′n), j 〉. Let ⇒ ∗
M denote

the reflexive transitive closure of ⇒ M . Let C be a set of (indexed) configura-
tions. We define postM(C) and post∗M(C) in the usual manner. Let C be a set
of indexed configurations. C is said to be recognizable if and only if the set
Cj = {(p1w1, . . . , pnwn)|〈(p1w1, . . . , pnwn), j 〉 ∈ C} is recognizable for every j ,
1≤ j ≤m. As usual, the reachability problem between two sets of (indexed) config-
urations C1 and C2, for a MAPNM , is to determine whether there are two (indexed)
configurations c1 ∈ C1 and c2 ∈ C2 such that c1 ⇒∗

Mc2.

18.4.2.1 The Reachability Problem for MAPNs

Theorem 12 ([3, 69]) The reachability problem is undecidable for MAPNs.

Unfortunately, we can show that this undecidability holds even for acyclic
MAPNs. It was shown in [3, 69] how solving this problem would imply a decision
procedure for the Post Correspondence Problem (PCP).

Theorem 13 ([3, 69]) The reachability problem between two (indexed) configura-
tions is undecidable for acyclic MAPNs. This holds even if the phase graph has a
single transition.

Fortunately, reachability becomes decidable for MAPNs when the constraints in
the phase graph are finite sets of configurations.
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Definition 7 An MAPN M = (N1, . . . ,Nm,T ) is called finitely constrained if T
is a set of transitions of the form (Ni,Φ,Nj ) where i, j ∈ {1, . . . ,m} and Φ ⊆∏
k≤nQkΓ ∗k is a finite set of configurations.

Proposition 1 ([3, 69]) The reachability problem between recognizable sets of (in-
dexed) configurations is decidable for finitely constrained MAPNs.

Definition 8 An MAPNM = (N1, . . . ,Nm,T ) is stable if for every j ∈ {1, . . . ,m},
Nj = (P j1 , . . . ,P jn ,Rj ) is a stable acyclic PDN.

Stable acyclic MAPNs effectively preserve recognizability. This is due to the
fact that (1) stable acyclic PDNs effectively preserve recognizability, and (2) the
phase graphs of acyclic MAPNs are acyclic. This allows us to obtain the reachability
set for stable acyclic MAPNs by successively applying the algorithm underlying
Theorem 11 a finite number of times.

Theorem 14 ([3, 69]) Let M = (N1, . . . ,Nm,T ) be a stable acyclic MAPN and
let C be a recognizable set of (indexed) configurations of M . Then post∗M(C) is
effectively recognizable.

Since recognizable sets are effectively closed under intersection, we get the fol-
lowing.

Corollary 1 The reachability problem between recognizable sets of (indexed) con-
figurations is decidable for stable acyclic MAPNs.

18.4.2.2 For MAPNs

Definition 9 LetM = (N1, . . . ,Nm,T ) be a MAPN where for every j ∈ {1, . . . ,m},
Nj = (P j1 , . . . ,P jn ,Rj ) is an acyclic PDN. We define the k-switch transition rela-
tion between indexed configurations inductively as follows:

• 〈(p1w1, . . . , pnwn), i〉 0=⇒M 〈(p′1w′1, . . . , p′nw′n), j 〉 if and only if i = j and
(p1w1, . . . , pnwn)=⇒∗

Ni
(p′1w′1, . . . , p′nw′n).

• 〈(p1w1, . . . , pnwn), i〉 k+1=⇒M 〈(p′1w′1, . . . , p′nw′n), j 〉 if and only if there is an in-
dexed configuration 〈(p′′1w′′1 , . . . , p′′nw′′n), l〉 such that:

〈(p1w1, . . . , pnwn), i〉 k=⇒M 〈(p′′1w′′1 , . . . , p′′nw′′n), l〉; 〈(p′′1w′′1 , . . . , p′′nw′′n), l〉⇒M

〈(p′′1w′′1 , . . . , p′′nw′′n), j 〉; and (p′′1w′′1 , . . . , p′′nw′′n)=⇒∗
Nj
(p′1w′1, . . . , p′nw′n).

We extend
k=⇒M to configurations as follows:

(p1w1, . . . , pnwn)
k=⇒M (p

′
1w
′
1, . . . , p

′
nw

′
n) iff there exist two phase indices i and

j such that 〈(p1w1, . . . , pnwn), i〉 k=⇒M 〈(p′1w′1, . . . , p′nw′n), j 〉.
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The k-bounded switch reachability problem for MAPNs between two sets of
(indexed) configurations C and C′ consists of determining whether there are c ∈
C and c′ ∈ C′ such that c

k=⇒M c
′. Intuitively, this means that c

k=⇒M c
′ iff the

(indexed) configuration c′ can be reached from c after switching the phase of the
network at most k times according to the phase graph T . In this case, we say that c′
is k-bounded reachable from c.

Unfortunately, even k-bounded switch reachability is undecidable for cyclic as
well as acyclic MAPNs. Indeed, it is easy to see that performing k-bounded reacha-
bility inM amounts to performing “unrestricted” reachability in the acyclic network
defined by (N1, . . . ,Nm,Tk), where Tk is obtained by considering all the possible
paths of T having at most k transitions. Therefore, we have the following from
Theorem 13.

Corollary 2 ([3, 69]) The k-bounded reachability problem between recognizable
sets of (indexed) configurations is undecidable for MAPNs. This holds even for
k = 1.

However, we have the following from Corollary 1 and the observation above.

Corollary 3 ([3, 69]) The k-bounded switch reachability problem between recog-
nizable sets of (indexed) configurations is decidable for stable MAPNs.

18.4.2.3 A Semi-algorithm for k-Bounded Reachability for MAPNs

The result above can be used to construct a semi-decision procedure for the k-
bounded switch reachability problem for general MAPNs. LetM = (N1, . . . ,Nm,T )

be an MAPN. The idea consists of taking advantage of the fact that k-bounded
switch reachability is decidable for stable networks. To do so, we compute a stable
network M ′ = (N ′1, . . . ,N ′m′, T ′) s.t. the processes in M ′ have the same behaviors
as in M but can perform more phase switches. This ensures that given two config-

urations c and c′, c k=⇒M ′ c′ implies that there exists k′ such that c
k′=⇒M c

′. This
gives the semi-decision procedure since we can decide k-bounded reachability for
M ′ thanks to its stability.

To compute the stable network M ′, the idea consists of decomposing every

acyclic PDN Nj (j ≤ m) into stable subnetworks N1
j , . . . ,N

ij
j such that the be-

havior of each subnetwork Nlj is also a behavior of Nj , and such that any behavior
of Nj can be obtained by performing a number of switches between the different
Nlj ’s. The computed network satisfies the following.

Theorem 15 ([3, 69]) Let C and C′ be two recognizable sets of (indexed) config-
urations. Then if C′ is k-bounded reachable from C by M, there exists k′ ≥ k such
that C′ is k′-bounded reachable from C by M ′.
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18.4.2.4 A Semi-algorithm for the Reachability Problem for General PDNs

The previous results on bounded phase switch reachability for MAPNs can be used
to derive a semi-algorithm to check reachability for general PDNs (even cyclic
ones). LetN = (P1, . . . ,Pn,R) be a PDN, where for i, 1≤ i ≤ n, Pi = (Qi,Γi,�i)
is a communicating pushdown system. The construction underlying Theorem 12
produces an MAPN M such that reachability in N can be reduced to reachability
in M . Let C and C′ be two recognizable sets of configurations of N . We can show
that if C′ is reachable from C in N , then there exists an index k such that C′ is
k-bounded reachable from C in M . Thus, the semi-algorithm given in the previous
section can be used to check reachability in N , and thus in PDNs.

This technique generalizes the algorithms proposed in [7, 58] for bounded
context-switch analysis. Indeed, the notion of phase is more general than the no-
tions of context used in these works in the sense that, if we encode a PDN model
in those proposed in [7, 58], one single phase may correspond to an unbounded
number of context switches.

18.4.3 Threads Communicating via Lossy Channels

We now consider acyclic networks of pushdown systems communicating through
unbounded lossy FIFO channels. An Acyclic Lossy Channel Pushdown Network
(APNlc for short) [2] is a tuple H = (P1, . . . ,Pn,C,M) where: (1) C ⊆ {(j, i) :
1 ≤ i < j ≤ n} is a finite set of unidirectional channels,1 (2) M is a finite set of
messages, and (3) for every i ∈ {1, . . . , n}, Pi = (Qi,Σi,Γi,�i) is a pushdown
system, whereQi is a finite set of states,Σi = ({!}×M×{j : (i, j) ∈ C})∪ ({?}×
M ×{j : (j, i) ∈ C})∪ ({nop}) is a finite set of transition labels, Γi is a finite stack

alphabet, and �i is a finite set of transition rules of the form: 〈p,u〉 a
↪→ 〈p′, u′〉

where a ∈ Σi , p,p′ ∈ Qi , and u,u′ ∈ Γ ∗i such that either (i) |u| = 1 and u′ = ε
(pop operation), (ii) u = ε and |u′| = 1 (push operation), or (3) u = u′ = ε (no
operation on the stack).

A transition of process Pi labeled by (!,m, j) means “Pi sends message m via
the channel (i, j) ∈ C to process j”, whereas a transition labeled by (?,m, j)means
“Pi receives message m from the channel (j, i) ∈ C sent by j”. A nop corresponds
to an internal action.

A configuration of the APNlc H is a vector 〈p1w1, . . . , pnwn,V 〉 where piwi ∈
QiΓ

∗
i is a local configuration of process Pi and V is a mapping from C to M∗

giving the contents of each channel, i.e., V (i, j) describes the content of the channel
(i, j).

We define a transition relation =⇒H between configurations as follows:
〈p1w1, . . . , pnwn,V 〉 =⇒H 〈p′1w′1, . . . , p′nw′n,V ′〉 iff ∃i ∈ {1, . . . , n} and

1Notice that the graph defined by C is acyclic.
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∃(〈p,u〉 a
↪→ 〈p′, u′〉) ∈ �i such that (1) p = pi and p′ = p′i , (2) wi = uv and

w′i = u′v for some v ∈ Γ ∗i , (3) ∀j �= i. pj = p′j and wj = w′j , and (4) either
(i) a = (?,m, k) is a receive operation; mV ′(k, i)3 V (k, i) and V ′(j, l)3 V (j, l)
for every (j, l) ∈ C such that (j, l) �= (k, i): message m is read from the channel
(k, i), and the contents of all the channels can lose some messages since the channels
are lossy (this is expressed by the subword relation 3), or (ii) a = (!,m, k) is a send
operation, and V ′(k, i)3 V (k, i)m and V ′(j, l)3 V (j, l) for every (j, l) ∈ C such
that (j, l) �= (k, i) (m is added to the channel (k, i) that receives the message. More-
over, all the channels can lose messages), or (iii) a = nop, and V ′(j, l) 3 V (j, l)
for every (j, l) ∈ C (to express the loss of messages). Let =⇒∗

H denote the reflexive
transitive closure of =⇒∗

H . postH and post∗H are defined in the standard manner.

Theorem 16 ([2]) The reachability problem between configurations (and therefore
between recognizable sets) for APNlc is decidable.

18.5 Other Models: Finite State Systems and Sequential
Programs

The previous sections introduced several PDS-based models and model-checking al-
gorithms that have been proposed for verifying concurrent programs. As mentioned
in the introduction, these algorithms provide results for exact model-checking in the
limit, often focusing on decidability issues. There has been less work on applying
them to concurrent programs in practice, partly due to the huge gap between high-
level programming languages on one end and the low-level PDS-based models on
the other.

In a broader context, concurrent programs are related to finite state concurrent
systems, with the added twist that programs are recursive and possibly infinite state.
As we saw earlier, the presence of communication/synchronization along with re-
cursion often leads to undecidability. Therefore, a practical strategy is to ignore
recursion altogether, relying on finite state models, or finite state abstractions of
infinite state models. Typically, the setting either includes the assumption that the
concurrent program is terminating, or applies some bounded analysis like testing or
bounded model-checking. Therefore, unbounded recursion is not handled, and func-
tion/procedure bodies in the programs are usually inlined (up to some depth bound).
On the other hand, concurrent programs are also related to sequential programs,
with the added twist that the individual programs (threads or processes) interact
with each other.

With the success of model-checking on finite state systems and sequential pro-
grams, it is no surprise that many efforts have tried to extend these to concurrent
programs. In this section, we describe techniques inspired by these two domains.
Again, our emphasis is on the main ideas that have been used to handle synchro-
nization/communication and the complexity due to process or thread interleavings.



18 Model Checking Concurrent Programs 603

Our intent is not to provide a survey (also due to space limitations), but to pro-
vide pointers to representative efforts, since these ideas can be combined in various
ways to develop practical verifiers for concurrent programs. Not all techniques deal
precisely with recursion or with thread interactions, frequently using sound abstrac-
tions but giving up on completeness (even in decidable cases). Furthermore, most
techniques described here do not address unbounded heap structures, which can be
handled by combining them with shape analysis or techniques based on separation
logic, e.g. [13, 31].

We will start by describing techniques that have worked well on concurrent finite
state systems/abstractions. These include partial-order reduction (to reduce the num-
ber of interleavings, often in explicit search-based techniques) and use of symbolic
memory constraints (to explore all interleavings, often using SMT solvers).

We will then describe techniques that handle recursive procedures, inspired by
sequential program verification techniques such as abstract interpretation, dataflow
analysis, and CEGAR-based model-checking. Here, effective reasoning about
thread interference plays a key role. We discuss sequentialization, where control
interference is converted to data nondeterminism and additional constraints are in-
troduced to capture a given schedule. After that, we discuss automatic generation
of invariants, which are used to refine over-approximations of thread interferences
or to incrementally add them to under-approximations. The ultimate abstraction is
where interference from other threads is regarded as the environment, in the setting
of thread-modular or assume-guarantee compositional techniques for concurrent
programs.

Finally, we discuss trace-based dynamic methods. Due to the scalability limita-
tions of static verification, there has been increased interest in dynamic techniques
for systematically exploring (parts of) concurrent programs. We discuss dynamic
partial-order reduction and preemptive context-bounding techniques that compel the
scheduler to dynamically explore a reduced set of interleavings. We also describe
predictive analysis techniques, where a trace-based model derived from dynamic
executions is used to predict concurrency bugs in alternate interleavings. Typically,
these methods work for a given test input only, i.e. input coverage is limited, as in
software testing.

18.5.1 Partial-Order Reduction

Model-checking based on partial-order reduction (POR) [29, 57, 71] exploits the ob-
servation that many interleavings in concurrent systems are equivalent. In particular,
according to Mazurkiewicz’s trace theory [53], two sequences are equivalent if they
can be obtained from each other by successively permuting adjacent independent
transitions. In the context of verifying multi-threaded programs, all operations are
separated into visible and non-visible operations, based on whether they affect the
state of variables that are shared between threads. Essentially, interleavings are con-
sidered only at the transaction boundaries, where a transaction captures a sequence
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of thread-local operations. Two visible operations are considered dependent if they
access the same shared variable, and if at least one of them is a write-operation.

However, computing a precise dependence relation may be as hard as verifica-
tion itself. Therefore, POR-based methods often use a conservative static analysis
to determine reachability of dependent transitions in the program. This was used
successfully in several pioneering works on software model-checking [30, 37, 72],
including verification of concurrent programs.

This reasoning can be made more precise by utilizing the techniques described
in earlier sections on the control state space of the program, including semantics
of synchronizing operations available in the associated programming language. For
example, lock-based reasoning for Java programs [68] and lock acquisition histo-
ries [42] have been used to further reduce the number of interleavings, on top of
static partial-order reduction.

To improve upon the imprecision due to static analysis, dynamic partial-order
reduction [26] and Cartesian partial-order reduction [32] detect dependent transi-
tions dynamically during model-checking, thereby leading to a greater reduction. In
addition to these explicit state traversal techniques, partial-order reduction has been
employed in symbolic settings to achieve optimal reduction [45, 78].

18.5.2 Symbolic Reasoning with Memory Consistency Constraints

Another interesting line of symbolic verification relies on using memory consis-
tency axioms for deriving the feasible behaviors of a multi-threaded program. These
axioms specify rules on when a shared memory write may be observed by a mem-
ory read. The transition relations of the threads, together with these axioms, are
symbolically encoded as a logic formula. Then, SAT or SMT solvers are used to
find violations (also symbolically encoded) among all interleavings that satisfy the
memory consistency constraints.

This approach was used for symbolically detecting data races for the Java mem-
ory model [80], and for checking a given set of (bounded) tests on programs for
weak memory models [10, 11]. It has also been used for bounded model-checking
multi-threaded programs—with an a priori fixed bound on the number of context
switches [59], or without an a priori fixed bound by using a token-based encoding to
enforce sequential consistency [27, 28]. The basic approach has also been combined
with thread-modular summarization [65]. To improve scalability, the notion of in-
terference abstraction and refinement has been introduced to weaken/strengthen the
memory consistency axioms [66].

There are some differences among these efforts in the details of the symbolic
encodings and additional optimizations, where the number of memory consistency
constraints ranges from quadratic to cubic in the number of shared variable accesses.
Overall, they provide symbolic frameworks to uniformly combat the state space
explosion due to (shared) data as well as interleavings, and effectively exploit the
advances in SAT and SMT solvers.
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18.5.3 Concurrent Dataflow Analysis and Invariant Generation

Inspired by the success of dataflow analysis and abstract interpretation techniques
on sequential programs, there have been several efforts to extend them to concurrent
programs, bringing in their inherent machinery such as abstractions to handle the
large/infinite data spaces and summarization techniques for handling procedures.

A convenient sequentialization technique effectively allows any sequential
dataflow analysis technique to be utilized on concurrent programs, under the as-
sumption of bounded context switching. This was motivated by a useful decidabil-
ity result [58], which showed that context-bounded analysis of arbitrary concurrent
programs is decidable. The main idea in sequentialization is to introduce nondeter-
ministic data variables to capture the effect of thread (control) interference, followed
by enforcing constraints on these variable values according to some bounded sched-
ule [50]. This is similar in spirit to the symbolic encoding of memory consistency
constraints described in the previous subsection. However, the ability to plug in any
sequential program analysis supports a rich set of features and techniques optimized
over the years. An example application was shown on systems code [48].

Another technique that also focuses on thread interference is based on using a
transaction graph that over-approximates the set of interleavings between given
threads, and iteratively refines it by employing invariants automatically generated
by performing abstract interpretation on this graph [43]. The abstract interpretation
can use various domains with increasing precision (intervals, octagons, polyhedra).
To help generate more precise invariants, the technique also uses partial-order reduc-
tion and synchronization constraints, specifically PDS-based reasoning on locks, to
create the initial transaction graph.

Indeed, many static analysis approaches that ignore the effects of synchroniza-
tion operations can improve their precision by utilizing the PDS-based techniques
described in Sect. 18.3. For example, reasoning about nested locks has also been
utilized for compositional bitvector dataflow analysis for concurrent programs [24].

Instead of starting from a large set of interleavings and then refining to reduce
them, a different approach can be taken to propagate the interferences incremen-
tally [54]. This approach also has the benefit of utilizing standard abstract domains
(e.g. intervals, octagons) for computing the fixpoints for individual threads. The
scheduler states are partitioned to handle the interference effects based on mutual
exclusion and scheduling priorities. After propagating the interference effects, the
individual thread fixpoint computations are repeated, and the entire process is iter-
ated until thread interferences stabilize.

The ultimate abstraction is to view interference from other threads as the en-
vironment. Compositional rely-guarantee reasoning can then be used to find the
environment invariants needed to establish the correctness property, with the advan-
tage that thread-modular verification is more scalable, in general, than handling a
monolithic global system. The automatic discovery of environment invariants for
compositional verification can be performed by various techniques, e.g., use of
counterexample-guided abstraction refinement [20, 34, 36], transition predicate ab-
straction refinement [33], learning-based methods to automatically generate com-
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ponent interfaces [35, 63], etc. The relevant issues to consider are whether the dis-
covered invariants are modular (i.e., refer to only shared variables) or non-modular
(i.e., refer to local states of other threads also) and whether the discovery method is
complete (i.e., it will discover the invariants if they exist).

18.5.4 Trace-Based Dynamic Model-Checking

Finally, we briefly describe trace-based methods for finding bugs in concurrent pro-
grams. Due to the fact that these methods work with traces (or models derived from
traces), they can only reason about parts of the program state space at a time. How-
ever, for large programs, this often becomes an enabler to overcome the scalability
issue. The traces are typically derived from actual program executions on given test
cases, and there is a rich history of dynamic analysis techniques to find concurrency
bugs (outside the scope of this chapter). Here, we describe the application of static
verification techniques on trace-based models, where the main motivation is to ex-
plore alternate interleavings (thread schedules) of the events observed during the
test run.

Dynamic partial-order reduction (DPOR) [26] uses stateless model-checking on
given test cases to explore all non-redundant interleavings. This has also been cus-
tomized in a multi-process setting to verify MPI programs [73]. However, the set
of all non-redundant interleavings can be quite large in practice. This motivated the
development of preemptive context bounding (PCB) [55], which explores interleav-
ings with some fixed bound on the number of context switches. The intuition here
is that many bugs can be detected within a small bound, which seems to hold in
practice. Other heuristics for schedule selection can be added on top of DPOR [77]
to improve performance.

Both DPOR and PCB work by taking control of the scheduler, and execute the
actual program to explore alternate interleavings. Alternately, it is possible to derive
models from the executed trace, for the purpose of static exploration. These models
are called predictive models, in that they are used to predict property violations in
alternate interleavings of events in the given trace. Different models and checkers
have been proposed for detecting data races, atomicity and serializability violations,
and nondeterminism. Depending on the precision of the predictive models and the
related analysis, the methods provide different coverage over the space of alternate
interleavings, and may report only true violations or potentially false violations also.

Typically, predictive analysis methods based on Lamport’s happens-before
causality relation and its extensions [17, 52, 62, 81] report only true violations, but
their predictive coverage may be small due to enforcing the observed causalities.
In particular, most of these techniques model lock/unlock operations as happens-
before according to the order in which locks are acquired in the observed trace.
They do not consider alternate orders on acquiring locks.

In contrast, other predictive methods based on synchronization constraints, e.g.,
based on lock acquisition histories [25] or universal causality graphs [44], provide
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higher predictive coverage but may report false violations (unless followed by ad-
ditional feasibility checks). The reason is that these methods typically do not track
dataflow constraints. Some efforts have also combined happens-before reasoning
with precise reasoning on locks [64]. Note that locks enforce mutual exclusion, but
do not enforce any particular order on acquiring locks. To allow exploration of al-
ternate orders, some amount of search is needed in general.2

The extreme along both axes—full predictive coverage and highest precision—is
obtained by tracking control flow, dataflow, and synchronization constraints [75, 76].
The proposed predictive model, called a concurrent trace program (CTP), encodes
inter-thread data flow, concurrency primitives, and correctness properties uniformly
as symbolic happens-before constraints. An SMT solver is used to find violations,
performing a symbolic search over thread interleavings that are guaranteed to be
executable.

18.5.5 Other Related Techniques

Due to reasons of brevity, this section focused on some essential ideas in concurrent
program verification arising from finite state or program verification. There are sev-
eral topics of related research that we are unable to cover: verification of parallel and
message-passing programs for high-performance computing [5, 73, 79]; automatic
synthesis of synchronization operations [14, 18, 22, 47, 67]; verification of mem-
ory models (sequential consistency, weaker and relaxed memory models) [1, 12];
correctness proofs of concurrent data structures [21, 70]; use of separation logic
for concurrent programs [56]. The interested reader can follow some representative
pointers provided above.
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Chapter 19
Combining Model Checking and Testing

Patrice Godefroid and Koushik Sen

Abstract Model checking and testing have a lot in common. Over the last two
decades, significant progress has been made on how to broaden the scope of model
checking from finite-state abstractions to actual software implementations. One way
to do this consists of adapting model checking into a form of systematic testing that
is applicable to industrial-size software. This chapter presents an overview of this
strand of software model checking.

19.1 Introduction

Model checking and testing are similar in many ways. In practice, the main value of
both is to find bugs in programs. And, if no bugs are to be found, both techniques
increase the confidence that the program is correct.

In theory, model checking is a form of formal verification based on exhaustive
state-space exploration. As famously stated by Dijkstra decades ago, “testing can
only find bugs, not prove their absence”. In contrast, verification (including exhaus-
tive testing) can prove the absence of bugs. This is the key feature that distinguishes
verification, including model checking, from testing.

In practice, however, the verification guarantees provided by model checking
are often limited: model checking checks only a program, or a manually written
model of a program, for some specific properties, under some specific environmental
assumptions, and the checking itself is usually approximate for nontrivial programs
and properties when an exact answer is too expensive to compute. Therefore, model
checking should be viewed in practice more as a form of “super testing” rather
than as a form of formal verification in the strict mathematical sense. Compared
to testing, model checking provides better coverage, but is more computationally
expensive. Compared to more general forms of program verification like interactive
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Fig. 1 Two main approaches
to software model checking

theorem proving, model checking provides more limited verification guarantees,
but is cheaper due to its higher level of automation. Model checking thus offers an
attractive practical trade-off between testing and formal verification.

The key practical strength of model checking is that it is able to find bugs that
would be extremely hard to find (and reproduce) with traditional testing. This key
strength has been consistently demonstrated, over and over again, during the last
three decades when applying model-checking tools to check the correctness of hard-
ware and software designs, and more recently software implementations. It also
explains the gradual adoption of model checking in various industrial environments
over the last 20 years (hardware industry, safety-critical systems, software industry).

What prevents an even wider adoption of model checking is its relative higher
cost compared to basic testing. This is why model checking has been adopted so
far mostly in niche yet critical application domains where the cost of bugs is high
enough to justify the cost of using model checking (hardware designs, communica-
tion switches, embedded systems, operating-system device drivers, security, etc.).

Over the last two decades, significant progress has been made on how to lower the
cost of adoption of model checking even further when applied to software through
the advent of software model checking. Unlike traditional model checking, a soft-
ware model checker does not require a user to manually write an abstract model of
the software program to be checked in some modeling language, but instead works
directly on a program implementation written in a full-fledged programming lan-
guage.

As illustrated in Fig. 1, there are essentially two main approaches to software
model checking, i.e., two ways to broaden the scope of model checking from mod-
eling languages to programming languages. One approach uses abstraction: it con-
sists of automatically extracting an abstract model out of a software application by
statically analyzing its code, and then analyzing this model using traditional model-
checking algorithms (e.g., [4, 45, 85, 111]). Another approach uses adaptation: it
consists of adapting model checking into a form of systematic testing that is appli-
cable to industrial-size software (e.g., [60, 68, 108, 148]).

The aim of this chapter is to present an overview of this second approach to
software model checking. We describe the main ideas and techniques used to sys-
tematically test and explore the state spaces of concurrent (Sect. 19.2) or data-
driven (Sect. 19.3) software, or both (Sect. 19.4). We also discuss other related work
(Sect. 19.5), such as combining systematic testing with static program analysis, run-
time verification, and other testing techniques. However, this chapter is only meant
to provide an introduction to this research area, it is not an exhaustive survey.
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19.2 Systematic Testing of Concurrent Software

In this section, we present techniques inspired by model checking for systemati-
cally testing concurrent software. We discuss nondeterminism due to concurrency
before nondeterminism due to data inputs (in the next section) for historic reasons.
Indeed, model checking was first conceived for reasoning about concurrent reactive
systems [38, 124], and software model checking via systematic testing was also first
proposed for concurrent programs [60].

19.2.1 Classical Model Checking

Traditional model checking checks properties of a system modeled in some mod-
eling language, typically some kind of notation for communicating finite-state ma-
chines. Given such a system’s model, the formal semantics of the modeling language
defines the state space of the model typically as some kind of product of the com-
municating finite-state machines modeling the system’s components. A state space
is usually defined as a directed graph whose nodes are states of the entire system and
edges represent state changes. Branching in the graph represents either branching in
individual state machine components or nondeterminism due to concurrency, i.e.,
different orderings of actions performed by different components. The state space
of a system’s model thus represents the joint dynamic behavior of all components
interacting with each other in all possible ways. By systematically exploring its state
space, model checking can reveal unexpected possible interactions between compo-
nents of the system’s model, and hence reveal potential flaws in the actual system.

Many properties of a system’s model can be checked by exploring its state
space: one can detect deadlocks, dead code, violations of user-specified asser-
tions, etc. Moreover, the range of properties that state-space exploration tech-
niques can verify has been substantially broadened during the last three decades
thanks to the development of model-checking methods for various temporal logics
(e.g., [39, 99, 124, 145]). Historically, the term “model checking” was introduced to
mean “check whether a system is a model of a temporal logic formula,” in the clas-
sic logical sense. This definition does not imply that a “model,” i.e., an abstraction,
of a system is checked. In this chapter, we will use the term “model checking” in a
broad sense, to denote any systematic state-space exploration technique that can be
used for verification purposes when it is exhaustive.

19.2.2 Software Model Checking Using a Dynamic Semantics

Just as a traditional model checker explores the state space of a system modeled
as the product of concurrent finite-state components, one can systematically explore
the “product” of concurrently executing operating-system processes by using a run-



616 P. Godefroid and K. Sen

time scheduler for driving the entire software application through the states and
transitions of its state space [60].

The product, or state space, of concurrently executing processes can be defined
dynamically as follows. Consider a concurrent system composed of a finite set of
processes and a finite set of communication objects. Each process executes a se-
quence of operations described in a sequential program written in any full-fledged
programming language (such as C, C++, etc.). Such sequential programs are deter-
ministic: every execution of the program on the same input data performs the same
sequence of operations. We assume that processes communicate with each other by
performing atomic operations on communication objects. Examples of communi-
cation objects are shared variables, semaphores, and FIFO buffers. Operations on
communication objects are called visible operations, while other operations are by
default called invisible. The execution of an operation is said to be blocking if it can-
not be completed; for instance, waiting for the reception of a message blocks until
a message is received. We assume that only executions of visible operations may be
blocking.

At any time, the concurrent system is said to be in a state. The system is said
to be in a global state when the next operation to be executed by every process in
the system is a visible operation. Every process in the system is always expected
to eventually attempt to execute a visible operation.1 This assumption implies that
initially, after the creation of all the processes of the system, the system can reach a
first and unique global state s0, called the initial global state of the system.

A process transition, or transition for short, is defined as one visible operation
followed by a finite sequence of invisible operations performed by a single process
and ending just before a visible operation. Let T denote the set of all transitions of
the system.

A transition is said to be disabled in a global state s when the execution of its
visible operation is blocking in s. Otherwise, the transition is said to be enabled in s.
A transition t enabled in a global state s can be executed from s. Since the number
of invisible operations in a transition is finite, the execution of an enabled transition
always terminates. When the execution of t from s is completed, the system reaches

a global state s′, called the successor of s by t and denoted by s
t→ s′.2

We can now define the state space of a concurrent system satisfying our as-
sumptions as the transition system AG = (S,�, s0) representing its set of reachable
global states and the (process) transitions that are possible between these:

• S is the set of global states of the system,
• �⊆ S × S is the transition relation defined as follows:

(
s, s′

) ∈� iff ∃t ∈ T : s t→ s′,
• s0 is the initial global state of the system.

1If a process does not attempt to execute a visible operation within a given amount of time, an error
is reported at run-time.
2Operations on objects (and hence transitions) are deterministic: the execution of a transition t in
a state s leads to a unique successor state.



19 Combining Model Checking and Testing 617

We emphasize that an element of �, or state-space transition, corresponds to the
execution of a single process transition t ∈ T of the system. Remember that here
we use the term “transition” to refer to a process transition, not to a state-space
transition. Note how (process) transitions are defined as maximal sequences of in-
terprocess “local” operations from one visible operation to the next. Interleavings
of those local operations are not considered as part of the state space.

It can be proved [60] that, for any concurrent system satisfying the above as-
sumptions, exploring only all its global states is sufficient to detect all its deadlocks
and assertion violations, i.e., exploring all its non-global states is not necessary.
This result justifies the choice of the specific dynamic semantics described in this
section. Deadlocks are states where the execution of the next operation of every
process in the system is blocking. Deadlocks are a notorious problem in concur-
rent systems, and can be difficult to detect through conventional testing. Assertions
can be specified by the user in the code of any process with the special visible
operation “assert”. It takes as its argument a boolean expression that can test and
compare the value of variables and data structures local to the process. Many unde-
sirable system properties, such as unexpected message receptions, buffer overflows
and application-specific error conditions, can easily be expressed as assertion viola-
tions.

Note that we consider here closed concurrent systems, where the environment of
each process is formed by the other processes in the system. This implies that, in
the case of a single “open” reactive system, the environment in which this system
operates has to be represented somehow, possibly using other processes. In practice,
a complete representation of such an environment may not be available, or may be
very complex. It is then convenient to use a simplified representation of the environ-
ment, a test driver or mock-up, to simulate its behavior. For this purpose, it is useful
to introduce a special operation to express a valuable feature of modeling languages
not found in programming languages: nondeterminism. This operation, let us call it
nondet,3 takes as argument a positive integer n, and returns an integer in [0, n].
The operation is visible and nondeterministic: the execution of a transition starting
with nondet(n)may yield up to n+1 different successor states, corresponding to
different values returned by nondet. This operation can be used to represent input
data nondeterminism or the effect of input data on the control flow of a test driver.
How to deal with input data nondeterminism will be discussed further in Sect. 19.3.

Example 1 ([60]) Consider the concurrent C program shown in Fig. 2. This pro-
gram represents a concurrent system composed of two processes that communicate
using semaphores. The program describes the behavior of these processes as well as
the initialization of the system. This example is inspired by the well-known dining-
philosophers problem, with two philosophers. The two processes communicate by
executing the (visible) operations semwait and semsignal on two semaphores that
are identified by the integers 0 and 1 respectively. The operations semwait and

3This operation is called VS_toss in [60].



618 P. Godefroid and K. Sen

Fig. 2 Example of concurrent C program simulating dining philosophers

semsignal take three arguments: the first argument is an identifier for an array of
semaphores, the second is the index of a particular semaphore in that array, and the
third argument is a value by which the counter associated with the semaphore iden-
tified by the first two arguments must be decremented (in the case of semwait) or
incremented (in the case of semsignal). The value of both semaphores is initialized
to 1 with the operation semsetval. By implementing these operations using actual
operating-system semaphores (for instance, the exact UNIX system calls to do this
are similar), the program above can be compiled and executed. The state space AG
of this system is shown in Fig. 3, where the two processes are denoted by P1 and
P2, and state-space transitions are labeled with the visible operation of the corre-
sponding process transition. The operation exit is a visible operation whose execu-
tion is always blocking. Since all the processes are deterministic, nondeterminism
(i.e., branching) in AG is caused only by concurrency. This state space contains
two deadlocks (i.e., states with no outgoing transitions). The deadlock on the right
represents normal termination (where both process are blocked on exit), while the
deadlock on the left is due to a coordination problem.
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Fig. 3 Global state space for the two-dining-philosophers system

Fig. 4 Overall architecture
of a dynamic software model
checker for concurrent
systems

19.2.3 Systematic Testing with a Run-Time Scheduler

The state space of a concurrent system as defined in the previous section can be
systematically explored with a run-time scheduler. This scheduler controls and ob-
serves the execution of all the visible operations of the concurrent processes of
the system (see Fig. 4). Every process of the concurrent system to be analyzed is
mapped to an operating-system process. Their execution is controlled by the sched-
uler, which is another process external to the system. The scheduler observes the
visible operations executed by processes inside the system, and can suspend their
execution. By resuming the execution of (the next visible operation of) one selected
system process in a global state, the scheduler can explore one transition in the state
space AG of the concurrent system.

Combined with a systematic state-space search algorithm, the run-time scheduler
can drive an entire application through all (or many) possible concurrent executions
by systematically scheduling all possible interleavings of their communication oper-
ations. In order to explore an alternative execution, i.e., to “backtrack” in its search,
the run-time scheduler can, for instance, restart the execution of the entire software
application in its initial state, and then drive its execution along a different path in
its state space.

Whenever an error (such as a deadlock or an assertion violation) is detected
during the search, a whole-system execution defined by the sequence of transi-
tions that leads to the error state from the initial state can be exhibited to the user.
Dynamic model checkers typically also include an interactive graphical simula-
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tor/debugger for replaying executions and following their steps at the instruction
or procedure/function level. Values of variables of each process can be examined
interactively. The user can also interactively explore any path in the state space of
the system with the same set of debugging tools (e.g., see [61]).

As described in the previous section, we assume that there are exactly two
sources of nondeterminism in the concurrent systems considered here: (1) concur-
rency and (2) calls to the special visible operation nondet used to model nonde-
terminism and whose return values are controlled by the run-time scheduler. When
this assumption is satisfied, the run-time scheduler has complete control over non-
determinism. It can thus reproduce any execution leading to an error found during a
state-space search.

Remember that the ability to provide state-space coverage guarantees, even lim-
ited ones, is precisely what distinguishes verification, including model checking,
from traditional testing, as explained earlier in the introduction. This is why the
term “software model checking” was applied to this approach of systematic testing
with a run-time scheduler, since eventually it does provide full state-space coverage.

Of course, in practice, state spaces can be huge, even infinite. But even then, the
state space can always be explored exhaustively up to some depth, which can be
increased progressively during state-space exploration using an “iterative deepen-
ing” search strategy. Efficient search algorithms, based on partial-order reduction,
have been proposed for exhaustively exploring the state spaces of message-passing
concurrent systems up to a “reasonable” depth, say, all executions with up to 50
message exchanges. In practice, such depths are often sufficient to thoroughly exer-
cise implementations of communication protocols and other distributed algorithms.
Indeed, exchanging a message is an expensive operation, and most protocols are
therefore designed so that a few messages are sufficient to exercise most of their
functionality. By being able to systematically explore all possible interactions of the
implementation of all communicating protocol entities up to tens of message ex-
changes, this approach to software model checking has repeatedly been proven to
be effective in revealing subtle concurrency-related bugs [61].

19.2.4 Stateless vs. Stateful Search

This approach to software model checking for concurrent programs thus adapts
model checking into a form of systematic testing that simulates the effect of model
checking while being applicable to concurrent processes executing arbitrary code
written in full-fledged programming languages (like C, C++, Java, etc.). The only
main requirement is that the run-time scheduler must be able to trap operating-
system calls related to communication (such as sending or receiving messages) and
be able to suspend and resume their executions, hence effectively controlling the
scheduling of all processes whenever they attempt to communicate with each other.

This approach to software model checking was pioneered in the VeriSoft
tool [60]. Because states of implementations of large concurrent software systems
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can require megabytes or more each to be represented, VeriSoft does not store states
in memory and simply traverse state-space paths in a stateless manner, exactly as
in traditional testing. It is shown in [60] that in order to make a systematic stateless
search tractable, partial-order reduction is necessary to avoid re-exploring over and
over again parts of the state space reachable by different interleavings of the same
concurrent partial-order execution.

However, for small to medium-size applications, computing state representations
and storing visited states in memory can be tractable, possibly using approxima-
tions and especially if the entire state of the operating system can be determined,
as is the case when the operating system is a virtual machine. This extension was
first proposed in the Java PathFinder tool [148]. This approach limits the size and
types of (here Java) programs that can be analyzed, but allows the use of standard
model-checking techniques for dealing with state explosion, such as bitstate hash-
ing, stateful partial-order reduction, and symmetry reduction, and the use of abstrac-
tion techniques.

Another trade-off is to store only partial state representations, such as storing a
hash of a part of each visited state, possibly specified by the user, as explored in
the CMC tool [108]. Full state-space coverage with respect to a dynamic semantics
defined at the level of operating-system processes can then no longer be guaranteed,
even up to some depth, but previously visited partial states can now be detected, and
multiple explorations of their successor states can be avoided, which helps focus the
remainder of the search on other parts of the state space more likely to contain bugs.

19.2.5 Systematic Testing for Multi-threaded Programs

Software model checking via systematic testing is effective for message-passing
programs because systematically exploring their state spaces up to tens of message
exchanges typically exercises a lot of their functionality. In contrast, this approach
is more problematic for shared-memory programs, such as multi-threaded programs
where concurrent threads communicate by reading and writing shared variables.
Instead of a few well-identifiable message queues, shared-memory communication
may involve thousands of communicating objects (e.g., memory addresses shared by
different threads) that are hard to identify. Moreover, while systematically exploring
all possible executions up to, say, 50 message exchanges can typically cover a large
part of the functionality of a protocol implementation, systematically exploring all
possible executions up to 50 read/write operations in a multi-threaded program typ-
ically covers only a tiny fraction of the program functionality. How to effectively
perform software model checking via systematic testing for shared-memory sys-
tems is a harder problem and has been the topic of recent research.

Dynamic partial-order reduction (DPOR) [57] dynamically tracks interactions
between concurrently executing threads in order to identify when communication
takes place and through which shared variables (memory locations). Then, DPOR
computes backtracking points where alternative paths in the state space need to be
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explored because they might lead to other executions that are not “equivalent” to
the current one (i.e., are not linearizations of the same partial-order execution). In
contrast, traditional partial-order reduction [59, 118, 144] for shared-memory pro-
grams would require a static alias analysis to determine which threads may access
which shared variables, which is hard to compute accurately and cheaply for pro-
grams with pointers. DPOR has been extended and implemented in several recent
tools [82, 109, 135, 150].

Even with DPOR, state explosion is often still problematic. Another recent ap-
proach is to use iterative context bounding, a novel search-ordering heuristics which
explores executions with at most k context switches, where k is a parameter that is
iteratively increased [122]. The intuition behind this search heuristics is that many
concurrency-related bugs in multi-threaded programs seem due to just a few unex-
pected context switches. This search strategy was first implemented in the Chess
tool [109].

Even when prioritizing the search with aggressive context bounding, state ex-
plosion can still be brutal in large shared-memory multi-threaded programs. Other
search heuristics for concurrency have been proposed, which we could collectively
call concurrency-fuzzing techniques [19, 51, 132]. The idea is to use a random run-
time scheduler that occasionally preempts concurrent executions selectively in or-
der to increase the likelihood of triggering a concurrency-related bug in the pro-
gram being tested. For instance, the execution of a memory allocation, such as
ptr=malloc(...), in one thread could be delayed as much as possible to see
whether other threads may attempt to dereference that address ptr before it is allo-
cated. Unlike DPOR or context bounding, these heuristic techniques do not provide
any state-space coverage guarantees, but can still be effective in practice in finding
concurrency-related bugs.

Other recent work investigates the use of concurrency-related search heuristics
with probabilistic guarantees (e.g., see [19]). This line of work attempts to develop
randomized algorithms for concurrent-system verification which can provide prob-
abilistic coverage guarantees, under specific assumptions about the concurrent pro-
gram being tested and for specific classes of bugs.

Active testing is a relatively new scalable automated method for directed testing
of concurrent programs. Active testing combines the power of imprecise program
analysis with the precision of software testing to quickly discover concurrency bugs
and to reproduce discovered bugs on demand [22, 23, 25–27, 88–91, 115–117, 133].
The key idea behind active testing is to control the thread scheduler in order to force
the program into a state that exposes a concurrency bug, e.g. data race, deadlock,
atomicity violation, or violation of sequential memory consistency. The technique
starts with lightweight inexpensive dynamic analysis that identifies situations where
there is a suspicion that a concurrency bug may exist. This first part of the analy-
sis is imprecise because it trades off precision for efficiency and tries to increase
the coverage of analysis by trying to predict potential bugs in other executions by
analyzing a single execution. In the second step, a directed tester executes the pro-
gram under a controlled thread schedule in an attempt to bring the program into the
buggy state. If it succeeds, it has identified a real concurrency bug; that is, the error



19 Combining Model Checking and Testing 623

report is guaranteed not to be a false alarm, which is a serious problem with existing
dynamic analyses. The actual method of controlling the thread schedule works as
follows: once a thread reaches a state that resembles the desired state, it is paused
as long as possible, giving a chance for other threads to catch up and complete the
candidate buggy scenario.

19.2.6 Tools and Applications

We list here several tools and applications of software model checking via system-
atic testing for concurrent systems.

As mentioned before, the idea of dynamic software model checking via system-
atic testing was first proposed and implemented in the VeriSoft tool [60], developed
at Bell Labs and publicly available since 1999. It has been used to find several
complex errors in industrial communication software, ranging from small critical
components of phone-switching software [64] to large call-processing applications
running on wireless base-stations [34].

Java PathFinder [148] is another early and influential tool which analyzes con-
current Java programs using a modified Java virtual machine. It also implements a
blend of several static and dynamic program analysis techniques. It has been used to
find subtle errors in several complex Java components developed at NASA [17, 119].
It is currently available as an extensible open-source tool. It has recently been ex-
tended to also include test-generation techniques based on symbolic execution [2],
which will be discussed in the next section.

CMC [108] analyzes concurrent C programs. It has been used to find errors in
implementations of network protocols [107] and file systems [154].

jCUTE [135] is a tool for analyzing concurrent Java programs. It uses a variant of
DPOR for data race detection. It also implements test-generation techniques based
on concolic testing discussed in the next section.

Chess [109] analyzes multi-threaded Windows programs. It has been used to
find many errors in a broad range of applications inside Microsoft [110]. It is also
publicly available.

MaceMC [95] analyzes distributed systems implemented in Mace, a domain-
specific language built on top of C++. This tool also specializes in finding liveness-
related bugs.

MoDist [153] analyzes concurrent and distributed programs; it found many bugs
in several distributed system implementations. Cuzz [19] analyzes multi-threaded
Windows programs using concurrency-fuzzing techniques (see previous section).
ISP [150] analyzes concurrent MPI programs using stateful variants of DPOR and
other techniques.

Calfuzzer [89] is an extensible and publicly available active-testing tool for Java.
Thrille for C/PThreads [88] and UPC-Thrille for UPC [116, 117] are active testing
tools developed for C programs. These tools have been applied to find many previ-
ously known and unknown concurrency bugs in a number of programs, including
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several real-world applications with millions of lines of code. UPC-Thrille is an
active-testing tool for distributed-memory parallel programs. UPC-Thrille has been
shown to scale to thousands of nodes with a maximum overhead of 50%.

19.3 Systematic Testing of Sequential Software

In this section, we present techniques inspired by model checking for systematically
testing sequential software. We assume that nondeterminism in such programs is
exclusively due to data input.

Enumerating all possible data inputs values with a nondet operation as de-
scribed in Sect. 19.2.2 is tractable only when sets of possible input values are small,
like selecting one choice in a menu with (few) options. For dealing with large sets
of possible input data values, the main technical tool used is symbolic execution,
which computes equivalence classes of concrete input values that lead to the ex-
ecution of the same program path. We start with a brief overview of “classical”
symbolic execution in the next section, and then describe recent extensions for sys-
tematic software testing.

19.3.1 Classical Symbolic Execution

Symbolic execution is a program analysis technique that was introduced in the
1970s (e.g., see [16, 41, 86, 96, 125]). Symbolic execution means executing a pro-
gram with symbolic rather than concrete values. Assignment statements are rep-
resented as functions of their (symbolic) arguments, while conditional statements
are expressed as constraints on symbolic values. Symbolic execution can be used
for many purposes, such as bug detection, program verification, debugging, mainte-
nance, and fault localization [42].

One of the earliest proposals for using static analysis as a kind of systematic sym-
bolic program-testing method was made by King more than 35 years ago [96]. The
idea is to symbolically explore the tree of all behaviors the program exhibits when
all possible value assignments to input parameters are considered. For each control
path ρ, that is, a sequence of control locations of the program, a path constraint
φρ is constructed that characterizes the input assignments for which the program
executes along ρ. All the paths can be enumerated by a search algorithm that ex-
plores all possible branches at conditional statements. The paths ρ for which φρ is
satisfiable are feasible and are the only ones that can be executed by the actual pro-
gram. The solutions to φρ characterize the inputs that drive the program through ρ.
This characterization is exact provided symbolic execution has perfect precision.
Assuming that the theorem prover used to check the satisfiability of all formulas φρ
is sound and complete, this use of static analysis amounts to a kind of symbolic test-
ing. How to perform symbolic execution and generate path constraints is illustrated
with an example later in Sect. 19.3.4.
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A prototype of this system allowed the programmer to be presented with feasi-
ble paths and to experiment, possibly interactively [78], with assertions in order to
force new and perhaps unexpected paths. King noticed that assumptions, now called
preconditions, also formulated in the logic could be joined to the analysis, forming,
at least in principle, an automated theorem prover for Floyd–Hoare’s verification
method [58, 83], including inductive invariants for programs that contain loops.
Since then, this line of work has been developed further in various ways, leading to
various approaches to program verification, such as verification-condition genera-
tion (e.g., [5, 48]), symbolic model checking [18] and bounded model checking [37].

Symbolic execution is also a key ingredient for precise test input generation
and systematic testing of data-driven programs. While program verification aims
at proving the absence of program errors, test generation aims at generating con-
crete test inputs that can drive the program to execute specific program statements
or paths. Work on automatic code-driven test generation using symbolic execution
can roughly be partitioned into two groups: static versus dynamic test generation.

19.3.2 Static Test Generation

Static test generation (e.g., [96]) consists of analyzing a program P statically, by
using symbolic execution techniques to attempt to compute inputs to drive P along
specific execution paths or branches, without ever executing the program.

Unfortunately, this approach is ineffective whenever the program contains state-
ments involving constraints outside the scope of reasoning of the theorem prover,
i.e., statements “that cannot be reasoned about symbolically”. This limitation is il-
lustrated by the following example [62]:

int obscure(int x, int y) {
if (x == hash(y)) abort(); // error
return 0; // ok

}

Assume the constraint solver cannot “symbolically reason” about the function hash
(perhaps because it is too complex or simply because its code is not available).
This means that the constraint solver cannot generate two values for inputs x and
y that are guaranteed to satisfy (or violate) the constraint x == hash(y). In this
case, static test generation cannot generate test inputs to drive the execution of the
program obscure through either branch of the conditional statement: static test
generation is helpless for a program like this. Note that, for test generation, it is not
sufficient to know that the constraint x == hash(y) is satisfiable for some values
of x and y, it is also necessary to generate specific values for x and y that satisfy or
violate this constraint.

The practical implication of this fundamental limitation is significant: static test
generation is doomed to perform poorly whenever precise symbolic execution is not
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possible. Unfortunately, this is frequent in practice due to complex program state-
ments (pointer manipulations, floating-point operations, etc.) and calls to operating-
system and library functions that are hard or impossible to reason about symboli-
cally with good enough precision.

19.3.3 Dynamic Test Generation

A second approach to test generation is dynamic test generation (e.g., [29, 68, 80,
97, 114]): it consists of executing the program P , typically starting with some ran-
dom inputs, while performing symbolic execution dynamically, collecting symbolic
constraints on inputs gathered from predicates in branch statements along the ex-
ecution, and then using a constraint solver to infer variants of the previous inputs
in order to steer the next execution of the program towards an alternative program
branch. The conventional stance on the role of symbolic execution is thus turned
upside-down: symbolic execution is now an adjunct to concrete execution.

A key observation [68] is that, with dynamic test generation, imprecision in sym-
bolic execution can be alleviated using concrete values and randomization: when-
ever symbolic execution does not know how to generate a constraint for a program
statement depending on some inputs, one can always simplify this constraint using
the concrete values of those inputs.

Consider again the program obscure given above. Even though it is impossible
to generate two values for inputs x and y such that the constraint x == hash(y)
is satisfied (or violated), it is easy to generate, for a fixed value of y, a value of x
that is equal to hash(y) since the latter can be observed and known at run-time.
By picking randomly and then fixing the value of y, we can first run the program,
observe the concrete value c of hash(y) for the fixed value of y in that run; then,
in the next run, we can set the value of the other input x either to c or to another
value, while leaving the value of y unchanged, in order to force the execution of
the then or else branches, respectively, of the conditional statement in the func-
tion obscure. (The algorithm presented in the next section does all this automati-
cally [68].)

In other words, static test generation is unable to generate test inputs to control
the execution of the program obscure, while dynamic test generation can easily
drive the executions of that same program through all its feasible program paths,
finding the abort() with no false alarms. In realistic programs, imprecision in
symbolic execution typically creeps in in many places, and dynamic test generation
allows test generation to recover from that imprecision. Dynamic test generation can
be viewed as extending static test generation with additional run-time information,
and is therefore more general, precise, and powerful.

How much more precise is dynamic test generation compared to static test gen-
eration? In [63], it is shown exactly when the “concretization trick” used in the
above obscure example helps, and when it does not help. It is also shown that the
main property of dynamic test generation that makes it more powerful than static
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test generation is only its ability to observe concrete values and to record them in
path constraints. In contrast, the process of simplifying complex symbolic expres-
sions using concrete run-time values can be accurately simulated statically using
uninterpreted functions. However, those concrete values are necessary to effectively
compute new input vectors, a fundamental requirement in test generation [63].

In principle, static test generation can be extended to concretize symbolic val-
ues whenever static symbolic execution becomes imprecise [94]. In practice, this
is problematic and expensive because this approach not only requires the detection
of all sources of imprecision, but also requires one call to the constraint solver for
each concretization to ensure that every synthesized concrete value satisfies prior
symbolic constraints along the current program path. In contrast, dynamic test gen-
eration avoids these two limitations by leveraging a specific concrete execution as
an automatic fallback for symbolic execution [68].

In summary, dynamic test generation is the most precise form of code-driven test
generation that is known today. It is more precise than static test generation and other
forms of test generation such as random, taint-based, and coverage-heuristic-based
test generation. It is also the most sophisticated, requiring the use of automated the-
orem proving for solving path constraints. This machinery is more complex and
heavyweight, but may exercise more paths, find more bugs and generate fewer re-
dundant tests covering the same path. Whether this better precision is worth the
trouble depends on the application domain.

19.3.4 Systematic Dynamic Test Generation

Dynamic test generation was discussed in the 1990s (e.g., [80, 97, 114]) in a
property-guided setting, where the goal is to execute a given specific target program
branch or statement. More recently, new variants of dynamic test generation [29, 68]
blend it with model-checking techniques with the goal of systematically executing
all feasible program paths of a program while detecting various types of errors using
run-time checking tools (like Purify, Valgrind, or AppVerifier, for instance). In other
words, each new input vector attempts to force the execution of the program through
some new path, but the whole search is not guided by one specific target program
branch or statement. By repeating this process, such a systematic search attempts to
force the program to sweep through all its feasible execution paths, in a style simi-
lar to systematic testing and dynamic software model checking [60] as presented in
Sect. 19.2. Along each execution, a run-time checker is used to detect various types
of errors (buffer overflows, uninitialized variables, memory leaks, etc.).

Systematic dynamic test generation as described above was first introduced
in [68], as a part of an algorithm for “Directed Automated Random Testing”, or
DART for short, and is also referred to as “concolic testing” [138], or “dynamic sym-
bolic execution” [143]. Independently, [29] proposed “Execution-Generated Tests”
as a test-generation technique very similar to DART. Also independently, [151] de-
scribed a prototype tool which shares some of the same features. Subsequently, this
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approach was adopted and implemented in many other tools (see Sect. 19.3.6 and
surveys [31, 32]).

Systematic dynamic test generation consists of running the program P under test
both concretely, executing the actual program, and symbolically, calculating con-
straints on values stored in program variables v and expressed in terms of input
parameters. Side-by-side concrete and symbolic executions are performed using a
concrete store M and a symbolic store S, which are mappings from memory ad-
dresses (where program variables are stored) to concrete and symbolic values re-
spectively [68]. A symbolic value is any expression e in some theory4 T where all
free variables are exclusively input parameters. For any program variable v, M(v)
denotes the concrete value of v in M , while S(v) denotes the symbolic value of v
in S. For notational convenience, we assume that S(v) is always defined and is sim-
ply M(v) by default if no symbolic expression in terms of inputs is associated with
v in S. When S(v) is different fromM(v), we say that that program variable v has a
symbolic value, meaning that the value of program variable v is a function of some
input(s) which is represented by the symbolic expression S(v) associated with v in
the symbolic store.

A program manipulates the memory (concrete and symbolic stores) through
statements, or commands, which are abstractions of the machine instructions ac-
tually executed. A command can be an assignment of the form v := e where v
is a program variable and e is an expression, a conditional statement of the form
if b then C′ else C′′ where b denotes a boolean expression, and C′ and C′′
denote the unique5 next command to be evaluated when b holds or does not hold,
respectively, or stop corresponding to a program error or normal termination.

Given an input vector assigning a concrete value to every input parameter Ii , the
program executes a unique finite6 sequence of commands. For a finite sequence ρ of
commands (i.e., a control path ρ), a path constraint φρ is a quantifier-free first-order
logic formula over theory T that is meant to characterize the input assignments for
which the program executes along ρ. The path constraint is sound and complete
when this characterization is exact.

A path constraint is generated during dynamic symbolic execution by collect-
ing input constraints at conditional statements. Initially, the path constraint φρ is
defined as true, and the initial symbolic store S0 maps every program variable v
whose initial value is a program input: for all these, we have S0(v) = xi where
xi is the symbolic variable corresponding to the input parameter Ii . During dy-
namic symbolic execution, whenever an assignment statement v := e is executed,
the symbolic store is updated so that S(v)= σ(e) where σ(e) either denotes an ex-
pression in T representing e as a function of its symbolic arguments, or is simply
the current concrete value M(v) of v if e does not have symbolic arguments or if

4A theory is a set of logic formulas.
5We assume in this section that program executions are sequential and deterministic.
6We assume program executions terminate. In practice, a timeout can prevent non-terminating
program executions and issue a run-time error.
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Fig. 5 A sample program (left) and the tree formed by all its path constraints (right)

e cannot be represented by an expression in T . Whenever a conditional statement
if b then C′ else C′′ is executed and the then (respectively else) branch
is taken, the current path constraint φρ is updated to become φρ ∧ c (respectively
φρ ∧ ¬c) where c = σ(b). Note that, by construction, all symbolic variables ever
appearing in φρ are variables xi corresponding to whole-program inputs Ii .

Given a path constraint φρ =∧
1≤i≤n ci , new alternate path constraints φ′ρ can

be defined by negating one of the constraints ci and putting it in a conjunction with
all the previous constraints: φ′ρ = ¬ci ∧

∧
1≤j<i cj . If path constraint generation

is sound and complete, any satisfying assignment to φ′ρ defines a new test input
vector which will drive the execution of the program along the same control-flow
path up to the conditional statement corresponding to ci where the new execution
will then take the other branch. By systematically repeating this process, such a
directed search can enumerate all possible path constraints and eventually execute
all feasible program paths.

The search is exhaustive provided that the generation of the path constraint (in-
cluding the underlying symbolic execution) and the constraint solver for the given
theory T are both sound and complete, that is, for all program paths ρ, the con-
straint solver returns a satisfying assignment for the path constraint φρ if and only if
the path is feasible (i.e., there exists some input assignment leading to its execution).
If those conditions hold, in addition to finding errors such as the reachability of bad
program statements (like abort() or assert(false)), a directed search can
also prove their absence, and therefore perform a form of program verification.

In practice, path constraint generation and constraint solving are usually not
sound and complete. Moreover, in the presence of a single loop whose number of
iterations depends on some unbounded input, the number of feasible program paths
becomes infinite. In practice, search termination can always be forced by bounding
input values, loop iterations, or recursion, but at the cost of potentially missing bugs.

Example 2 ([68]) Consider the function h shown in Fig. 5. The function h is de-
fective because it may lead to an abort statement for some value of its input vector,
which consists of the input parameters x and y. Running the program with random
values for x and y is unlikely to discover the bug.

Assume we start with some random initial concrete input values, say x is ini-
tially 269167349 and y is 889801541. Initially, every program input is associated
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with a symbolic variable, denoted respectively by x and y, and every program vari-
able storing an input value has its symbolic value (in the symbolic store) associated
with the symbolic variable for the corresponding input: thus, the symbolic value for
program variable x is the symbolic value x, and so on. Initially, the path constraint
is simply true.

Running the function h with these two concrete input values executes the then
branch of the first if-statement, but fails to execute the then branch of the second
if-statement; thus, no error is encountered. This execution defines a path ρ through
the program. Intertwined with the normal execution, dynamic symbolic execution
generates the path constraint φρ = (x �= y)∧ (2 · x �= x + 10). Note the expression
2 · x, representing f(x): it is defined through an interprocedural, dynamic tracing
of symbolic expressions.

The path constraint φρ represents an equivalence class of input vectors, namely
all the input vectors that drive the program through the path that was just executed.
To force the program through a different equivalence class, the directed search
generates the new path constraint, say, φ′ρ = (x �= y) ∧ (2 · x = x + 10) obtained
by negating the last constraint of the current path constraint (for instance, if the
search is performed in a depth-first order). A solution to this new path constraint
is (x = 10, y = 889801541). A second execution of the function h with these two
new input values then reveals the error by driving the program into the abort()
statement as expected.

The search space to be explored for this program is shown to the right of Fig. 5.
Each path in this tree corresponds to a path constraint. When symbolic execution
has perfect precision as in this simple example, path constraints are both sound and
complete, and dynamic and static test generation are equally powerful: they can both
generate tests to drive the program along all its execution paths.

Example 3 Consider again the function obscure:

int obscure(int x, int y) {
if (x == hash(y)) abort(); // error
return 0; // ok

}

Assume we start running this program with some initial random concrete values,
say x is initially 33 and y is 42. During dynamic symbolic execution, when the
conditional statement is encountered, assume we do not know how to represent the
expression hash(y). However, we can observe dynamically that the concrete value
of hash(42) is, say, 567. Then, the simplified path constraint φρ = (x �= 567) can
be generated by replacing the complex/unknown symbolic expression hash(y) by
its concrete value 567. This constraint is then negated and solved, leading to the new
input vector (x = 567, y = 42). Running the function obscure a second time with
this new input vector leads to the abort() statement. When symbolic execution
does not have perfect precision, dynamic test generation can be more precise than
static test generation as illustrated with this example since dynamic test generation is
still able to drive this program along all its feasible paths, while static test generation
cannot.
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Fig. 6 Another program
example with C-like syntax

Example 4 (adapted from [68]) Consider the C-like program shown in Fig. 6. For
this example, a static analysis will typically not be able to report with high cer-
tainty that the abort() is reachable. Sound static analysis tools will report “the
abort might be reachable”, and unsound ones will simply report “no bug found”, if
their alias analysis is not able to guarantee that a->c has been overwritten. In con-
trast, dynamic test generation easily finds a precise execution leading to the abort
by simply generating an input satisfying the constraint x = 0. Indeed, the com-
plex pointer arithmetic expression *((char *)a + sizeof(int)) = 1 is
not input-dependent, and its symbolic execution is therefore reduced to a purely
concrete execution where the left-hand side of the assignment is mapped to a single
concrete address—no symbolic pointer arithmetic is required, nor any pointer alias
analysis. This kind of code is often found in implementations of network protocols,
when a buffer of type char * representing an incoming message is cast into a
struct representing the different fields of the message type.

19.3.5 Strengths and Limitations

At a high level, systematic dynamic test generation suffers from two main limita-
tions:

1. the frequent imprecision of symbolic execution along individual paths, and
2. the large number of paths that usually need be explored, or path explosion.

In practice, however, approximate solutions to the two problems above are suffi-
cient. To be useful, symbolic execution does not need to be perfect, it must simply
be “good enough” to drive the program under test through program branches, state-
ments and paths that would be difficult to exercise with simpler techniques like
random testing. Even if a directed search cannot typically explore all the feasible
paths of large programs in a reasonable amount of time, it usually does achieve
better coverage than pure random testing and, hence, can find new program bugs.

Another key advantage of dynamic symbolic execution is that it can be im-
plemented incrementally: only some program statements can be instrumented and
interpreted symbolically, while others can simply be executed concretely natively,
including all calls to external libraries and operating-system functions. A tool devel-
oper can improve the precision of symbolic execution over time, by adding new in-
struction handlers in a modular manner. Similarly, simple techniques like bounding
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the number of constraints injected at each program location are effective practical
solutions to limit path explosion.

When building tools like these, there are many other challenges, which have re-
cently been discussed in the research literature: how to recover from imprecision
in symbolic execution [63, 68, 138], how to scale symbolic execution to billions
of instructions [71], how to efficiently check many properties together [30, 71, 92],
how to automatically synthesize symbolic instruction handlers [76], how to infer
data structure invariants [93], how to reason about pointers [30, 52, 138], how to
combine with random testing [101], how to find algorithmic performance prob-
lems [21], how to detect infinite loops in running programs [20], how to deal with
inputs of varying sizes [152], how to deal with floating-point instructions [67], how
to deal with path explosion using compositional test summaries and other caching
techniques [1, 14, 62, 75, 103], which heuristics to use to prioritize the search
in the program’s search space [24, 30, 72], how to deal specifically with input-
dependent loops [74, 129], how to leverage grammars (when available) for com-
plex input formats [66, 102], how to reuse previous analysis results across code
changes [70, 120, 121], how to leverage reachability facts inferred by static program
analysis [75], etc. Due to space constraints, we do not discuss these challenges here,
but instead refer the reader to the recent references above where these problems are
discussed in detail and more pointers to other related work are provided.

19.3.6 Tools and Applications

Despite the limitations and challenges mentioned in the previous section, systematic
dynamic test-generation works well in practice: it is often able to detect bugs missed
by other less precise test generation techniques. Moreover, because it is grounded
in concrete executions, this approach does not report false alarms, unlike traditional
static program analysis. These strengths explain the popularity of the approach and
its adoption in many recent tools.

Over the last several years, several tools implementing dynamic test generation
have been developed for various programming languages, properties, and applica-
tion domains. Examples of such tools are DART [68], EGT [29], PathCrawler [151],
CUTE [138], EXE [30], SAGE [72], CatchConv [105], PEX [143], KLEE [28],
CREST [24], BitBlaze [140], Splat [103], Apollo [3], YOGI [75], Kudzu [128],
S2E [36], CATG [130], and Jalangi [137], among others.

The above tools differ by how they perform dynamic symbolic execution (for
languages such as C, Java, x86, .NET, etc.), by the type of constraints they generate
(for theories such as linear arithmetic, bit-vectors, arrays, uninterpreted functions,
etc.), and by the type of constraint solvers they use (such as lp_solve, CVClite,
STP, Disolver, Yices, Z3, etc.). Indeed, like in traditional static program analysis
and abstract interpretation, these important parameters are determined in practice
depending on which type of program is to be tested, on how the program interfaces
with its environment, and on which properties are to be checked. Moreover, various
cost/precision tradeoffs are also possible, as usual in program analysis.
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The tools listed above also differ by the specific application domain they target,
for instance protocol security [68], Unix utility programs [28, 30], database applica-
tions [53], Web applications [3, 128, 137], and device drivers [75, 98]. The size of
the software applications being tested also varies widely, from unit testing of pro-
grams [24, 30, 36, 68, 137, 138, 143] to system testing of very large programs with
millions of lines of code [71].

At the time of writing, the largest-scale usage and deployment of systematic
dynamic test-generation is for whitebox fuzzing of file parsers [72], i.e., whole-
application testing for security vulnerabilities (buffer overflows, etc.). Whitebox
fuzzing scales to large file parsers embedded in applications with millions of lines
of code, such as Excel, and execution traces with billions of machine instructions.
Whitebox fuzzing was first implemented in the tool SAGE [72], which uses the
Z3 [106] Satisfiability-Modulo-Theories (SMT) solver as its constraint solver. Since
2008, SAGE has been running for over 500 machine years in Microsoft’s security
testing labs. This currently represents the largest computational usage for any SMT
solver, with billions of constraints processed to date [15]. In the process, SAGE
found new security vulnerabilities in hundreds of applications, including image pro-
cessors, media players, file decoders, and document parsers. Notably, SAGE found
roughly one third of all the bugs discovered by file fuzzing during the development
of Microsoft’s Windows 7, saving millions of dollars by avoiding expensive security
patches for a billion PCs [73].

19.4 Systematic Testing of Concurrent Software with Data
Inputs

Dynamic test generation for sequential software assumes that the program under
test has no nondeterminism due to concurrency. Real-world programs have data in-
puts and are almost invariably concurrent. jCUTE, a dynamic test generation tech-
nique [131, 134–136], shows how to systematically test programs that have non-
determinism due to both concurrency and data inputs. The technique combines
a variant of dynamic partial-order reduction (see Sect. 19.2.5), called the race-
detection and flipping algorithm, with concolic testing. The goal of the technique
is to generate thread schedules as well as data inputs that exercise all non-equivalent
execution paths of a shared-memory multi-threaded program. The technique has
been implemented for Java programs in the open-source tool jCUTE (available at
http://osl.cs.illinois.edu/software/jcute/).

jCUTE works as follows. Like DART, jCUTE executes a program both con-
cretely and symbolically. Along the concrete execution path, jCUTE collects the
constraints over the symbolic input values at each branch point and computes the
path constraint. Apart from collecting symbolic constraints, jCUTE also computes
race conditions (both data races and lock races) between various events in the exe-
cution of a program, where, informally, an event represents the execution of a state-
ment in the program by a thread. We say that two events are in a race if they are

http://osl.cs.illinois.edu/software/jcute/
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Fig. 7 A simple shared-memory multi-threaded program P

events of different threads, they access (i.e. read, write, lock, or unlock) the same
memory location without holding a common lock, and the order of occurrence of
the events can be permuted by changing the schedule of the threads. The race con-
ditions are computed by analyzing the concrete execution of the program with the
help of a standard dynamic vector clock algorithm.

jCUTE first generates a random input and a schedule, which specifies the order of
execution of threads. Then the algorithm does the following in a loop: it executes the
code with the generated input and schedule. Along the execution path the algorithm
computes the symbolic path constraint as well as the race conditions between vari-
ous events. It backtracks and generates a new schedule or a new input and executes
the program again. It continues until it has explored all possible distinct execution
paths using a depth-first search strategy. The choice of new inputs and schedules is
made in one of the following two ways:

1. The algorithm picks a constraint from the symbolic constraints that were col-
lected along the execution path and negates the constraint to define a new path
constraint. The algorithm then finds, if possible, some concrete values that satisfy
the new path constraint. These values are used as inputs for the next execution.

2. The algorithm picks two events which are in a race and generates a new sched-
ule where the execution of the thread involved in the first event is postponed or
delayed as much as possible right before the event occurs. This ensures that the
events involved in the race get flipped or re-ordered when the program is exe-
cuted with the new schedule. The new schedule is used for the next execution.

19.4.1 Example

We illustrate how jCUTE performs concolic testing along with race-detection and
flipping using the sample program P in Fig. 7. The program has two threads t1
and t2, a shared integer variable x, and an integer variable z which receives an input
from the external environment at the beginning of the program. Each statement in
the program is labeled. The program reaches the abort() statement in thread t2 if
the input to the program is 1 (i.e., z gets the value 1) and the program executes the
statements in the following order: (t2,1)(t1,1)(t2,2)(t2,3), where each event (t, l)
in the sequence denotes that the thread t executes the statement labeled l.
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jCUTE first generates a random input for z and executes P with a default
schedule. Without loss of generality, the default schedule always picks the thread
which is enabled and which has the lowest index. Thus the first execution of P is
(t1,1)(t2,1)(t2,2). Let z0 be the symbolic value of z at the beginning of the execu-
tion. jCUTE collects the constraints from the predicates of the branches executed in
this path. For this execution, jCUTE generates the path constraint 〈2 ∗ z0 + 1! = 2〉.
jCUTE also discovers that there is a race condition between the first and the second
event because both the events access the same variable x in different threads without
holding a common lock and one of the accesses is a write of x.

Following the depth-first search strategy, jCUTE picks the only constraint 2∗z0+
1! = 2, negates it, and tries to solve the negated constraint 2∗z0+1= 2. This has no
solution. Therefore, jCUTE backtracks and generates a schedule such that the next
execution becomes (t2,1)(t2,2)(t1,1). In this execution the thread involved in the
first event of the race in the previous execution is delayed as much as possible. The
execution thus re-orders the events involved in the race in the previous execution.

During the above execution, jCUTE generates the path constraint 〈2∗z0+1! = 2〉
and discovers that there is a race between the second and the third events. Since the
negated constraint 2∗ z0+1= 2 cannot be solved, jCUTE backtracks and generates
a schedule such that the next execution becomes (t2,1)(t1,1)(t2,2). This execution
re-orders the events involved in the race in the previous execution.

In the above execution, jCUTE generates the path constraint 〈2 ∗ z0 + 1! = 3〉.
jCUTE solves the negated constraint 2 ∗ z0 + 1 = 3 to obtain z0 = 1. In the next
execution, it follows the same schedule as the previous execution. However, jCUTE
starts the execution with the input variable z set to 1 which is the value of z
that jCUTE computed by solving the constraint. The resultant execution becomes
(t2,1)(t1,1)(t2,2)(t2,3) which hits the abort() statement of the program.

For each data input, the algorithm in jCUTE explores all thread schedules that are
not “equivalent” to each other (i.e., are not linearizations of the same partial-order
execution). Proof of this correctness result can be found in [131].

19.4.2 Comparison with Related Work

The race-detection and flipping algorithm developed in jCUTE is a variant of dy-
namic partial-order reduction. The key difference between the DPOR algorithm [57]
and our race-detection and flipping algorithm is that, for every choice point, the
DPOR algorithm uses a persistent set while we use a postponed set [136]. These two
sets can be different at a choice point. For example, for the three-threaded program
in Fig. 8, if the first execution path is (t1,1)(t2,2)(t3,3), then at the first choice point
denoting the initial state of the program, the persistent set is {t1, t3}; whereas, at the
same choice point, the postponed set is {t1}. (Apart from scheduling the thread t1,
the race-detection and flipping algorithm also schedules the thread t2 at the first
choice point.) Note that the DPOR algorithm picks the elements of a persistent set
by using a complex forward lookup algorithm. In contrast, jCUTE simply puts the
current scheduled thread to the postponed set at a choice point.
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t1:
1: x = 1;

t2:
2: y = 4;

t3:
3: x = 2;

Fig. 8 A three-threaded program

Note that none of the previous descriptions of DPOR techniques handled pro-
grams with data inputs. It is also worth noting that the race-detection and flipping
algorithm is dynamic in nature like DPOR and addresses the limitations of static
partial-order reduction [59, 118, 144].

In [134] concolic testing has been extended to test asynchronous message-
passing Java programs written using a Java Actor library. Shared memory systems
can be modeled as asynchronous message-passing systems by associating a thread
with every memory location. Reads and writes of a memory location can be mod-
eled as asynchronous messages to the thread associated with the memory location.
However, this particular model would treat both reads and writes similarly. Hence,
the algorithm in [134] would explore many redundant executions. For example, for
the two-threaded program t1 : x = 1;x = 2; t2 : y = 3;x = 4;, the algorithm in [134]
would explore six interleavings. Our algorithm assumes that two reads are not in a
race and thus would explore only three interleavings of the program.

In a similar independent work [139], Siegel et al. use a combination of symbolic
execution and static partial-order reduction to check whether a parallel numerical
program is equivalent to a simpler sequential version of the program. However, their
main emphasis is in symbolic execution of numerical programs with floating points,
rather than programs with pointers and data structures. Therefore, static partial-order
reduction proves effective in their approach.

Model checking tools [45, 141] based on static analysis have been developed that
can detect bugs in concurrent programs. These tools employ partial-order reduction
techniques to reduce search space. The partial-order reduction depends on detection
of thread-local memory locations and patterns of lock acquisition and release.

The Path Exploration Tool (PET) [79] allows the (static) symbolic calculation of
path conditions of sequential as well as concurrent systems. One can interactively
change the path (for concurrent systems this can include swapping the order of con-
current transitions) to test the effect on the execution. In particular, it is shown how
to limit the path condition based on a temporal property that the path needs to satisfy,
represented using an automaton. In order to extend the application of symbolic test-
ing and verification, calculating path conditions for concurrent systems with time
constraints was presented in [7] and symbolic calculation of path conditions for in-
finite (ultimately periodic) paths was proposed in [8]. These two extensions were
integrated into the PET system.

A recent related work [126] uses a set of program runs as opposed to the ac-
tual program along with concolic testing to increase coverage to concurrent pro-
gram testing. Test generation is done by solving a constraint system that encodes
the scheduling constraints and the data-flow constraints together. The technique is
incomplete because it analyzes a subset of program traces.

More recently Farzan et al. [55] propose an alternative technique for testing
concurrent programs. The technique uses interference scenarios to systematically
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explore the execution space of a concurrent program. Interference scenarios cap-
ture the flow of data among different threads and enable a unified representation of
path and interference constraints. The technique has been shown to scale better than
jCUTE.

19.5 Other Related Work

The techniques we presented for software model checking by systematic testing for
concurrency (Sect. 19.2) and for data inputs (Sect. 19.3) can be combined and used
together (Sect. 19.4). Indeed, nondeterminism due to concurrency (whom to sched-
ule) is orthogonal to nondeterminism due to input data (what values to provide). For
checking most properties, concurrent programs can be sequentialized using an inter-
leaving semantics (e.g., [60, 123]). Therefore, symbolic execution can be extended
to multi-threaded programs [2, 135], since threads share the same memory address
space, and take advantage of partial-order reduction (e.g., [57, 59]). The case of
multi-process programs is more complicated since a good solution requires track-
ing symbolic variables across process boundaries and through operating-systems
objects such as message queues.

Static Abstraction-Based Software Model Checking. As mentioned in the in-
troduction, essentially two approaches to software model checking have been pro-
posed and are still actively investigated. The first approach is the one presented
in the previous sections. The second approach consists of automatically extract-
ing a model out of a software application by statically analyzing its code and ab-
stracting away details, applying traditional model checking to analyze this abstract
model, and then mapping abstract counterexamples (if any) back to the code. The
investigation of this abstraction-based second approach can be traced back to early
attempts to analyze concurrent programs written in concurrent programming lan-
guages such as Ada (e.g., [44, 100, 104, 142]). Other relevant work includes static
analyses geared towards analyzing communication patterns in concurrent programs
(e.g., [43, 46, 147]). Starting in the late 1990s, several efforts have aimed at provid-
ing model-checking tools based on source-code abstraction for mainstream popular
programming languages such as C and Java. For instance, Feaver [85] can trans-
late C programs into Promela, the input language of the SPIN model checker, using
user-specified abstraction rules. Similarly, Bandera [45] can translate Java programs
into the (finite-state) input languages of existing model checkers like SMV and
SPIN, using user-guided abstraction, slicing, and abstract interpretation techniques.
The abstraction process can also be made fully automatic and adjustable depending
on the specific property to be checked. For instance, SLAM [4] can translate se-
quential C programs to “boolean programs”, which are essentially inter-procedural
control-flow graphs extended with boolean variables, using an automatic iterative
abstraction-refinement process based on the use of predicate abstraction and a spe-
cialized model-checking procedure. For the specific classes of programs that these
tools can handle, the use of abstraction techniques can produce a “conservative”
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model of a program that preserves basic information about the execution and com-
munication patterns taking place in the system executing the program. Analyzing
such a model using standard model-checking techniques can then prove the absence
of certain types of errors in the system, without ever executing the program itself.

This second approach of static software model checking via abstraction is com-
plementary to dynamic software model checking via systematic testing. Both ap-
proaches inherit the well-known advantages and limitations of, respectively, static
and dynamic program analysis (e.g., [54]). Static analysis is faster than testing, pro-
vides better code coverage, but is usually less precise, is language dependent, and
may produce spurious counterexamples (i.e, suffers from “false alarms/positives”).
In contrast, dynamic analysis is precise, more language-independent, detects real
bugs, but is slower, provides usually less coverage, and can miss bugs (i.e., suffers
from “false negatives”). Overall, static and dynamic program analysis have comple-
mentary strengths and weaknesses, and are worth combining.

Combining Static and Dynamic Software Model Checking. There are many
ways to combine static and dynamic program analysis, and, similarly, to combine
static and dynamic software model checking. Several algorithms and tools com-
bine static and dynamic program analyses for property checking and test generation,
e.g., [9–12, 47, 112, 149]. Most of these loose combinations perform a static analy-
sis before a dynamic analysis, while some [10–12] allow for some feedback to flow
between the two. A tight integration between static and dynamic software model
checking is proposed in a series of algorithms named Synergy [77], Dash [6] and
Smash [75], and implemented in the Yogi tool [113]. The latest of these algorithms
performs a compositional interprocedural may/must program analysis, where two
complementary sets of techniques are used and intertwined together: a may analysis
for finding proofs based on predicate abstraction and automatic abstraction refine-
ment as in SLAM [4], and a must analysis for finding bugs based on dynamic test
generation as in DART [68]. These two analyses are performed together, in coor-
dination, and communicate their respective intermediate results to each other in the
form of reusable may and must procedure summaries. This fined-grained coupling
between may and must summaries allows the flexible and demand-driven use of
either type of summaries for both proving and disproving program properties in a
sound manner, and was shown experimentally to outperform previous algorithms of
this kind for property-guided verification [75].

Run-Time Verification. In contrast, the approach taken in systematic dynamic
test generation (see Sect. 19.3.4) is not property-guided: the goal is instead to ex-
ercise as many program paths as possible while checking many properties simul-
taneously along each of those paths [71]. In a non-property-guided setting, the ef-
fectiveness of static analysis for safely cutting parts of the search space is typically
more limited. In this context, other complementary work includes tools like Purify,
Valgrind and AppVerifier, that automatically instrument code or executable files for
monitoring program executions and detecting at run-time standard programming
and memory-management errors such as array out-of-bounds and memory leaks.
Also, several tools for so-called run-time verification that monitor the behavior of
a reactive program at run-time and compare this behavior against an application-
specific high-level specification (typically a finite-state automaton or a temporal
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logic formula) have recently been developed (e.g., [50, 81]). These tools can also be
used in conjunction with dynamic software model checkers.

Model-Based Testing. Software model checking via systematic testing differs
from model-based testing. Given an abstract representation of the program, called
a model, model-based testing consists of generating tests to check the conformance
of the program with respect to the model (e.g., [13, 35, 49, 87, 127, 146, 155]). In
contrast, systematic testing does not use or require a model of the program under
test. Instead, its goal is to generate tests that exercise as many program statements
as possible, including assertions inserted in the code. Another fundamental differ-
ence is that models are usually written in abstract modeling languages which are, by
definition, more amenable to precise analysis, symbolic execution, and test genera-
tion. In contrast, code-driven test generation has to deal with arbitrary software code
and systems for which program analysis is bound to be imprecise, as we discussed
in Sects. 19.3.2 and 19.3.3. Sometimes, the model itself is specified as a product
of finite-state machines (e.g., [56]). In that case, systematic state-space exploration
techniques inspired by traditional finite-state model checking are used to automati-
cally generate a set of test sequences that cover the concurrent model according to
various coverage criteria.

Must Program Abstractions. Test generation is only one way of proving exis-
tential reachability properties of programs, where specific concrete input values are
generated to exercise specific program paths. More generally, such properties can
be proved using so-called must abstractions of programs [65], without necessarily
generating concrete tests. A must abstraction is defined as a program abstraction that
preserves existential reachability properties of the program. Sound path constraints
are particular cases of must abstractions [75]. Must abstractions can also be built
backwards from error states using static program analysis [33, 84]. This approach
can detect program locations and states provably leading to error states (no false
alarms), but may fail to prove reachability of those error states from whole-program
initial states, and hence may miss bugs or report unreachable error states.

Other Verification Approaches from Programs to Logic. As mentioned earlier
in Sect. 19.3.1, test generation using symbolic execution, path constraints and con-
straint solving is related to other approaches to program verification which reason
about programs using logic. Examples of such approaches are verification-condition
generation [5, 48], symbolic model checking [18] and SAT/SMT-based bounded
model checking [37, 40]. All these approaches have a lot in common, yet differ in
important details. In a nutshell, these approaches translate an entire program into
a single logic formula using static program analysis. This logic encoding usually
tracks both control and data dependencies on all program variables. Program ver-
ification is then usually reduced to a validity check using an automated theorem
prover. When applicable, these approaches can efficiently prove complex properties
of programs. In contrast, test generation using symbolic execution builds a logic
representation of a program incrementally, one path at a time. Path-by-path pro-
gram exploration obviously suffers from the path explosion problem discussed ear-
lier, but it scales to large complex programs which are currently beyond the scope
of applicability of other automatic program verification approaches like SAT/SMT-
based bounded model checking. Verification-condition generation has been shown
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to scale to some large programs but it is not automatic: it typically requires a large
quantity of nontrivial user annotations, such as loop invariants and function pre/post-
conditions, to work in practice and is more similar to interactive theorem proving.
We refer the reader to [69] for a more detailed comparison of all these approaches.

19.6 Conclusion

We discussed how model checking can be combined with testing to define a dy-
namic form of software model checking based on systematic testing, which scales
to industrial-size concurrent and data-driven software. This line of work was devel-
oped over the last two decades and is still an active area of research. This approach
has been implemented in tens of tools by now. The application of those tools has,
collectively, found thousands of new bugs, many of them critical from a reliability
or security point of view, in many different application domains.

Yet much is still to be accomplished. Software model checking has been suc-
cessfully applied to several niche applications, such as communication software,
device drivers and file parsers, but has remained elusive for general-purpose soft-
ware. Most tools mentioned in the previous sections are research prototypes, aimed
at exploring new ideas, but they are not used on a regular basis by ordinary software
developers and testers. Finding other “killer apps” for these techniques, beyond de-
vice drivers [4] and file parsers [72], is critical in order to sustain progress in this
research area.
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119. Penix, J., Visser, W., Park, S., Păsăreanu, C.S., Engstrom, E., Larson, A., Weininger, N.:
Verifying time partitioning in the DEOS scheduling kernel. Form. Methods Syst. Des. 26(2),
103–135 (2005)

120. Person, S., Dwyer, M.B., Elbaum, S.G., Păsăreanu, C.S.: Differential symbolic execution.
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Chapter 20
Combining Model Checking and Deduction

Natarajan Shankar

Abstract There are two basic approaches to automated verification. In model
checking, the system is viewed as a graph representing possible execution steps.
Properties are established by exploring or traversing the graph structure. In deduc-
tion, both the system and its putative properties are represented by formulas in a
logic, and the resulting proof obligations are discharged by decision procedures or
by automated or semi-automated proof construction. Model checking sacrifices ex-
pressivity for greater automation, and with deduction it is vice versa. Newer tech-
niques combine deductive and model-checking approaches to achieve greater scale,
expressivity, and automation. We examine the logical foundations of the two ap-
proaches and explore their similarities, differences, and complementarities. The pre-
sentation is directed at students and researchers who are interested in understanding
the research challenges at the intersection of deduction and model checking.

20.1 Introduction

Verification establishes properties that hold of all the possible executions of a pro-
gram. There are two basic approaches to verification. In model checking [24], the
system is described as a model M which is a graph where the vertices are the states
of the computation and the edges are possible execution steps. A property is a for-
mula P in a logic that characterizes a class of computations that can be generated
from the graph. For example, a mutual exclusion property might state that no two
processes are simultaneously in their critical section, meaning that any state vio-
lating this property must be unreachable through any valid computation. Another
property might assert that any process that is trying to enter its critical section even-
tually succeeds, meaning that there is no computation from a state where a process
is trying to enter its critical section where it never actually enters its critical section.
The satisfaction relation M |= P is used to check whether the system M satisfies
the property P , i.e., no computation that can be generated from M , violates P .
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In the deductive approach [18, 78], both the system M and the property P are
interpreted as formulas in a logic expressing constraints on the possible executions.
The goal is to prove an assertion of the form M ? P which captures the judgement
that all possible executions of M must satisfy the property P . A property might
assert that a binary search procedure for a key k in a sorted array a terminates by
returning an index i such that a[i] = k if the element k occurs in the array.

The key distinction between the two approaches is that deductive approaches
work on the syntactic structure of the program viewed as a formula to build a proof
that M ? P , whereas model checking works on the graph structure of the computa-
tion generated by the program to check thatM |= P . In terms of automation, model
checking verifies M |= P using algorithms that explore the graph structure of M ,
whereas deduction applies proof rules to the syntactic structure of the formulas M
and P . When model checking fails, it produces a concrete counterexample explain-
ing how the model M violates property P . Deductive methods can also produce
counterexamples, but typically human insight is required to discriminate between
an incorrect system M , an invalid property P , and a misdirected proof attempt. In
the latter case, human interaction is needed to redirect proof construction. When
deduction succeeds, it yields a proof explaining why property P holds for the sys-
tem M .

The trend in model checking is toward greater expressivity in systems and proper-
ties while preserving the level of automation, while the trend in deduction is toward
greater automation. In recent years, there has been a convergence of ideas and tech-
niques in these two approaches to verification. We present the logical foundations
of deduction and model checking, and examine their similarities, differences, and
complementarities.

Early approaches to verification were based on deductive techniques. Examples
of assertional program proofs were given by Goldstine and von Neumann [59, 60]
and by Turing [45, 56, 79], but these were not presented as formal proof sys-
tems. McCarthy’s method [53] for reasoning about recursive Lisp functions uses
equational logic and an inference technique called recursion–induction. Floyd’s
method [34] is applied to programs represented as flowcharts annotated with asser-
tions. A program flowchart (see Fig. 1) can be seen as a directed graph with state-
ments, statement blocks, or decision conditions on the vertices, and assertions on the
edges. The flowchart has a source (start) vertex with a single outgoing edge, the pre-
condition, and a sink (halt) vertex with a single incoming edge, the post-condition.
Verification conditions are generated to verify that whenever the assertion for an
incoming edge holds and a vertex is executed, the assertion for the corresponding
outgoing edge holds. Proving these verification conditions is an effective way of
establishing the partial correctness of the program: every execution of the program
starting in the start vertex, satisfying the precondition, and terminating in the halt
vertex, satisfies the post-condition.

Since the flowchart might have loops, it is possible to have valid infinite execu-
tions of the flowchart program that do not reach the halt vertex. Total correctness
requires a proof of termination showing that every execution starting at the start
vertex with a program state satisfying the precondition terminates in the halt vertex.
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max = 0;
i = 0;
{i ≤ N ∧ ∀(j < i) : a[j] ≤ max}
while (i < N){
if (a[i] > max){
max = a[i];
};

i++;
}
{∀(j < N) : a[j] ≤ max}

Fig. 1 Program and flowchart for finding the maximal element in a non-negative array

Termination is verified using a ranking or variant function on the state that asso-
ciates an ordinal with each state. The verification condition can be augmented to
ensure that the ranking function strictly decreases with the execution of each pro-
gram block. Since there are no infinite strictly decreasing sequences of ordinals, this
eliminates the possibility of a valid infinite execution on the flowchart.

Hoare [41] transformed Floyd’s method into a set of inference rules (see
Sect. 20.2.5) for Hoare triples of the form {P }S{Q} for a well-structured program.
The triple expresses the claim that any terminating execution of program S from a
state satisfying the assertion P yields a state satisfying the assertionQ. The Floyd–
Hoare approach to deductive verification can be illustrated with the simple example
shown in Fig. 1 of a program that finds the maximal element in an array of non-
negative integers.

The program in Fig. 1 consists of a precondition true, a loop invariant

i≤ N∧ ∀(j< i) : a[j] ≤ max

and a post-condition ∀(j< N) : a[j] ≤ max. The loop invariant, which we abbrevi-
ate as P(i), asserts that the value of the index variable i is at most N, and all the
elements preceding the ith element in the array a are at most max.

Informally, termination for the program in Fig. 1 can be established by associat-
ing a ranking function N− i with the while loop. If S abbreviates the loop body
if(a[i]> max){max= a[i]; }i++}, then the triple {r= N− i}S{r> N− i} is
valid since i is incremented in S. Note that r is a logic variable in the triple
that is implicitly universally quantified. Since this loop satisfies the invariant
N− i≥ 0, the value of the ranking function is always a non-negative integer and
the ordering is well founded. Next, we want to establish the post-condition that
∀(j< N) : a[j] ≤ max. This can be derived from a combination of the loop exit
condition ¬(i< N) and the loop invariant P(i). The loop invariant holds trivially



654 N. Shankar

initially
try[1] = critical[1] = turn= false
transition

¬try[1] → try[1] := true;
turn := false;

¬try[2] ∨ turn→ critical[1] := true;
critical[1] → critical[1] := false;

try[1] := false;

‖

initially
try[2] = critical[2] = false
transition

¬try[2] → try[2] := true;
turn := true;

¬try[1] ∨ ¬turn→ critical[2] := true;
critical[2] → critical[2] := false;

try[2] := false;
Fig. 2 A two-process mutual exclusion protocol

following the initialization, as expressed by the triple

{true}max= 0;i= 0
{
P(i)

}
.

The preservation of the invariant by the loop body is expressed by the triple

{
P(i)∧ i< N

}
S
{
P(i)

}
.

The latter triple generates the proof obligations below, which are both easily proved.

1. i< N∧ a[i]> max∧ P(i)⇒ i+ 1≤ N∧ ∀(j< i+ 1) : a[j] ≤ a[i], and
2. i< N∧ a[i] ≤ max∧ P(i)⇒ P(i+ 1).

In the above example, the invariant is a straightforward generalization of the post-
condition. To see where the deductive approach is less handy, we examine a simple
variant of Peterson’s mutual exclusion algorithm [65] represented in the syntax of
Unity [22] in Fig. 2. The computation state consists of the control state encoded
by two Boolean variables per process: critical[i] and try[i] with i = 1,2,
and a shared Boolean variable turn. Each step of the computation applies a tran-
sition rule of one of the processes, where each rule is a guarded command. Thus,
each computation step is either a step of process 1 according to one of its transition
rules (leaving the values of try[2] and critical[2] unchanged), or a step of
process 2 according to one of its transition rules (leaving the values of try[1] and
critical[1] unchanged).

The mutual exclusion property ¬(critical[1] ∧ critical[2]) is an invari-
ant in that it holds in every reachable state, but it is not an inductive invariant since
it is not preserved by the second transition of either process. A stronger invariant
asserting

(
critical[1] ⇒ turn

)∧ (
critical[2] ⇒¬turn)

does turn out to be inductive. Finding such invariant strengthenings is not always
simple, and is an active area of research.

Algorithms like those for mutual exclusion need not terminate, but they are
required to make progress. For instance, in any computation, once try[i] is
true, then critical[i] = true must eventually hold. Such an eventuality
would not follow if, for example, the other process remains in its critical sec-
tion by never executing the third transition even when the guard condition holds,
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i.e., the transition is enabled. Fairness conditions can be used to ensure that en-
abled transitions are eventually executed, for example, by requiring the condition
critical[i] = false to hold infinitely often for each i along an execution. De-
ductive rules based on ranking functions can be given to ensure that try[i] = true
leads to critical[i] = true, but such proofs need to be composed from several
eventuality and invariant claims [22, 51].

Model checking [33, 69] was introduced in the early 1980s as an approach for an-
alyzing systems with a lot of control complexity. Here, the flowcharts and programs
are less structured and deductive approaches become unwieldy. Examples of such
system include hardware, network protocols, and concurrent systems. In the model-
checking approach, the transition system is viewed as a model for the property. Such
a model can be seen as a directed graph where the states, which assign values to vari-
ables, are vertices, and the edges are possible transitions between states given by the
program. The verification of properties can be performed by graph exploration to de-
termine whether some class of states or whether a certain kind of cycle is reachable.
For the case of the mutual exclusion algorithm in Fig. 2, it is possible to scan the
entire reachable portion of the graph in the five Boolean variables to check that there
are no violations of the mutual exclusion property. If this check fails, model check-
ing can produce a counterexample in the form of a computation path that leads to
a violation of mutual exclusion. Conversely, one could start with the set of “bad”
states, i.e., those where (critical[1] ∧ critical[2]) holds, and compute the
backward reachable states, i.e., those that have computations leading to bad state,
to see that no initial state has a computation leading to a bad state. The progress
property can also be verified by showing that there are no fair execution paths in the
graph where try[i] = true does not eventually lead to critical[i] = true.
Since this is a finite-state system, the only way this eventuality can fail is if the
graph contains a state where for some i, try[i] = true holds and from which it
is possible to reach a cycle in which critical[i] = false in each state. Instead
of a cycle, it is sufficient (and necessary) to find a strongly connected component,
that is, a subset of states in which there is a path between any two states. Such a
strongly connected component is fair if each fairness condition holds for some state
in it.

Model-checking problems are decidable for finite-state systems, namely those
with state spaces of bounded cardinality, and also for certain extensions to systems
with unbounded state spaces. Examples of such extensions are covered elsewhere in
this Handbook, and include

1. Timed automata [14] (Bouyer et al., Model Checking Real-Time Systems), cf. [2]
2. Certain limited classes of hybrid automata [31] (Doyen et al., Verification of

Hybrid Systems)
3. Parametric systems [1] (Abdulla et al., Model Checking Parameterized Systems)

Abstraction techniques can be used to approximate large or possibly unbounded
state spaces by models with small, finite state spaces, and these are covered else-
where in this Handbook [30] (Dams and Grumberg, Abstraction and Abstraction
Refinement), [44] (Jhala et al., Predicate Abstraction for Program Verification).
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Compositional techniques for decomposing the verification of composite systems
with multiple modules into properties associated with the individual modules are
covered elsewhere in this Handbook [36] (Giannakopoulou et al., Compositional
Reasoning).

In model checking, an explicit representation of the state space is one where a
state is represented by a specific assignment of values to variables. Model check-
ing with explicit representations is covered elsewhere in this Handbook [42] (Holz-
mann, Explicit-State Model Checking). In contrast, symbolic representations of the
state space use compact data structures to represent sets of states as formulas. Model
checking based on symbolic representations is covered elsewhere in this Hand-
book [21] (Chaki and Gurfinkel, BDD-Based Symbolic Model Checking). Tech-
niques based on model checking can also be used to synthesize systems for a given
property, and this topic is also covered in this Handbook [12] (Bloem, Graph Games
and Reactive Synthesis).

In this chapter, we focus on the relationship between deduction and model check-
ing. We first outline the shared background of logic for both approaches. We then
examine specific ways in which these approaches can complement each other.

20.2 Logic Background

Logic is a system of notations and rules for making statements, and for proving or
refuting these statements. The syntax of the logic provides rules for forming well-
formed statements. The semantics defines the intended meaning of the language
primitives by circumscribing their possible interpretations. The inference rules of
the logic specify how valid statements, i.e., those that hold in all possible interpreta-
tions, are derived. Different logics correspond to variations in the syntax, semantics,
and inference rules. We use propositional logic to illustrate some of the key concepts
that are relevant to formal verification.

20.2.1 Propositional Logic

Syntax and Semantics. In propositional logic, statements P and Q are built as for-
mulas from propositional atoms such as p and q drawn from a signature Σ . A Σ -
formula is constructed from the propositional atoms in Σ using propositional con-
nectives such as negation ¬P , conjunction P ∧Q, disjunction P ∨Q, implication
P ⇒Q, and equivalence P ⇐⇒ Q. The classical semantics is defined by a truth
assignment M that maps propositional atoms in Σ to truth values, either ⊥ for
logical falsity or � for logical truth. The interpretation M[[P ]] of a formula P is
constructed from the interpretation of its constituents. We let atoms(P ) be the set of
propositional atoms appearing in P . For a propositional atom p in Σ , the interpre-
tation M[[p]] is its truth assignment M(p). For compound formulas P -.Q, where
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Fig. 3 One-sided sequent
calculus for propositional
logic

Ax ? p,¬p,�
¬¬ ? P,�

? ¬¬P,�
∨ ? P,Q,�

? P ∨Q,�
¬∨ ?¬P,� ?¬Q,�

?¬(P ∨Q),�
Cut

? P,� ?¬P,�
?�

-. is either ∧, ∨, ⇒, or ⇐⇒ , the interpretation M[[P -. Q]] is computed from
that of M[[P ]] and M[[Q]] from the truth table interpretation of -.. A formula P is
satisfiable if there is some interpretationM such that M[[P ]] = �. We then say that
M |= P or M is a model of P . If M |= P for all interpretations M , then P is said
to be valid. The negation of an unsatisfiable formula is valid. A set of formulas Γ is
satisfiable if there is a model M such that M |= P for each P ∈ Γ , or M |= Γ , for
short.

The model-checking problem for propositional logic is that of checking M |= P
for a given M and P . This problem is complete for alternating logarithmic time
(ALOGTIME) [20]. The satisfiability problem is that of determining whether there
is a modelM for a given P . By the celebrated Cook–Levin theorem, this problem is
NP-complete [5]. Algorithms for propositional satisfiability are discussed elsewhere
in this Handbook [52] (Marques-Silva and Malik, Propositional SAT Solving).

Proof Systems. The inference rules for classical propositional logic can be presented
in a number of formats: Hilbert system, natural deduction, or sequent calculus.
A proof system for propositional logic based on one-sided sequents is shown in
Fig. 3. Each sequent has the form ? Γ , where Γ is a (possibly infinite) set of for-
mulas, and represents a judgement that under any interpretation, one of the sequent
formulas is logically true. The set obtained from adding P to Γ is P,Γ . The axiom
rule Ax asserts that any sequent containing a positive and negative atom is provable.
Each rule asserts that the conclusion sequent is valid if the premise sequents are.
The implication P ⇒Q can be written as ¬P ∨Q and the conjunction P ∧Q as
¬(¬P ∨ ¬Q). Note that the provability of P ⇒Q can be represented by the se-
quent ? ¬P,Q. A formula P is provable if ? P can be derived from the axioms
given by the Ax rule by applying the rules ¬¬, ∨, ¬∨, or Cut . For example, the
sequent ?¬¬p ∨¬p can be shown to be provable.

Propositional logic is also expressive enough to capture constraints over domains
of bounded size. Such domains can be encoded in binary form. Bit vectors of length
n can be written as n Boolean variables. An element of a subrange of integers of
size n can be encoded by a bit vector of length (log2 n). Arrays of at most m el-
ements drawn from a set of cardinality at most n can be represented by m(log2 n)
bits. Bounded length lists from a bounded set of elements can be represented by
arrays. Sets, functions, and relations over bounded domains can also be represented
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by Boolean formulas, as can images of functions and relations with respect to sets
and compositions of functions and relations. Computations of bounded length over
bounded state spaces can also be represented as Boolean constraints. Such an en-
coding can be used for bounded model checking, that is, to determine whether there
are computations of a bounded length that violate a specific property.

Propositional logic has a number of useful properties. It is possible to provide
proof systems for it that are sound (all provable statements are valid), and complete
(all valid statements are provable). Propositional logic is also compact: if a set of
formulas is unsatisfiable, there is some finite subset that is already unsatisfiable. For
a set of propositional Σ -formulas Γ , we say that a truth assignment M is a model
of Γ if it is a model of each formula in Γ . Then Γ is said to entail a propositional
formula P if every model of Γ is a model of P .

Soundness. A proof system such as the one in Fig. 3 is sound if it proves only valid
statements. This means that the sequent ? P is provable only when P is valid. More
generally, ?� is provable only when ?� is valid, i.e., for each interpretation M ,
there is a P ∈ � where M |= P . Soundness can be established by induction on
derivations: the Ax rule is valid, and the conclusion of each application of an infer-
ence rule is valid if its premises are.

Completeness. The sequent calculus in Fig. 3 is complete: every valid sequent is
provable. Conversely, if ? P is not provable, then we can construct a model M
of ¬P . A set of formulas Γ is consistent, i.e., Con(Γ ) iff there is no formula P in
Γ such that ? Γ ,¬P is provable, where Γ is the set {¬Q|Q ∈ Γ }. By soundness,
when ? Γ ,¬P is provable, then ¬P is entailed by Γ since in every interpretation,
either Γ is falsified or P is. Note that consistency is a property of the proof sys-
tem and not a semantic property. If Γ is consistent, then Γ ∪ {P } is consistent iff
? Γ ,¬P is not provable. If Γ is consistent, then at least one of Γ ∪{P } or Γ ∪{¬P }
must be consistent. A set of formulas Γ is complete if for each formula P , it con-
tains P or ¬P . It is not difficult to construct an enumeration 〈Qi |i ≥ 0〉 of all the
Σ -formulas. With this enumeration, if ? P is not provable, we construct a complete
set Γ , where Γ =⋃

i Γi , Γ0 = {¬P }, and Γi+1 = Γi ∪ {Qi} if Con(Γi ∪ {Qi}), and
Γi+1 = Γi ∪ {¬Qi}, otherwise. For any atom p, define MΓ (p)=�, if p ∈ Γ , and
MΓ (p) = ⊥, otherwise. Then, MΓ |=Q for each Q ∈ Γ . Hence, MΓ |= ¬P . For
example, ? p ∨ q is not provable, and we can construct a model MΓ starting with
Γ0 = {¬(p ∨ q)} and checking that Γ contains ¬p and ¬q .

Compactness. Propositional logic is compact in the sense that a (possibly infinite)
set Γ ofΣ -formulas is satisfiable iff it is finitely satisfiable, i.e., each finite subset�
of Γ is satisfiable. Since any subset of a satisfiable set of formulas is satisfiable, we
need only show that finite satisfiability implies satisfiability. Any finitely satisfiable
set Γ can be extended to a maximal finitely satisfiable set Γ̂ . This is because, by
Zorn’s lemma, any partially ordered set Θ in which every linearly ordered subset
has an upper bound, contains a maximal element. If we take Θ to be the set of
finitely satisfiable extensions of Γ ordered by inclusion, it satisfies the conditions of
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Zorn’s lemma: the union
⋃

F of a linearly ordered subset F of Θ is itself finitely
satisfiable since any finite subset of

⋃
F must already be a subset of an element

of F .
For any finitely satisfiable set �, either � ∪ {p} or � ∪ {¬p} must be finitely

satisfiable. If this were not the case, then for some finite subsets Θ1 and Θ2 of �,
both Θ1 ∪ {p} and Θ2 ∪ {¬p} are unsatisfiable. In this case, Θ1 ∪Θ2 would already
be an unsatisfiable finite subset of�, contradicting the finite satisfiability of�. Take
� to be a maximal finitely satisfiable extension Γ̂ of a finitely satisfiable set Γ of
Σ -formulas. Then, by maximality, for any Σ -atom p, either p ∈ Γ̂ or ¬p ∈ Γ̂ . As
in the completeness argument, we can defineMΓ̂ so thatMΓ̂ (p)=�, if p ∈ Γ̂ , and
MΓ̂ (p)=⊥, otherwise. ThenMΓ̂ must be a model for Γ since if there is a formula
P ∈ Γ such that MΓ̂ (P )=⊥, then the set

{
p ∈ atoms(P )

∣
∣MΓ̂ (p)=�

}∪ {¬p ∈ atoms(P )
∣
∣MΓ̂ (p)=⊥

}∪ {P }

is a finite unsatisfiable subset of Γ̂ .
By compactness, any unsatisfiable set Γ has a finite subset� that is unsatisfiable.

Also, if Γ |= P then there is a finite subset � of Γ such that � |= P .

Interpolation. Given a set Γ , a formula P is incompatible with Γ if Γ ∪ {P } is
unsatisfiable. Given sets Γ1 and Γ2 of Σ1- and Σ2-formulas, respectively, Γ1 ∪ Γ2

is unsatisfiable iff there is a Σ0-formula P that is entailed by Γ1 and incompatible
with Γ2, whereΣ0 =Σ1∩Σ2. Such a formula P is said to be an interpolant [29]. To
see why such an interpolant must exist, let Π be the set of Σ0-formulas P entailed
by Γ1. The argument for the existence of an interpolant has the following steps:

1. If all formulas in Π are compatible with Γ2, then by compactness there is a
Σ2-interpretation M2 such that M2 |=Π ∪ Γ2. Let M be the interpretation M2

restricted toΣ0, and define ΓM to be the set ofΣ0-formulasQ such thatM |=Q.
Note that M is the unique Σ0-model for ΓM .

2. If Γ1 ∪ΓM is satisfiable, there must be some Σ1-interpretationM1 extendingM
such thatM1 |= Γ1. We then have interpretationsM1 andM2 such thatM1 |= Γ1

and M2 |= Γ2, where M1 and M2 restricted to Σ0 are both equal to M . We can
let the interpretation N(p) be M1(p), if p ∈ Σ1, and M2(p), otherwise. Then
N |= Γ1 ∪Γ2 since N , the amalgamation ofM1 andM2, is identical toMi when
restricted to Σi , for i = 1,2. This contradicts the assumption that Γ1 ∪ Γ2 is
unsatisfiable.

3. If Γ1 ∪ ΓM is unsatisfiable, then by compactness, there must be a minimal finite
subset � of ΓM such that Γ1 ∪� is unsatisfiable. Since � is finite, we can con-
struct a formula

∧
� that is the conjunction of the formulas in �. Then ¬∧

�

is a Σ0-formula entailed by Γ1, and hence M |= ¬∧
�. But, by construction,

M is a model of all the formulas in ΓM , and hence all the formulas in �. Hence
Γ1 ∪ ΓM must be satisfiable.

4. Hence, some formula in Π must be incompatible with Γ2, and is therefore an
interpolant.
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Fig. 4 Interpolants from
cut-free proofs Ax1 [⊥] ? Γ,P,P ;�

Ax2 [�] ? Γ ;P,P ,�
Ax3 [P ] ? Γ,P ;P ,�
¬¬ [I ] ? P,�

[I ] ? ¬¬P,�
∨ [I ] ?A,B,�

[I ] ?A∨B,�
¬∨1

[I1] ? Γ,¬A;� [I2] ? Γ,¬B;�
[[I1 ∨ I2] ? Γ,¬(A∨B);�

¬∨2
[I1] ? Γ ;¬A,� [I2] ? Γ ;¬B,�
[I1 ∧ I2] ? Γ ;¬(A∨B),�

The above argument can be extended to first-order logic [35]. However, it merely
demonstrates the existence of interpolants without giving a procedure for construct-
ing one. As an example of such a procedure, we show how interpolants can also be
constructed from proofs. For example, consider the one-sided sequent calculus for
propositional logic containing just negation and disjunction shown in Fig. 3. Here,
if we prove a sequent of the form ? Γ,�, then this essentially says that the set of
formulas Γ ∪� is unsatisfiable, where Γ is the set obtained by complementing each
of the formulas in Γ . This means there must be some formula P such that ? Γ,P
and ? ¬P,�. For this, we represent the sequent as [P ] ? Γ ;� where P is the in-
terpolant between the two parts Γ and � of the sequent separated by a semi-colon.
The rules in Fig. 4 show how the interpolant can be constructed for cut-free proofs.

Propositional satisfiability can be made more expressive along several dimen-
sions. Adding quantification over Boolean variables allows first-order logic formu-
las over bounded domains to be expressed in the logic. The resulting logic fragment,
quantified Boolean formulas (QBF), has a PSPACE-complete satisfiability prob-
lem. With quantification, there is no distinction between satisfiability and model
checking—for a closed formula, i.e., one with no free variables, these are equiv-
alent. Quantified Boolean formulas can be expanded into Boolean formulas with
an exponential increase in size. With the added expressiveness of quantification, we
can capture image construction, bounded-length games, and inductive relations over
bounded domains.

Modal logics [11] offer another dimension of expressibility where the satisfi-
ability of a formula is evaluated relative to a frame or Kripke model which is a
graph 〈W,R,L〉 of worlds W that are related by the accessibility relation R and a
labeling L mapping worlds to truth assignments for the atomic propositions. The
worlds adjacent to or accessible from a given one are the possible alternate truth
assignments. The modality �A holds in a world if A holds in all worlds that are
accessible from it. A statement is valid in a frame if it holds in all of the possible
worlds. Many different modal logics can be defined by varying the properties of the
accessibility relation. These yield different informal interpretations for the modali-
ties, including necessity, knowledge, belief, and normativity, among others [11, 55].
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The model-checking problem for modal logics is typically P -complete, whereas the
corresponding satisfiability problem is typically PSPACE-complete.

In the context of formal verification, the accessibility relation corresponding to
the progress of time is important. Here the possible worlds correspond to points of
time in a computation. One world is accessible from another when it is in the future
of the second world. This yields temporal logics [32] where ♦P holds in a world
when there is some future world where P holds, and �P holds if there is no possi-
ble future world where ¬P holds. Temporal logic can be further decomposed into
linear-time and branching-time logics. In linear time, the possible worlds consist of
paths, or sequences of states. These paths are related by a suffix relation. A property
�P holds of a path when P holds of all suffix paths, and a property ♦P holds when
P holds of some suffix. In contrast, in branching-time temporal logics, to each path
representing the future, there are alternate possible paths. The formula �P holds of
a path if P holds along every suffix of the path, and ∀P holds of a path if P holds of
every alternate path. Temporal logics are covered elsewhere in this Handbook [67]
(Piterman and Pnueli, Temporal Logic and Fair Discrete Systems). The modal oper-
ators can also be indexed by the computations or computation steps. For example, in
dynamic logic [39, 68], the modal operators are indexed by programs so that [α]P
holds in a state when all computations of the program α from this state terminate in
states satisfying P . Hennessy–Milner logic [40] indexes the modal operators [α]P
and 〈α〉P , with the labels α corresponding to the actions in a labeled transition sys-
tem. We can add fixpoint operators to this calculus to arrive at the modal μ-calculus
which is covered elsewhere in this Handbook [15] (Bradfield and Walukiewicz, The
mu-calculus and Model Checking). With these operators, we have formulas of the
form μX.F [X] and νX.F [X], where F [X] is a modal formula in which the propo-
sitional variableX occurs with positive polarity in F [X], i.e., under an even number
of negations.

20.2.2 First-Order Logic

Propositional logic is too limited in its expressivity for many applications. It cannot
encode problems over unbounded and infinite domains. Even with problems that
can be encoded in propositional logic, one loses the structure and uniformity of the
original problem. First-order logic (FOL) [8] refines propositional atoms so that in-
stead of p, we also admit propositions p(x1, . . . , xn), where p is a predicate symbol
and x1, . . . , xn are variables. So, instead of an opaque proposition of the form: Birm-
ingham is the capital of England, we have a more refined predicate IsTheCapitalOf,
and we can write formulas containing IsTheCapitalOf(x, y). This expressivity is
naturally well-suited for mathematical formalization where the domains are typi-
cally unbounded and relations abound. FOL can also include function symbols with
their associated arity, so that a term a is either a variable x or a compound term
f (a1, . . . , an) where f is a function symbol of arity n, with n ≥ 0. FOL can also
contain a primitive equality symbol so that a = b is a formula whenever a and b are
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Fig. 5 Proof rules for
quantification: c must not
occur in the conclusion of ¬∃

¬∃ ? ¬P [c/x],�
? ¬(∃x.P ),�

∃ ? P [a/x],�
? ∃x.P,�

two terms. If we have a function Capital that maps each country to its capital city,
then the above proposition can be written as Birmingham= Capital(England).

First-order logic is then defined relative to a signatureΣ which is a set containing
the allowed function and predicate symbols with their associated arities. FOL for-
mulas are built from equalities a = b, atoms p(a1, . . . , an) for predicate symbol p
of arity n, the propositional combinations of negation, disjunction, conjunction, im-
plication, and equivalence, and existential quantification ∃x.P and universal quan-
tification ∀x.P . The formula P is the scope of the quantifier ∃x.P and ∀x.P . An
occurrence of a variable x in a formula P is free if it does not occur in the scope of
a quantifier binding the variable x. The operation of substituting a term a for a free
variable x in a formula P is written as P [a/x]. Care is required to ensure that such
a substitution does not capture free variables in a, so that if y is a free variable in a,
then x must not occur within the scope of a quantifier binding y in P . A sentence
is a closed formula, i.e., one without any free variables. Propositional logic is the
fragment of first-order logic where the signature Σ contains only 0-ary predicate
symbols.

The semantics for first-order logic over a signature Σ is given by a Σ -structure
M with a nonempty set dom(M) (the domain) and an interpretation of the function
and predicate symbols ofΣ as functions and predicates over dom(M). We also need
an assignment ρ that maps the variables to elements of dom(M) so that the meaning
of each term a can be defined as M[[a]]ρ. The satisfaction relation M,ρ |= P is
defined in the expected manner.

The sequent calculus in Fig. 3 can be extended with a couple of rules for reason-
ing about existential quantification shown in Fig. 5. The ¬∃ rule allows a sequent
formula¬P [c/x] to be generalized to ¬∃P , provided the constant c does not appear
in ¬(∃x.P ),�. Since such a constant c can be bound to any element in dom(M) in
the premise, the conclusion sequent is justified. The ∃ rule allows a formula ∃x.P
to be derived from P [a/x] since the term a serves as a witness for the existential
quantifier. The rules for universal quantification can be defined from these rules.

First-order logic is a natural formalism for representing mathematical theories.
For this purpose, one adds non-logical axioms and axiom schemes to the logic.
Mathematical theories that can be represented in this manner include various alge-
bras, Peano arithmetic, and set theory. First-order logic can be given a sound and
complete formalization so that all and only the valid statements have proofs. It also
has a number of interesting metatheoretic properties like compactness, amalgama-
tion, and interpolation. FOL formulas can be placed in prenex normal form where all
the quantifiers appear as a prefix at the top of the formula. For example, the sentence
(∀x.(p(x) ∧ (∃y.¬p(y)))) has the equivalent prenex form (∀x.∃y.p(x) ∧ ¬p(y)).
The existential quantifier can be replaced by a Skolem function to get the equisatisfi-
able formula (∀x.p(x)∧¬p(f (x))). The resulting formula is unsatisfiable since it
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has a Herbrand expansion (p(c)∧¬p(f (c)))∧ (p(f (c))∧¬p(f (f (c)))) which is
propositionally unsatisfiable. The Herbrand expansion is a conjunction of instances
of the Skolemized formula with terms from the term universe obtained by adding a
constant c, if needed, to the Skolem functions. In this case, the Herbrand universe is
the set {c, f (c), f (f (c)), . . .}. Many proof search methods are based on strategies
for constructing unsatisfiable Herbrand expansions.

Certain fragments of first-order logic are decidable [13]. One simple decid-
able fragment is the first-order theory of pure equality. This theory has an empty
signature so that all the atomic formulas are equations or disequations between
variables. This fragment is expressive enough for writing formulas that constrain
the minimal or maximal number of elements in a model. If a formula in prenex
form in this fragment has n distinct variables and is satisfiable, then it is satis-
fiable in a model with at most n elements. The fragment therefore has the finite
model property. The monadic predicate calculus with or without equality, where
there are no function symbols and only monadic (i.e., arity one) predicate symbols,
similarly has the finite model property and is therefore decidable. The Bernays–
Schönfinkel fragment consists of prenex formulas of the form ∃x.∀y.A, whereA is a
function-free, quantifier-free formula. The satisfiability of sentences in this fragment
is decidable. Such a formula, say ∃x1, . . . , xm.∀y1, . . . , yn.A can be replaced with∨
c1∈K . . .

∨
cm∈K

∧
d1∈K . . .

∧
dn∈K A[c1/x1, . . . , cm/xn, d1/y1, . . . , dn/yn], where

K = {a1, . . . , am}. The new formula can be checked for propositional satisfiability.
A first-order theory T is the set of sentences that are valid over a given set of

interpretations K so that T = {P |∀M ∈K .M |= P }. Such a theory could also be
given by a set of sentences closed under consequence that has at least one model.
A theory is stably infinite if whenever a formula has a model, it has one with a count-
ably infinite domain. The first-order theory of pure equality over infinite models sup-
ports quantifier elimination: from any formula P , one can construct an equisatisfi-
able formula P̂ that has no quantifiers. As noted earlier, it is easy to write a sentence
that asserts that there are at most k elements, and this sentence has no quantifier-free
counterpart. The theory of arithmetic over 0, 1, and + (but without multiplication),
known as Presburger arithmetic, also supports quantifier elimination. The validity of
a sentence in this theory can therefore be decided by constructing its quantifier-free
counterpart and evaluating its validity directly. Other first-order theories that sup-
port quantifier elimination include dense linear orders, algebraically closed fields,
and real closed fields.

Within theories, one can look at whether it is decidable to check for the valid-
ity of formulas of a specific form. For a formula P , let ∀P represent the universal
closure ∀x.P of P , where x is a sequence of the free variables in P . The word
problem for a theory is that of deciding the validity of a formula ∀P , where P
is atomic. The uniform word problem is that of deciding the validity of a formula
∀(P1 ∧ · · · ∧ Pn⇒ P), where P and the formulas Pi , for 1 ≤ i ≤ n, are atomic.
The clausal validity problem is that of deciding the validity of formulas of the form
P1 ∨ · · · ∨ Pn, where each Pi is either an atomic formula or the negation of an
atomic formula. A theory is convex when a clause ¬p1 ∨ · · · ∨¬pm ∨ q1 ∨ · · · ∨ qn
is valid iff the uniform word problem ¬p1 ∨ · · · ∨ ¬pm ∨ qi is valid, for some i,
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1 ≤ i ≤ n. For example, the theory of linear arithmetic over the reals is convex,
whereas the theory of integer linear arithmetic is non-convex since x > 1 ∧ x <
5⇒ (x = 2 ∨ x = 3 ∨ x = 4) without the antecedent implying any one of the con-
sequent disjuncts. Since any quantifier-free formula P can be expressed as a con-
junction of clauses K1 ∧ · · · ∧Kn, the validity of ∀P can be reduced to the validity
of ∀Ki for each i, 1 ≤ i ≤ n. However, a more efficient approach to the quantifier-
free validity problem is to use clausal validity within a Boolean satisfiability (SAT)
procedure to detect that a partial assignment computed by the SAT solver is unsatis-
fiable in a theory. Theory solvers (for clausal validity) can also be used to strengthen
Boolean constraint propagation to exploit theory propagation so that, for example,
when f (x) �= f (y) is in the partial assignment, the literal x = y is immediately im-
plied as being false. The combination of Boolean satisfiability checking with theory
solving, namely Satisfiability Modulo Theories (SMT), is covered elsewhere in this
Handbook [7] [Barrett and Tinelli, Satisfiability Modulo Theories).

A formula is satisfiable in a combination of theories T1 over a signature Σ1 and
T2 over a signatureΣ2 if it has a ($1∪$2)-modelM such thatM restricted toΣi is
a Ti -model, for i = 1,2. The Nelson–Oppen method [58] can be used to demonstrate
clausal validity in a combination of theories with disjoint signatures. A clause K is
first purified to an equisatisfiable form K1 ∨K2, where each Ki is a Σi -clause, for
i = 1,2. If the negationK1∧K2 is unsatisfiable, then there is an interpolant formula
Q in Σ1 ∩Σ2 such that K1 entailsQ andQ∧K2 is unsatisfiable. SinceQ is in the
empty theory and over the shared variables in K1 and K2, it is in the theory of pure
equality. If the theories T1 and T2 are stably infinite, then by quantifier elimination,
there must be a quantifier-free interpolant formulaQ in the free variables shared by
K1 andK2. Such aQ can be constructed by testing each possible arrangement which
is a partition of the free variables into equivalence classes. Each such arrangement
can be represented as a conjunction of equalities and disequalities. For example,
the conjunction x = y ∧ y = z∧ x �= u represents two equivalence classes: {x, y, z}
and {u}. Then K1 ∧ K2 is unsatisfiable if for each arrangement C, either K1 ∧ C
or K2 ∧ C is unsatisfiable. Each of the latter checks for unsatisfiability uses the
satisfiability procedure for the individual theories. The interpolantQ is

∨{C|K1∧C
is satisfiable} since every model of K1 satisfies some disjunct in Q.

Model checking first-order logic formulas relative to finite models is a PSPACE-
complete problem. Note that it subsumes QBF satisfiability. The complexity of
checking a model for a fixed formula with respect to the size of the model, i.e.,
the model complexity, corresponds to AC0, the class of bounded-depth circuits of
polynomial size. This problem is related to database query evaluation and constraint
solving, and plays a central role in descriptive complexity theory [43]. Modal logics
can be translated to first-order logic by introducing an explicit accessibility rela-
tion. However, first-order logic is not expressive enough to capture concepts such
as finiteness, the transitive closure of a relation, or fixpoints of monotone predicate
transformers. Adding least and greatest fixpoints (covered elsewhere in this Hand-
book [15] (Bradfield and Walukiewicz, The mu-calculus and Model Checking)) to
first-order logic enhances the expressiveness, but is still not enough to capture finite-
ness [64].
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20.2.3 Higher-Order Logic

Some of the limitations in the expressiveness of first-order logic can be overcome
in higher-order logic (HOL) [3, 48], which extends quantification to functions and
predicates. This kind of quantification is already present in first-order logic since
the predicate and function symbols in a formula are assumed to be implicitly uni-
versally quantified. To avoid inconsistencies arising from paradoxes due to the self-
application of predicates to predicates, higher-order logic is typed according to a
strict hierarchy of types. Otherwise, we could have a predicate R that is defined so
that R(X)=¬X(X), and we have an inconsistency when X is instantiated with R
itself. Modern higher-order logics are based on Church’s simple theory of types [23].
The types are built from the base types of individuals ι and propositions o using the
function type constructor τ1→τ2 which is the type of maps from elements of type
τ1 to type τ2. Higher-order logic formulas can be constructed from equality opera-
tors of type τ→τ→o (parsed as τ→(τ→o)) for each type τ , using application s t
and lambda abstraction λ(x : τ) : s. A quantified formula ∀(x : τ).P can be defined
as (λ(x : τ).P ) = (λ(x : τ).�), where � is itself defined using prefix notation as
= (=)(=), where the second and third occurrences of ‘=’ have type ι→ι→o, and
the first occurrence has type [ι→ι→o]→[ι→ι→o]→o. A type τ has order 1 if it is
either ι or o, and it has order i + 1 if it is of the form τ1→τ2, where τ1 has order
at most i and τ2 has order at most i + 1. An ith-order logic admits quantification
over variables with types of ith order. Thus second-order logic allows quantification
over variables of type ι→o and ι→ι→ι in addition to quantification over first-order
types.

Sets with elements of type τ in higher-order logic are just predicates on τ which
have the type τ→o. The subset ordering on sets can also be easily defined. With
this, the set of natural numbers can already be defined in second-order logic as
the least set containing 0 that is closed under the successor operation. Finiteness
is easily expressed since a set is finite iff every injective map on it is surjective,
or equivalently, if there is no bijection between the set and any proper subset. The
definition of natural numbers is an instance of a fixpoint definition. The least and
greatest fixpoint operators μ and ν can be defined in higher-order logic using the
Knaster–Tarski theorem. Compared to first-order logic, modal logics can be seman-
tically embedded in a higher-order logic by directly defining the modal operators.
Model-checking queries can be expressed with this embedding and model checkers
can be used as decision procedures for such queries [70].

Higher-order logic lacks many of the metatheoretic properties of first-order logic.
Since it can be used to define natural numbers, higher-order logic is not complete
with respect to the standard semantics of function types τ1→τ2 as the set of all maps
from the set interpreting τ1 to the one interpreting τ2. It is complete with respect to
the more liberal Henkin interpretations. Properties like compactness and interpola-
tion fail even in second-order logic. However, higher-order logic offers greater con-
venience for formalizing and manipulating concepts in mathematics and computing,
and for embedding various logics and theories. Furthermore, the useful properties of
first-order logic can always be invoked for the first-order fragment of higher-order
logic.
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bubble[N : nat] : THEORY
BEGIN

ARR: TYPE = [below(N) -> nat]

A, B : VAR ARR

m: VAR below(N)

max(A, m): bool = (FORALL (j : upto(m)): A(j) <= A(m))

bubble(A, m, (i : upto(m) | max(A, i))): RECURSIVE {B | max(B, m)} =
(IF i = m
THEN A
ELSIF A(i) > A(i+1)
THEN bubble(A WITH [(i) := A(i+1), (i+1) := A(i)], m, i+1)
ELSE bubble(A, m, i+1)

ENDIF)
MEASURE m - i

END bubble

Fig. 6 A PVS Theory

20.2.4 PVS: Computation and Deduction

Logics are typically designed as idealized objects of mathematical study rather than
for actual use in formal modeling and reasoning. Further features are needed to
support facile expression and efficient proof construction. To illustrate some of the
pragmatic aspects of using logic, we examine a few of the language and deductive
features of the Prototype Verification System (PVS), a specification and verification
framework based on higher-order logic [63]. The specification language extends
higher-order logic with polymorphic equality, conditionals, and updates, as well as
with predicate subtypes, dependent types, parametric theories, and theory interpre-
tations. These features, several of which were originally introduced in the EHDM

specification language [74], bring the language closer to a mathematical vernacular
than the textbook presentations of first-order and higher-order logic.

The language and deductive features in PVS can be illustrated by the example in
Fig. 6. The theory bubble takes a parameter N that is declared to be a natural num-
ber which is itself a subtype of the integers defined as {i : int | i >= 0}.
The subtype below(N) is a possibly empty parametric predicate subtype consist-
ing of the natural numbers in the subrange from 0 to N-1. The array type ARR is
declared to map indices in below(N) to the natural numbers. An index variable m
ranges over below(N). The predicate max is defined to check that m is the index
of the maximal element of A for indices in the subrange from 0 to m. The bubble
operation takes as input an array A, a bound m in below(N), and an index i in
the range between 0 and m such that A(i) is the maximal element among the ele-
ments from A(0) to A(i) in the array. The operation is declared to return an array
whose maximal element is in position m. The type of i depends on the parameter m,
as does the return type {B | max(B, m)}. bubble is defined recursively to
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successively increment i and to swap the elements A(i) and A(i+1) if A(i) >
A(i+1) at each position i. Note that the identifier bubble is used to name the
theory and the operation, and PVS is quite liberal about such overloading. Type-
checking the theory bubble generates nine proof obligations or type correctness
conditions (TCCs) covering subtyping and termination. Automated proof strategies
in PVS allow these proof obligations to be easily discharged. In the first couple of
attempts, there typically are unprovable TCCs corresponding to specification errors.

The features of PVS that are used in bubble illustrate the pragmatic aspects of
formal logic. Higher-order logic is flat and offers no features for structuring spec-
ifications into theories. In PVS, parametric theories are used to package axioms,
definitions, and theorems in a reusable form. Examples of such packages include
algebras such as groups, parametric datatypes such as lists over an element type,
and polymorphic algorithms. Theory interpretations allow types and symbols in
abstract theories to be instantiated by concrete interpretations that satisfy the ax-
ioms. Such interpretations can be used to demonstrate consistency or as a way of
reusing an abstract development, such as a theory of groups, on a concrete group.
Predicate subtypes are quite customary in mathematical vernacular. For example,
the even numbers are a subtype of the integers, which are in turn a subtype of the
rational numbers, and the latter are a subtype of the real numbers. Subtyping not
only includes first-order subtypes such as nonzero numbers (needed to ascribe a
type to the denominator of the division operation), subranges, prime numbers, and
Mersenne primes, but also extends to higher-order concepts like monotone maps, in-
jections, continuous functions, and group homomorphisms. Typechecking with sub-
types detects many significant errors and even gaps such as, for example, claiming
that n!

(n−k)!k! is an integer without proper justification. Significant fragments of the
PVS language are executable, and typechecking ensures that the execution is both
efficient and free of runtime errors other than those arising from resource bounds.

Proofs in PVS are constructed interactively by invoking proof commands on a
goal to generate subgoals. These commands can either be primitive steps, including
those that invoke external simplifiers such as SAT/SMT solvers, a Boolean simpli-
fier using Binary Decision Diagrams (BDDs), a μ-calculus model checker, and a
predicate abstractor, or they are compound proof strategies that can be defined by
the end-user. Other proof assistants that offer practical support for proof construc-
tion include ACL2 [46], Coq [9], HOL [38], Isabelle [62], and Nuprl [25]. Liquid
type systems [73] explore type inference with predicate subtypes using predicate
abstraction (see Sect. 20.3.3).

20.2.5 Hoare Logic

As mentioned in Sect. 20.1, a Hoare triple has the form {P }S{Q}, where P and Q
are assertions containing logical variables and program variables, and S is a pro-
gram statement. The logic variables are drawn from a set X and the program vari-
ables from a finite set Y , Σ is a first-order signature, C ranges overΣ[Y ]-formulas,
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Fig. 7 A Hoare Calculus Skip {P }skip{P }
Assignment {P [e/y]}y := e{P }
Conditional

{C ∧ P }S1{Q} {¬C ∧ P }S2{Q}
{P }C ? S1 : S2{Q}

Loop
{P ∧C}S{P }

{P }while C do S{P ∧¬C}
Composition

{P }S1{R} {R}S2{Q}
{P }S1;S2{Q}

Consequence
P ⇒ P ′ {P ′}S{Q′} Q′ ⇒Q

{P }S{Q}

e ranges over sequences of n Σ[Y ]-terms, and S ranges over program statements,
where a program statement is one of

1. A skip statement skip.
2. A simultaneous assignment y := e where y is a sequence of n distinct program

variables.
3. A conditional statement C ? S1 : S2.
4. A loop while C do S.
5. A sequential composition S1;S2.

If P , Q, R range over program assertions which are Σ[X ∪ Y ]-formulas, then
the inference rules of the Hoare calculus are as shown in Fig. 7.

The semantics can be given relative to a Σ -structure M which provides the
interpretation of the symbols in Σ . A state σ maps each program variable y
in Y to a value in dom(M). A Σ[Y ]-expression e has the value M[[e]]σ where
M[[y]]σ = σ(y) and M[[f (e1, . . . , en)]]σ = M(f )(M[[e1]]σ, . . . ,M[[en]]σ). The
meaning M[[S]] of a statement S is given by a set of sequences (of length at least
two) of states, and it is defined inductively as shown below. Here, ψ range over such
a sequence of states of the form ψ[0], . . . ,ψ[n− 1]. The singleton sequence con-
sisting of state σ is written as σ itself. The sequence ψ1 ◦ψ2 is the concatenation of
ψ1 and ψ2.

1. σ ◦ σ ∈M[[skip]], for any state σ .
2. σ ◦ σ [M[[e]]σ/y] ∈M[[y := e]], for any state σ .
3. ψ1 ◦ σ ◦ψ2 ∈M[[S1;S2]] for ψ1 ◦ σ ∈M[[S1]] and σ ◦ψ2 ∈M[[S2]].
4. ψ ∈M[[C ? S1 : S2]] if either M[[C]]ψ[0] = � and ψ ∈ M[[S1]], or
M[[C]]ψ[0] = ⊥ and ψ ∈M[[S2]].

5. σ ◦ σ ∈M[[while C do S]] if M[[C]]σ =⊥.
6. ψ1 ◦ σ ◦ ψ2 ∈M[[while C do S]] if M[[C]](ψ1[0]) = �, ψ1 ◦ σ ∈M[[S]], and
σ ◦ψ2 ∈M[[while C do S]].
Note that the semantic definition is deterministic so that for ψ1,ψ2 ∈M[[S]], if

ψ1[0] = ψ2[0], then ψ1 = ψ2. Also, if the execution of S diverges on a program
state σ , then there is no ψ ∈M[[S]] with ψ[0] = σ .

Soundness and Completeness. If σ maps variables in Y to dom(M) and ρ maps
variables in X to dom(M) then a Σ[X ∪ Y ]-formula P is interpreted as M[[P ]]ρσ ,
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Fig. 8 A Hoare triple for a
program that multiplies and
then divides

{k ≥ 0∧m> 0∧ x = k ∧ y =m}
j := 0; i := 0;
while i < k do {j := j +m; i := i + 1};
l := 0;
while j ≥m do {j := j −m; l := l + 1}
{x = l}

where M[[y]]ρσ = σ(y) for y ∈ Y , and M[[x]]ρσ = ρ(x) for x ∈ X. A Hoare triple
{P }S{Q} is valid in a Σ -structure M if for every sequence σ ◦ψ ◦ σ ′ ∈M[[S]] and
any assignment ρ of values in dom(M) to logical variables in X, either M[[Q]]ρ

σ ′ =
� or M[[P ]]ρσ = ⊥. The Hoare calculus is sound relative to any Σ -structure M :
every derivable triple is valid in M .

The next step is to show that any valid Hoare triple is derivable. For this, we need
the language Σ and its models to be expressive enough to capture the assertions
needed to verify triples. The proof of a valid triple {P }S{Q} can be decomposed
into the valid triple {wlp(S)(Q)}S{Q} and the valid assertion P ⇒ wlp(S)(Q),
where wlp(S)(Q) (the weakest liberal precondition) is the weakest assertion P
such that for any ψ ∈M[[S]] with |ψ | = n + 1 and ρ, either M[[Q]]ρψ[n] = � or

M[[P ]]ρψ[0] = ⊥.1 If for each S andQ, there is an R such that R = wlp(S)(Q), then
the triple {R}S{Q} can be verified by the Hoare calculus. This follows by induction
on the structure of S. For example, that if R = wlp(while C do S)(Q), then the triple
{R∧C}S{R} is provable, because R∧C⇒ wlp(S)(R), and R∧¬C⇒Q. Either or
both of these valid implications, R ∧C⇒ wlp(S)(R) and R ∧¬C⇒Q, might be
unprovable because the underlying assertion logic is incomplete. The Hoare logic is
therefore relatively complete since it reduces the provability of a valid triple to a set
of valid proof obligations in the assertion logic [4, 26].

If we pick the assertion logic to be Presburger arithmetic (see Sect. 20.2.2), then
one can write programs in this language for which the needed assertions cannot be
expressed. Rules like Composition and Consequence require new assertions to be
invented, and these might not be in the same language. For example, Fig. 8 shows a
Hoare triple of the form {P }S{Q}, where the program S consists of two consecutive
loops where the first loop multiplies a non-negative integer k and a positive integer
m by successive addition to compute j , and the second loop divides j by m through
successive subtraction to obtain i. The precondition uses two logic variables x and
y to bind the initial values of k and m, respectively. The post-condition asserts that
the final value of l is the same as the initial value of k which is bound to the logic
variable x. The correctness argument for the triple requires intermediate assertions
involving multiplication and therefore cannot be conducted in Presburger arithmetic.

If we use the first-order theory of arithmetic over the signature consisting of
the constants 0 and 1 and the operations + and ×, the first source of incomplete-
ness, namely the inexpressiveness of the assertion language, vanishes. This is not

1Note that the weakest precondition wp(S)(Q) is a stronger predicate P with the added condi-
tion that for any σ such that M[[P ]]σ = �, there is a ψ ∈M[[S]] such that ψ[0] = σ , i.e., the
computation of S executed from the state σ terminates.
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merely because we can express multiplication but because we can capture com-
putation. The inductive definition of the set of computation sequences needed for
defining wlp(S)(Q) above can be codified in a number of theories, e.g., first-order
arithmetic, through Gödel numbering. If we assume that there are n program vari-
ables y0, . . . , yn−1 from Y , then each state can be represented as a sequence of
numerals k0, . . . , kn−1 representing the state σ when σ(yi) = ki for 0 ≤ i < n,
where ki is the numeral in first-order arithmetic representing the number ki . The
sequence k0, . . . , kn−1 representing σ can itself be encoded as a number, as can
the sequence of states ψ . Let ψ represent the numeral corresponding to the arith-
metic encoding of the sequence ψ , so that the operation first(ψ) and last(ψ) rep-
resent the numerals for the encoding of the first and last states, respectively. For
any statement S, we can define an arithmetic predicate pS such that M |= pS(ψ)
iff ψ ∈M[[S]]. With such a predicate, we can formalize the weakest liberal precon-
dition as wlp(S)(Q) = ∀z.y = first(z) ∧ pS(z)⇒Q[last(z)/y], where y = σ cap-
tures the assertion

∧n−1
i=0 yi = ki when σ encodes the sequence k0, . . . , kn−1, and

Q[last(z)/y] is the result of substituting ki for yi inQ when last(z) encodes the se-
quence k0, . . . , kn−1. This definition of wlp captures the informal idea that assertion
P is the weakest liberal precondition of Q with respect to S if all terminating com-
putations of S from a state satisfying P terminate in a state satisfying Q. A theory
such as first-order arithmetic is said to be expressively complete since it can express
wlp(S)(Q) for any first-order arithmetic assertion Q.

The Hoare calculus above features a simple programming language defined over
a state consisting of a finite set of variables. Many extensions have been developed
to account for a range of language features. Separation logic is especially interesting
since it supports local assertions about heap-allocated structures like arrays, linked
lists, and trees [72].

20.3 Deduction and Model Checking

We have outlined the relationship between deduction and model checking going
from propositional to higher-order logic. We now examine the interaction between
the two approaches on specific verification problems and techniques.

20.3.1 Abstract Interpretation

Abstract interpretation [28, 61] is used to compute program properties such as the
possible signs or intervals of values assigned to a variable and shapes of data struc-
tures, by using an abstract lattice for approximating program behavior. A lattice is
a partially ordered set that is closed under the meet operation x < y and join opera-
tions x 7 y which are respectively the greatest lower bound and least upper bound
of x and y. A complete lattice is a partially ordered set that contains greatest lower
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bounds and least upper bounds of arbitrary subsets. From the Knaster–Tarski the-
orem, we know that any monotone operator on a complete lattice has a complete
lattice of fixpoints, including a least and greatest fixpoint.

Any program semantics can be seen as a concrete lattice, a Boolean lattice where
the partial order is the subset ordering. For example, the trace semantics for while-
programs presented in Sect. 20.2.5 can be viewed as a concrete lattice. The trace
semantics could itself be abstracted by the set of states that precede each statement
in the program. A further abstraction would be to simply consider the set of values
that a variable can take. For example, in the program in Fig. 8, the variable k takes
only a single value indicated by the logic variable x, the variable i ranges between
0 and x, and the variable j takes on values that are multiples of y between 0 and
x × y. The program actions can be mapped to a transfer function F on the lattice.
The range of values of a variable, say i, can be computed as the least set I such that
Fi(I )⊆ I , where Fi is the transfer function for the variable i. As an approximation,
we could also just compute a pre-fixpoint by finding some I , not necessarily the least
one, such that Fi(I )⊆ I . For example, the initial range of values for the variable k is
{x}, and this remains the range of values for k after each execution. For i, the initial
set of values is the empty set, and there are statements that add 0 to it, that add z+ 1
if z is in the range and z < x (given that the range of k is {x}) so that we can say that
the value of i is always in the range [0, x]. The latter range could be computed by
using the lattice of intervals as an abstract domain. We can also use the sign lattice
{@,0,⊕,�} discussed below to interpret the program in order to demonstrate that
the possible values of j are non-negative.

The computation of an approximation to a fixpoint on a concrete lattice can be
mapped to the computation of fixpoints on an abstract lattice through a Galois con-
nection. Let 〈C,≤,⋂〉 be a concrete lattice and 〈A,8,�〉 be an abstract lattice.
A Galois connection is a pair (α, γ ) of maps: α from C to A, and γ from A to C,
such that for any a ∈ A and c ∈ C, α(c) 8 a⇔ c ≤ γ (a). Intuitively, γ (a) is the
(largest) concretization of a, and α(c) is the (strongest) abstraction for c, on the
respective partial orders. Note that c ≤ γ (α(c)) and α(γ (a))8 a for any c ∈ C and
a ∈ A. The maps α and γ are order-preserving. If F is a monotone operator on C,
then μF is the least fixpoint of F in C and can be defined as

⋂{X|F(X) ≤ X}. It
is possible to define an abstract operator F̂ = α ◦F ◦ γ from a concrete operator F .
It is easy to see that μF ≤ γ (μF̂ ). Furthermore, if F̂ (a)8G(a) for all a ∈A, then
μF ≤ γ (μG). Also, if Y is a post-fixpoint of F̂ , then γ (Y ) is a post-fixpoint of F
and an inductively valid property of the concrete computation.

Deductive techniques for optimization can be used to compute the abstraction α
as a step in the construction of the abstract fixpoint [49, 77] or to directly precom-
pute the abstract transfer function [27, 71]. This kind of precomputation can be il-
lustrated using a sign abstraction for the integer domain given by an abstract domain
D = {0,⊕,@,�}, where γ (0) is the set {0}, γ (⊕) is the set of non-negative inte-
gers [0,∞), γ (@) is the set of non-positive integers (−∞,0], and γ (�) is the set
of integers (−∞,∞). The operations+ and− on integers can be lifted to the corre-
sponding operations +̂ and −̂ on D as shown in Fig. 9. The table of entries in Fig. 9
can be precomputed using theorem proving. Each entry is computed by showing
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Fig. 9 Abstract versions of
+ and −

+̂ 0 ⊕ @ �
0 0 ⊕ @ �
⊕ ⊕ ⊕ � �
@ @ � @ �
� � � � �

−̂ 0 ⊕ @ �
0 0 @ ⊕ �
⊕ ⊕ � ⊕ �
@ @ @ � �
� � � � �

that on the concrete lattice, we have a transformer on the sets cx and cy of the pos-
sible values of variables x and y, where we define cx + cy as {u+ v|u ∈ cx, v ∈ cy}.
Then, we can compute an abstract transfer +̂ by defining x̂+̂ŷ to be the least ele-
ment a in the sign lattice such that γ (̂x)+ γ (ŷ)⊆ γ (a). The latter condition with,
for example, @ for a, ⊕ for x̂, and @ for ŷ, corresponds to the proof obligation
∀x, y.x ≥ 0∧y ≤ 0⇒ x+y ≤ 0. This proof obligation is clearly not valid, whereas
when a is �, the corresponding proof obligation is valid. Similarly, if the concrete
operation is a condition, e.g., x > 3, then the transfer function can be computed as
x̂ < ⊕. The transfer function computation can be done in order of increasing pre-
cision to compute ⊕+̂⊕ before 0+̂⊕ so that the latter value already has a useful
upper bound. We can also make use of strictness to compute entire rows or columns
in one step so that x̂+̂� =�+̂x̂ =� for any x̂.

20.3.2 Symbolic Model Checking

We have already seen that modal and temporal formulas can be model checked with
respect to a Kripke model. Such Kripke models represent transition systems that
are described in symbolic form as a triple 〈W,I,N〉, where W is the type of states,
I is the initialization predicate on states, and N is a binary transition relation on
states. It is often infeasible to compute the concrete Kripke model from the symbolic
transition system. For this reason, model checking is carried out with a symbolic
representation of the model. The use of a symbolic representation somewhat blurs
the distinction between deduction and model checking. Reachability is a canonical
model-checking query and it has the μ-calculus form μX.I 7 N [X]. In order to
compute the symbolic representation of the set of reachable states, it is enough to
have methods for computing

1. The least upper bound X 7 Y of two formulas
2. The strongest post-condition given by the image N [X] of a formula X with re-

spect to the relation N , and
3. The equivalence operator X ≡ Y to check when the fixpoint has been reached.

When the symbolic representation is propositional logic, these operations can
be efficiently implemented with BDDs, which are covered elsewhere in this Hand-
book [19] (Bryant, Binary Decision Diagrams), [21] (Chaki and Gurfinkel, BDD-
Based Symbolic Model Checking). SAT solvers, covered elsewhere in this Hand-
book [52] (Marques-Silva and Malik, Propositional SAT Solving), can also be used
to compute these operations – for example, the image computation can be carried out
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initially
critical[1] = false;ticket[1] = 0
transition

ticket[1] = 0 −→ ticket[1] := ticket[2] + 1;
¬critical[1]

∧ (ticket[2] = 0∨ ticket[1] ≤ ticket[2]) −→ critical[1] := true;
critical[1] −→ critical[1] := false;

ticket[1] := 0;
‖

initially
critical[2] = false;ticket[2] = 0
transition

ticket[2] = 0 −→ ticket[2] := ticket[1] + 1;
¬critical[1]

∧ (ticket[1] = 0∨ ticket[2]< ticket[1]) −→ critical[1] := true;
critical[2] −→ critical[2] := false;

ticket[2] := 0;
Fig. 10 A two-process Bakery mutual exclusion protocol

using a variant of AllSAT which generates a representation of all possible feasible
solutions for a subset of the variables. When the initialization predicate and tran-
sition relation are expressible with Boolean combinations of difference constraints,
the image computation can be computed using quantifier elimination. Other sym-
bolic representations for model checking are covered in this Handbook [50] (Ma-
jumdar and Raskin, Symbolic Model Checking in Non-Boolean Domains).

20.3.3 Predicate Abstraction

In abstract interpretation, fixpoints are computed dynamically on an abstract lat-
tice by precomputed transfer functions on this lattice. Fixpoints such as reachability
on infinite-state systems as well as large finite-state systems can be computed by
approximating these systems with a smaller system on which we can apply explicit-
state or symbolic model checking. In predicate abstraction [75, 76], covered else-
where in this Handbook [44] (Jhala et al., Predicate Abstraction for Program Ver-
ification), we have a concrete transition system 〈WC,IC,NC〉 and this is approxi-
mated by an abstract transition system 〈WA,IA,NA〉, where bits in the abstract sys-
tem state WA represent sets of concrete states, or equivalently, predicates over the
concrete states. For a simple example, we use an instance of Lamport’s Bakery algo-
rithm shown in Fig. 10. This is actually an infinite-state system since the ticket value
is potentially unbounded if each process exiting the critical section races around to
grab a ticket while the other process is either in its critical section or waiting to enter
it.

Despite being an infinite-state system, the mutual exclusion property can be
verified by observing specific predicates that already occur in the transition
system, i.e., critical[1], critical[2], ticket[1] = 0, ticket[2] = 0,
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ticket[1] ≤ ticket[2]. If we label these five predicates by Boolean variables
c1,c2,z1,z2,p, we can build an abstract transition system in these Boolean vari-
ables that tracks the behavior of these predicates in the concrete transition sys-
tem. With this abstraction, the initialization IC(1) for process 1 becomes IA(1) =
c1 = false∧ z1 = true∧ p= true, and that for process 2 becomes IA(2) =
c2 = false∧ z2 = true. The transition relationNC can also be abstracted asNA
with respect to the predicates above. For example, the first transition of process 1 can
be tracked by the guarded command z1 −→ z1 := false;p := false which can
be expressed by the transition relation z1∧¬z′1∧¬p′ ∧ c′1 = c1∧ c′2 = c2∧ z′2 = z2,
where primed variables represent the value of the variable in the end state of the tran-
sition. Once the abstract finite-state transition system has been constructed, it can be
model checked. Such abstractions can also be defined to reduce a finite-state system
to a smaller one in order to make the search space more manageable.

More generally, any concrete formula P can be abstracted by a formula α(P ).
For an abstract formula P̂ , let γ (P̂ ) be the concrete formula that results from substi-
tuting the concrete predicate for the abstract one. For example, the abstract formula
z1 ∧ ¬z′1 ∧ ¬p′ ∧ c′1 = c1 ∧ c′2 = c2 ∧ z′2 = z2, which corresponds to the abstract

transition above and is abbreviated as P̂ , can be concretized by substituting the
predicates corresponding to the Boolean variables, to get

γ (P̂ )=

ticket[1] = 0
∧ ticket′[1] �= 0
∧ ticket[1]� ticket[2]
∧ critical′[1] = critical[1]
∧ critical′[2] = critical[2]
∧ (ticket′[2] = 0) ⇐⇒ (ticket[2] = 0)

We can then check that ? γ (P̂ )⇒ P , where P is the formula corresponding
to the concrete transition. We can use deduction to construct α(P ) from P such
that ? γ (α(P ))⇒ P . This can be done by using an SMT solver with an AllSMT
capability for constructing all solutions to the formula ∃x.P ∧∧n

i=0 pi = Pi , where
x is a sequence of concrete variables and pi is the Boolean variable abstracting
the concrete predicate Pi [47]. Then α(P ) can be defined as ¬AllSMT (∃x.¬P ∧∧n
i=0 pi = Pi). We can then argue that ? γ (α(P ))⇒ P , since no truth assignment

for α(P ) can be extended to a truth assignment for ¬P satisfying the abstraction
map

∧n
i=0 pi = Pi . Hence, it must be the case that γ (α(P )), which is equivalent to

α(P )∧∧n
i=0 pi = Pi , entails P .

A weaker abstraction can be constructed by using an abstract lattice consisting
of monomials, i.e., conjunctions of literals, instead of the Boolean lattice of formu-
las [6, 75]. As with abstract interpretation, we can also compute the abstract transfer
function for each individual Boolean variable. Data abstraction, where a datatype is
partitioned into a finite set of regions, as for example, the partitioning of the integers
into positive numbers, negative numbers, and zero, can also be viewed as a form of
predicate abstraction.

Predicate abstraction builds an abstract transition system that over-approximates
the concrete one. Each abstract state a represents a set of concrete states
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{c|c |= γ (a)}. The abstract transition system is defined by an ∃∃ abstraction such
that there is a transition NA(a, a′) between two abstract states a and a′ whenever
there exist concrete states c and c′ such that c |= γ (a), c′ |= γ (a′), and NC(c, c′)
holds. Thus, if the set of abstract reachable states μX.I 7N [X] contains a state a′
that is reachable from an abstract initial state a, then there is a path 〈a0, . . . , an〉
with a = a0 and a′ = an. Since we have an ∃∃ abstraction, for each adjacent pair
〈ai, ai+1〉 with 0≤ i < n, there is a pair of concrete states 〈c, c′〉 such that N(c, c′)
holds. However, this does not imply the existence of a concrete path of the form
〈c0, . . . , cn〉 such that ci |= γ (ai) since it is possible that for some ai+1, the set of
states {c′|∃c.c |= γ (ai), c′ |= γ (ai+1),N(c, c

′)} has an empty intersection with the
set of states {c′|∃c′′.c′ |= γ (ai+1), c

′′ |= γ (ai+2),N(c
′, c′′)}. The absence of a con-

crete path corresponding to an abstract path can be established by techniques similar
to bounded model checking (see below). This means that abstraction must be refined
so that the two sets of states: the successors of c ∈ γ (ai) and the predecessors of
c′′ ∈ γ (ai+2), are distinguishable. Symbolic methods for computing strongest post-
conditions and weakest preconditions can be used for computing predicates needed
for an abstraction that prunes spurious abstract counterexamples. The technique of
interpolation can also be used for this purpose. Abstraction-based approaches to
model checking are covered in this Handbook [30] (Dams and Grumberg, Abstrac-
tion and Abstraction Refinement).

The technique of ∃∃ abstraction can yield abstractions that over-approximate
concrete behavior. In particular, every concrete computation can be simulated by
an abstract one. Thus, for any μ-calculus property P with universal path quantifi-
cation, the concrete transition system satisfies P if the abstract transition system
satisfies the abstraction P̂ . In particular, when proving an invariant P by showing
that μX.I 7N [X] ⇒ P , we can see that the latter formula has an existential path-
quantified μ-calculus formula occurring negatively, which is hence a universal path-
quantified formula. The dual problem is that of under-approximating a μ-calculus
formula so as to preserve the validity of universal path-quantified μ-calculus for-
mulas. This requires a ∀∃ abstraction of the transition relation where we admit a
transition between abstract states a and a′ only when for every state c |= γ (a), there
is a state c′ |= γ (a′) such thatN(c, c′). This means that whenever there is an abstract
path 〈a0, . . . , an〉 in the abstract transition system, there is a corresponding concrete
path 〈c0, . . . , cn〉 through the state sets 〈γ (a0), . . . , γ (an)〉.

20.3.4 Bounded Model Checking and k-Induction

Invariants are the most common class of properties about transition systems. An in-
variant is an assertion P that holds in every reachable state of the system, and the set
of reachable states is indeed the strongest system invariant. Bounded model check-
ing uses satisfiability to check a sequence of states of a transition system for states
violating the invariant P . For a given transition system 〈W,I,N〉, the k-expansion
BM(I,N, k) of the system is a formula I (s0) ∧∧k

i=0N(si, si+1) which charac-
terizes the sequences 〈s0, . . . , sk+1〉 representing an initial segment of k + 1 steps
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in a computation. The violation of an invariant can be represented by the formula
BM(I,N, k)∧∨k+1

i=0 ¬P(si). If the latter formula is satisfiable, then there is a reach-
able state where P does not hold.

As an exercise, the reader can verify the mutual exclusion property of Peterson’s
algorithm in Sect. 20.1. Recall that the transition system only had five Boolean vari-
ables, and hence at most 25 distinct states. Therefore every state should be reachable
in at most 31 steps. In practice, the maximal loop-free paths are significantly smaller.
The bound can be expanded by iterative deepening by incrementing the parameter
k until a property violation is found. Since the bounded-model-checking proof obli-
gation of k+ 1 steps includes the constraints for k+ 1 steps, the iterative deepening
can retain the clauses learned in prior steps.

Bounded model checking can also be applied for checking liveness properties
by specifying lasso-like counterexample traces that consist of a path from an ini-
tial state s0 to a state sk and then a nontrivial loop about sk of length at least m,
where a property P fails to hold. A counterexample to ♦P can be constructed with a
query of the form I (s0)∧¬P(s0)∧∧k−1

i=0 (¬P(si)∧N(si, si+1))∧∧m
i=0(¬P(sk)∧

N(si+k, si+k+1)∧ sk = sm+k+1).
Satisfiability checking can also be applied to induction arguments. The custom-

ary technique of verifying an invariant P for a transition system 〈W,I,N〉 is by
showing that P holds initially, i.e., I (s0)∧¬P(s0) is unsatisfiable, and that it is in-
ductive, i.e., P(s)∧N(s, s′)∧¬P(s′) is unsatisfiable. As is well known, the proof
obligations can fail not because the invariant is not valid, but because it is not induc-
tive. The inductivity proof obligation can fail because of a counterexample where
the state s is unreachable. In k-induction, the base case is identical to the k-step
bounded-model-checking query, and the induction step checks the unsatisfiability
of

∧k
i=0(P (s0)∧N(si, si+1))∧¬P(sk+1). Since the state sk must be reachable in

no more than k − 1 steps, this rules out a number of unreachable states. The usual
technique for proving invariance is then just 1-induction. As with bounded model
checking, the bound k can be iteratively increased. For example, the mutual exclu-
sion property of the algorithm in Fig. 2 can be proved by 5-induction without the
need for any invariant strengthening.

Bounded model checking and k-induction can also be applied to infinite-state
systems by using SMT solvers instead of SAT solvers for checking satisfiability.
This approach can be used to handle systems with timed behavior and datatypes
such as integers, rationals, reals, sets, arrays, and recursively defined structures such
as lists and trees. Iterative deepening with SMT solvers can exploit the retention of
learned clauses as well as theory lemmas. Brown and Pike’s verification [66] of the
biphase mark and 8N1 communication protocols using the SAL model checker [57]
illustrates the power of infinite-state k-induction. Bounded model checking is cov-
ered in this Handbook [10] (Biere and Kroening, SAT-Based Model Checking).

20.3.5 Symbolic Execution and Test Generation

Bounded model checking demonstrates the use of satisfiability solvers for generat-
ing counterexamples traces. The same technique can also be used for the symbolic



20 Combining Model Checking and Deduction 677

execution of paths through a program as a mechanism for generating test cases. In
this case, the goal is to find a test case that reaches a particular control point in a
program. For example, with the program in Fig. 1, we may want a test case where
the program terminates with one unrolling of the loop. We wish to find an input such
that the assertion max= 0 holds at termination. By depth-first search, we can find a
path of the form

max0 = 0; i0 = 0; (i0 < N); ¬(a[i0]> max0
);

i1 = i0 + 1; ¬(i1 < N); (max0 = 0).

An SMT solver can be used to determine that N = 0, a[0] = 0 is a possible input.
Unlike bounded model checking where the entire transition system is represented
as a formula, symbolic execution generates the constraints corresponding to specific
paths through the control-flow graph of the program. It can be combined with ran-
dom testing to generate inputs that find inputs for paths not covered by the given
inputs. One can also use concrete inputs in conjunction with symbolic execution
to, for example, convert nonlinear constraints into linear ones to simplify constraint
solving. This connection to test generation is explored in depth elsewhere in this
Handbook [37] (Godefroid and Sen, Combining Model Checking and Testing).

20.3.6 Interpolation-Based Model Checking

We have already seen that whenever we have two sets of formulas that are jointly
unsatisfiable, interpolation can be used to construct a formula in the shared language
that captures the essence of the unsatisfiability. With bounded model checking, we
see that the failed attempts to find a counterexample essentially amount to the BMC
query being unsatisfiable. A BMC query has the form I (s0) ∧∧k

i=0N(si, si+1) ∧∨k
i=0¬P(si). For any given j < k, we can split the query into the form I (s0) ∧

∧j

i=0N(si, si+1) ∧∨j

i=0¬P(si) and
∧k
i=j+1N(si, si+1) ∧∨k+1

i=j+1¬P(si). The
shared language consists of the variables of state j + 1 so that an interpolant yields
an assertion about state j + 1 that is implied by the computation up to that point.
Specifically, if we let j be 0, then we get an assertion Q(s1) that is implied by
I (s0) ∧ N(s0, s1) ∧ ¬P(s0). This means that instead of increasing the bound, we
replace the initialization constraint by I 1(s0) = I (s0) ∨Q(s0). If by progressively
weakening the initialization predicate in this proof-directed manner, one reaches a
fixpoint where I j+1(s0)= I j (s0), then this predicate is an invariant which implies
the desired property P .

Interpolation is covered in this Handbook [54] (McMillan, Interpolation and
Model Checking). It can also be used for abstraction refinement in conjunction with
predicate abstraction.
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20.3.7 Conflict-Directed Reachability

We have already seen that inductive invariants are critical for deductive verification.
The key to constructing inductive invariants is to find an over-approximation to the
set of reachable states that is stronger than the desired property. Conflict-Directed
Reachability (CDR) [16, 17] is a technique for constructing an inductive invariantQ
for a transition system M = 〈W,I,N〉 that is stronger than the desired invariant P .
We describe an abstract CDR algorithm below. For predicates S1 and S2, let S1 8 S2

hold when it is the case that ∀s.S1(s)⇒ S2(s). This is verified by checking that
the formula S1(s) ∧ ¬S2(s) is unsatisfiable. Let S1 < S2 (S1 7 S2) represent the
intersection (union) of predicates S1 and S2, and ¬S represent the complement of S.
The CDR algorithm constructs a sequence of state predicatesQ0, . . . ,Qn, where the
ith predicate Qi over-approximates the set of states reachable in i or fewer steps,
i.e.,

⊔i
k=0N

k[I ] 8 Qi , where N [S] is the image of S under N . For a transition
systemM = 〈W,I,N〉, letM[X] = I 7N [X], and N−1[X] represent the pre-image
ofX underN . We have the following properties that are maintained for the sequence
Q0, . . . ,Qn:

1. Q0 = I .
2. Qi 8Qj < P for i < j ≤ n.
3. M[Qi] 8Qi+1, for 0≤ i < n.

The CDR algorithm also maintains for each i, 0 ≤ i ≤ n, a set Ci of symbolic
counterexamples, where each R ∈ Ci is a state predicate such that

1. R = ¬P and i = n, or there is an S in Ci′ , R 8 N−1[S], where i′ = n if i = n,
and i′ = i + 1, otherwise.

2. Qj 8¬R for all j < i.
3. R <Qi is nonempty, i.e., Qi �8 ¬R.

Each R in Ci , for 0 ≤ i ≤ n, is a counterexample to inductivity (CTI) that is
part of a symbolic trace R1, . . . ,Rm with R1 = R and Rm = ¬P , where Ri 8
N−1[Ri+1] for 0 < i < m. Thus at any stage, the algorithm maintains a sequence
Q0, . . . ,Qn where each Qi over-approximates the set of states reachable in i or
fewer steps. If Qi+1 8 Qi for some i, then Qi is an inductive invariant since
N [Qi] 8Qi+1 8Qi . The algorithm works by progressively strengthening the state
predicates Qi by identifying and eliminating counterexamples to inductivity. If we
succeed in extending the symbolic counterexample back to the initial predicateQ0,
then we have a concrete counterexample trace leading from an initial state to one
where ¬P holds. Otherwise, we can strengthen the predicates Qi to eliminate the
symbolic counterexamples. This process is continued until we find a concrete coun-
terexample trace or an inductive invariant Q strengthening P .

Initially, n = 0 and the sequence consists of just one predicate Q0. We assume
thatQ0 8 P since we have an immediate counterexample otherwise. In each subse-
quent step, the sequence Q0, . . . ,Qn is progressively strengthened to eliminate the
counterexamples to inductivity in one of the following ways:
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1. Fail: If C0 is nonempty, ¬P is reachable.
2. Succeed: If Qi =Qi+1 for some i < n, we have an inductive weakening of P .
3. Extend: If Ci is empty for each i ≤ n, add Qn+1 such that M[Qn] 8Qn+1 and
Cn+1 = ∅, if Qn+1 8 P , and Cn+1 = {¬P }, otherwise.

4. Refine: Check N [Qi] 8 ¬R for some R in Ci+1, where Cj is empty, for j ≤ i:
a. Strengthen: If the query succeeds, find an R̂ weakening R that is relatively

inductive: M[Qi < ¬R̂] 8 ¬R̂: conjoin ¬R̂ to each Qj for 1 ≤ j ≤ i + 1,
move any S ∈ Ci+1 such that Qi+1 8¬S (including R) to Ci+2 if i + 1< n.

b. Reverse: If the query fails with counterexample s, weaken s to S such that
S 8N−1[R] and add S to Ci .

5. Propagate: Whenever Qi is strengthened, strengthen Qi+1 with Q where
M[Qi] 8Q, move any R ∈ Ci+1 such that Qi+1 8¬R to Ci+2 if i + 1< n.

Each step of the algorithm either fails with a counterexample trace (Fail), finds an
inductive invariant (Succeed), extends the sequence when there are no counterexam-
ples (Extend), strengthens some Qi (Strengthen) followed by a sequence of prop-
agation steps (Propagate), or adds a new counterexample to some Ci (Reverse).
The reader should verify that the rules preserve the invariants on the sequences
Q0, . . . ,Qn and C0, . . . ,Cn. From these invariants, one can conclude that the al-
gorithm either returns a valid counterexample showing a path from I to ¬P where
each step satisfies N , or it returns an inductive invariantQ entailing P . The abstract
algorithm converges if we can place an upper bound on the number of times these
steps can be executed, i.e., repeated strengthening of a state predicate, the length of
a monotonically weakening sequence Q0, . . . ,Qn, and the number of distinct sym-
bolic counterexamples. The termination therefore depends on the specific concrete
instantiation of the algorithm. The individual steps of the algorithm can be executed
through queries to a SAT or SMT solver with the ability to find unsatisfiable cores
or relevant assumptions, and minimal satisfying partial assignments.

The abstract CDR algorithm can be instantiated for finite-state systems. For a
transition system where the state variables b1, . . . , bm are Boolean, each Qi can be
represented as a set of clauses in these variables, and Qi+1 8 Qi , for 0 < i < n.
Here, Qi represents the state predicate mapping the state s consisting of an as-
signment of truth values to b1, . . . , bm to the truth value of the conjunction of
the clauses in Qi . The transition relation N is a Boolean formula in the variables
b1, . . . , bm, b

′
1, . . . , b

′
m. The primed version K ′ of a clause K is the result of replac-

ing each bi in K by b′i for 1 ≤ i ≤m. The image N [Qi] consists of the clauses K
in Qi such that Qi ∧N ∧ ¬K ′ is unsatisfiable. Each counterexample R is a cube,
a conjunction of literals, in the variables b1, . . . , bm. The CDR algorithm converges
in this case because we cannot have a monotonically weakening sequence of predi-
cates without finding a duplicate pair of adjacent predicates in the sequence, namely
an inductive invariant.



680 N. Shankar

20.4 Conclusions

Deduction and model checking are complementary approaches to verification. The
former relies on assertions and program structure to construct proofs, whereas the
latter is based on actually computing exact or approximate fixpoints. Model check-
ing is effective at computing small properties of large systems, whereas deduction is
needed for establishing correctness properties that require nontrivial mathematical
reasoning. There is considerable synergy in terms of the reasoning tools: SAT and
SMT solving, interpolants, quantifier elimination procedures, and decision proce-
dures. We have outlined the foundations of deductive verification and explored only
a few of the rich range of connections to model checking. It should be clear from the
examples shown here that deduction is already a key element of many modern ver-
ification algorithms. In the algorithms that we have covered, deductive methods are
used for symbolic execution, bounded state exploration, predicate abstraction, ab-
stract transfer function construction, abstraction refinement, interpolant generation,
model construction, proof construction, and test case generation. It is reasonable to
expect that many significant advances in automated verification will be sparked by
the complementarity and synergy between deduction and model checking.
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Chapter 21
Model Checking Parameterized Systems

Parosh Aziz Abdulla, A. Prasad Sistla, and Muralidhar Talupur

Abstract We consider the model-checking problem for a particular class of param-
eterized systems: systems that consist of arbitrary numbers of components. The task
is to show correctness regardless of the number of components. The term parame-
terized refers to the fact that the size of the system is a parameter of the verification
problem. Examples of parameterized systems include mutual exclusion algorithms,
bus protocols, networking protocols, cache coherence protocols, web services, and
sensor networks. In this chapter, we will give four examples of techniques that have
been used (among many others) for the verification of parameterized systems.

21.1 Introduction

The behavior of many types of computer systems can be described using one or
more parameters, each of which varies over a specified range. The parameterized
verification problem is to prove or refute that some specification is true for all values
of the parameters. The parameters may relate to the size or topology of a network,
to data types over which a system is constructed, to initial values of variables, etc. In
this chapter, we concentrate on a particular class of parameterized systems, namely
systems consisting of an arbitrary number of components (processes). The size of
the system becomes (implicitly) a parameter of the verification problem, and pa-
rameterized verification amounts to proving correctness regardless of the number
of processes. For instance, the specification of a mutual exclusion protocol may be
parameterized by the number of processes participating in a given session of the pro-
tocol. In such a case, it is important to verify correctness independently of the num-
ber of participants in a particular session. There are numerous applications where
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parameterized systems appear naturally, such as mutual exclusion algorithms, bus
protocols, network protocols, cache coherence protocols, web services, and sensor
networks. Sensor networks typically consist of thousands of sensors, web services
may attract millions of users, and network protocols may involve thousands or mil-
lions of nodes. More futuristic examples include the analysis of biological systems
(e.g., organs with millions of cells) and social networks (with millions of users).
All these examples show that there is a compelling need to extend verification from
individual small instances to the parameterized case.

The nature of the problems that arise in parameterized verification and their so-
lutions is determined by three factors:

• Components. The processes may be finite-state or infinite-state. Even in the case
of finite-state processes, the state space of the system is unbounded. This is true
since the state space contains all states we get as we vary the parameter (size of
the system). In fact, we are dealing with an infinite family of systems (one for
each possible size), and therefore the total state space (the union of state spaces
of all members of the family) is infinite in size. The individual processes may also
be infinite-state since they may operate on variables ranging over infinite domains
(e.g., the natural numbers). In such a case we get a state space that is infinite in
two dimensions.

• Topology. On the one hand, the system may consist of a set of processes without
any structure. On the other hand, the system topology may have a certain pattern.
For instance, the processes may be organized as a linear array. Then, a process
may refer to its left/right neighbors, or to all the processes to its left/right. The
processes may also be organized in a ring, tree, or a general graph.

• Communication Primitives. A simple form of communication is when two pro-
cesses perform a rendezvous which involves both processes changing state simul-
taneously. Another form of communication is through shared variables that can
be read from and written to by all/some processes in the system. We may have
broadcast transitions where an arbitrary number of processes change state simul-
taneously. Furthermore, the transitions of a process may be conditioned by global
conditions. An example of a (universal) global condition, in a system with linear
topology, is that “all processes to the left of a given process i should satisfy a
property φ”. In this case, process i is allowed to perform the transition only in the
case where all processes with indices j < i satisfy φ.

An extensive research effort has been devoted to the verification of parameterized
systems in recent years (see Sect. 21.6 for a survey). It is known that the parame-
terized verification problem is undecidable even in the case where each process is
finite-state. In [8] it is shown that the following problem is not even semi-decidable
(i.e., recursively enumerable) in general: Given a system S(n) consisting of n finite-
state processes and a specification φ(n) parameterized by n, check whether S(n)
satisfies φ(n) for all n. In [64], it is shown that the problem remains undecidable
even if the system consists of a unidirectional ring of identical finite-state processes.
In view of the undecidability of parameterized verification in general, research in
the area has been conducted along three main lines:
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• Identifying sub-classes for which the problem is decidable. This is often achieved
by capturing the system’s behavior using decidable models such as Petri nets.

• Designing algorithms that are not guaranteed to terminate in general, but that
are augmented with acceleration techniques. Such techniques make the fixed-
point computation underlying the verification algorithm terminate more often in
practice.

• Using over-approximation. Here we apply abstraction techniques so that the veri-
fication problem for the abstract system is simpler than that of the original system,
and such that correctness of the former implies correctness of the latter. One can
also employ techniques based on under-approximation. Such methods, although
not sound for verification, can aid in debugging as they may lead to more efficient
error detection.

Due to space limitations, we will mainly concentrate on methods for the verification
of safety properties, occasionally mentioning how liveness properties can also be
handled. Furthermore, we will only describe the main ideas behind three existing
techniques (among many others that have been introduced in the literature). More
precisely, in Sect. 21.2 we consider systems in which the components are identi-
cal anonymous finite-state processes that communicate through shared variables.
We show how the behavior of such a system can be modeled by a Petri net [38]
which can then be analyzed using the theory of well quasi-ordered transition sys-
tems [2, 37]. In Sect. 21.3 we introduce regular model checking [8] which uses the
theory of regular languages as a uniform framework for parameterized system veri-
fication. We give an example of a simple acceleration technique that can be defined
within the framework. In Sect. 21.4, we introduce monotonic abstraction, a tech-
nique that aims at increasing the efficiency of regular model checking by computing
an over-approximation. In Sect. 21.5 we present an abstraction-and-compositional-
reasoning-based technique that has been successfully applied to industrial-strength
protocols. Finally, we give an overview of related work in Sect. 21.6.

21.2 Petri Nets

In this section, we consider parameterized systems consisting of an unbounded num-
ber of identical finite-state processes that communicate through a finite set of shared
variables each ranging over a finite domain. We describe how the behavior of such a
parameterized system can be captured by the classical model of Petri nets. We show
how safety properties of the system can be analyzed by using backward reachabil-
ity analysis on Petri nets. Finally, we briefly outline how liveness properties can be
analyzed.

21.2.1 Simple Protocol

To illustrate our ideas, we use a simple example of a mutual exclusion protocol
(Fig. 1). The system consists of an arbitrary number of identical finite-state pro-
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Fig. 1 (a) One process Pi in the simple protocol; (b) the lock; (c) a parameterized system consist-
ing of an arbitrary number of processes

cesses competing for a global resource. The resource is guarded by a lock which
is a shared variable among the processes. The system is supposed to satisfy mu-
tual exclusion, i.e., at most one process may have access to the global resource at
any given time. In each step of an execution of the system, one process, called the
active process, performs a local transition changing its state. The rest of the pro-
cesses, called the passive processes, do not change state. A process has two local
states, namely I where the process is idle and C where the process is in its critical
section. The state of the lock is F when it is free and B when it is busy. When a
process wants to access its critical section, it must first acquire the lock. This can be
done only if no other process has already acquired the lock. Intuitively, we can think
of the shared-variable lock also as a process. The original processes communicate
with the lock process in a rendezvous manner. Concretely, if a process is in state I
(hence is capable of performing the event α) and the lock is in state F (hence is
capable of performing the complementary event α), then they may move simultane-
ously changing to the states C and B, respectively (see Chap. 32 for the definition of
complementary events). A similar behavior is induced by the events β and β , which
means that a process in the critical section may release the lock moving back to the
idle state I. We require that the system never reaches a configuration where two
or more processes are in the state C. Recall that we are interested in parameterized
verification, i.e., verifying that this property is satisfied regardless of the number of
competing processes.

21.2.2 Petri Nets

A Petri net N is a tuple (P,T ,F ), where P is a finite set of places, T is a finite set
of transitions, and F ⊆ (P × T ) ∪ (T × P) is the flow relation. For a place p ∈ P
and a transition t ∈ T , if (p, t) ∈ F then p is said to be an input place of t ; and if
(t,p) ∈ F then p is said to be an output place of t . We use In(t) := {p | (p, t) ∈ F }
and Out(t) := {p | (t,p) ∈ F } to denote the sets of input places and output places
of t , respectively.

Figure 2 shows an example of a Petri net with four places (drawn as circles),
namely I, F, B, and C, and two transitions (drawn as rectangles), namely t1 and t2.
The flow relation is represented by edges from places to transitions, and from tran-
sitions to places. For instance, the flow relation in the example includes the pairs
(F, t1) and (t2,I), i.e., F is an input place of t1, and I is an output place of t2.
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Fig. 2 (a) A simple Petri net;
(b) the result of firing t1

The transition system induced by a Petri net is defined by the set of configura-
tions together with the transition relation defined on them. To give the definition, we
recall some simple notations for multisets. We will write multisets (over some set A)
as lists, so if a, b ∈A then [a3, b2] represents a multisetM over A whereM(a)= 3,
M(b)= 2 andM(x)= 0 for x �= a, b. For multisetsM1 andM2, we writeM1 ≤M2
if M1(a)≤M2(a) for all a ∈A. We define the additionM1 +M2 to be the multiset
M where M(a) =M1(a) +M2(a), and (assuming M1 ≤M2) we define the sub-
traction M2 −M1 to be the multiset M where M(a) =M2(a) −M1(a), for each
a ∈ A. We define M1 @M2 to be the multiset M where M(a) =M1(a)@M2(a)

with y @ x := max(y − x,0). A set U of multisets is said to be upward closed if
whenever M1 ∈U and M1 ≤M2 then M2 ∈U .

A configuration c of a Petri net1 is a multiset over P . The configuration c defines
the number of tokens in each place. Figure 2(a) shows a configuration with one
token in place F, three tokens in place I, and no token in the places B and C. This
configuration corresponds to the multiset [F,I3]. For a transition t , we can view
the set In(t) of input places as a multiset over P where In(t)(p) = 1 if p ∈ In(t),
and In(t)(p) = 0 if p /∈ In(t). For instance, in Fig. 2, we have that In(t1)= [I,F].
We can view the set Out(t) of output places as a multiset in a similar manner. The
operational semantics of a Petri net is defined through the notion of firing. More
precisely, when a transition t is fired, a token is removed from each input place,
and a token is added to each output place of t . The transition is fired only if each
input place has at least one token. This defines a transition relation on the set of

configurations. Formally, for a transition t ∈ T , we write c1
t−→ c2 to denote that

c1 ≥ In(t) and c2 = c1 − In(t)+Out(t). We use c1 −→ c2 to denote that c1
t−→ c2

for some t ∈ T . For sets C1,C2 of configurations, we write C1 −→ C2 to denote that

c1 −→ c2 for some c1 ∈ C1 and c2 ∈ C2. We define
∗−→ as the reflexive transitive

closure of −→.
Suppose that we are given a parameterized system in which the processes are

finite-state, and the processes communicate through a finite set of shared variables
each ranging over a finite domain. We model the behavior of such a system using

1A configuration of a Petri net is often called a marking in the literature.
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a Petri net. The idea is to count the number of processes in each local state. More
precisely, we devote a place q in the Petri net to each process state q in the param-
eterized system. The number of tokens in the place q in the Petri net represents the
number of processes in state q . Furthermore, for each shared variable x and value v
in the domain of x, we have a place v, where a token in v means that the value of x
is v. For instance, we can describe the behavior of the parameterized version of the
simple mutual exclusion protocol as the Petri net of Fig. 2. The numbers of tokens in
places I and C represent the number of processes in their idle states and critical sec-
tions respectively. We encode the value of the lock using the places F and B, where
a token in the former means that the lock is free, and a token in the latter means that
the lock is busy. Each transition of the Petri net corresponds to one of the processes
performing a local transition: the transition t1 corresponds to a process moving from
I to C (thus decreasing the number of processes in state I, increasing the number of
processes in C, and taking the lock); and the transition t2 corresponds to a process
moving from C to I (thus increasing the number of processes in state I, decreasing
the number of processes in C, and releasing the lock).

21.2.3 Safety Properties

A safety property states that “nothing bad happens” during the execution of the sys-
tem (see Chap. 2). Such a property can be formulated in terms of a set Bad of bad
configurations. These are configurations that should not occur during the execution
of the system (otherwise the system is considered to be violating the safety prop-
erty). Thus, checking the safety property can be reduced to checking the reachability
of the set of bad configurations.

For instance, in Fig. 2, the set Bad contains those configurations that violate mu-
tual exclusion, i.e., configurations where at least two processes are in their critical
sections. These configurations are of the form [Fk1 ,Bk2 ,Ik3 ,Ck4 ] where k4 ≥ 2. The
set of bad configurations is typically upward closed. This is the case in our exam-
ple: whenever a configuration contains two processes in their critical sections then
any larger configuration will also contain (at least) two processes in their critical
sections.

The set Cinit of initial configurations are those from which the execution of the
system may start. In our example, the initial configurations are those where the
lock is free and where all processes are idle. These configurations are of the form
[F,Im] where m ≥ 1. Examples of initial configurations are [F,I2] and [F,I5],
corresponding to instances of the system with two and five processes respectively.
Notice that there are infinitely many initial configurations (one for each possible
size of the system).

Checking the safety property can be carried out by checking whether there exists
a sequence of transitions leading from an initial configuration to a bad configuration,

i.e., checking whether the set Bad is reachable (whether Cinit
∗−→ Bad). Since the

set Bad is upward closed, checking safety properties amounts to the problem of
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checking the reachability of an upward-closed set (this problem is usually referred
to as the coverability problem for Petri nets).

21.2.4 Backward Reachability Analysis

Two main methods for solving the coverability problem for Petri nets have been
proposed in the literature. The first is based on forward reachability analysis (the
Karp–Miller algorithm [43]), while the second is based on backward reachability
analysis (by applying the theory of well quasi-ordered programs [2, 37]). In this
chapter, we will concentrate on the latter since it is applicable to a larger class of
(infinite-state) systems. In fact, we will see another application of this framework in
Sect. 21.4.

We will introduce a backward reachability algorithm for solving the coverability
problem. The algorithm relies on two properties of ≤. First, we notice that the tran-
sition relation −→ is monotonic w.r.t. ≤. In other words, given configurations c1,
c2, and c3, if c1 −→ c2 and c1 ≤ c3, then there exists a configuration c4 such that
c2 ≤ c4 and c3 −→ c4. Second, according to Dickson’s lemma [28], the relation ≤
is a well quasi-ordering (wqo for short), i.e., for each infinite sequence c0, c1, c2, . . .

of configurations there exist i and j such that i < j and ci ≤ cj .
The backward reachability algorithm manipulates sets of configurations that

are upward closed. For a configuration c, we define ĉ to be its upward closure,
i.e., ĉ = {c′ | c ≤ c′}. Notice that c′ ≤ c implies ĉ ⊆ ĉ′. For a set C, we define
Ĉ :=⋃

c∈C ĉ. For an upward-closed set U , we define the generator of U to be the
set of minimal elements of U , i.e., the set G such that: (i) Ĝ = U , i.e., U can be
generated from G by taking the upward closure ofG w.r.t. ≤; and (ii) a ≤ b implies
a = b for all a, b ∈G, i.e., the set G is canonical in the sense that all its elements
are incomparable w.r.t. ≤. We use gen(U) to denote the set of generators of U (no-
tice that this set is uniquely defined for a given U ). The generators of the set of
bad configurations are often known to us. In our example, the set is the singleton
gen(Bad)= {[C2]}. Upward-closed sets enjoy two properties that make them useful
in the backward algorithm:

• The set gen(U) is finite. This is true since otherwise we would have an infinite set
of incomparable elements, which contradicts the wqo property. This means that
each upward-closed set U can be characterized by a finite set of configurations,
namely its generator gen(U). The set gen(U) is a finite characterization of U in
the sense that U = ĝen(U).

• Consider an upward-closed set U of configurations. By monotonicity of −→ it
follows that the predecessor set {c | c −→ U} is upward closed [2]. In other
words, the set of configurations from which we can reach U through the firing
of a single transition is upward closed (upward-closedness is preserved by fir-
ing transitions backwards). For a configuration c and a transition t , we define

Pre(t)(c) := gen({c′ | c′ t−→ ĉ}), i.e., it is the generator of the set of configu-
rations from which we can reach the upward closure of c through a single firing
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Algorithm 1 Backward Reachability Algorithm
Input: •N : Petri net

• Cinit: set of initial configurations
• gen(Bad): generator of the set of bad configurations

Output: Is Bad reachable in N ?
1: i← 0
2: C0 ← gen(Bad)
3: repeat
4: Ci+1 ← Ci ∪ {c | (c ∈ Pre(Ci))∧ (¬∃c′ ∈ Ci. c′ ≤ c)}
5: i← i + 1
6: until Ci = Ci−1
7: if Cinit ∩ Ĉi �= ∅ then
8: return true
9: else

10: return false
11: end if

of t . We define Pre(c) :=⋃
t∈T Pre(t)(c). For a set C of configurations, we de-

fine Pre(C) :=⋃
c∈C Pre(c). For each configuration c and transition t , it is easy

to see that Pre(t)(c) has the single configuration (c@Out(t))+ In(t).

Sets of bad configurations are almost always upward closed as explained above.
Therefore, checking the safety property amounts to deciding reachability of an
upward-closed set. Now, we are ready to define the backward reachability algorithm
(Algorithm 1). The algorithm starts from the generators of the set of bad configura-
tions, and tries to find a path backwards through the transition relation to the set of
initial configurations. It performs a number of rounds where, during each round, it
derives the predecessors of the current set of configurations. Furthermore, for each
newly generated configuration c, it checks whether we have already encountered
another configuration c′ ≤ c. In such a case, we know that ĉ ⊆ ĉ′ and hence we
can safely discard c from the analysis without the loss of any information (we say
that c is subsumed by c′). The algorithm terminates when all the newly generated
configurations (those generated in the current iteration i) are subsumed by config-
urations that have been generated in previous iterations. In such a case, we know
that Ci = Ci−1, and hence the upward closure Ĉi is the set of configurations from
which Bad is reachable. Hence, Bad is reachable if and only if Cinit and Ĉi have a
non-empty intersection. The algorithm is guaranteed to terminate since ≤ is a well
quasi-ordering (we refer to [2] for a formal proof of termination).

Let us apply the algorithm to our example. As mentioned, the set gen(Bad) is the
singleton {[C2]}. Therefore, the algorithm starts from the configuration c0 = [C2],
and repeatedly computes predecessors by applying the function Pre. From the con-
figuration c0, we go backwards and derive the generator of the set of configurations
from which we can fire a transition and reach a configuration in Bad = ĉ0. Transition
t1 gives the configuration c1 = [F,I,C], since ĉ1 contains exactly those configura-
tions from which we can fire t1 and reach a configuration in ĉ0. Analogously, tran-
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Fig. 3 Running the
backward reachability
algorithm on the example
Petri net. Each ellipse
contains the configurations
generated during one
iteration. The subsumed
configurations are crossed out

sition t2 gives the configuration c2 = [B,C3], since ĉ2 contains exactly those config-
urations from which we can fire t2 and reach a configuration in ĉ0. Since c0 ≤ c2,
c2 is subsumed by c0 and c2 will be discarded. Now, we repeat the procedure on c1,
and obtain the configurations c3 = [F2,I2] (via t1), and c4 = [B,C2] (via t2), where
c4 is subsumed by c0. Finally, from c3 we obtain the configurations c5 = [F3,I3]
(via t1), and c6 = [F,B,I,C] (via t2). The configurations c5 and c6 are subsumed
by c3 and c1 respectively. The iteration terminates at this point since all the newly
generated configurations were subsumed by existing ones, and hence there are no
more new configurations to consider. The set B = {[C2], [F,I,C], [F2,I2]} is the
generator of the set of configurations from which we can reach a bad configuration.
The three elements of B are those configurations which are not discarded in the
analysis (they were not subsumed by other configurations). To check whether Bad
is reachable, we check the intersection B̂ ∩Cinit. Since the intersection is empty, we
conclude that Bad is not reachable, and hence the safety property is satisfied by the
system.

We summarize the properties that need to be satisfied by a transition system (in
general) in order to be able to use the above algorithm (see also [2]). Suppose that
we are given a set of configurations C, a transition relation −→, a set Cinit of initial
configurations, an ordering 3 on C, and an upward-closed set Bad characterized by
its generator gen(Bad). The needed properties are the following:

1. −→ is monotonic with respect to 3. This implies that the predecessor set of an
upward-closed set of configurations is upward closed.

2. 3 is a wqo. We need this property for two reasons: to represent upward-closed
sets with a finite set of configurations (the generator of the set); and to guarantee
termination of the iterative computation in the reachability analysis.

3. For each c, we can compute the (finite) set gen({c′ | c′ −→ ĉ}).
4. For configurations c and c′, we can check whether c 3 c′. This property is needed

so that we can check whether a configuration may be discarded in the algorithm.
5. We can check emptiness of the intersection B̂ ∩Cinit for a finite set B of config-

urations. This is needed in line 7 of the backward reachability algorithm.

Notice that the transition system induced by any Petri net satisfies Properties 1–4.
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21.2.5 Liveness Properties

In this section, we briefly discuss the problem of checking liveness properties for our
class of parameterized systems. To simplify the presentation, we consider a slightly
extended model, where we assume that we have a family of systems of processes
consisting of a single process C , called a control process, together with an arbitrary
number of identical user processes whose definition is given by U . A system in
this model having n user processes is denoted by C ×U n. We consider the family
of systems given by {C ×U n | n > 0}. The processes communicate through ren-
dezvous. We will only consider verification of properties of executions of the control
process. We assume that the correctness property is specified by an LTL formula f
that refers to the states of the control process using atomic propositions. To check
liveness properties, we need to reason about fair computations of the system of pro-
cesses. We consider simple weak fairness, which states that if a process is enabled
continuously from any point onwards then it is eventually executed after that point
(see Chap. 2). Intuitively, a process is said to be enabled in a global state if it can
either make a local transition or can communicate with another process. For the ex-
ample of Fig. 1, process P0 is enabled in a global state in which process P0 is in
state I and lock is in state F . A process is said to be executed in a computational
step from one global state to another if it involves a transition of that process. We
will check for correctness by checking that there does not exist a fair computation
of a system of the form C ×U n, for some n > 0, that satisfies ¬f . To do this, we
first construct a Büchi automaton A¬f that accepts all those sequences of states of
C that do not satisfy f , i.e., that satisfy ¬f (see Chap. 4). The automaton A¬f
accepts an input by going through at least one of a set of designated states, called
accepting states, infinitely often. We construct another process C ′ which is a prod-
uct of C and A¬f . Essentially, C ′ behaves like C and at the same time simulates
A¬f on its executions. Each state of C ′ is a pair of the form (s, q) where s is a state
of C and q is a state of A¬f . Such a state is called an accepting state if q is an
accepting state of A¬f .

Now, we consider a family of systems of the form C ′ ×U n, n > 0 and check
whether there is a fair computation of these systems where an accepting state of C ′
appears infinitely often. Such a computation does not exist iff the original family
of systems satisfies the correctness property f . We construct a Petri net N that
captures the computations of the family of systems of the form C ′ ×U n, n > 0. As
stated earlier, each place of N uniquely corresponds to a state of either C ′ or U .
A place in N is called an accepting place if it corresponds to an accepting state
of C ′. A configuration of N is called an accepting configuration if there is at least
one token in one of the accepting places.

The infinite executions of N , which are infinite sequences of configurations
resulting from firing transitions, correspond, as indicated earlier, to the computations
of the above family of systems of processes. We define a notion of fairness of infinite
executions of N which correspond to computations of the systems of the form
C ′ ×U n. The fairness of executions of N is defined with respect to places in the
Petri net as opposed to fairness of system executions being defined with respect to
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processes. (Our notion of fairness in Petri nets is different from liveness of Petri
nets considered in the literature.) Roughly speaking, fairness of an execution of N
is defined as follows. Say that a place p is enabled in a configuration c if at least
one transition t , having p as one of its input places, can be fired from c. We say
that an infinite execution e of N is fair if for every place p the following condition
holds: if there exist infinite instances in e such that the place p is enabled in the
configuration at that instance, then there are infinite instances in e when a transition
having p as one of its input places is fired in e.

Now, we check for an infinite fair execution of N starting from the initial con-
figuration that has accepting configurations occurring infinitely often. Existence of
such an execution can be checked using the well-known reachability problem for
Petri nets which consists of checking whether a particular configuration is reachable
from the initial configuration. This problem is more difficult than that of checking
whether any of an, upward-closed, set of configurations is reachable, which we con-
sidered earlier. The reachability problem for Petri nets is known to be decidable and
hence checking correctness under fairness is decidable for our simple model of pro-
cesses when the correctness property is given by an LTL formula on the executions
of the control process. The details of the approach can be found in [38]. The above
approach ignores deadlocked computations of the system of processes. However, it
can be extended to consider deadlocked computations by extending them to infinite
computations in a natural way. A similar approach can be used to check correctness
of the executions of user processes.

21.3 Regular Model Checking

In this section, we consider parameterized systems with linear topologies in which
the processes are finite-state and a process may communicate with its near (im-
mediate) neighbors. Linear topologies are quite common in parameterized systems,
where the position of a process may, for example, reflect its priority compared to the
rest of the processes. Such a parameterized system induces undecidable verification
problems (in fact, all non-trivial verification problems turn out to be undecidable).
We introduce an example of an acceleration technique for the verification of such
parameterized systems. We will formulate the technique in the framework of regular
model checking.

21.3.1 Near-Neighbor Communication

We consider a class of parameterized systems consisting of finite-state processes
organized in a linear array. The system allows a “near-neighbor” communication
pattern in the sense that a given process may communicate with its left or right
neighbor, and the two communicating processes may change state simultaneously.
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As an example we will use a simple token-passing protocol. The system consists of
an arbitrary (but finite) number of processes that are arranged as a linear sequence.
Initially, the leftmost process owns the token. In each step, the process currently
having the token communicates with its right neighbor (thus performing a near-
neighbor communication) and passes the token to the right. An example of a safety
property for this protocol is that at most one process will have the token at any point
in the execution of the system.

Notice that the model introduced in Sect. 21.2 does not include near-neighbor
communication. In fact, it is not hard to show that this simple extension leads to un-
decidability of safety properties. The undecidability proof can be carried out through
a reduction from the halting problem for Turing machines in a similar way to the
proof for ring-formed topologies [64]. Here, we only give a short outline of the
proof, leaving the technical details to the reader. The intuition is that, given a Tur-
ing machine T , a system of size n can simulate the computations of T that use
at most n tape cells. Therefore, parameterized verification of the system amounts
to the verification of T (which means that any non-trivial verification problem will
be undecidable). Each cell is represented by one process whose state encodes the
symbol stored in the cell. Furthermore, the state of the process contains a (Boolean)
flag that indicates whether the head is currently pointing to the cell or not. If the
value of the flag is true then the state of the process also stores the local state of T .
We can now use near-neighbor communication to simulate moving the head in T ,
changing the current cell symbol, and changing the local state of T .

In view of this undecidability proof, we will describe a verification method that
is not guaranteed to terminate. The method is based on acceleration formulated in
the framework of regular model checking.

21.3.2 Regular Model Checking

Regular Model Checking (RMC) [45] is a general paradigm for algorithmic verifica-
tion of parameterized systems with linear or ring-shaped topologies. In fact, RMC
is applicable to the verification of a much wider class of parameterized systems than
the one with near-neighbor communication that we are dealing with here. In RMC,
the system behavior is modeled in several steps. We start with a finite alphabet,
where each symbol corresponds to the local state of a process. Configurations of
the system are represented by words, where each position in the word describes the
state of one process in the system. Sets of configurations are represented by finite au-
tomata (or equivalently by regular expressions). Finally, transitions are represented
by finite automata operating on pairs of states, so called finite-state transducers. The
idea of RMC is that we can exploit automata-theoretic algorithms for manipulating
regular sets. Such algorithms have been successfully implemented, e.g., in the Mona
[39] system.

Formally, let Σ be a finite alphabet of symbols. For a relation R ⊆Σ ×Σ and
a set A ⊆ Σ , we define A ◦ R := {b | ∃a. (a ∈ A) ∧ ((a, b) ∈ R)}. For relations
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Fig. 4 (a) The set of initial
configurations in the
token-passing protocol.
(b) The transducer describing
the transition relation

R,R′ ⊆ Σ × Σ , we define the composition R ◦ R′ := {(a1, a2) | ∃b. ((a1, b) ∈
R) ∧ ((b, a2) ∈ R′)}. For a natural number i, we define the relation Ri inductively
by R0 = {(a, a) | a ∈ Σ} (i.e., it is the identity relation), and Ri+1 = Ri ◦ R. In
other words, the relation Ri corresponds to i compositions of R. We define the
reflexive transitive closure R∗ := ∪i≥0R

i , and the transitive closure R+ := ∪i≥1R
i .

A (finite-state) transducer T overΣ is a tuple (Q,qinit,�,F ) whereQ is a finite
set of states, qinit ∈Q is the initial state, � ⊆Q× (Σ ×Σ)×Q is the transition

relation, and F ⊆ Q is the set of accepting states. We use q1
(a,b)−→T q2 to denote

that (q1, (a, b), q2) ∈�. A transducer is a finite-state automaton that accepts finite
words over the alphabet Σ ×Σ , i.e., words of the form (a1, b1)(a2, b2) · · · (an, bn).
The language L(T ) of T is the set of words accepted by T . The transducer T in-
duces a regular relation R(T ) on words (of identical lengths) over Σ . More pre-
cisely, for words x = a1 · · ·an and y = b1 · · ·bn in Σ∗, we have (x, y) ∈ R(T ) if
(a1, b1) · · · (an, bn) ∈ L(T ). We will use R(T ) to represent the transition relation on
the configurations of the parameterized system (each of which is a word overΣ ). To
simplify the notation, we write R+(T ) instead of (R(T ))+ to denote the transitive
closure of R(T ). We use R∗(T ) and Ri(T ) in a similar manner.

We will describe how we model the token passing protocol in the framework of
RMC (see Fig. 4). The alphabet is given by the set {t, n}, where t means that the
process has the token, and n means that the process does not have the token. A con-
figuration of the system is a word over Σ . For instance, the word nntnn represents
a configuration of the system with five processes where the third process has the to-
ken. The set of initial configurations is characterized by the regular expression tn∗
(the finite-state automaton in Fig. 4(a)), indicating that the leftmost process has the
token, and that this process is followed by an arbitrary number of processes, none
of which has the token. The transition relation is represented by the transducer in
Fig. 4(b). For instance, the transducer accepts the word (n,n)(n,n)(t, n)(n, t)(n,n),
representing the pair (nntnn, nnntn) of configurations where the token is passed
from the third to the fourth process. Notice that a pair of words (x, x′) belongs to
Ri(T ) if x can be rewritten to x′ using i successive runs of T . For example, Fig. 5

Fig. 5 Four runs of the transducer of Fig. 4
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Fig. 6 The transducer T 3

shows four runs ρ1, ρ2, ρ3, ρ4 of the transducer T of Fig. 4(b). Each of these runs
is of (the same) length 5. The runs relate the pairs (tnnnn,ntnnn), (ntnnn,nntnn),
(nntnn,nnntn), and (nnntn,nnnnt), each of which belongs to R(T ). The pair
(tnnnn,nnnnt) ∈R4(T ), as witnessed by the sequence of runs ρ1, ρ2, ρ3, ρ4.

21.3.3 Acceleration Techniques

A generic task in RMC is to compute a representation for the transitive closure
of a transducer relation. Given a transducer T , we would like to construct a new
transducer T + such that R(T +)= R+(T ), i.e., the relation characterized by T + is
the transitive closure of the relation characterized by T . The transducer T + can then
be used for computing the set of reachable configurations (when verifying safety
properties), or to find loops (when verifying liveness properties). Below we describe
how verification of safety properties can be carried out using the transitive closure
(for liveness properties, the reader is referred to [6]).

Safety Properties

As mentioned in the previous section, a safety property can be verified by solving
the reachability problem. Formulated in the RMC framework, the corresponding
problem is the following: given a regular set of initial configurations I , a regular set
of bad configurations B , and a transition relation specified by a transducer T , does
there exists a path from I to B through the transition relation R(T )? Consider the
token-passing protocol again and consider the safety property stating that at most
one process owns the token at any time during any run of the system. The set B
of bad configurations (those violating the safety property) is given by the regular
expression (t + n)∗t (t + n)∗t (t + n)∗. Recall that the set of initial configurations I
was given by tn∗. The problem amounts to checking whether (I ◦R∗(T ))∩B = ∅.
The problem can be solved by computing the set Inv = I ◦ R∗(T ) and checking
whether it intersects B . Since R∗(T ) = {(a, a) | a ∈ Σ} ∪ R(T +), to solve the
above problem it is sufficient to compute T +.

Given a transducer T , the transitive closure R+(T ) is not computable in gen-
eral; and in fact it may not even be finite-state representable. Our goal is to design
techniques that try to compute a (finite-state) transducer T + that accepts the rela-
tion R+(T ) in case such a T + exists. We will show one such technique based on
acceleration.

As a running illustration, we will consider the problem of computing T + for
the transducer in Fig. 4. A first attempt is to compute T n that characterizes the
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Fig. 7 The transitive closure
of T

composition of R(T ) with itself n times for n = 1,2,3, . . ., i.e., R(T n) = Rn(T ).
For example, T 3 characterizes the transition relation where the token gets passed
three positions to the right (Fig. 6). A transducer T + for R+(T ) is one where the
token gets passed an arbitrary number of times, given in Fig. 7.

Obviously, the transducer T + cannot be constructed naively by simply comput-
ing the approximations T n for n= 1,2,3, . . ., since such an iteration will not con-
verge in a finite number of steps.

Instead, we will propose an alternative solution where we accelerate the gener-
ation of the different approximations. We will introduce the acceleration technique
in two steps. First, we derive an infinite-state transducer T col that accepts R+(T ),
which we call the column transducer. We will not construct the column transducer
explicitly. Instead, in the second step, we will define an equivalence relation A on
the set of states of T col, and introduce a procedure that performs quotienting, i.e.,
collapses states that are equivalent with respect to A. The quotienting preserves the
relation characterized by T col from the collapsed states (see [5] for the details). If
the procedure terminates in a finite number of steps, we have achieved our goal of
producing a finite-state transducer that accepts the transitive closure of the original
transducer.

Column Transducer

Intuitively, T col recognizes the transitive closure R+(T ), i.e., it accepts each pair of
words related by Ri(T ) for some i ≥ 1. Recall that a pair of words (x, x′) belongs to
Ri(T ) if x can be rewritten to x′ using i successive runs of T . Each such sequence
of i runs of T is simulated by a single run of T col. Figure 8 shows a single run of
T col that simulates the effect of the sequence of runs ρ1, ρ2, ρ3, ρ4 (in that order) in
Fig. 5. The states of T col, called columns, are sequences of states inQ (recall thatQ
is the set of states in the transducer T ). The run in Fig. 8 uses six columns, namely
x0, . . . , x5, each of which is of height 4. In general, T col uses columns of height i

Fig. 8 A run of the column transducer that simulates the four runs in Fig. 5
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to create a (single) run that accepts a pair of words in Ri(T ). Such a run will be of
length k where k is the length of the words in the accepted pair. For instance, the
run in Fig. 8 is of length 5. The transitions between the columns of T col are labeled
by pairs of symbols that reflect the total effect of the corresponding transitions in
the underlying runs of T . For instance, the first transition (between the columns x0
and x1) is labeled by (t, n) corresponding to the labels of the first transitions in the
runs ρ1, ρ2, ρ3, ρ4. These labels are (t, n) followed by (n,n) (three times) with the
total effect of rewriting t to n. Also, the second transition (between the columns x1
and x2) is labeled by (n,n) corresponding to the labels of the second transitions in
the runs ρ1, ρ2, ρ3, ρ4. These labels are (n, t) follows by (t, n) followed by (n,n)
(twice) with the total effect of rewriting n to n. Formally, starting from T , we con-
struct the (infinite-state) transducer T col = (Qcol, qcolinit ,�

col,F col) where

• Qcol =Q+ is the set of non-empty sequences of states of T .
• qcolinit = q+init ⊆Qcol is the set of non-empty sequences of the initial state of T .

Notice that the set of initial states of the column transducer is infinite.
• �col ⊆Qcol × (Σ ×Σ)×Qcol is defined as follows: for any columns x1 =
q1q2 · · ·qm and x2 = r1r2 · · · rm, and pair (a, a′), we have (x1, (a, a

′), x2) ∈�col

if there exist a0, a1, . . . , am with a = a0 and a′ = am such that qi
(ai−1,ai )−→T ri for

1≤ i ≤m.
• F col is the set F+ of non-empty sequences in accepting states of T .

It is easy to see that T col accepts exactly the relation R+(T ): runs of transitions from
qiinit (i.e., columns consisting of i copies of qinit) to columns in F i (i.e., columns
consisting of i states in F ) accept pairs of words that belong to the relation Ri(T ).

Quotienting

The problem is that the column transducer has infinitely many states, and therefore
it cannot be built explicitly. Instead, we perform quotienting based on an equiv-
alence relation A that we define on the set Qcol of columns of T col. We define
A in several steps as follows. A state q ∈Q is left-copying if whenever there ex-

ists a run qinit
(a0,a

′
0)−→T q1

(a1,a
′
1)−→T · · ·

(an−1,a
′
n−1)−→T qn with qn = q , then ai = a′i for all

i ∈ {0,1, . . . , n− 1}. A right-copying state is defined in a similar manner. In other
words, prefixes of left-copying states only copy input symbols to output symbols,
and similarly for suffixes of right-copying states. In Fig. 4(b), the states qL and qR
are left- and right-copying respectively. We use Qcopy to denote the set of states
that are either left- or right-copying. Two columns are equivalent if they can be
made equal by ignoring repetitions of identical neighbors which are either left- or
right-copying. For instance the columns qLqLxqR and qLxqRqR are equivalent.
Formally, each equivalence class of A is a set denoted by a regular expression of the
form e1e2 · · · en where each ei is one of the following:

1. q+L , for some left-copying state qL,
2. q+R , for some right-copying state qR ,
3. q , for some state q which is neither left-copying nor right-copying.
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Furthermore, we require that two consecutive ei can be identical only if they are nei-
ther left-copying nor right-copying. For a column x, let [x]A denote the equivalence
class for x. We will use X, Y , etc. to denote equivalence classes of columns.

Having defined the equivalence relation A on Qcol, we define a quotient trans-
ducer T • = (Q•, q•init,�

•,F •) where

• Q• ⊆Qcol/A is a set of equivalence classes of columns.
• q•init = q+init is the initial equivalence class (assuming that the initial state is left-

copying, this will be one equivalence class of A).
• �• ⊆ Q• × (Σ × Σ) × Q• is defined in the natural way as follows. For

any columns x, x′ and symbols a, a′, if (x, (a, a′), x′) ∈ � then ([x]A, (a, a′),
[x′]A) ∈�•.

• F • = F col/ A is the partitioning of F col with respect to A (if the final states
are right-copying then F col is a union of equivalence classes).

We will try to build a quotient transducer that accepts the same relation as T col (i.e.,
R+(T )). Since the transitive closure of R(T ) does not need to be recognizable by a
finite-state transducer, a finite-state quotient transducer T • does not necessarily ex-
ist. We introduce a procedure that aims at building T • (Procedure 2) hoping that the
procedure terminates in the cases where T • is finite. The procedure uses two defini-
tions. First, for a state q ∈Q, we define q⊕ := q+ if q ∈Qcopy, and define q⊕ := q
otherwise. Second, we define the operator � as the natural concatenation operator
on equivalence classes: [x]A � [y]A = [x · y]A, where · denotes concatenation of
columns. It is easy to check that this operation is well-defined. More precisely, let
the equivalence classes be represented by their defining regular expressions. Then
(e1 · · · en)� (f1 · · ·fm) corresponds to e1 · · · en ·f1 · · ·fm, except when en and f1 are
both equal to q+ for some left- or right-copying state q , in which case the expression

becomes e1 · · · en · f2 · · ·fm. For equivalence classes X and Y , we write X
(a,b)−→• Y

to denote that either (i) x
(a,a′)−→T y, X = x⊕, and Y = y⊕; or (ii) there are X1, X2,

Y1, Y2, and b such that X =X1 � X2, Y = Y1 � Y2, X1
(a,b)−→• Y1, and X2

(b,a′)−→• Y2.
Our proposed procedure (Procedure 2) incrementally adds new equivalence

classes to Q•, and new transitions to �•, and hence the accepted relation will be
successively larger subsets of the relation R+(T ). During the algorithm, we main-
tain a set W of equivalence classes that we have detected (that are reachable from
q+init) but whose successors have not yet been computed. The set W is initialized to
contain q+init (line 1). The algorithm starts iterating until we reach a point where the
set W is empty (line 2). During each iteration, we pick and remove an equivalence
class X from W . If X has not yet been analyzed (its successors have not yet been
computed), then we add all its successors to the set W (line 7), and add all its out-
going transitions to the set �• (line 8). Furthermore, if it is a final state we will add
it to the set F •.
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Procedure 2 RMC with Acceleration
Input: Transducer T = (Q,qinit, t,F )

Output: Transducer T • = (Q•, q•init,�
•,F ) such that R(T •)=R+(T )

1: q•init ← q+init; Q
• ← ∅; �• ← ∅; F • ← ∅; W ←{q+init}

2: while W �= ∅ do
3: pick and remove some X ∈W
4: if X /∈Q• then
5: Q• ←Q• ∪ {X}
6: for all a, a′, Y :X (a,a′)−→• Y do
7: W ←W ∪ {Y }
8: �• ←�• ∪ {(X, (a, a′), Y )}
9: if Y ∈ F+/A then

10: F • ← F • ∪ {Y }
11: end if
12: end for
13: end if
14: end while

Fig. 9 The transitive closure
of T as computed by the
algorithm

Example

Figure 9 shows the result of applying our algorithm to the transducer of Fig. 4(b).
Below, we describe the main steps.

• First, add q+L to W .
• Select q+L from W .

– Since q+L
(t,n)−→• q , add q to W , and add (q+L , (t, n), q) to �•.

– q+L
(t,n)−→• q and q+L

(n,n)−→• q+L gives q+L
(t,n)−→• qq+L . Add qq+L to W , and add

(q+L , (t, n), qq
+
L ) to �•.

• Select q from W . Since q
(n,t)−→• q+R , add q+R to W , and add (q, (n, t), q+R ) to �•.

Since q+R ∈ F/A add q+R to F •.
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• Select q+R from W . Since q+R
(n,n)−→• q+R , add q+R to W (since q+R has already been

added to Q•, this copy of q+R will be discarded when later selected from W ) and
add (q+R , (n, t), q

+
R ) to �•.

• Select qq+L from W :

– q
(n,t)−→• q+R and q+L

(t,n)−→• q gives qq+L
(n,n)−→• q+R q . Add q+R q to W , and add

(qq+L , (n,n), q
+
R q) to �•.

– q
(n,t)−→• q+R and q+L

(t,n)−→• qq+L gives qq+L
(n,n)−→• q+R qq

+
L . Add q+R qq

+
L toW , and

add (qq+L , (n,n), q
+
R qq

+
L ) to �•.

• Select q+R q from W . q+R
(n,n)−→• q+R and q

(n,t)−→• q+R gives q+R q
(n,t)−→• q+R . Add q+R

to W (this copy of q+R will be discarded when later selected from W ), and add
(q+R q, (n, t), q

+
R ) to �•.

• Select q+R qq
+
L from W :

– q+R q
(n,t)−→• q+R and q+L

(t,n)−→• qq+L gives q+R qq
+
L

(n,n)−→• q+R qq
+
L . Add q+R qq

+
L to

W (this copy of q+R qq
+
L will be discarded when later selected from W ), and

add (q+R qq
+
L , (n,n), q

+
R qq

+
L ) to �•.

– q+R
(n,n)−→• q+R and qq+L

(n,n)−→• q+R q gives q+R qq
+
L

(n,n)−→• q+R q . Add q+R q to W
(this copy of q+R q will be discarded when later selected from W ), and add
(q+R qq

+
L , (n,n), q

+
R q) to �•.

Figure 9 shows the final automaton. Its language is (n,n)∗(t, n)(n,n)∗(n, t)(n,n)∗
which is exactly the transitive closure of the language of the transducer in Fig. 4.
Computing intersection is easy, so now the safety property is checked by checking
whether (I ◦ R∗(T )) ∩ B = ∅. Notice that this equality holds in the case of our
running example. For the full details of the method, we refer the reader to [5].

21.4 Monotonic Abstraction

Regular model checking is an elegant uniform framework in which one can im-
plement a wide class of techniques. However, it is often necessary to complement
it with other techniques in order to make it useful in practice. A limiting factor
in the application of transducer-based techniques is the difficulty of computing the
transitive closure. As we noticed in the previous section, computing the transitive
closure is necessary to solve verification problems such as checking safety prop-
erties. However, we saw that such a computation is not guaranteed to terminate in
general. Also, the transitive closure may be onerous to compute since it may rely
on expensive automata-theoretic constructions. One way to increase the efficiency
is to use over-approximations of system behavior. The idea is that we derive a new
system which we call the abstract system such that the behavior of the abstract sys-
tem over-approximates the behavior of the original system (the latter is called the
concrete system). The advantage of such an approach is that it may be possible to
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analyze the abstract system more efficiently compared to the concrete system. The
price we pay is that we lose some precision. More precisely, the abstract system may
contain false positives, i.e., violations of the given safety property that do not actu-
ally exist in the concrete system. Notice that the method is still sound in the sense
that if the abstract system satisfies a safety property, then we can conclude that the
concrete system also satisfies the property. In this section, we give an example of an
over-approximation which produces an abstract model that is a well quasi-ordered
transition system. This allows us to apply the methodology of [2] to the abstract
system in the same way as we did in Sect. 21.2.

To illustrate the idea, we consider a new class of parameterized systems where the
processes are organized as a linear array. The class includes a new feature, namely
that transitions of a process may be constrained by global conditions, i.e., the pro-
cess may have to check the states of all the other processes before performing the
transition. Although global conditions are often difficult to analyze, they are an im-
portant feature in the behavior of several classes of parameterized systems (such as
mutual exclusion protocols). To describe the transitions of the system we will often
talk about the active process, i.e., the process that is about to perform the next transi-
tion, and talk about the left/right context of the active process, i.e., all the processes
to the left/right of the active process in the configuration. A global transition is either
universally or existentially quantified. An example of a universal condition is that
all processes in the left context of the active process should be in certain states. In
an existential transition we require that some (rather than all) processes should be in
certain states. A parameterized system with universal conditions is able to simulate
counter machines (Minsky machines) and therefore all non-trivial verification prob-
lems for them are undecidable. Again, we will leave the details of the undecidability
proof as an exercise for the reader. In fact, this class of systems can also be modeled
and analyzed using transducers as we did in Sect. 21.3. However, we concentrate
here on a verification method based on using over-approximations.

21.4.1 Example

We introduce our method through a protocol that implements mutual exclusion
among an arbitrary number of processes. Each process (depicted in Fig. 10) has
four states, namely the idle (I), requesting (R), waiting (W), and critical (C) states.

Initially, all the processes are idle (in state I). When a process becomes interested
in accessing the critical section (state C), it declares its interest by moving to the re-
questing state R. This is described by the global universal transition rule t1 in which
the move is allowed only if all other processes are in their idle or requesting states.
The universal quantifier labeling t1 encodes the condition that all other processes
(whether in the left or the right context of the active process—hence the index LR
of the quantifier) should be I or R. In the requesting state, the process may move to
the waiting state W through the local transition t2 (the transition is local in the sense
that the process does not need to check the states of the other processes). Notice
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Fig. 10 One process in the
mutual exclusion protocol
with linear topology

that any number of processes may cross from the idle state to the requesting state.
However, once the first process has crossed to the waiting state, it “closes the door”
on the processes which are still in their idle states. These processes will no longer be
able to leave their idle states until the door is opened again (when no process is in W
or C). From the set of processes that have declared interest in accessing the critical
section (those that have left their idle states and are now in the requesting or waiting
states) the leftmost process has the highest priority. This is encoded by the universal
transition t4 where a process may move from its waiting state to its critical section
subject to the universal condition that all processes in its left context are idle. If the
process finds out that there are other processes that are requesting, in their waiting
states, or in their critical sections, then it loops back to the waiting state through the
existential transition t3. Once the process leaves the critical section, it will return
to the requesting state through the local transition t5. In the requesting state, the
process chooses either to try to reach the critical section again, or to become idle
(through the local transition t6).

21.4.2 Model

Since the system has a linear topology, its configurations are of the same form as
those in Sect. 21.3. More precisely, a configuration is represented as a word over
a finite alphabet representing the local states of the processes. In our example, this
alphabet is given by the set {I,R,W,C}. For instance the configuration IWCWR rep-
resents a configuration in an instance of the system with five processes that are in
their idle, waiting, critical, waiting, and requesting states in that order. The definition

of the transition relation
t−→ depends on the type of transition t (whether it is local,

existential, or universal). We will consider three transition rules from Fig. 10 to illus-

trate the idea. The local rule t2 induces transitions of the form WIRCR
t2−→ WIWCR.

Here the active process changes its state from requesting to waiting. The existential

rule t3 induces transitions of the form RIWCR
t3−→ RIWCR. The waiting process can

perform the transition since there is a requesting process in its left context. How-
ever, the same transition is not enabled from the configuration IIWCR, since there
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are no critical, waiting, or requesting processes in the left context of the process
trying to perform the transition. The universal rule t4 induces transitions of the form

IIWWR
t4−→ IICWR. The active process (in the waiting state) can perform the tran-

sition since all processes in its left context are idle. On the other hand, from the
configuration CIWWR, neither of the waiting processes can perform the transition
since, for each one of them, there is at least one process in its left context which is
not idle.

An initial configuration is one in which all processes are in their idle state. Ex-
amples of initial configurations are II and IIIII, corresponding to instances of
the system with two and five processes respectively. As mentioned above, the proto-
col is intended to guarantee mutual exclusion. The set of bad configurations consists
of all configurations that contain at least two processes in their critical sections. Ex-
amples of bad configurations are CRC and ICRCWC. As before, showing the safety
property amounts to proving that the protocol, starting from an initial configuration,
will never reach a bad configuration.

21.4.3 Over-Approximation

Given a parameterized system such as the one described above, we generate an
abstract system that (i) is an over-approximation of the concrete system, and (ii) in-
duces a well quasi-ordered transition system in the sense of Sect. 21.2. We define
an ordering on configurations where c1 3 c2 if c1 is a (not necessarily contiguous)
subword of c2. For instance, WC 3 RWICW. The relation 3 is a wqo by Higman’s
lemma [40]. The aim of our approximation is to produce a transition relation that is
monotonic with respect to 3 (thus satisfying the first of the five needed properties in
Sect. 21.2.4). We will first motivate why local and existential transitions are actually
monotonic.

Consider the local rule t2 and the induced transition c1 = IRC
t2−→ IWC= c2 in

which a process changes state from requesting to waiting. Consider the configura-
tion c3 = IWIRCR that is larger than c1. Clearly, c3 can perform the local transition

c3 = IWIRCR
t2−→ IWIWCR = c4 leading to c4 B c2. Local transitions are mono-

tonic, since the active process in the smaller configuration (the requesting process
in c1) also exists in the larger configuration (i.e., c3). A local transition does not
check or change the states of the passive processes; hence the larger configuration
c3 is also able to perform the transition, while maintaining the ordering 3.

Consider the rule t3 and the induced transition c1 = RIWCR
t3−→ RIWCR = c2.

Observe that the configuration c1 can be divided into three parts: the active process
in state W, the left context RI, and the right context CR. Furthermore, the left context
contains a witness (the process in state R) which enables the transition. Consider the
configuration c3 = IRIWCRC that is larger than c1. Again, the configuration c3 can
be divided into three parts: the active process in state W, the left context IRI, and
the right context CRC. Notice that the left and right contexts of the active process
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in c3 are larger than their counterparts in c1. In particular, the left context in c3
will also contain the witness. This means that c3 can perform the same transition

c3 = IRIWCRC
t3−→ IRIWCRC= c4 leading to c4 B c2.

Next, we motivate why universal transitions are not monotonic. Consider the

universal rule t4 and the induced transition c1 = IIWWR
t4−→ IICWR = c2. The

transition is enabled since all processes in the left context of the active process
satisfy the condition of the transition (they are idle). Consider the configuration
c3 = IRIRWWR. Although c1 3 c3, the universal transition t4 is not enabled from
c3 since the left context of the active process contains processes that violate the
condition of the transition. This means that universal transitions are not monotonic.

Since local and existential transitions are monotonic, they need not be approxi-
mated. Therefore, we only provide an over-approximation for universal transitions.

We define a new transition relation � such that
t−→⊆ t� for each transition t . If t

is local or existential, we define
t�:= t−→, i.e., � agrees with −→ on local and ex-

istential transitions. In order to deal with non-monotonicity of universal transitions,

we will define
t�, for a universal transition t , such that

t−→⊆ t�. Intuitively, we

perform
t� by first deleting all the processes violating the condition of the universal

rule, and then performing
t−→. This means for instance that we have a transition

of the form IRIRWWR
t4� IICWR. The reason is that we can first delete the two

processes in the requesting states, thus obtaining IIWWR, and then perform
t4−→

from IIWWR, which gives IICWR. The approximate transition relation � is also
monotonic with respect to universal transitions.

21.4.4 Backward Reachability Algorithm

We show that the transition system induced by the set of configurations and the
abstract transition relation � satisfies the five conditions needed for the applicabil-
ity of the backward reachability algorithm (as described in Sect. 21.2.4). First, the
ordering 3 is a wqo by Higman’s lemma (see above), and it can be checked (this
amounts to checking whether a finite word is a subword of another). The transi-
tion relation � is monotonic with respect to 3 as described above. For a finite set
Bad of configurations and an initial set Cinit of configurations (described, e.g., as
a regular expression), checking the emptiness of B̂ad ∩ Cinit amounts to checking
the emptiness of the intersection of two regular expressions. The only property that
remains to be shown is computability of the predecessor set. For a configuration c
and a transition rule t , we define Pre(t)(c) to be the set {c1, . . . , cn} which is the
generator of the set of configurations from which we can reach ĉ through one appli-

cation of
t� (in a similar manner to Sect. 21.2.4). The formal definition of how to

compute Pre(t)(c) can be found in [3]. Here, we give an informal explanation, and
will consider different transition rules in Fig. 10 to illustrate how to compute Pre.

For a local transition, we simply run this transition backwards on the active pro-
cess. For instance, for the local rule t5 in Fig. 10, we have Pre(t5)(IRW)= {ICW}.
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Fig. 11 Running the
backward reachability
algorithm on the example
protocol

In other words, the predecessor set is characterized by one configuration, namely
ICW. Strictly speaking, the set also contains a number of other configurations such
as IRCW. However such configurations are subsumed by the original configuration
IRW, and therefore for the sake of simplicity we will not include them in the set.

For existential transitions, there are two cases depending on whether a witness
exists or not in the configuration. Consider the existential rule t3 in Fig. 10. We
have Pre(t3)(RWC)= {RWC}. In this case, there is a witness (a process in state R) in
the left context of the active process. On the other hand, we have Pre(t3)(IWC) =
{RIWC,IRWC,WIWC,IWWC,CIWC,ICWC}. In this case there is no witness in the
left context of the active process. Therefore, we add a witness explicitly in each
possible state (R, W, or C), at each possible place in the left context of the active
process. Notice that the size of the new configurations (four processes) is larger
than the size of the original configuration (three processes). This means that the size
of the configurations generated by the backward algorithm may increase, and hence
there is a priori no bound on the size of these configurations.

For universal conditions, we check whether there is any process in the con-
figuration violating the condition. Consider the universal rule t4 in Fig. 10. Then
Pre(t4)(IRICW) = ∅ since there is a requesting process in the left context of
the potential active process (which is in the critical section). On the other hand,
Pre(t4)(IICW) = {IIWW} since all processes in the left context of the active pro-
cess are in their idle states.

Since the five needed properties are satisfied, we can now run the backward
reachability algorithm of Sect. 21.2.4 over our class of parameterized systems. We
show how the algorithm runs on our example (Fig. 11). We start with the generator
of the set of bad configurations, namely {CC}. The only transition that is enabled
backwards from a critical state is the one induced by the rule t4. Of the two pro-
cesses in CC only the left one can perform t4 backwards (the right process cannot
perform t4 backwards since its left context contains a process not satisfying the con-
dition of the quantifier): Pre(t4)(CC)= {WC}. From WC, two rules are enabled back-
wards (both from the process in state W): the local rule t2: Pre(t2)(WC)= {RC}; and
the existential rule t3: Pre(t3)(WC)= {RWC,WWC,CWC}. All three configurations in
Pre(t3)(WC) are subsumed by WC. One rule is enabled backwards from RC, namely
the local rule t5 from the requesting process: Pre(t5)(RC) = {CC}. Notice that the
universal transition t1 is not enabled from the requesting process, since there exists
another process (the process in state C) in the configuration that violates the condi-
tion of the quantifier. At this point, the algorithm terminates, since it is not possible
to provide any new configurations that are not subsumed by the existing ones.
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Since there is no initial configuration (with only idle processes) in ĈC∪ ŴC∪ R̂C,
the set of bad configurations is not reachable from the set of initial configurations
in the abstract system. Since −→⊆�, the set of bad configurations is not reachable
from the set of initial configurations in the concrete system either. For the full details
of the method, we refer to [3].

21.5 Compositional Reasoning for Parameterized Verification

In this section we present an abstraction-and-compositional-reasoning-based method
called the CMP Method (abbreviation for CoMPositional) that has been successful
in parametrically verifying safety properties for industrial-strength distributed pro-
tocols. Unlike the methods presented in the previous sections, this method does not
aim at full automation but rather at scalability. The key idea behind this technique
is to reduce replication in a parameterized system to a minimum using lightweight
but very coarse abstractions. The resulting abstract model is refined progressively
using manually supplied non-interference lemmas (or candidate invariants) until it
either passes the check or a real counterexample is found for the property under
verification. The beauty of the method is that it works with abstract models of the
smallest possible size and when the proof is done the invariants added by the user
don’t have to be inductive. Thus, it is scalable and keeps the burden on the user to a
minimum.

21.5.1 Parameterized Protocols

We will formalize our parameterized systems differently in this section so that they
correspond more closely to how systems are actually implemented in practice. A pa-
rameterized protocol P(N) is a protocol with N agents with unique identifiers (ids)
in NN = [1..N ]. A parameterized protocol is called symmetric if the behaviors of
the agents are similar and independent of their id value. More formally, let Ri de-
note the reachable states of P(N) in i steps and φ(1..M) be a safety property over
the agents 1..M , M ≤N . P(N) is symmetric if for all i ≥ 0 and M ≤N

∀s ∈Ri.s |= φ(1, ..,M) ⇒ ∀s ∈Ri.s |= ∀i1, .., iM.φ(i1, .., iM).
That is, if an indexed formula holds for one combination of agents then it

holds for every combination. Following the standard notation we write P(N) |=
φ(1, ..,M) if all reachable states of P(N) satisfy φ(1, ..,M) (that is, ∀i ≥ 0.∀s ∈
Ri.s |= φ(1, ..,M)). From the above definition of symmetry we have the following:

P(N) |= φ(1, ..,M) ⇒ P(N) |= ∀i1, .., iM.φ(i1, .., iM).
To keep the presentation clean we will use a simple model sufficient to express

cache coherence protocols, which were the motivating examples for this work, but



710 P.A. Abdulla et al.

the correctness of the CMP method depends only on the protocol being symmetric
and described with guarded commands.

Index Variables

Fix a set I of index variables for quantifying over process ids. When we write
T (i, j), we mean that i and j are the only index variables appearing free in I .

States

The state of a protocol consists of global and local variables that can hold either
Boolean values or process ids. A global variable (such as a directory entry) is a
scalar variable, and a local variable (such as a cache entry) is an array variable
indexed by process id. Formally, the state is determined by four sets of variables,
W,X,Y,Z, where variables in W are of Boolean type denoted by B, those in X are
of type NN → B, those in Y are of type NN and those in Z are of type NN → NN .
Note that the types of the variables are determined by the parameter N .

Expressions

An expression is made up of combination of the four basic expressions

w, y = i, x[i], and z[i] = j
where i, j ∈ I are index variables and w ∈ W,x ∈ X,y ∈ Y, z ∈ Z in the usual
fashion by taking their Boolean combinations and possibly quantifying out some
free index variables, that is, first-order formulas over the basic expressions. Observe
that we have not permitted expressions such as i ≤ j or z[i] ≤ z[j ] that introduce
asymmetry by making the index value significant. To keep the presentation simple
we avoid such expressions, but the method presented here can be generalized to
protocols like Bakery [49] or Szymanski’s mutual exclusion algorithm [65], which
do have them.

Assignments

An assignment is one of the four basic assignments

w := b y := i x[i] := b z[i] := j
where i, j ∈I , b is either true or false, and w ∈W,x ∈ X,y ∈ Y, z ∈ Z, together
with the quantified assignment

∀k.φ(k)⇒ [
v[k] := e]
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where v[i] := e is one of the basic assignments and φ(k) is an expression as de-
scribed above. The latter is just a set of conditional assignments: consider all pos-
sible assignments of values to index i, and for each such assignment, perform
v[i] := e if φ(i) is true.

Rules

A rule

rl(i, j) : ρ(i, j)→ a(i, j)

is a guarded command where rl is the rule name, ρ is an expression called the guard,
and a is a list of assignments called the action. Process indices i and j are the only
free index variables in ρ and a. We further assume that an action never assigns a
variable more than once. This rules out asymmetric assignments like ∀k.true⇒
y := k where the value received by y depends on the order in which the ∀ quantifier
is evaluated.

A rule set

rl : ∀i, j.ρ(i, j)→ a(i, j)

is just a compact notation for representing a set of identical rules differing only in
the indices. Defining transitions using rule sets ensures that all agents have the same
set of rules available.

Protocols

A protocol is a state transition system (S,Θ,T ), where S andΘ are the sets of states
and initial states and T ⊆ S × S is the transition relation given by a set of rule sets.
There is a transition from s to s′ if T contains a rule rl(p, q) : ρ(p,q)→ a(p,q)

for p,q ∈I such that s satisfies ρ(p,q) and s′ is the result of starting with s and
performing the assignments in a(p,q).

From these restrictions on expressions and assignments it is clear that the proto-
col P must be symmetric.

Safety Properties

A safety property is a first-order formula over the basic expressions defined above
in addition to equality expressions i = j over indices in I . We further assume no
index variable appears free in the safety property. A typical safety property for cache
protocols is the coherence property

∀i, j.i �= j ⇒ (
exclusive[i] ⇒¬exclusive[j ])
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Fig. 12 CMP(P, I ) for
protocol P (N) and property I

where exclusive[i] is a predicate over state variables of i such that exclusive[i] =
true means i has exclusive access to the data item. In practice, we usually see two-
indexed or three-indexed properties. For the rest of the chapter, we assume we have
two-indexed properties only. Note that there are no temporal operators in our notion
of safety properties.

21.5.2 The CMP Method

The CMP method consists of two basic steps—abstraction and strengthening—that
are applied iteratively to a protocol. The abstraction procedure used in CMP re-
tains detailed information on a small number of processes, and abstracts away the
remaining processes. Since our protocols are symmetric there is no loss of gener-
ality in focussing on processes 1 and 2.2 Given a symmetric protocol P with N
processors [1..N ] and a safety property ∀i, j ∈ [1..N ].I (i, j), the method is shown
in Fig. 12 below. We assume that the abstraction procedure A() is sound, that is, if
A(P #) |= A(I #(1,2)) then P # |= I #(1,2).

Except for step 7 of the algorithm in Fig. 12, which requires the user to add
lemmas (or expressions that are potentially invariants), all the other steps of the
CMP method are automatic. If the loop terminates normally, we conclude that I #

and consequently I are invariants of P ; see Sect. 21.5.2.4 for the justification. The
final I #(i, j) is the conjunction of the initial safety property I (i, j) with all the user-
added lemmas L(i, j). If the loop terminates via the exit (line 5), then either I or
one of the proposed lemmas L is not an invariant of the protocol, and the user must
back up and try again.

Remark 1 Note that the CMP method follows the abstract-and-refine paradigm but
it differs from predicate abstraction. The latter consists of enlarging the set of pred-
icates used in the abstraction operation so as to obtain finer resolution. The abstract
model ends up having a larger state space after each refinement step. But in CMP

2For three-indexed properties we would focus on processes 1, 2, and 3.
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the abstraction operation is unchanged. Rather, the refinement happens by strength-
ening of the protocol itself—that is, by a syntactic modification of the protocol code.
The abstract model has a smaller state space after each refinement step.

In the rest of the section we will describe in more detail the abstraction and
strengthening operations and prove that the CMP method is sound.

21.5.2.1 German’s Protocol

We will use German’s protocol, a well-known academic directory-based cache co-
herence protocol, to illustrate the different steps of the CMP method. In this dis-
tributed system, there is a collection of identical processors with ids drawn from
[1..N ] and a central directory that co-ordinates access to data items. A processor
can hold a data item d in E,S,orI , standing for exclusive access, shared access,
and invalid or no access, respectively. In the exclusive state, only processor i has
access to d , so it can modify it. In the shared state, other processors can access d as
well, so none of the sharers can modify it.

Each processor has three channels to the directory: Chan1, which carries re-
quest messages from processor to directory, Chan2, which carries grant messages
from directory to processor, and Chan3, which carries invalidate messages. The
difference between Chan2 and Chan3 is that the former carries responses from the
directory while the latter carries messages that are initiated by the directory.

We simplify this toy example further and assume there is only data item in the
system. So we can talk about the state of a processor i instead of the state of data
item d in i. If processor i wants to transition from state I to state S, then it sends a
ReqS message to the directory on Chan1. If no other processor holds the data item
then the directory responds with a GntS message on Chan2. In case processor j
has exclusive access then the directory first invalidates j ’s access by sending it an
Inv message on Chan3. Once j invalidates its access and sends back an InvAck
message, the directory sends a GntS to i. Transactions for gaining exclusive access
are similar except that more than one processor needs to be invalidated if there are
multiple sharers.

This is perhaps the simplest possible directory-based cache coherence protocol
and it has been studied widely using various types of model checkers including
Murphi [41]. The work presented has also been used in conjunction with Murphi to
verify the correctness of German’s protocol. The Murphi description is straightfor-
ward with states of processors modeled using arrays. The channels are also modeled
as arrays, i.e., Chan1 is modeled as an array Chan1[1..N ].

21.5.2.2 Abstraction

A sound abstraction is a procedure that transforms one protocol P into another pro-
tocol P̂ = A(P ), and transforms one property φ over states of P into another prop-
erty φ̂ = A(φ) over states of P̂ such that P̂ |= φ̂⇒ P |= φ. Apart from being sound,
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we make the additional requirement that the abstraction focuses on two processes 1
and 2 and abstracts the rest away.3

One such well-known abstraction is data type reduction [53], which reduces data
types with large or unbounded ranges to ones with small, finite ranges. Given a vari-
able v with a large range, say [1..L], it can be syntactically abstracted to a variable
v̂ with a small range {1,2, o} which retains two values, 1 and 2, and the rest of the
values are lumped into an abstract value o.

We denote the syntactic abstraction operation by Ared ; the abstract protocol
Ared(P ) is constructed via a data type reduction which retains a small number of
processors, say processors 1 and 2, and replaces the remaining processors 3, ..,N
with a single, highly nondeterministic process called the Other process. The ab-
straction process is a simple, syntactic procedure: any condition in the protocol code
involving processors 3, ..,N is replaced with true or false to over-approximate it de-
pending on whether it occurs in a positive or negative context. If it occurs in both
negative and positive contexts, then it is replaced with a nondeterministic Boolean
variable. A nondeterministic variable simply allows the model checker to try out
both true and false values during the verification and is just a convenient mecha-
nism to keep the description of the abstract model from becoming too large. Any
assignment to the state variables of [3..N ] is deleted. The abstraction Ared(φ) of a
safety property φ is defined similarly except that any condition involving proces-
sors 3..N in property φ is replaced with true, false, or a nondeterministic Boolean
variable as appropriate to conservatively under-approximate it. Data type reduction
is purely syntactic which means it is very fast to compute the abstract model.

This abstraction is best explained with an example. Consider the following rule
set from the Murphi description [41] of German’s protocol. This rule set is just a
collection of guarded commands indexed by a process id i ∈ NODE, where NODE is
the parameterized range [1..N ]:

rule set i : NODE; do
rule "RecvGntS"

Chan2[i].Cmd = GntS
==>
begin BODY endrule;

endruleset;

In our notation this would be

RecvGnts : ∀i ∈NODE.Chan2[i].Cmd =GntS→ BODY.

The action of the rule, called BODY, is left unspecified as we focus only on the
guard. We replace this rule set with N independent rules and apply data type reduc-
tion to each rule independently. For processors 1 and 2, the rules remain unchanged
(ignoring the effect of data type reduction on the body of the rule). That is, the rules

3Generalization to more than two processes is simple.
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for processors 1,2 would be given by

RecvGnts : ∀i ∈ [1,2].Chan2[i].Cmd =GntS→ BODY.

But for processors i > 2 the abstracted rule becomes

AbsRecvGntS : true→ BODY ′.

This is because the condition Chan2[i].Cmd =GntS refers to the state variable of
an abstracted process and it is conservatively over-approximated to true. Thus, after
applying data type reduction to the rule set we will end up with two rule sets: the
abstract rule shown above and a rule set identical to the original rule set except that
the quantifier i ranges over [1..2]. The example gives a flavor of the syntactic nature
of data type reduction and it should be clear that the abstract rules obtained from
data type reduction are sound abstractions.

Theorem 1 The abstraction Ared is sound for φ(1,2) for every expression φ(i, j):

Ared(P ) |=Ared
(
φ(1,2)

) ⇒ P |= φ(1,2).
We refer the reader to McMillan [53] and Krstic [46] for a more detailed treatment
of data type reduction.

21.5.2.3 Strengthening

A strengthening is a procedure that transforms one protocol P into another protocol
P # = strengthen(P,ψ) by replacing each guarded command ρ→ a of P with the
guarded command ρ ∧ ψ→ a whose guard has been strengthened by ψ . Given a
property φ, a strengthening is said to be sound for φ if it satisfies the property

P # |= φ⇒ P |= φ.
Returning to the abstraction of the RecvGntS rule set, the abstract rule is clearly

too abstract. The guard true does not constrain the Other process in any way. This
leads to spurious counterexamples, and to eliminate such counterexamples, CMP
depends on user-provided non-interference lemmas. Suppose we have the following
lemma that we think might be useful:

∀p, i ∈NODE.Chan2[i].Cmd =GntS⇒ (
i �= p⇒ Cache[p].State �=E)

.

This lemmas says if process i has an incoming grant share access message (GntS)
then all other agents p �= i must be in non-exclusive states. Strengthening the proto-
col with this lemma—applying it to the RecvGntS rule set—and abstracting, we get
the following rule set for the concrete processors:

RecvGntS : ∀i ∈NODE.Chan2[i].Cmd =GntS∧
∀p ∈NODE.i �= p⇒ (

Cache[p].State �=E)→ BODY
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and the following rule set for the abstracted process

AbsRecvGntS : ∀p ∈ [1,2].((Cache[p].State �=E)→ BODY ′
)
.

Note that the abstract rule now has a meaningful guard and thus the abstract rule is
more refined than previously. Further, no new state is added to the abstract model
during the refinement. Only the set of transitions is pruned. This process is continued
iteratively by adding more and more lemmas until either a real counterexample is
found or all the lemmas and the property of interest are proved.

21.5.2.4 Correctness

Like other assume-guarantee style methods [1, 20, 46, 52, 55], the CMP method
seems circular. In particular, the strengthening operation modifies the protocol by
assuming the very invariant we want to prove. The following lemma proves that this
circularity can be broken by induction over time.

Lemma 1 Let Ri be the states of P reachable within i steps, and let P # =
strengthen(P,ψ). If

∀i.(∀s ∈Ri.s |= φ) ⇒ (∀s ∈Ri.s |=ψ)
then P # |= φ implies P |= φ.

Proof Denote by R#
i the set of all states reachable in P # within i steps. We will

prove by induction on i that ∀s ∈Ri.s ∈R#
i and consequently ∀s ∈Ri.s |= φ.

For i = 0, if s is an initial state of P , then it is an initial state of P # as well. So
the base case for induction is true.

Assume that we have proved the inductive hypothesis for i = k. That is, ∀s ∈
Rk.s |= φ and ∀s ∈ Rk.s ∈ R#

k . We will prove that ∀s ∈ Rk+1.s |= φ and conse-
quently ∀s ∈Rk.s ∈R#

k .
Consider any state s′ ∈Rk+1 reachable from s ∈Rk via a rule ρ→ a. For the rule

to fire we must have s |= ρ. By the inductive hypothesis, s ∈ R#
k as well. Moreover,

from ∀s ∈ Rk.s |= φ and the condition ∀i.(∀s ∈ Ri.s |= φ)⇒ (∀s ∈ Ri.s |= ψ) we
have ∀s ∈ Rk.s |= ψ . Consequently, we have s |= ψ . Putting all the facts together,
we have s is reachable in P # within k steps and the rule ρ ∧ψ→ a is enabled at s.
Therefore, s′ is reachable in P # within k + 1 steps. Since P # |= φ we immediately
have s′ |= φ. �

We use the phrase entailment to refer to the condition

∀i.(∀s ∈Ri.s |= φ)⇒ (∀s ∈Ri.s |=ψ).
It is because of this notion of entailment that our lemma for compositional reason-
ing given above differs subtly but significantly from the compositional reasoning
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principles considered by McMillan [52], Abadi and Lamport [1], Krstic [46], Bhat-
tacharya et al. [11] and Chen et al. [19]. In our case, in proving a property φ not
only can we assume φ, but also the “meta-consequence” ψ of φ. If φ⇒ ψ then ψ
is a logical consequence of φ and entailment clearly holds. But entailment can hold
even if ψ is not a logical consequence as in the case of symmetric systems. If prop-
erty I (1,2) holds for reachable states Ri then by symmetry I (3,4), I (4,5),.. must
hold for Ri as well. Properties I (3,4),.. are not logical consequences of I (1,2) but
are what we call meta-consequences of I (1,2). They follow from some higher-level
property of the system. It is clear the set of meta-consequences is much richer than
that of logical consequences and it frees up compositional reasoning to incorporate
domain knowledge, e.g., symmetry in our case. Note that ψ does not have to be
discharged explicitly once the entailment condition is established.

Theorem 2 Given a symmetric parameterized system P(N), a property ∀i, j.I ,
and a sound abstraction procedure A(), if CMP(P, I) terminates with a proof then
P(N) |= ∀i, j.I

Proof Since the protocol is symmetric, we have the entailment precondition

∀i.(∀s ∈Ri.s |= I #(1,2)
)⇒ (∀s ∈Ri.s |= ∀j, k.I #(j, k)

)

of Lemma 1. Thus,

A(P #) |= A(I #(1,2))⇒ P # |= I #(1,2)

by the soundness of abstractioni, and

P # |= I #(1,2)⇒ P |= I #(1,2)

by the soundness of strengthening (Lemma 1), and

P |= I #(1,2)⇒ P |= ∀j, k.I #(j, k)

by symmetry. �

The significance of this analysis is that it shows that CMP is sound for any ab-
straction procedure A() and not just data type reduction Ared . Prior work [20, 46]
proved

Ared(P
#) |=Ared

(
I #(1,2)

)⇒ P |= ∀i, j.I #(i, j)

with a single, complex proof that depended heavily on symmetry and the use of data
type reduction as the abstraction procedure. But the soundness of strengthening de-
pends only on entailment (the hypothesis of Lemma 1) which happens to be satisfied
by symmetric protocols. Realizing this, we can prove the soundness of strengthening
independently of the specific abstraction procedure being used.
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Remark 2 Note that, unlike the usual counterexample-guided refinement ap-
proaches, CMP requires the abstract model be sound only for I #(1,2) and not for
the full property ∀i, j.I #(i, j). This means the abstraction can record much less
information and thus scale to larger examples.

21.5.3 Evolution of the CMP Method

Compositional reasoning has been recognized as a natural way to decompose proofs
of systems made of up multiple components, both for manual and machine-assisted
proofs. While there have been several assume-guarantee principles that avoided
circularities—that is, assuming the very property to be proved—most practically
useful ones necessarily have it. The earliest circular compositional-reasoning prin-
ciple was proposed by Chandy and Misra [55]. Abadi and Lamport [1] proposed
compositional-reasoning principles that could handle fairness assumptions in ad-
dition to the usual safety properties for systems with interleaving semantics. They
were also the first to use compositional reasoning in conjunction with decision pro-
cedures to automate proofs as far as possible.

McMillan [52] gave a compositional-reasoning principle that applies to syn-
chronous systems as well, that is, assumptions can constrain the system behavior in
the same cycle not just in the next cycle (as in interleaving semantics). In the same
paper and a later one [54], he showed how compositional reasoning and abstraction
can be combined to prove safety properties of complex parameterized systems using
the SMV model checker as a proof assistant. The work by McMillan [52, 54] and
subsequent formalization of it by Chou et al. [20] and Krstic [46] forms the basis
for the method presented here and the term CMP is broadly used to refer to them as
well.

Looking back at the definition of the CMP method in Fig. 12, in proving I (1,2)
we are assuming ∀i, j.I (i, j). This differs from other compositional-reasoning prin-
ciples, which can only assume I (1,2). Further, the CMP loop presented in Fig. 12
allows us to use any sound abstraction unlike the earlier works [20, 46, 52, 54] which
were all restricted to using data type reduction. Thus in its current state CMP is a
powerful method that allows any sound abstraction to be used within a very flexible
compositional-reasoning framework.

21.5.4 Applications

Because data type reduction retains only two processors and abstracts away the rest,
CMP can scale to very large protocols that cannot be handled by other methods.
In fact, the main bottleneck in the CMP method is not the model-checking time
but rather the effort required by the user to come up with non-interference lemmas.
Even this burden is significantly lower compared to theorem-proving methods such
as [57] because the invariants added by the user don’t have to be inductive.
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While several methods have been used to verify German’s cache coherence pro-
tocol, only two or three methods, all based on theorem proving, have been able to
verify the coherence property for the Flash cache coherence protocol. The CMP
method was one of the first to verify this protocol parametrically [20, 54]. The proof
described in [20] took just a few hours (of human user plus machine time) to finish
compared to theorem-proving-style efforts in [24, 57] which took a few days.

CMP has been used to verify the coherence property of an industrial-strength
cache protocol several orders of magnitude larger than even the Flash protocol [66].
The number of distinct message types in a cache protocol determines the number of
different states of each processor and also the number of different interleavings pos-
sible during execution. Thus, it is a good indicator of the cache protocol’s complex-
ity. German’s protocol, a small-sized protocol, has seven different message com-
mands. The flash protocol, which is a medium-sized protocol, has 16. The industrial
protocol considered in [66] has 54 different message types and consequently is or-
ders of magnitude more complex than even Flash. The proof required adding 25
non-interference lemmas over a period of a month. Only the CMP method has been
able to handle protocols of this size.

Even for this large industrial protocol, the model-checking time itself was only
4 to 5 hours per run, so the main bottleneck was the manual discovery of lem-
mas [56, 66]. In [67] Talupur and Tuttle describe a new way of deriving powerful
invariants from high-level information about protocols. They show how convergence
of the CMP loop can be accelerated using auto-generated lemmas. The resulting
augmented CMP method places significantly less burden on the user than the plain
CMP method. The LCP protocol considered in [56] is comparable in size to the
cache protocol considered in [66] but its proof using the augmented CMP method
required only five manually discovered lemmas. This extension is crucially depen-
dent on the ability to use richer abstractions than just data type reduction. Thus, the
CMP method as presented here forms the basis for powerful techniques for param-
eterized verification.

Finally, the CMP method is not just for distributed protocols—though these per-
haps are the most challenging and practically relevant examples. It can be used for
other types of parameterized systems. In fact, one of the first applications of this
method was to verify Tomasulo’s Out of Order execution algorithm [52]. There are
several possible extensions to this method. Though we have dealt with message
passing systems, the same method works well for shared-memory systems such as
concurrent software. For instance, in [61] intricate concurrent list data structures are
formally verified using the CMP method. Since the CMP method cleanly separates
strengthening from abstraction and the only requirement on abstraction is that it be
conservative, an interesting research direction would be to try using richer abstrac-
tions to further reduce the burden on the user.

21.6 Related Work

Backward reachability analysis based on well quasi-orderings was first introduced
in [2].
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The RMC framework was first introduced in [45] and then augmented with tech-
niques such as widening [13, 17, 69], abstraction [14–16], and acceleration [5].

A method of particular interest for parameterized systems is that of counter ab-
straction. In general, counter abstraction is designed for systems with unstructured
or clique architectures. The idea is to keep track of the number of processes that
satisfy a certain property. The technique in [38] generates an abstract system which
is essentially a Petri net. Counter-abstracted models with broadcast communication
are proved to be well quasi-ordered in [36]. In [25, 26] symbolic model checking
based on real arithmetics is used to verify counter-abstracted models of cache coher-
ence protocols enriched with global conditions. The method works without guaran-
tee of termination. The paper [59] refines the counter abstraction idea by truncating
the counters at the value of 2, and thus obtains a finite-state abstract system. The
method may require manual insertion of auxiliary program variables for programs
that exploit knowledge of process identifiers. In [44] and [68], the authors present
a tool for the analysis and verification of linear parameterized hardware systems
using the monadic second-order logic on strings.

Other methods are based on cut-off conditions under which parameterized ver-
ification can be performed by inspecting only a finite number of system instances.
In [33], cut-offs are introduced for token-passing rings, and [29, 31, 32] define cut-
offs for systems with disjunctive or conjunctive guards. The paper [4] describes a
method, called view abstraction, that can be used during the verification procedure
in order to dynamically detect cut-off points beyond which the search of the state
space need not continue. The invisible invariants method [9, 58] exploits cut-off
properties to check invariants for mutual exclusion protocols such as the Bakery al-
gorithm and German’s protocol. The success of the method depends on the heuristic
used in the generation of the candidate invariant. This method sometimes (e.g., for
German’s protocol) requires insertion of auxiliary program variables for complet-
ing the proof. In [10] finite-state abstractions for verification of systems specified
in WS1S are computed on the fly by using the weakest precondition operator. The
method requires the user to provide a set of predicates on which to compute the
abstract model. Heuristics to discover indexed predicates are proposed in [48] and
applied to German’s protocol as well as to the Bakery algorithm. Environment ab-
straction [23] combines predicate abstraction with counter abstraction. The tech-
nique is applied to the Bakery and Szymanski algorithms.

Other approaches tailored to snoopy cache protocols modeled with broadcast
communication are presented in [32, 51]. In [30] German’s directory-based proto-
col is verified via a manual transformation into a snoopy protocol. In [60] a pa-
rameterized version of the Java meta-locking algorithm is verified by means of an
induction-based proof technique which requires manual strengthening of the mutual
exclusion invariant.

Many induction-based methods were proposed in [18, 21, 45, 47, 50, 62, 70].
In the approaches of [18, 47, 70], the correctness property as well as the induc-
tive invariant are specified as separate processes. In these methods the invariant is
specified by the user.
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In [21], the authors employ abstract transition systems (ATSs) to specify the in-
variant. An abstract transition system consists of abstract states and transitions be-
tween the abstract states. An abstract state is specified by a regular expression or
automaton that denotes a predicate on the global states of systems with an arbitrary
number of processes. This approach applies to a large class of networks, i.e., those
generated by context free grammars.

In [45], the authors consider parameterized verification of linear and tree net-
works of processes. They employ regular and tree regular sets for specifying in-
variance properties of global states and provide an invariant-based method for ver-
ification; the invariants are specified symbolically using BDDs and are generated
automatically. Their method pertains to verification of invariance properties only.

In [50], a method for verification of families of linear networks is presented.
This method uses observer processes as network invariants that are also generated
automatically; this method can only be used for verification of safety properties.

In [62] the authors consider families of networks generated by context free gram-
mars. In their approach, the invariant is defined by requiring it to be equivalent to
every system of processes generated by the grammar. This is a stronger requirement
on the invariant.

In [63], automata on two-dimensional strings have been proposed for expressing
correctness properties as well as invariants on computations of parameterized linear
networks. An iterative technique for automatically generating the invariant for such
families of networks was proposed. This technique can be used for verifying prop-
erties under fairness assumptions and hence can be used for both safety and liveness
properties. A tool based on the technique was developed and was successfully used
for some examples. Fully automated methods have also been proposed in [34] for
client-server type architectures. [27] describes a method for automatic verification
of ad hoc networks.

Symmetry reduction (see [22, 35, 42]) is an area of research that sometimes em-
ploys similar techniques to those employed in parameterized verification. This area
of research exploits symmetries in the system to reduce the size of the global state
space to be explored. In the model we considered in Sect. 21.2, the principle of
“counting the processes in given states” has also been exploited in symmetry reduc-
tions. While in symmetry reductions we basically concentrate on verifying a system
of fixed size, in parameterized verification we are concerned with verifying systems
of all sizes. The relationship between these two areas for other topologies needs
further investigation.

Surveys on parameterized verification can be found in [7, 12, 71].
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Chapter 22
Model Checking Security Protocols

David Basin, Cas Cremers, and Catherine Meadows

Abstract The formal analysis of security protocols is a prime example of a domain
where model checking has been successfully applied. Although security protocols
are typically small, analysis by hand is difficult as a protocol should work even when
arbitrarily many runs are interleaved and in the presence of an adversary. Specialized
model-checking techniques have been developed that address both the problems
of unbounded, interleaved runs and a prolific, highly nondeterministic adversary.
These techniques have been implemented in model-checking tools that now scale to
protocols of realistic size and can be used to aid protocol design and standardization.

In this chapter, we provide an overview of the main applications of model check-
ing in security protocol analysis. We explain the central concepts involved in the
analysis of security protocols: the abstraction of messages, protocols as role au-
tomata, the adversary model, and property specification. We explain and relate the
main algorithms used and describe systems based on them. We also give examples
of the successful applications of model checking to protocol standards. Finally, we
provide an outlook on the field: What is possible with the state of the art and what
are the future challenges?

22.1 Introduction

Cryptographic protocols are communication protocols that use cryptography to
achieve security goals such as secrecy, authentication, and agreement in the presence
of adversaries. Examples of well-known cryptographic protocols are SSL/TLS [44],
IKEv2 [59], and Kerberos [83], which can be used, respectively, to secure web-
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Fig. 1 Needham–Schroeder
protocol (NS)

based traffic, set up virtual private networks, and perform authentication in dis-
tributed environments. In order to ensure that such protocols always achieve their
goals, they are designed under the assumption that the network is completely con-
trolled by an adversary (also called the intruder or attacker). This means that the
adversary can intercept, redirect, and alter data, have access to any operation that is
available to legitimate agents, and even control one or more legitimate agents and
thus access their keys. Given the hostility of the intended environment, it is not sur-
prising that cryptographic protocols are difficult to design and are subject to subtle
flaws, even when the cryptographic primitives used, such as encryption and hash
functions, are themselves secure.

To give an idea of what can go wrong, consider Lowe’s often-cited attack [66]
on the Needham–Schroeder public key protocol [82]. The goal of the protocol is to
allow two parties to authenticate each other, i.e., after execution of the protocol they
can be sure that they have been communicating with the intended partner. The pro-
tocol achieves this by combining two challenge–response interactions. Agents can
execute the initiator role A or the responder role B . At the end of the protocol, the
initiator and the responder agree on a pair of shared secrets,NA andNB , whereNA is
a random number (or nonce) generated by the initiator and NB is a nonce generated
by the responder. The protocol relies on public-key encryption: anyone can send
a message to an agent X using X’s public key pk(X), but only X can decrypt it,
using its private key sk(X). We write {|M |}apk(X) to denote the (asymmetric) encryp-
tion of the message M with X’s public key. A message sequence chart describing
the protocol is shown in Fig. 1.

Let us go through the protocol steps and their rationale.

1. A→ B : {|A,NA |}apk(B)
The responder receives the initiator’s message and decrypts it. At this point, the
responder assumes that the initiator has indeed sent the message recently and
will try to confirm his assumption in the next two steps. The responder generates
a nonce NB .

2. B→A : {|NA,NB |}apk(A)
When the initiator receives this message, she decrypts it. Because the message
contains the nonce NA, which the initiator generated recently and sent encrypted
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Fig. 2 Lowe’s man-in-the-middle attack on the Needham–Schroeder protocol

for the responder, the initiator concludes that the message was indeed sent re-
cently by the responder.

3. A→ B : {|NB |}apk(B)
The last message is sent so that the responder can verify his assumptions. He
reasons that the message is recent, sinceNB is recent. Moreover, only the initiator
and the responder know NB , and the responder did not send the message. So the
message must come from the initiator. Finally, the initiator will have received
NB as part of the responder’s message that also contained NA, so she would not
have responded unless NA was also recently sent by the initiator.

Although this informal correctness argument may seem convincing, it suffers
from the following attack. Here i denotes the adversary and ia denotes the adver-
sary impersonating agent a. The corresponding message sequence chart is shown in
Fig. 2.

The attack proceeds in the following way.

1. a→ i : {|a,Na |}apk(i)
The agent a initiates the protocol in the initiator role, aiming to communicate
with i, and generates a fresh nonce Na .

2. ia→ b : {|a,Na |}apk(b)
The adversary i uses a’s nonce to impersonate a and initiates an instance of the
protocol with b, who executes the responder role.

3. b→ a : {|Na,Nb |}apk(a)
b responds to a correctly, generating his own nonce Nb in the process. Since a
sees the nonce she sent to i, she assumes the message is from i.

4. a→ i : {|Nb |}apk(i)
a responds to i, following the rules of the initiator role of the protocol.
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5. ia→ b : {|Nb |}apk(b)
i re-encrypts Nb under b’s public key and sends the result to b. Since b is ex-
pecting this response from a, he concludes that he shares Na and Nb with a and
a alone.

Since b thinks he is communicating with a, and neither a nor b deviate from the
protocol and their keys are not known to the adversary, b expects that Na and Nb
are only known to a and himself. Clearly, b’s assumption is violated by the attack.

There are two things to notice about this attack. First, it is nonintuitive: if one
looks closely, one sees that the security argument relies on the assumption that
agents do not reveal secrets, and that this assumption is violated by i when forward-
ing a’s nonce to b. Indeed, Needham and Schroeder explicitly make this assump-
tion in their paper. However, relaxing the assumption has surprising consequences,
as this attack makes clear. Second, the attack does not depend on any flaws in the
cryptographic primitives used and requires only a very simple adversary model. The
only operations on data that the adversary employs are concatenation and splitting
of messages, and encryption and decryption.

In general, we would like to establish the correctness of protocols with respect
to even more powerful, but realistic, adversaries. We typically also give the adver-
sary the ability to compute a limited set of functions on data. Namely, the adversary
can read, redirect, and delete any message sent along a network, impersonate any
agent, and create new messages by applying functions available to him to data he
has already seen. This results in a model that can capture a large class of potential
protocol problems. Such a model, which is both simple and expressive enough to
capture a large class of nonintuitive security flaws, lends itself well to model check-
ing. Hence it is not surprising that the analysis of protocols with respect to such
models has been a major application of model checking in security. Basically, one
uses the model checker to find all possible ways an adversary can interact with a
protocol by using arbitrary combinations of interception, redirection, and the other
basic operations available to him. The state space thus generated is of course infinite,
but as we will see, the problem is decidable under certain limiting but reasonable re-
strictions, and heuristics and abstraction techniques have been developed to reason
about the case in which the restrictions are not assumed.

Model checking cryptographic protocols is not just of intellectual interest. It
can do much to streamline the development and adoption of security standards.
New cryptographic protocols are constantly being invented as new communication
paradigms are introduced. Since a protocol must be widely adopted before it is use-
ful, new protocols are usually introduced through a standardization process. This
process can be drawn-out and argumentative, and standards can be difficult to mod-
ify once they are in place. Formal analysis can help speed up standardization by
finding problems early and giving evidence of security if no flaws are found. More-
over, it can also help prevent flawed protocols from being standardized. Finally,
model checking has the advantage that the counter-examples it finds depict actual
attacks on the protocol. This gives insight into a protocol’s vulnerabilities, and how
they can be fixed.
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We proceed as follows. In Sect. 22.2 we give a brief historical overview of the
field. Then, in Sect. 22.3, we describe a basic model for security protocols and their
properties. In Sect. 22.4 we give an overview of several issues that arise in model
checking security protocols, and approaches that have been taken to address them.
In Sect. 22.5 we describe representative systems based on these approaches. We
discuss current and future research questions in Sect. 22.6 and we draw conclusions
in Sect. 22.7.

22.2 History

In this section, we give a brief history of model checking cryptographic protocols.
The first symbolic approach to cryptographic protocol analysis, and the basis

of the methods used by current model-checking tools, was that of Dolev and Yao
[46, 47], and shortly later, Dolev, Even, and Karp [45], just after the invention of
public-key cryptography. They introduced the paradigm now known as the Dolev–
Yao model. In this model, a protocol is modeled as a machine consisting of an
arbitrary number of honest agents executing the protocol, in which all messages
sent are intercepted by the adversary (even if he does no more than forward them),
all messages received are sent by the adversary, and any message processing done
by the adversary is done using an arbitrary combination of a finite set of opera-
tions. The model also formalizes an abstraction of cryptography where messages
are represented by terms rather than bit strings and cryptography is “perfect” in the
sense that cryptographic operators do not leak information, e.g., the only way for
the adversary to decrypt an encrypted message is to have the decryption key.

The Dolev–Yao model is at the basis of all applications of model checking to
cryptographic protocols, although today’s protocol analysis tools take a very dif-
ferent approach than that taken originally. Dolev and Yao were interested in low-
complexity algorithms for proving secrecy, and gave several polynomial-time algo-
rithms for a class of protocols they characterized as “ping-pong” protocols. How-
ever, it turned out that the problem quickly became undecidable when the algebraic
properties of the cryptographic algorithms were represented more faithfully [52],
and interest in the problem petered out.

A few years later, researchers started tackling the problem from another point of
view, developing tools that would exhaustively search the problem space or some
portion of it. The first tool to take this approach was Millen’s Interrogator [78],
followed by the Longley–Rigby search tool [65] and the NRL Protocol Analyzer
(NPA) [71]. These can be thought of as proto-model checkers. Indeed the NPA of-
fered many features of a model checker, including an automated means of proving
that exhaustive search of a finite space implied exhaustive search of the infinite state
space, and later, a temporal logic language, NPATRL [96], for describing protocol
security properties.

Interest in model checking cryptographic protocols really took off with Lowe’s
use of the FDR model checker to analyze the Needham–Schroeder public-key pro-
tocol [66], described above. The fact that he could demonstrate a problem that had
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gone unnoticed for 17 years alerted people to the power of model checking. Other
researchers began applying their own model checkers to the problem, most notably
the use of the Murphi model checker by Mitchell et al. [80] to analyze variations
on the TLS protocol. From there it was a short step to the development of special-
purpose model checkers, such as Clarke et al.’s Brutus [35].

Parallel to this was research on the complexity of model checking. The key fea-
ture turned out to be the number of sessions involved, where a session refers to a
single (potentially partial) execution of the protocol. As we see from the attack on
the Needham–Schroeder protocol, attacks often interleave different sessions. Indeed
it is possible to create protocols that are only vulnerable to attacks that require inter-
leaving an arbitrarily large number of sessions [76]. In [48, 49], Durgin et al. show
that, given a model similar to the one described in this chapter, the secrecy problem
(that is, the problem of deciding whether or not the adversary learns a particular
term) is undecidable if the number of sessions and nonces is unbounded. Rusinow-
itch and Turuani [88] later showed that the secrecy problem is NP-complete if the
number of sessions is bounded. Moreover, their procedure applies more generally
to arbitrary state properties, and thus can also be applied to other reachability prop-
erties such as authentication.

The decidability of security for the bounded-session case led to the develop-
ment of bounded-session model checkers, in which the user specifies the number of
sessions the model checker should search. Bounded-session model checkers are of
practical significance, since most attacks on realistic protocols require only a few
sessions. Indeed, an attack that requires interleaving many sessions would not be
practical to implement. Bounded-session model checkers include Shmatikov and
Millen’s constraint based tool [79], the Constraint-Logic-based Attack Searcher
(CL-Atse) [98], the On-the-Fly Model Checker (OFMC) [20], and the SAT-based
Model Checker SAT-MC [5]. The same period saw the development of unbounded-
session model checkers relying on abstraction (such as ProVerif [29]) and heuristics
(such as Maude-NPA [50] and Athena [94], the latter of which formed the basis for
the current tool Scyther [42]). We present these tools in more detail in Sect. 22.5.

In recent years, as the field matures, researchers are increasingly concentrating
on making the tools available for others to use, and are applying them to practical
problems such as the verification of standards. Some of the tools that have seen the
widest use are the AVISPA tool suite [4, 100], which is a set of model checkers
(the above-mentioned CL-Atse, SAT-MC, and OFMC), with a common front end,
and the above-mentioned ProVerif tool. Many tools have been used in the analysis
of standards, sometimes detecting problems that would have gone unnoticed oth-
erwise. For example, the NPA was used in the verification of two IETF protocols:
the Internet Key Exchange Protocol [72] and the Group Domain of Interpretation
(GDOI) protocol [74]. In the case of GDOI, the tool was instrumental in catching
some vulnerabilities early on that were straightforward to fix at the design stage
but could have led to problems if they had not been caught in time. The AVISPA
tools have been applied to a suite of protocol standards. ProVerif has been used in
the production of formally verified implementations of TLS [27] and the smart card
protocol InfoCard [28]. Scyther has been used in the analysis of the MQV family
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of protocols [16], and has found attacks against members of that family when the
adversary is able to compromise parts of the local state of the agents. Furthermore,
Scyther has been used for the analysis of the entity authentication protocols in the
ISO/IEC 9798 standard [17] and the IKE key exchange protocols in the IPsec stan-
dard [43].

Ultimately, we would expect model checking to become a standard tool for cryp-
tographic protocol design, as it has become in hardware design. This has not quite
happened yet. Although model checking has proved useful in the analysis of stan-
dards, it has not yet become part of the standards designer’s basic toolbox. However,
designers of new protocols are starting to accompany them with formal analyses.
The field is still actively growing and changing, and we would not be surprised to
see model checking being more widely adopted in the near future.

Although the basic decidability results and model-checking algorithms for what
is commonly accepted as the standard Dolev–Yao model are well understood, there
is still much to be learned, and there is currently active research going on in a num-
ber of areas. These include making the Dolev–Yao model more precise and expres-
sive, e.g., by including equational properties of cryptographic algorithms such as the
associativity-commutativity of exponentiation, and incorporating cryptographic the-
ories of correctness, reasoning about non-trace properties such as non-repudiation,
non-interference, and indistinguishability, extending soundness results down to the
code level, and handling probabilistic behavior. These topics will be discussed in
further detail in Sect. 22.6.

22.3 Formal Model

Each of the tools mentioned in the previous section is based on a formal model of
cryptographic protocols and the actions available to the adversary. Although these
models differ in their details, they have a number of important features in com-
mon, since they are all based on the Dolev–Yao symbolic approach presented in
Sect. 22.2. In this section we present a basic symbolic model (based on [16]) for
formalizing and reasoning about security protocols, which captures the main fea-
tures shared by these different models. We will use this model as a reference point
when we describe the different tools and approaches later in this chapter.

As the model is symbolic, messages are represented by terms in a term algebra.
Protocols themselves are described by a set of roles, each role with an associated
script that describes the sequence of events taken by the agents executing the role.
The protocols are given an operational semantics where agents may play in mul-
tiple roles, giving rise to arbitrarily many role instances (also called threads). This
gives rise to a semantics formalized by an infinite-state transition system, with an
associated notion of trace.

For expository purposes, we present a simple model that handles only a restricted
class of security protocols. We describe these restrictions along with extensions and
other design options. We also explain how basic security properties can be formal-
ized within this model.
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22.3.1 Notational Preliminaries

Let f be a function. We write dom(f ) and ran(f ) to denote f ’s domain and range,
respectively. We write f [a �→ b] to denote f ’s update, which is the function f ′
where f ′(x)= b when x = a and f ′(x)= f (x) otherwise. We write f :X �→ Y to
denote a partial function mapping some elements from X to elements from Y . We
write f n to denote the n-fold composition of f , for n≥ 0, where f 0 is the identity
function.

For any set S, P(S) denotes the power set of S and S∗ denotes the set of finite se-
quences of elements from S. We write 〈s0, . . . , sn〉 (omitting brackets when no con-
fusion can result) to denote the sequence consisting of the elements s0 through sn.
For s a sequence of length |s| and i < |s|, we write si to denote the i-th element. We
write sˆs′ for the concatenation of the sequences s and s′. Abusing set notation, we
write e ∈ s iff ∃i . si = e, and write set(s) for {x | x ∈ s}.

We use standard notions (see, e.g., [7]) for manipulating terms. Let Sub denote
the set of substitutions of terms for variables (we will define these syntactic cate-
gories shortly). We write [t0, . . . , tn/x0, . . . , xn] ∈ Sub to denote the substitution
of ti for xi , for 0 ≤ i ≤ n. We extend the functions dom and ran to substitutions.
We write σ ∪ σ ′ to denote the union of two substitutions, which is defined when
dom(σ )∩ dom(σ ′)= ∅. We write σ(t) for the application of the substitution σ to t .

For R a binary relation, we write R−1 to denote the inverse of R, i.e., R−1 =
{(y, x) | (x, y) ∈R}. Furthermore, R+ denotes the transitive closure of R.

22.3.2 Terms and Events

We assume we have the pairwise-disjoint infinite sets Agent, Role, Fresh, Var, Func,
TID, and AdvConst of agent names, roles, freshly generated terms (nonces, session
keys, coin flips, etc.), variables, function names, thread identifiers, and adversary-
generated constants.

In order to bind local terms, such as freshly generated terms or local variables, to
a protocol role instance (thread), we write t�tid . This denotes that the term t is local
to the protocol role instance identified by the thread identifier t id , where t id ∈ TID.

Definition 1 Basic terms

BasicTerm ::= Agent | Role | Fresh | Var | AdvConst

| Fresh�TID | Var�TID

Definition 2 Terms

Term ::= BasicTerm | (Term,Term)

| pk(Term) | sk(Term) | k(Term,Term)

| {|Term |}aTerm | {|Term |}sTerm | Func
(
Term∗

)
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For each X,Y ∈ Agent, sk(X) denotes the long-term private key of X, pk(X) de-
notes the long-term public key belonging to X, and k(X,Y ) denotes the long-term
symmetric key shared between X and Y . Moreover, {| t1 |}at2 denotes the asymmetric
encryption of the term t1 with the key t2, and {| t1 |}st2 denotes symmetric encryption.
Elements of the set Func can be used to model other cryptographic functions, such
as hash functions. Freshly generated terms and variables are assumed to be local to
a thread. We model constants as 0-ary functions.

Depending on the protocol analyzed, we assume that symmetric or asymmetric
long-term keys have been distributed prior to protocol execution. We assume the
existence of an inverse function on terms, where t−1 denotes the inverse key of t .
We have pk(X)−1 = sk(X), sk(X)−1 = pk(X) for all X ∈ Agent, and t−1 = t for
all other terms t .

As noted in the introduction, one of the distinguishing features of model checking
security protocols is that they operate in an environment controlled by an adversary.
To formalize the powers of a Dolev–Yao-style adversary, we define a binary rela-
tion ?, whereM ? t denotes that the term t can be inferred from the set of termsM .
Let t0, . . . , tn ∈ Term and let f ∈ Func. We define ? as the smallest relation satisfy-
ing:

t ∈M ⇒M ? t
M ? t1 ∧M ? t2 ⇔M ? (t1, t2)
M ? t1 ∧M ? t2 ⇒M ? {| t1 |}st2
M ? t1 ∧M ? t2 ⇒M ? {| t1 |}at2

M ? {| t1 |}st2 ∧M ? t2 ⇒M ? t1
M ? {| t1 |}at2 ∧M ? (t2)−1 ⇒M ? t1

∧

0≤i≤n
M ? ti ⇒M ? f (t0, . . . , tn)

Subterms t of a term t ′, written t 8 t ′, are defined as the syntactic subterms of t ′,
e.g., t1 8 {| t1 |}st2 and t2 8 {| t1 |}st2 . We write FV(t) for the free variables of t , defined
as FV(t)= {t ′ ∣∣ t ′ 8 t ∧ t ′ ∈ Var ∪ {v�tid | v ∈ Var ∧ t id ∈ TID}}.

An agent can engage in the following events.

Definition 3 Events

Event ::= create(Role,Sub) | send(Term) | recv(Term)

Note that the send and receive events do not include explicit sender or recipient
fields. The messages sent or received can, of course, include subterms identifying
the sender and the intended recipient, although this information is not a priori au-
thentic. As is standard, the adversary receives all messages sent, independent of the
intended recipient.
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Fig. 3 Simple protocol

We will explain the interpretation of the events shortly. Here we note that the
events are conventional and are given a standard interpretation in a setting with con-
currently executing, communicating processes: starting a thread, sending a message,
and receiving a message.

We extend the domain of substitutions over events and sequences of events in the
standard way, i.e., σ(send(m))= send(σ (m)).

22.3.3 Protocols and Threads

A protocol is a mapping from role names to event sequences, i.e., Protocol : Role �→
Event∗. We require that no thread identifiers occur as subterms of events in a proto-
col definition. The following is a very simple example of a protocol with two roles:
an initiator and a recipient.

Example 1 (Simple protocol) Let {Init,Recp} ⊆ Role, key ∈ Fresh, and x ∈ Var.
Let P be the protocol defined as follows.

P(Init)= 〈
send

(
Init,Recp,

{∣
∣ {|Recp, key |}ask(Init)

∣
∣
}a
pk(Recp)

)〉

P(Recp)= 〈
recv

(
Init,Recp,

{∣
∣ {|Recp, x |}ask(Init)

∣
∣
}a
pk(Recp)

)〉

The message sequence chart for this protocol is shown in Fig. 3. Here, the initia-
tor generates a key and sends it (together with the recipient’s name) signed and
encrypted, along with the initiator and recipient names. The recipient expects to
receive a message of this form.

Protocols are executed by agents who execute roles, thereby instantiating role
names with agent names. Agents may execute each role multiple times. We distin-
guish between the fresh terms and variables of each thread by assigning them unique
names, using the function localize : TID→Sub. Note that we abuse notation and
extend the domain of substitutions to Var ∪ Role∪ Fresh.

Definition 4 (Localize) Let t id ∈ TID. Then

localize(tid)=
⋃

cv∈Fresh∪Var

[cv�tid/cv].
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We define a function thread : (Event∗ × TID×Sub)→ Event∗ that yields the se-
quence of agent events that may occur in a thread.

Definition 5 (Thread) Let l be a sequence of events, t id ∈ TID, and let σ be a
substitution. Then

thread(l, tid, σ )= σ (localize(tid)(l)
)
.

Example 2 Let P be the protocol from Example 1, t1 ∈ TID, and {A,B} ⊆ Agent.
For a thread t1 performing the Init role we have localize(t1)(key)= key�t1 and

thread
(
P(Init), t1, [A,B/Init,Recp])

= 〈
send

(
A,B,

{∣
∣ {|B,key�t1 |}ask(A)

∣
∣
}a
pk(B)

)〉
.

22.3.4 Initial Adversary Knowledge

We assume that the adversary initially knows all agent names and can generate an
unbounded set of constants AdvConst, where AdvConst⊂ Func and no protocol de-
scription contains elements of AdvConst. The set AdvConst represents the set of
fresh values that are generated by the adversary. The adversary additionally knows
the long-term public keys of all agents. We also assume that the adversary has com-
promised the long-term private keys of some of the agents. We model this by par-
titioning the set Agent into the honest agent set Honest and the compromised agent
set Compromised. Moreover, we include the long-term private keys of the compro-
mised agents in the initial knowledge of the adversary.

The long-term secret keys of an agent a are defined as

LongTermKeys(a)= {
sk(a)

}∪
⋃

b∈Agent

{
k(a, b), k(b, a)

}
.

We define the initial adversary knowledge IK0 as

IK0 = Agent ∪ AdvConst ∪
⋃

a∈Agent

{
pk(a)

}∪
⋃

a∈Compromised

LongTermKeys(a).

22.3.5 Execution Model

We define the set Trace as (TID×Event)∗, which represents possible execution his-
tories. Using this set, we define the set State of system states as Trace×P(Term)×
(TID �→ Event∗). The components of a state (tr, IK, th) ∈ State are (1) a trace tr , (2)
the adversary knowledge IK, and (3) a partial function thmapping thread identifiers
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Fig. 4 Execution-model rules

of initiated threads (executing or completed) to event traces. Note that in conven-
tional model-checking approaches, (1) would not be part of the state but would be
defined over runs of the transition system. We include the trace as part of the state
to facilitate defining the partner function later.1

The initial system state sinit is defined as

sinit =
(〈〉, IK0,∅

)
,

where IK0 is the initial adversary knowledge as defined above.
The semantics of a protocol P ∈ Protocol is defined by a transition system whose

transitions are given by the rules in Fig. 4. Each rule describes how the execution of
one of the three events causes a state transition. We describe each rule in turn.
Execution-model rules. The create rule starts a new instance of a protocol role R
(a thread). In the premises, the substitution σ associates the role names dom(P )with
agents, and t id is a fresh thread identifier. In the state transition in the conclusion,
the successor state’s trace is extended, reflecting that the thread identified by t id
executed the create event, and the thread mapping (“thread pool”) is extended with
the thread assigned to t id .

The send rule sends a message m to the network. The premise refers to a thread
identified by t id , whose next event is to send the message m. In the conclusion, the
trace is updated with this event, the adversary knowledge is updated with m, and
thread for t id is updated.

Finally, the receive rule models an agent, running a thread, receiving a message
from the network. The message must match the message pattern pt under a substi-
tution σ , where pt is a term that may contain free variables. Note that by the second
premise, the adversary must be able to infer σ(pt) from his current knowledge IK.
One can see this as formalizing that the adversary controls the network and effec-
tively determines who receives which messages. In our model, recipients accept all
messages that match the message pattern pt , and block on any other messages. The
resulting substitution σ is applied to the remaining protocol steps l.

Definition 6 (Transition relation) Let P be a protocol. We define a transition rela-
tion →P using the execution-model rules from Fig. 4. For states s and s′, s→P s

′

1Actually there are a number of representation options here. For example, IK and th can be com-
puted directly from tr . We explicitly include them in the state to improve the readability of our
operational semantics.
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iff there exists an execution-model rule with the premisesQ1(s), . . . ,Qn(s) and the
conclusion s→ s′ such that all of the premises hold.

Given a protocol P and a set of states T , let PostP and PreP denote the successors
and predecessors of T , respectively, i.e.,

PostP (T )=
{
s′ ∈ State

∣
∣ ∃s ∈ T . s→P s

′}

PreP (T )=
{
s ∈ State

∣
∣ ∃s′ ∈ T . s→P s

′}.

Definition 7 (Reachable states) Let P be a protocol. We define the set of reachable
states of P as

Reachable(P )=
∞⋃

n=0

PostnP
({sinit}

)
.

We will see Pre and Post again when we discuss model-checking algorithms in
Sect. 22.4.

22.3.6 Property Specification

We focus on basic security properties that can be expressed as reachability proper-
ties, i.e., properties of reachable states. Because the adversary knows the long-term
private keys of the compromised agents, protocol sessions that involve compromised
agents cannot guarantee the secrecy of data such as shared keys or exchanged terms.
This is reflected in the definition of most security properties by considering only
those threads that do not involve compromised agents.

We introduce an auxiliary predicate HT (for honest thread) that identifies com-
pleted threads that do not involve compromised agents.

Definition 8 (HT) Let s = (tr, IK, th) be a state, t id a thread identifier, and σ a
substitution. We write HT(s, tid, σ ) to denote

∃R . (t id, create(R,σ )
) ∈ tr ∧ th(tid)= 〈〉 ∧ ran(σ )∩Compromised= ∅ .

For example, let s = (tr, IK, th) be the state reached after the attack trace
represented in Fig. 2. We have that both threads 1 and 2 are completed, i.e.
th(1) = th(2) = 〈〉, and the trace tr contains (1, create(A, [a, i/A,B])) and
(2, create(B, [a, b/A,B])). Hence we have that HT(s,2, [a, b/A,B]) but there ex-
ists no σ such that HT(s,1, σ ), because a in thread 1 starts a thread to communicate
with the compromised agent i.

Definition 9 (Secrecy) Let t ∈ Fresh. We say that a state s = (tr, IK, th) satisfies
secrecy of t if and only if

∀t id, σ .HT(s, tid, σ )⇒¬(IK ? (t�tid)) .



740 D. Basin et al.

We say that a protocol P ensures secrecy of t if and only all reachable states of P
satisfy secrecy of t .

For example, the protocol in Fig. 3 ensures secrecy of the initiator’s key. In con-
trast, the Needham–Schroeder protocol from Fig. 1 does not ensure secrecy of the
nonces.

Authentication is an important property for many security protocols, and numer-
ous notions of authentication have been proposed in the literature. As a simple exam-
ple, consider weak aliveness. This weak form of authentication guarantees only that
if a non-compromised agent completes a thread of the protocol under the assump-
tion that he is communicating with a non-compromised agent a executing role R,
then it is indeed the case that a previously started a thread in role R.

Definition 10 (Weak Aliveness) Let R be a role. We say a state s = (tr, IK, th)
satisfies weak aliveness of R if and only if

∀t id ′, σ ′ .HT
(
s, tid ′, σ ′

)⇒∃t id, σ . (t id, create(R,σ )
) ∈ tr ∧ σ ′(R)= σ(R) .

We say that a protocol P ensures weak aliveness if and only if all reachable states
of P satisfy weak aliveness of all roles R ∈ dom(P ).

For example, the Needham–Schroeder protocol from Fig. 1 satisfies weak alive-
ness.

Stronger forms of authentication (see, e.g., [67]) impose additional requirements
on the state. For example, they require that the threads’ assumptions on agents
match, e.g., by requiring σ = σ ′, or they place additional requirements on the ex-
changed messages or the instantiation of variables, or they require that messages are
recent. Some of these properties require instrumenting the model with additional
markers, such as labeling communications or introducing signal events to simplify
expressing agreement on the contents of variables.

22.3.7 Alternatives

We have intentionally kept our formalism simple to highlight the main ideas. At
each step along the way there are design options, reflecting the class of protocols
and adversaries one intends to capture.

To begin with, we have formalized cryptographic messages using a free term
algebra, where term equality is therefore just syntactic equality. Additional crypto-
graphic operators can be added, but this requires formalizing how the adversary can
construct and reason about terms built from them. In Sect. 22.6 we describe how
this can be done for operators formalized by sets of equations.

Our protocol roles are specified by straight-line sequences of events, without
control flow primitives such as branching or loops. This is sufficient to model many
security protocols, provided we ignore error cases, for example where a thread re-
ceives an unexpected message. Such cases are handled implicitly: no transition is
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enabled and hence the thread simply does not progress. In contrast, a richer execu-
tion model would be needed to fully model protocols that support multiple options
and subprotocols, such as the Internet Key Exchange (IKE) [54], or that require
loops, such as the stream authentication protocol TESLA [57, 86]. It is not difficult
to add control flow primitives or alternatively to base the execution model on a pro-
cess calculus or some transition-system formalism. We will give examples of tools
whose input languages are based on such formalisms in Sect. 22.5.

The simplicity and power of the Dolev–Yao adversary model has made it ex-
tremely popular. However, for many real-world scenarios an adversary who has
complete control of the network may be unrealistic, and therefore protocols that of-
fer weaker security guarantees may be preferred for efficiency reasons. At the other
end of the spectrum, assuming that the adversary can learn nothing about encrypted
data unless he obtains a decryption key may be unrealistic in some scenarios. We
will consider alternative adversary models in Sect. 22.6.

22.4 Issues in Developing Model-Checking Algorithms
for Security Protocols

Here we present a number of issues that arise in model checking security protocols,
and the approaches that have been taken to address them. In particular, we indicate
various design decisions, such as forward or backward search, state representations,
and bounding the state space.

22.4.1 Forward Versus Backward Search

We consider security properties that can be expressed as reachability properties, i.e.,
as a set of states S. We say that a protocol P satisfies the property S if and only if

Reachable(P )⊆ S. (1)

Let S = State \ S be the property’s complement, representing possible attacks. For
example, for the secrecy of a term t as in Definition 9, S is defined as:

{
s ∈ State

∣
∣ ∃t id, σ .HT(s, tid, σ )∧ IK ? (t�tid)}.

Using the complement S, Formula (1) can be rewritten as

Reachable(P )∩ S = ∅. (2)

Then, we can rewrite Formula (2) either as
( ∞⋃

n=0

PostnP
({sinit}

)
)

∩ S = ∅ (3)
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or alternatively as

sinit /∈
∞⋃

n=0

PrenP (S). (4)

Algorithms that iteratively compute a representation of (all, or some subset of)
PostnP ({sinit}), as in Formula (3), are said to use forward search. If, for some n,
an element is found that is also in S, a counterexample can be constructed rep-
resenting an attack. Alternatively, if there is an n where we reach a fixpoint,
i.e. PostnP ({sinit}) = Postn+1

P ({sinit}), and additionally PostnP ({sinit}) ∩ S = ∅, then
the property holds of the protocol. A fixpoint will be reached, in general, only in
finite-state models.

In contrast, backward search iteratively constructs PrenP (S), as in Formula (4).
Similar observations hold as for forward search, except that we check whether sinit
occurs in the constructed set.

In the analysis of security protocols, the set of reachable states is infinite, as
new threads can always be created. Hence the closure in forward search contains
infinitely many states. Similarly, the closure in backward search contains infinitely
many states, but for a different reason: for the properties we consider here, S con-
tains infinitely many states.

The main idea behind searching infinite sets of states is to use finite represen-
tations of the infinite sets. The selection criteria for such a finite representation in-
clude the complexity of computing PreP or PostP , and the complexity of evaluating
whether or not all elements of the represented set satisfy the property S.

When exploring infinite state spaces, it is often efficient to use as much informa-
tion as possible about the states. In general, the negation S of the security property
provides more information about the states than the initial state {sinit}. For example,
the negation will specify that particular events must have occurred or that the ad-
versary knows certain terms. As a result, backward search is often employed when
exploring infinite sets of states.

A simpler case occurs if the number of reachable states is restricted to a finite set,
for example, by limiting the number of threads or sessions that can be created. In
this case, forward search for violations of secrecy or authentication properties can
be trivially implemented: checking that a given state satisfies these properties can
be done using either Definition 9 or 10. A bounded backward search starts from the
finite set of attack states S, from which PrenP (S) can be computed. Depending on
the property and the (finite) size of the set of states, the size of (the representation
of) S can be significant. In practice, forward search is commonly used to explore
finite sets of states.

22.4.2 Bounded Instances

The execution model presented in Sect. 22.3 gives rise to an infinite-state transi-
tion system. Infinitely many states arise in two distinct ways. First, the create rule
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may start unboundedly many new protocol threads. Second, under the receive rule,
there are unboundedly many different messages that a thread could receive from
the network. This is modeled by the rule’s second premise, which formalizes that a
thread can be updated with any message σ(pt) that is in the closure of the adversary
knowledge.

The first source of infinity is a fundamental problem. As mentioned in Sect. 22.2,
even relatively simple properties such as secrecy are undecidable for security pro-
tocols formalized using operational semantics similar to ours [48]. If we restrict the
number of sessions (or threads), then the problem becomes NP-complete [88], pro-
vided messages are formulated as terms in a free term algebra. Note that in practice,
when analyzing real-world protocols, it is usually only necessary to consider a small
number of threads. If there is an attack on the protocol, then there is normally an
attack where the number of threads is at most a small factor more than the number
of roles, e.g., twice the number of roles, which allows for messages from one proto-
col session to be replayed in another session. For a class of protocols where attacks
require arbitrarily many threads, see [76].

The second source of infinity, an infinite space of messages, turns out not to be a
problem. The NP-completeness result of Rusinowitch and Turuani [88] establishes
that if there is an attack, then there is one where the size of the messages involved
is polynomially bounded in the size of the protocol and the number of threads, pro-
vided messages are represented by directed acyclic graphs. As a result, assuming a
finite number of threads, and hence fresh data, one can bound a priori the messages
that must be considered in protocol analysis. We will see below how both bounds on
the number of threads and messages have been used by different protocol analysis
tools.

22.4.3 Representing States

Formulas (3) and (4) can be directly used for forward or backward model checking
after fixing a representation of states for which one can effectively compute succes-
sors or predecessors. There are different options here depending on whether states
are explicitly or symbolically represented.

It is simple to turn the operational semantics given in Sect. 22.3 into an explicit-
state model checker. As defined in Sect. 22.3.5, a state is just a triple, all of whose
components can be finitely encoded. The problem in practice is efficiently repre-
senting large sets of states, i.e., reducing the impact of state-space explosion. An
example of a model checker for security protocols based on forward search us-
ing explicit-state enumeration is Murphi [95]. This tool uses techniques inspired by
explicit-state model checkers like SPIN [56], such as hash tables and hash com-
paction, to improve its efficiency. Another example of an explicit-state coding is
implemented by Lowe’s Casper system [68], which encodes the operational seman-
tics of the protocol and the adversary as a (finite-state) CSP process and uses the
FDR model checker to either identify attacks or verify the protocol for instances
with a bounded number of threads and messages.
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The second possibility is to encode sets of states using formulas as in symbolic
model checking. Many tools take this approach. Here terms, in particular messages,
are represented by non-ground terms (cf. message patterns in Sect. 22.3.5) which
contain variables. These variables may be instantiated during search. For example,
under our operational semantics, this instantiation would occur when applying the
rules using unification. In approaches based on rewriting, such as Maude-NPA, in-
stantiation occurs during rewriting by narrowing.

When working with symbolic representations, unification is often combined with
constraint solving. In the formal model we have given, the need for constraint solv-
ing arises from the second premise of the recv rule, IK ? σ(pt). When applying rules
of the operational semantics backwards (either in forward or backward search), this
gives rise to a subgoal often called the intruder deduction problem. The simplest ver-
sion of this problem is to determine whether IK ?m, for a ground message m using
the rules formalizing the Dolev–Yao adversary given in Sect. 22.3.2. This problem
is often decidable, which can be shown by using the notion of locality [18, 38] to
bound the size of terms occurring in derivations. During symbolic reasoning, the
non-ground problem arises: determining whether there exists a substitution σ such
that σ(IK) ? σ(pt). The ground problem can be tackled by considering a restricted
class of normal form derivations [38]. The non-ground problem is generally solved
either by unification-based procedures or specialized constraint solvers such as those
used in OFMC or CL-Atse.

An alternative symbolic approach is that of bounded model checking. In the sim-
plest case, the closure specified in Formula (3) is simply unrolled some bounded
number of times k, thereby specifying the existence of an attack given by k or fewer
applications of rules from the operational semantics. If this finite unrolling is com-
bined with a bound on the number of messages that may appear (and the result of
Rusinowitch and Turuani gives us an exponential bound), then the resulting for-
mula can be encoded within propositional logic and SAT solvers can be used to
search for attacks, as shown in Chap. 9 of this handbook [69]. Different encodings
and optimizations for using SAT-based model checking for security protocols have
been explored by Armando and Compagna and implemented in the model checker
SAT-MC [6].

Symbolic representations of terms can be combined with partially ordered finite
sets of events to represent (possibly infinite) sets of states or traces. Such a par-
tially ordered set E is used to represent all traces of the protocol that contain an
instance of E as a substructure. By applying the operational semantics backwards
to the events in E, additional constraints on its traces can be derived from E, such as
adding preceding events, unifying messages, or adding constraints on the adversary
knowledge. This process can either lead to a contradiction, in which case E repre-
sents no traces of the protocol, or to a witness trace of the protocol that contains an
instance of E. Such representations form the basis of Athena, Scyther, and Tamarin.
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22.4.4 Partial-Order Reduction

Partial-order reduction, as discussed in Chap. 6 of this handbook [85], is a natural
optimization technique in the context of model checking security protocols. The rea-
sons for this are twofold. First, separate threads are largely independent processes,
which communicate only through a single shared channel. Second, secrecy (Def-
inition 9) depends only on the adversary knowledge and, in our definition, on the
communication partners of completed threads.

Example 3 (POR) As a simple example, consider a state s with two threads identi-
fied by t id1 and t id2. Assume that the next actions of both threads are respectively
the receive events e1 and e2 of the patterns pt1 and pt2, and that there exist messages
in the adversary knowledge such that both e1 and e2 can be executed. More formally,
consider the state s = (tr, IK, th), two sequences l1, l2, and two substitutions σ1, σ2,
such that for all i ∈ {1,2},

ei = recv(pti)∧ th(tidi)= 〈ei〉ˆli ∧ IK ? σi(pti)∧ dom(σi)= FV(pti),

and where FV(pt1)∩ FV(pt2)= ∅.
Observe that in this state, e1 and e2 can be executed in any order. This results in

either s1 or s2, where

s→∗
P s1, and s1 =

(
trˆ〈(t id1, σ1(e1)

)〉ˆ〈(t id2, σ2(e2)
)〉
, IK, th′

)
,

s→∗
P s2, and s2 =

(
trˆ〈(t id2, σ2(e2)

)〉ˆ〈(t id1, σ1(e1)
)〉
, IK, th′

)
,

and where th′ = th[t id1 �→ σ1(l1)][t id2 �→ σ2(l2)]. Observe that s1 is identical to
s2 except for its trace component. Because the premises of the transition rules do
not depend on a state’s trace component, the successor states of s1 are identical to
those of s2 except for the traces.

To simplify the example, we additionally assume that for i ∈ {1,2},
∀t id, σ .HT(s, tid, σ )⇔HT(si , tid, σ ).

Hence, if the secrecy property is violated in state s1, then it is also violated in s2,
and vice versa. Thus, we can safely explore only one of these successor states: if
there is a state reachable from s1 that violates secrecy, then there will also be a state
reachable from s2 that is identical up to the trace component in which secrecy is
violated, and vice versa.

Similarly, for secrecy properties, one can consider only paths in which threads
with send actions are executed first (and ignore paths in which these same sends are
executed later) as this will only provide the adversary with more knowledge earlier.

For authentication properties, POR techniques are not necessarily sound: authen-
tication properties depend on the order in which events occur, and therefore ignor-
ing some orderings may cause attacks to be missed. For each property (or class of
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properties), the soundness of a particular partial-order reduction scheme must be
individually proven. The main proof obligation is to show that if there is an attack
in a state that is not explored by the POR scheme, then there is also an attack on a
state that is explored in the scheme.

POR techniques are used in several tools. Examples include Brutus [35],
OFMC [20], and Maude-NPA [50].

22.4.5 Handling Equations

The formal model introduced in Sect. 22.3 uses a free algebra to represent operations
on data. Thus the adversary’s ability to perform encryption is represented by the
deduction rule stating that {| t1 |}at2 may be deduced from t1 and t2, and his ability
to perform decryption is represented by the deduction rule stating that t1 may be
deduced from {| t1 |}at2 and t−1

2 . This approach is in general adequate for a large class
of operators, but we run into trouble when we include operations such as exclusive-
or which obey different equational theories. In this case, we need to include not only
a rule such as

M ? t1 ∧M ? t2 ⇒M ? t1 ⊕ t2
but also the set of equations

t ⊕ 0 = t t1 ⊕ t2 = t2 ⊕ t1
t ⊕ t = 0 t1 ⊕ (t2 ⊕ t3) = (t1 ⊕ t2)⊕ t3

Similar problems arise when we introduce protocols based on Diffie–Hellman
exponentiation or protocols based on homomorphic encryption, such as those in-
volving blind signatures.

There are two ways of dealing with this problem. The first is to replace the equa-
tional theory with a set of inference rules that is equivalent under certain syntactic
restrictions on the protocol. This is the approach followed in the previously men-
tioned work on encryption–decryption [77] and also by Küsters and Truderung, who
develop inference rules for the theory governing exclusive-or [61] and a subtheory
of the theory governing Diffie–Hellman exponentiation [62]. This approach is most
appropriate when one wishes to use a tool that does not directly support reasoning
about equational properties.

The second approach is to adapt the reasoning used by the tool to the equational
theory at hand. A substantial amount of work has been done in this area. Researchers
have concentrated on two main techniques. One is an extension of the intruder de-
duction problem to include equational theories. Thus, we now ask: given a set of
termsM , a term t , and an equational theory E, is it possible to determine whether or
notM ? t modulo E? The decidability of the intruder deduction problem in the free
theory was the main component of Rusinowitch and Turuani’s proof of decidability
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of security in the bounded-session model. Decision procedures have subsequently
been given for a large class of equational theories relevant for model checking cryp-
tographic protocols [1]. These theories include a class of rewrite theories known as
subterm-convergent (for which the intruder deduction problem is decidable in poly-
nomial time), and other theories such as homomorphic encryption and exclusive-or.
Algorithms for verifying intruder deduction modulo finite convergent rewrite theo-
ries have been implemented in several tools [23, 34, 39].

The other technique is equational unification: given an equational theory E and
two terms t and s, find a complete description of all the substitutions σ such that
σ(s) = σ(t) modulo E. This is useful for determining which states can immedi-
ately follow (or precede) a given state: one unifies the current state with the output
(or input) of a state transition. Equational unification was a well-known technique
long before it was applied to cryptographic protocol analysis. Indeed, anyone who
has solved an arithmetic equation such as x + 7 = 12 + y has applied equational
unification. However, unification research generally concentrated on algorithms for
special-purpose theories. In cryptographic protocol analysis, it is necessary to be
able to apply unification to a range of theories, and to different combinations of the-
ories. Thus generic approaches that apply to classes of theories that can be easily
combined are preferable to special purpose algorithms, even when the special pur-
pose algorithms may be more efficient. One technique that follows this approach
is the process known as variant narrowing [51], which can be applied to a class
of theories that satisfy a property known as the finite variant property [37]. This is
satisfied by a large number of equational theories of interest for cryptographic pro-
tocol analysis, with the major exception being homomorphic encryption. A version
of variant narrowing has been implemented in the Maude-NPA protocol analysis
tool, discussed in Sect. 22.5.1.

We note that although there is a large overlap between subterm-convergent and
finite variant theories, the finite variant property does not imply subterm conver-
gence, since by definition no associative-commutative theories are subterm conver-
gent. Whether the converse holds is, to the best of our knowledge, still an open
problem.

The most pressing open problem in the short term is how to extend the avail-
able tools to handle additional theories. In some cases (e.g., the intruder deduction
problem for non-subterm-convergent theories) the exact complexity is not known
and needs to be understood better. In other cases (for example some of the uni-
fication problems connected with different homomorphic encryption theories), the
problem is known to be intractable or undecidable, and what instead needs to be
investigated are (preferably syntactic) conditions on cryptographic protocol spec-
ifications that make the problems tractable. There is also the issue of combining
theories. For example, in the case of unification, general algorithms for combining
unification algorithms for different theories have been known for some time [91],
but their generality forces them to be highly nondeterministic, and thus they are
usually too slow to be practical. It may be possible to restrict ourselves to particular
types of theories such that practical algorithms can be developed. However, it is still
unknown whether such classes of theories contain the main theories of interest for
cryptographic protocol analysis.
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More generally, there is the problem of determining what one actually learns
from an analysis with respect to an equational theory. For example, Kremer et al.
[60] have been using subterm-convergent theories to analyze voting protocols. How-
ever, the primitives that they describe with subterm-convergent theories are im-
plemented by algorithms satisfying richer equational theories, usually involving
Abelian groups. Are the higher-level descriptions in terms of subterm-convergent
theories safe approximations? Conversely, when would a free theory be a safe ap-
proximation for a subterm-convergent theory? This question has been answered for
the subterm-convergent theories involving both shared and public key encryption
[77]. Can this result be extended to more general cases? Finally, when is any theory
a safe approximation of a computational theory of protocol correctness? Some ini-
tial work on this last problem has been done by Baudet et al. [25], but there is still
much to be learned.

22.5 Systems and Algorithms

In this section, we give some representative examples of systems based on the algo-
rithmic approaches just presented.

22.5.1 NPA and Maude-NPA

The NRL Protocol Analyzer, or NPA, was one of the earliest tools for verifying the
security of cryptographic protocols. Although not originally designed as a model
checker, it later took on many of the features of one, including the ability to check
properties expressed in a temporal logic language, NPATRL [74]. In NPA, both the
actions of honest agents and the adversary were specified in terms of state tran-
sitions. Model checking employed backward search, where the output of a state
transition was unified with the current state. NPA had limited support for equational
unification and could, for example, model properties such as the cancellation of
encryption and decryption.

One of the most interesting properties of NPA was that it was an unbounded-
session model checker. It included built-in inductive techniques for building gram-
mars defining languages of infinite search paths. Once NPA reached a state that con-
tained a term in the grammar, it would not explore beyond that state. This technique
often allowed NPA to terminate after a finite number of steps, although of course
termination was not guaranteed. It has been used to verify a number of protocols and
protocol standards, including the Internet Key Exchange Protocol [72], the Group
Domain of Interpretation Protocol [74], and the Simmons Selective Broadcast Pro-
tocol [70].

Maude-NPA is a descendant of NPA, implemented in the Maude rewriting lan-
guage [36]. It shares many of NPA’s features, including the use of unification to
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implement backward search and reliance on grammars to ensure termination. There
are two main differences. First, it is implemented in the Maude rewriting language,
which gives it a formal basis in rewriting logic. In particular, backward search in
Maude-NPA is implemented via narrowing over a simple transition model that is
expressed via a small set of rewrite rules. Narrowing is a technique for deduction
using rewrite rules and unification that, given a term t , finds a substitution σ that uni-
fies a subterm with the left-hand side of a rewrite rule l→ r . The subterm σ(l) of
σ(t) is replaced by σ(r). When the rewrite rules describe state transitions, narrow-
ing gives an algorithm for state-space exploration. When the arrows are reversed, as
they are in Maude-NPA, narrowing can be used to implement backward search from
a final goal. A second difference is that Maude-NPA is devoted to reasoning about
the different equational theories that describe the behavior of cryptographic algo-
rithms. Maude-NPA makes use of unification modulo different equational theories
as the unification step in its narrowing algorithm.

Maude-NPA also incorporates two state-space reduction techniques that were
originally used in NPA, but have been refined and extended in Maude-NPA. The
first is subsumption-based partial-order reduction, in which the unreachability of a
Maude-NPA state description is implied by the unreachability of another state de-
scription if a certain subsumption relation exists between them. The second is a
super-lazy intruder. This is similar to the lazy intruder of the OFMC [20], except
that it is adapted for backward search. If a variable term or a term constructed out of
variable terms appears in the adversary knowledge part of the state, then the search
proceeds no further on this term (that is, it is removed from the state), since the
adversary should be able to find it using arbitrary terms.2 However, it is not deleted
entirely but kept around in a ghost state. If any of the variables in the term are in-
stantiated, the ghost state is resuscitated. Among the equational theories that Maude-
NPA can currently handle are a subclass of subterm-convergent theories, as well as
exclusive-or, Abelian groups, modular exponentiation, bounded associativity, and
homomorphic encryption over a free operator. Work is ongoing on incorporating
more general homomorphic encryption.

22.5.2 AVISPA and Related Tools

The AVISPA tool [4] is a model checker that integrates several different model-
checking approaches. AVISPA provides a high-level specification language, HLPSL,
for specifying protocols and their properties. Protocols are specified in HLPSL in
terms of their roles, using control flow patterns, data structures, and alternative ad-
versary models, as well as different cryptographic primitives and their algebraic
properties. HLPSL specifications have a declarative semantics based on Lamport’s
Temporal Logic of Actions [63] and an operational semantics defined in terms of

2Maude-NPA does not have secret types, so we assume that the adversary can create at least one
term of any type.
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a rewrite-based formalism called the intermediate format, or IF. Different model-
checking backends interpret the IF and can be used for (bounded) verification or
falsification.

The main backends in the AVISPA tool are the Constraint-Logic-based At-
tack Searcher CL-Atse, the On-the-Fly Model Checker OFMC, and the SAT-based
Model Checker SAT-MC. We previously discussed SAT-MC in Sect. 22.4.3 and re-
strict our attention here to CL-Atse and OFMC.

CL-Atse, like the other AVISPA backends, operates on IF specifications of proto-
cols. CL-Atse represents protocol states symbolically as collections of non-ground
facts, which record the states of different threads, the messages sent to the network,
and the adversary knowledge. In particular, constraints are used to describe what
the different agents know and a constraint calculus is used to solve for what they
can know, from messages previously exchanged, i.e., the calculus is used to solve
a variant of the non-ground intruder deduction problem. CL-Atse was designed to
allow the easy integration of new deduction rules and operator properties. In partic-
ular, CL-Atse integrates a version of Baader and Schulz’s unification algorithm [8]
with modules for xor, exponentiation, and associative pairing.

OFMC combines a number of techniques to enable the efficient analysis of se-
curity protocols. First, OFMC uses lazy data types (in a functional programming
setting) as a simple way of building efficient on-the-fly model checkers for proto-
cols with very large, or even infinite, state spaces. A lazy data type is one where
data constructors (such as cons for building lists or node for building trees) build
data without evaluating their arguments; this allows one to represent and compute
with infinite data (e.g., streams or infinite trees), generating arbitrary prefixes of
the data on demand. In [14], lazy data types are used to build, and compute with,
models of security protocols: a protocol and a description of the powers of an ad-
versary are formalized as an infinite tree. Lazy evaluation is used to decouple the
model from search and heuristics, building the infinite tree on the fly, in a demand-
driven fashion. Second, OFMC models the adversary in a lazy fashion (the so-called
“lazy intruder”), where adversary communication is represented symbolically and
solved during search. To this end, like CL-Atse, it integrates a constraint solver
for the non-ground intruder deduction problem. Effectively, OFMC performs search
at two levels: search in the space of symbolic states, and search in the space of
constraints. Third, while OFMC performs verification for a bounded number of ses-
sions, it works with symbolic session generation which avoids enumerating all pos-
sible ways of instantiating possible sessions. Fourth, OFMC exploits a state-space
reduction technique, inspired by partial-order reduction, called constraint differen-
tiation [81]. Constraint differentiation works by eliminating certain kinds of redun-
dancies that arise in the search space when using constraints to represent and ma-
nipulate the messages that may be sent by the adversary. Namely, different symbolic
states may describe overlapping sets of ground states. Constraint differentiation es-
sentially computes a set-difference symbolically, to minimize these overlaps. This
can be seen as generalizing the kind of subsumption-based partial-order reduction
used in Maude-NPA. Finally, OFMC also provides some limited support for han-
dling different equationally specified operators on messages [19].
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22.5.3 Athena, Scyther, and Tamarin

The Athena [94] and Scyther [42] algorithms implement model checking with re-
spect to the unbounded model described in Sect. 22.3.5 by performing a backward-
style search. For these methods, the model is extended with adversary events for
encrypting, decrypting, hashing, and knowing messages. Infinite sets of states are
represented by (trace) patterns: partially ordered sets of events that must occur in
the traces, and whose messages may contain variables. (In the Athena model, pat-
terns are referred to as semi-bundles.) The events in patterns must satisfy a number
of criteria that follow from the semantics. For example, if an event occurs in the
pattern from a role R with thread identifier t id , then (a) the pattern does not contain
events from other roles with thread identifier t id and (b) the event is preceded in the
pattern by all events that precede it in the role R, with identical substitutions and
thread identifier t id . However, it is not required for receive events in patterns that
the received term can be inferred from the union of the initial knowledge and the
messages that occur in preceding send events within the pattern. Patterns allow for
specifying properties such as secrecy.

Example 4 (Secrecy pattern) The following pattern PT specifies the violation of
secrecy of the nonce of the responder role of the Needham–Schroeder protocol,
performed by b when trying to communicate with a, where X and t id are variables.
The AdversaryKnows event is used to encode the secrecy violation.

e1 =
(
t id, recv

(
a, b, {|a,X |}apk(b)

))

e2 =
(
t id, send

(
b, a, {|X,NB�tid |}apk(a)

))

e3 =
(
t id, recv

(
a, b, {|NB�tid |}apk(b)

))

e4 = AdversaryKnows(NB�tid)

PT = ({e1, e2, e3, e4},
{
(e1, e2), (e2, e3)

}+)

This pattern represents an infinite set of traces of the Needham–Schroeder protocol,
e.g., the attack from Fig. 2 and all traces that additionally include arbitrarily inter-
leaved threads. In contrast, the corresponding pattern for the initiator role (also with
agents a and b) represents the empty set of traces.

By introducing restrictions on variable instantiations into the algorithm, and re-
placing a and b by variables that can only be instantiated by non-compromised
agents, we can faithfully represent all violations of the secrecy property for the pro-
tocol in the above example.

During backward search, a case distinction on the source of messages is used
for branching and the patterns are extended by either adding events, adding order-
ing constraints, or unifying terms. The search can terminate in two ways. First, the
pattern can be proven to be empty, i.e., it contains no traces of the protocol. The
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main mechanism here is detecting cyclic dependencies of the messages. Second, the
receive events in the pattern meet all premises of the receive event: the adversary
can produce an appropriate message from the preceding events. In such a case, the
pattern is called realizable and it corresponds to an infinite set of actual traces; a rep-
resentative trace (of minimal length) from this set can be generated by linearizing
the non-adversary events and instantiating the remaining variables from the adver-
sary knowledge.

Scyther differs from Athena in how it makes the case distinction and in the possi-
ble outcomes of the analysis. With respect to the possible outcomes, Scyther bounds
the size of the patterns but detects whether the bound is reached. By bounding the
size of the patterns, termination is guaranteed and one of three possible results oc-
curs. First, if a realizable pattern is found, a representative (attack) trace is con-
structed. Second, if no realizable patterns are found, and the bound is not reached,
no realizable patterns exist (for any bound). In case of an attack pattern, this cor-
responds to the absence of attacks. Third, if no realizable patterns are found but
the bound is reached, the result can be interpreted as verification with respect to
a bounded number of sessions and is similar to the guarantees provided by, e.g.,
OFMC or CL-Atse when they do not find attacks.

The Tamarin prover [90] is a generalization of the algorithms underlying Athena
and Scyther. Tamarin uses a backward search that can handle more expressive proto-
col and property specifications. Protocols and adversary capabilities can be specified
using multiset rewriting rules, allowing the specification of protocols with branch-
ing and loops. Tamarin provides support for Diffie–Hellman exponentiations and a
class of user-defined equational theories. Protocols can be analyzed with respect to
properties specified in a guarded fragment of first-order logic that supports quantifi-
cation over timepoints.

22.5.4 ProVerif

The ProVerif tool [29] uses abstractions to obtain an efficient analysis method. In
particular, it employs two main abstractions compared to the operational seman-
tics presented before. First, individual fresh values are abstracted into sets of fresh
values. Second, each action of a thread can be executed multiple times.

The abstracted protocol model can be represented as a set of Horn clauses. These
Horn clauses are analyzed using a two-phase resolution algorithm. In the first phase,
the Horn clauses are saturated in a forward fashion until a fixpoint is reached. This
phase combines multiple derivations into single rules, thereby optimizing the rule
set. Facts can be derived from the optimized rule set if and only if they can be derived
from the original rule set. In the second phase, a backward depth-first search is used
to try to establish that a fact (usually representing the adversary knowing a message
that is supposed to be secret) cannot be derived from the saturated Horn clauses. If
this cannot be established because the fact can be derived, an attempt is made to
reconstruct a corresponding protocol trace.
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If we assume that the fact represents a secret, we can interpret each of the four
possible results of running the tool in the following way. First, if the fact cannot
be derived, the overapproximation ensures that no protocol execution will leak the
secret, and hence the protocol satisfies secrecy. Second, if the fact can be derived
and the derivation can be translated into a corresponding (attack) trace, the protocol
does not satisfy secrecy, as witnessed by the trace. Third, if the fact can be derived
but no corresponding trace can be reconstructed from the derivation, the result is
inconclusive. Finally, either of the two phases in the algorithm may not terminate
and again no knowledge is gained about the security of the protocol.

ProVerif can handle authentication properties formalized as correspondence
properties [30]. These properties express that when event e1 occurs, event e2 must
have occurred earlier with related parameters ρ1 and ρ2. For example ρ1 could be
a nonce and ρ2 a variable that is supposed to be instantiated with ρ1. In this case,
it does not suffice to prove that the values of ρ1 and ρ2 abstract into the same set
(i.e., they are in the same equivalence class in the abstraction) and a finer abstrac-
tion is used. By introducing session identifiers in the construction of ρ1 and ρ2, we
increase the precision of the verification at the cost of efficiency and termination.

22.6 Research Problems

Although the research community has come far in recent decades, many research
challenges remain. Below we describe some of the most pressing problems being
tackled as well as open problems.

22.6.1 Link to Computational Soundness

The Dolev–Yao model, even when equational properties are added, treats cryptosys-
tems as black boxes. If the adversary possesses the appropriate key, he can learn the
contents of an encrypted term. Otherwise he is completely ignorant of the corre-
sponding plaintext. Moreover he is only able to perform the operations specified in
the protocol. This is very different from definitions used by cryptographers. In these
definitions, the adversary is modeled as a probabilistic polynomial time Turing ma-
chine. The security properties of the cryptosystems themselves vary depending on
what kinds of attacks they are assumed to be secure against, e.g., chosen plaintext
or chosen ciphertext. Finally, secrecy is usually specified not in terms of the adver-
sary not being able to obtain a given secret, but in the indistinguishability between
two different versions of the protocol, e.g., two versions with different secrets, or
one constructed using a secret and one constructed using random data, or in the in-
distinguishability between the real secret and a random bit string. Is it possible to
come up with an approach to proving protocols correct that combines the amenabil-
ity to exhaustive search of the Dolev–Yao model with the stronger requirements of
cryptographic models?
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There has been a substantial amount of work on this problem. The general idea
is to have two models, a symbolic model and a computational model, and establish
some sort of relationship between them, e.g., a simulation relation, so that secu-
rity in the symbolic model implies security in the computational model. In some
approaches, the symbolic specification is trivially secure, while in others it is a
Dolev–Yao-style specification that can be verified with a model checker. A survey
of research in this area is given by Cortier et al. in [41].

Although research in this area has been successful in establishing links between
the two models, the results have been criticized both for being so complex as to
detract from the advantage of being able to reason at the simpler Dolev–Yao level,
and for being too limited in the types of cryptosystems they can handle. For ex-
ample, the reactive simulatability framework of Backes et al. [11], one of the most
prominent models in this area, has been shown to be impossible to extend to include
two standard items in the cryptographer’s toolbox: one-way hash functions [10] and
exclusive-or [9]. This is perhaps not surprising, given the divergence between the
two models and the difficulty of bringing the two together. Hence this is still an
active area of research.

22.6.2 Corruption Models

In the basic Dolev–Yao model described in Sect. 22.3, the Dolev–Yao adversary ini-
tially has the long-term keys of some of the agents. This formalizes a notion of static
corruption where the adversary has compromised some of the agents and can play
as an “insider” during protocol execution. However, many protocols are intended to
be secure against much more sophisticated corruption models. [33, 58, 93], for ex-
ample, specify adversaries who can dynamically corrupt long-term secrets, session
keys and other parts of the session state, or even random number generators. For ex-
ample, a Diffie–Hellman key agreement protocol, where digital signatures are used
to authenticate the exchanged half-keys, provides perfect forward secrecy [75]: the
resulting key remains secret even when the signature keys are later compromised by
the adversary.

Some of the earlier model checkers, such as the NRL Protocol Analyzer, allowed
for the dynamic corruption of keys. More recently in [15, 16], Basin and Cremers
have examined this issue more thoroughly by formalizing a hierarchy of corruption
models. Their models extend the operational semantics presented earlier and cover
many aspects of the adversary models used in cryptographic models. The Scyther
tool supports the evaluation of protocols with respect to these corruption models,
which has led to the automatic discovery of many attacks that previously could only
be found by manual analysis.

The additional complexity of richer corruption models significantly increases the
time required for verification. To make analysis of larger protocols with respect to
these models feasible, it would be useful to develop more efficient dedicated model-
checking algorithms. Furthermore, traditional compositionality results, e.g., [3, 53],
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no longer hold under stronger corruption models. Hence, another research challenge
is to develop analogous compositionality results for this purpose.

An alternative direction is to weaken the adversary models. In fact, in many
cases, protocols are designed under the assumption that adversaries are not com-
pletely dishonest and for various reasons do not perform all the activities available
to the Dolev–Yao adversary. One example is the honest but curious agent, who acts
according to the rules of the protocol, but attempts to learn secret information from
the messages that it has received legitimately. A related case is the passive adver-
sary who does not even participate in the protocol but simply observes passing traf-
fic. Other protocols, including for example many electronic commerce protocols,
are based on the assumption that an adversary will not take any action against its
own best interests, such as those that involve revealing its own secret information.
Although a fair amount of work has been done on model checking protocols with re-
spect to these various adversary models, a more comprehensive approach, in which
the user could specify which adversary model will be used, would be of benefit.

22.6.3 Channel Properties

The standard Dolev–Yao model gives the adversary control over all communication
channels. The adversary sees all communications, and can block, alter, and redirect
traffic at will. Thus all an agent can conclude from receipt of information sent along
one of these channels is that somebody sent it. Assurance of other properties must be
gained by cryptographic means. However, a growing number of cryptographic pro-
tocols either use channels with special properties or rely upon assumptions about
weaker adversaries. These include anonymous routing protocols such as Tor, which
assume an adversary who is able to spy on only part of the network, distance bound-
ing protocols [32] and secure localization protocols [99], which rely on the use
of timed wireless communications to verify that a prover is within a certain range
of a verifier, and protocols that rely on human-verifiable channels [13], such as a
human reading a sequence of numbers off a computer screen, to bootstrap key dis-
tribution in the absence of a public key infrastructure. Work has been ongoing on
developing methods for formal analysis of protocols that use these channels, e.g.,
[21, 73, 89, 97], but most of it has not yet been applied to model checking, concen-
trating more on theorem proving or specialized logics. The problem of how best to
model and reason about these channels using a model checker is still open.

22.6.4 Other Properties, Including Non-trace Properties

The application of formal methods to cryptographic protocol analysis was origi-
nally restricted to the study of various forms of secrecy and authentication. These
are straightforward to formulate using temporal logics and analyze using model
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checkers. However, there are other classes of properties that are less straightfor-
ward. Often these are properties that are not trace properties themselves, but can be
approximated by trace properties such that if the trace property holds, then so does
the original property.

One of the earliest properties of this type is non-interference, which, roughly
speaking, is the property that events labeled “high” should have no discernible effect
on events labeled “low”. Non-interference is closely related to the cryptographic no-
tion of indistinguishability, mentioned in Sect. 22.6.1. Indistinguishability formal-
izes that an adversary should be unable to distinguish between two protocols, usually
either the same protocol using different secrets, or a real protocol and a simulation
of the protocol using random data. This can be approximated by a trace-based no-
tion called observational equivalence, which has been implemented in ProVerif by
running the two protocols in tandem and checking for equivalence at each transition
[31].

Another property related to indistinguishability is static equivalence [2]. This no-
tion is defined with respect to an underlying equational theory and, roughly speak-
ing, two terms are statically equivalent when they satisfy the same equations. As
noted in [26], static equivalence is essentially a special case of observational equiv-
alence that does not allow for continued interaction between a system and an ob-
server: the observer gets data once and conducts experiments on its own. Static
equivalence has direct application to modeling off-line guessing attacks, which are
attacks where the adversary tries to guess a secret and verify his guess, without fur-
ther communication. As shown in [22, 40], static equivalence may be used to specify
the absence of off-line guessing attacks by expressing that the adversary cannot dis-
tinguish between two versions of the same symbolic trace: one corresponding to
a correct guess and the other corresponding to an incorrect guess. Decision proce-
dures for static equivalence have been implemented by the YAPA [24], KISS [34],
and FAST [39] tools. ProVerif also supports the analysis of off-line guessing attacks,
but based on a different formalization of guessing due to [40].

We see that there have been a number of individual solutions to reasoning about
special properties. But what would be useful to have is a more general approach to
such properties that could be tailored to specific instances. For example, as we have
seen from the above, many security properties are expressed in terms of some sort
of equivalence between families of traces. One might expect a general procedure to
exist for such equivalences.

22.6.5 Probabilities

As noted previously, probabilities are part of standard cryptographic definitions of
security. Probabilities also arise when security protocols are based on randomized
algorithms or the protocol guarantees themselves are probabilistic. Different op-
tions for augmenting transition systems and logics with probabilities are discussed
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in Chap. 28 of this handbook [12]. Probabilistic model checking has been success-
fully applied to different kinds of security protocols. Examples include protocols for
anonymity [92], non-repudiation [64], and contract signing [84].

As an example, in [92], Shmatikov models the protocol underlying Crowds [87],
which is a peer-to-peer group communication system based on random message
routing among members. He models the behavior of group members and the adver-
sary as a discrete-time Markov chain, and formalizes the required anonymity prop-
erties of the system in the probabilistic temporal logic PCTL. Given this model, he
can use the PRISM model checker [55] to analyze the anonymity provided by the
system, showing, for example, how probabilistic anonymity degrades as the group
size increases.

Until now, work on model checking stochastic systems and model checking se-
curity has been disjoint. The problem of using off-the-shelf general model checkers,
whether for stochastic systems or other classes of systems, is that they neither of-
fer optimizations useful in the domain of security (e.g., for handling the Dolev–Yao
intruder) nor support cryptographic operators and equational extensions. An open
problem is how best to combine the models and algorithms from these two areas.

22.7 Conclusions

We have shown in this chapter how to extend transition-system models of concur-
rent computation to model cryptographic protocols. The main extensions have been
with a term language formalizing cryptographic messages and a model of a network
(Dolev–Yao) adversary. These extensions themselves are fairly straightforward but
they lead to two immediate challenges: the resulting system has infinitely many
states and the active adversary results in considerable nondeterminism. Addressing
these challenges has motivated a number of specialized model-checking techniques.

State of the art methods and tools are able to handle classical authentication
and key-exchange protocols of realistic, but limited, complexity. Abstract models
of large protocol suites such as the Internet Key Exchange protocol have been an-
alyzed. However, an automatic analysis of the full protocol suite, with all its vari-
ations, Diffie–Hellman equational reasoning, and a full model of its branching and
looping behaviors, would lead to a state-space explosion and is beyond the state of
the art. A state-space explosion arises due to a combination of the protocol’s size and
the cryptographic operators used. In the short term, improved support for equational
reasoning will make a difference; in the mid-term and long term, better support for
reasoning using abstraction is required.

Security protocols go far beyond authentication and key exchange in practice.
We have sketched some of the challenges in handling more precise, cryptographic
notions of security as well as wider classes of cryptographic primitives and proper-
ties. Interestingly, advances in other areas of model checking, such as probabilistic
model checking, may play an important role in enabling new classes of applications.
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Chapter 23
Transfer of Model Checking to Industrial
Practice

Robert P. Kurshan

Abstract This chapter traces the practical challenges that were overcome in order
to transfer model-checking theory to industrial practice. In retrospect, this trans-
fer provided a lesson in how to, and how not to accomplish technology transfer.
The methodology changes required for industrial model checking were achieved
through a succession of steps, each of which was small enough to avoid unaccept-
able disruption of existing methodologies, while significant enough to demonstrate
value.

23.1 Introduction

Model checking is an example of engineering at its best, having evolved from an
elegant theory to a vital practice. However, any pathway from theory to practice is
laced with challenges. Unlike incremental engineering patches that attach directly to
current practice, the more revolutionary path must prove that the question it answers
is a question that matters.

Engineers have become so good at honing engineering that even when a new dis-
covery presents a means that, in theory, should directly improve current practice, the
translation of that discovery to practice must compete against a honed established
practice. Thus it was that the sensational breakthrough in linear programming that
offered a polynomial algorithm in place of an exponential one nonetheless had a
hard time to demonstrate that it actually was faster in practice. Implementations of
the exponential algorithm had been so refined that often the polynomial algorithm
was not faster on the size of applications that mattered. Examples like this abound.
The new, better way must not only compete against years of engineering, it must
show that it is enough better in enough important cases to warrant the trouble of re-
placing the old with the new. Worst of all, there may be no way to demonstrate that
the new way is actually better without fully replacing the old way in some context.
This is something that the stewards of established practice are loath to do without a

R.P. Kurshan (B)
New York, NY, USA
e-mail: rkurshan@gmail.com

© Springer International Publishing AG, part of Springer Nature 2018
E.M. Clarke et al. (eds.), Handbook of Model Checking,
DOI 10.1007/978-3-319-10575-8_23

763

mailto:rkurshan@gmail.com
http://dx.doi.org/10.1007/978-3-319-10575-8_23


764 R.P. Kurshan

prior demonstration that it is better, since any such replacement requires resources
that otherwise could be applied to further honing the current practice. This is the vi-
cious circle of technology transfer: transfer requires proof, which requires transfer.

This chapter could be viewed as a companion to [58] where I told of my personal
odyssey of verification technology transfer; this chapter tells the story from a general
view. I have taken material from the former when the overlap is warranted.

23.1.1 Anything Worth Inventing Is Worth Reinventing

Theories for verifying the correctness of computer programs go back virtually to
the beginning of modern programming. These theories were quite varied in their
potential application domains and the ways in which they might be used in practice.
In one view, computer-aided verification could be said to derive from Russell and
Whitehead’s Principia Mathematica (1910–1913) [85], which laid a foundation for
axiomatic reasoning. More germane was Alan Turing’s model of computation [79].
The Turing Machine led to automata theory developed by Rabin and Scott [72] for
languages of strings and then by Büchi [20] for languages of sequences. The latter
provided the basis for automata-theoretic verification [54, 82].

Program verification expressed in terms of a formally defined notion of program
correctness is widely believed to have started with the work of Robert Floyd [36]
(for which, in 1978, he received the first Turing Award that cited advances in pro-
gram verification). Soon after, Hoare [46] presented a compositional approach to
deductive reasoning about program correctness [33]. Nonetheless, Vardi [81] has
traced a linear-time form of model checking in which specifications are given in
first-order logic or monadic second-order logic to a little known 1957 paper by
Alonzo Church [21]. Huuck et al. [47] have observed that Peter Naur [67] devel-
oped an approach similar to that of Floyd, one year earlier than Floyd, and pointed
out that Herman Goldstine and John von Neumann addressed the issue of program
correctness in their 1947 paper on planning and coding for “an electronic computing
instrument” [40].

Model checking per se was developed in 1980 by Clarke and Emerson [24] and
Queille and Sifakis [71] independently, as every reader of this book knows by now,
and its story is wonderfully illuminated in [22, 33, 81].

Earlier, around 1960, computer-aided verification was introduced in the form
of automated theorem proving.1 Theorem proving benefitted especially from the
resolution method of Robinson [73], which evolved into other more practical non-
resolution methods by Bledsoe and others, leading to the UT Austin school of auto-
mated theorem proving that featured Gypsy (by Ron Goode and J.C. Browne) and
then the famous Boyer–Moore theorem prover—see [14]. Until 1990, most of the

1The term “automated theorem proving”, while widely used, was something of a misnomer, per-
haps reflecting wishful thinking. These provers tended to be highly interactive. Later, the term
evolved into the more accurate “interactive theorem proving” and “automated proof checking”.
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investment in computer-aided verification went to automated theorem proving. This
was especially true for U.S. government support, which was lavished on automated
theorem proving during this period [14].

For all its expressiveness and proving potential, automated theorem proving has
not quite yet made it into mainstream commercial use for computer-aided verifica-
tion. One important reason is scalability of use: using an automated theorem prover
requires specialized expertise that precludes its broad use in industry. Moreover,
even in the hands of experts, using an automated theorem prover tends to take more
time than would allow it to be applied broadly and still track the development of
a large design project. Therefore, to the extent that automated theorem proving is
used on commercial projects, it tends to be used for niche applications like verifica-
tion of numerical algorithms (hardware multipliers and dividers, especially floating
point units, for example). Although AMD and also Intel have made extensive prac-
tical use of theorem proving for such applications [50], utilization is presently too
narrow and specialized to attract much attention in the Electronic Design Automa-
tion (EDA) marketplace, where vendors such as Cadence, Synopsys, Mentor Graph-
ics and others sell software tools for industrial development of integrated circuits.
A brief exception was the failed attempt by Abstract Hardware Ltd. of Scotland to
market the LAMBDA theorem prover based on HOL [41]. Derived from Milner’s
ML, HOL had been developed originally for hardware verification. Its commercial-
ization was led by M. Fourman and R. Harris.

Amir Pnueli sought to apply deductive reasoning to verify ongoing computations
in concurrent programs, for properties expressed in Temporal Logic [69]. This vi-
sion had broad resonance in the field, quickly attracted very many followers and
resulted in a major impact that would later garner for Pnueli the Turing Award
in 1996 (the second for program verification, following Robert Floyd’s award in
1978). Although Pnueli was focused on deductive reasoning, he noted (in passing)
that Temporal Logic formulas could be checked algorithmically. In this incidentally
observed decision procedure, which later was shown to have non-elementary com-
plexity [81], commercial computer-aided verification could be said to have been
conceived. Its birth would come three years later as model checking in the form
of a feasible state space exploration algorithm [44]. Ultimately, these ideas would
lead to the third Turing Award for work in program verification, given to Edmund
M. Clarke, E. Allen Emerson and Joseph Sifakis, in 2007, for the development of
model checking.

Analyzing a finite state coordinating system through an exploration of its com-
posite state space was actually proposed by Colin West [74, 84] around 1975. How-
ever, it was model checking that formalized the process in terms of checking a model
for a property defined in a temporal logic. This difference was very germane to prac-
ticality, as it led to decision procedures. Moreover, only with model checking could
properties cast as assertions to be checked be reused as constraints to define the
environment of an adjoining block. These two, formalization of assertions and al-
gorithmic verification, paved the path to the broad success of model checking.

In fact, the initial gating issues for technology transfer were foremost proce-
dural, not technical. Model-checking theory and technology have continuously far
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outstripped its pace of adoption. And this is how we would want it to be: through-
out the history of science, the most profound developments followed advances in
theory.

This observation imparts a sad reflection on the recent state of “science funding”
that requires a demonstration of “need” and “applicability”. Indeed, for example, the
purely theoretical development of the modal μ-calculus [53] based on recursion and
fixed-point operators provided the key, seven years later, to symbolic model check-
ing [63]; there was no “need” and “applicability” for the modal μ-calculus at the
time it was developed. Likewise, the Emerson–Lei algorithm [34], which is crucial
for the symbolic verification of eventualities, was discovered years before symbolic
model checking. In fact, our field happily abounds with examples of theory driving
practice: symbolic model checking was based on Bryant’s theoretical development
of ordered BDDs [18], BDDs having originally been invented by C.Y. Lee [59] and
developed by Akers [4] in 1978; Lee’s formulation was based on Claude Shannon’s
work on switching functions [76], which actually harks back to the work of George
Boole (1815–1864). Today, we refer to the “Shannon decomposition” for BDDs.

Interpolation [64], one of the most important model-checking techniques of this
decade, stems from the basic concept of an “interpolant” whose existence was first
proved (for first-order logic) by William Craig in 1957.

Localization reduction (abstraction) [54, 56] or “counter-example-guided refine-
ment” as it has come to be known [25], evolved from an algorithm for the ver-
ification of timed automata based on successive approximations [6] (inspired by
Newton’s method).

23.1.2 The Interplay Between Theory and Application

A test of a field’s maturity and robustness is the extent to which its applications “pay
back” dividends in the form of new theoretical problems, and cross-fertilization
with other fields. If a field does not evolve in concert with new problems raised
by its applications, or is insufficiently generic to speak to areas other than those
for which it was developed, then that field may not be sufficiently broad, generic
or well-formed to last. Model checking has ample evidence of such maturity and
robustness.

Perhaps the most stunning example of “payback” is the amazing sequence of
advances in SAT solving. Not too long ago, SAT was effective on expressions with
fewer than 100 binary variables. Recent advances have increased this by three orders
of magnitude. This was stimulated by the demands of hardware design, including
especially the renewed interest in SAT spawned by bounded model checking. The
impact of these SAT advances on model-checking technology was the impetus for
awarding the 2009 CAV Award to the key researchers on the GRASP and Chaff SAT
solvers [17].

McMillan’s theoretical advances in interpolation [64] were spawned from perfor-
mance issues in model checking and have in turn produced dramatic improvements
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in performance. This interplay continues a dramatic churn between interpolation
theory and applications, having generated hundreds of articles in but a few years.
McMillan received the 2010 CAV Award [43] in significant part for his stunning
insight in applying Craig interpolation to improve the capacity of model checking.

A paper by Rajeev Alur [5] is devoted to examples of such payback. His examples
include the invention of timed automata (for which he and David Dill received the
first CAV Award in 2008 [45]), recent advances in alternating tree automata and
parity games stemming from practical questions about equivalence and synthesis,
and new work on push-down automata and his own work on nested words spawned
by the needs of software verification.

As a final example, model checking and artificial intelligence have cross-
fertilized, with model checking contributing to planning and benefitting from ma-
chine learning [33].

23.2 The Technology Transfer Problem

A new technology, by definition, is an alien in the environment of the problems
it seeks to solve. In the early years, program verification in general, and model
checking in particular, evolved in the gainful rare air of academia, shielded from
the grubby realities of practical programming. True, select “industrial examples”
such as the Seitz arbiter from Mead and Conway’s book [66] served as beacons that
rooted theory to practice. But such select examples, while propitiously guiding the
evolution of the theory, offered little preparation for dealing with actual program-
ming practice.

Such separation from the sprawling complexity of practice is vital to a developing
theory. However, at some point a theory matures, and then we ask “OK, so what is
this theory actually worth? What can it genuinely do to help the client?” This is the
point of confrontation with the real world, the point where good theories adjust and
prevail and those that after all missed the mark fall away to oblivion (or so we might
hope. . . ).

23.2.1 Initial Challenges

There are serious theoretical challenges in technology transfer: providing capacity
adequate to handle the large size of industrial models, and providing adequate per-
formance to keep pace with the demands of commercial design development. Soon
enough inevitable inadequacies here would arouse client reluctance to technology
transfer. This reluctance, though, would manifest only once some degree of tech-
nology transfer already had occurred. Initially, the most formidable obstacles were
not these, but simply coping with the murky details of the client interface, and then
resolving how to manage the client’s inherent dread of any methodology change.
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The first target of model-checking technology transfer was control-intensive
hardware designs. This was a natural choice, as explained in Sect. 23.5. For hard-
ware designs, constructing an interface between the model checker and the target
meant translating Register Transfer Level (RTL) languages (largely, Verilog and
VHDL) to an internal data structure that the model checker could parse. While chal-
lenging (for example, typically, multiple assignments to an individual variable had
to be collected and represented by a single assignment consistent with all other as-
signments in the source), this was merely software engineering, for which adequate
expertise was readily available. Some useful software was already available to be
reused here, for example, elaboration software used for synthesis and simulation;
redundant latch removal algorithms that were already in use to optimize synthesis
were no less important for model checking, to reduce the number of state bits in a
model. Nonetheless, writing a robust, efficient interface for a model checker could
take many staff-years—a non-trivial allocation of resources, for which a convincing
case needed to be made.

23.2.2 Barriers to Technology Transfer

Of all the obstacles to technology transfer, perhaps the most vexing—because it
seems not technologically but emotionally based—is client resistance to change.
Anything new is suspect—and for good reason. Just think of all the insightful ideas
of questionable practical value that are eagerly advanced by the research community.
Industry has neither the bandwidth nor expertise to evaluate them (and engineers
eventually tire of hearing about yet another great method that will save the day).

Furthermore, acceptability of a new technology is inversely proportional to the
required change in the user interface. A faster compiler that plugs in transparently is
an immediate win, because the users see no change (beyond improved performance).
Model checking intrudes into the entire development flow. It requires developers to
become part of the verification process (by specifying properties). It requires the test
team to learn a completely new tool with new concepts and new considerations. The
concept of model checking is not transparent to someone who understands testing in
terms of executing the design through scenarios. Even today it is sometimes a chal-
lenge to wean testers from their tendency to write properties that look like scenarios
instead of global properties.

A design factory cannot risk a major disruptive process change that could destroy
a thin margin of profitability, even as the change promises to improve profitability
in the longer term. It is daunting to assess whether such a change will not only
help in a theoretical sense through improved technology, but also help enough in
the short term to overcome the inherent costs of process change. Therefore, a major
methodology change with its significant attendant costs is almost always a killer for
technology transfer.

Of course, change—even somewhat disruptive change—does occur from time to
time. In the Electronic Design Automation (EDA) industry, a potentially valuable
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change is typically evaluated, first in a dark corner by a summer intern, then, if
that shows some promise, by a computer-aided design (CAD) group in their spare
time on an old design. Only after a succession of promising evaluations might a new
process be evaluated tentatively on an active design (in parallel with the old process).
Only when all these evaluation hurdles are passed might the new technology begin
to be fully integrated into the design flow.

23.2.3 Methodological Differences and New Potential Benefits

Model checking offered an alternative to the established EDA mode of testing called
“simulation test”, wherein a design model is exercised by driving it with various
input scenarios. The input scenarios generally are generated by a “testbench” that
also is instrumented to monitor the ensuing behavior of the design model and detect
violations of expected behavior.

The design model is a program written in an RTL language, typically Verilog or
VHDL. This same RTL model provides the input to the automated flow from which
the resulting physical integrated circuit “chip” is generated, so there is a high level
of confidence that functional design failures can be caught through RTL simulation.

A major shortcoming of simulation test is that it inherently is not an exhaustive
test. An integrated circuit is a non-terminating device, so any test scenario necessar-
ily is a truncation of an actual behavior. Moreover, the massive degree of parallelism
present in integrated circuits leads to more variations of behavior than can possibly
be tested in the available time. (The number of variations of behaviors grows ex-
ponentially with the number of parallel components that can operate with some
degree of independence.) Today, testing is highly automated. Successions of input
vectors can be generated by the test bench within 2–3 orders of magnitude of hard-
ware execution speeds by special purpose hardware. Output streams are analyzed
automatically and failures, together with testing progress, are registered in elaborate
data bases. Such testing may continue for a year or more, running 24 hours a day
on server farms—enormous rooms filled with high-speed large-memory computers,
for as long as the machines will run, generating potentially trillions of test vectors.
Nonetheless, with the massive size of integrated circuit designs that are put into
production today, such a testing process can visit no more than a microscopically
tiny fraction of one percent of design states. To compensate for this, various often
highly sophisticated techniques have been applied to guide these relatively meager
test scenarios to the parts of the design that are considered critical. This is mainly
accomplished through “guided-random” simulation in which randomly generated
inputs are biased so as (hopefully) to exercise the critical scenarios. Such biasing
can be adaptive, through monitoring of “coverage” and machine learning.

Nonetheless, critical holes inevitably remain untested. One conceptual problem
with this approach is that the problematic areas of a design must be predicted, in
order to be tested. This is where model checking has a clear advantage: it can find
failures in complex hard-to-imagine scenarios. In fact, many serious design failures
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found too late, only once a circuit is cast in silicon or even put into production,
are the result of such complex scenarios that slipped through the testing net, never
simulated.

As a result, there was a growing sense of urgency regarding the inadequacy of
simulation test since at least the year 2000, and the model checking alternative had
been discussed in EDA circles since at least 1995 [55]. Nonetheless, introduction
of model checking into EDA test flows was excruciatingly slow until around 2005.
This was a consequence of the technology transfer problem, especially the required
change in methodology.

23.2.4 The Cost of Writing Properties vs. a Test Bench

At first take, writing properties for model checking instead of a test bench for simu-
lation might not seem like a big change in methodology. After all, an automated test
bench requires monitors to check for functional failures, and these monitors in ef-
fect encode required behavior, as would a property specification for model checking.
However, the two modes of expressing behavior are different.

It did not help that test bench monitors, written in an imperative language such
as C, often were not conveniently circumscribed, but expressed with various con-
ventions (or no convention at all) and dispersed throughout the test bench code,
rendering them difficult to isolate, extract, manipulate, modify and—above all—
understand. (In fact, this presented a problem for simulation test as well. This short-
coming provided a serendipitous key to model-checking technology transfer, as it
led to support for a unified syntax for simulation monitors that could be used as
well for property specifications for model checking. This fascinating story will be
revisited in Sect. 23.5.)

Moreover, since simulation is scenario-based, monitors tended to be expressed in
terms of required and forbidden sequences of behavior, whereas model checking re-
quired a more conceptual specification that could partition every possible sequence
into acceptable or not acceptable. For example, instead of writing in a simulator
test bench a property that enumerates the various steps of packet-handling under a
variety of contingencies—that invariably will be incomplete on account of the com-
binatorial explosion of possibilities—write the simple high-level property “Every
packet is received within two clock cycles after it is sent”. (If the actual steps of
packet handling need to be checked, these could be spelled out in sub-properties.
Most often, though, the “how” is not important.) While this led to much simpler
specifications than those attempted by the simulation monitor, some test engineers
were uncomfortable with the thought that the model checker could somehow “mag-
ically” sort though all the possible scenarios.

Apparently, this only required that test engineers be taught to write their monitors
more simply and coherently, and then with model checking they could eliminate the
costly test bench altogether. (Writing a test bench is considered a major investment
that requires enormous time and effort to get right, so an opportunity to displace this
cost would be very attractive.)

Unfortunately, it was not so simple.
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23.2.5 Settling on a Scope for Model Checking

Initially, model checking was advanced by the researchers who worked in that field.
Their perspective was that in order to reap the full potential benefit of model check-
ing, it must be applied at the system level. At the system level of an entire integrated
circuit, model checking could have the greatest impact by verifying system-level
properties as understood by the existing product-testing teams. These are the prop-
erties that are gleaned directly from product specification documents that describe
the high-level functional behavior of the design. In principle, model checking could
be made to scale to ever larger designs through the application of compositional ver-
ification and abstraction. However, successful applications of such techniques often
were tantamount to research projects, requiring considerable expertise and experi-
mentation, not to mention time. (The model-checking problem is PSPACE-complete
and thus model-checking decision procedures often cannot be applied directly to
very large designs; some form of divide-and-conquer is required and the successful
techniques for this require experience.)

It was not long into the model-checking technology transfer odyssey that this
mode of utilizing model checking was understood to be a non-starter, scaling nei-
ther in time nor available expertise (cf. Sect. 23.2.6). This led to much more mod-
est, scaled-down applications of model checking to design units small enough to be
amenable to direct application of the decision procedures. In this mode of use, ca-
pacity limitations limited model checking to a small number of design blocks (often
one or two). This mode of verification stood in stark contrast to the mode familiar
to the product test teams, in which the entire design was simulated all together. It
became a requirement for the application of model checking.

This requirement had two very disruptive consequences: properties had to be
written for individual blocks, and constraints had to be written to model the envi-
ronment of each block. This work naturally fell to a Verification Team. However,
although such teams understood the design behavior at the system level, it was dif-
ficult or impossible for them to acquire the required block-level knowledge within
the time and resources allowed to them. Block-level knowledge frequently resided
only with the designers, who could not or would not be bothered to provide this in-
formation. (More on this below. In some cases, the designers had moved on to other
projects or even other companies—a situation that also held grave consequences
when debugging was required, by the way.)

The preferred solution to this problem was to move model checking “upstream”
in the design flow to the designers themselves. Optionally, the verification team
could be re-educated to work with the designers at the block level. This solution
has some very compelling advantages. It puts block-level verification in the hands
of the person who best understands the required block-level behavior: the designer.
Moreover, it gives the designer a very powerful debugging tool: a model checker.
Without this, a designer may merely check that completed code compiles, since
writing a test bench for a block typically is considered prohibitively costly. Without
block-level functional verification, functional bugs can only be caught much later,
during the system verification stage of the development flow, when fixing bugs is
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much costlier. There is a widely cited sense in the industry that for each development
stage in which a bug’s discovery has been deferred, the cost to fix that bug has been
increased by an order of magnitude. (“A stitch in time saves nine.”)

Although this presents a very compelling argument for moving functional ver-
ification upstream to the designer and using model checking, this move has been
considered extremely disruptive for at least two reasons. Designers are considered
too valuable to divert to verification. (Classically verification is considered to be a
less-prestigious activity, although today design projects are sinking under the weight
of verification, which has been estimated to consume 50% to 80% of total design
time.2) Requiring verification engineers to perform block-level model checking in
collaboration with designers is thought at best to require time-consuming retraining,
and at worst to require an engineer with different qualifications altogether (entailing
laying off existing verification engineers and recruiting others).

Groups that have nonetheless experimented with this soon discovered an even
more daunting obstacle. To perform block-level model checking, it is not enough to
have an understanding of the functional behavior of the block in question (which in
principle could be obtained from the designer of that block). It is also necessary to
have an understanding of the functionality of adjacent blocks, in order to write an
appropriate environment model as required by model checking. The best way to do
this is to write constraints on block inputs, as then the constraints can later be reused
as assertions to be verified on the adjacent blocks. To do this properly requires a
mechanism to syntactically transform a constraint to an assertion by transforming
inputs to outputs. While this may seem trivial (and it generally is—at worst, there
is only a bit of renaming ugliness to overcome), it is not commonly supported in
today’s model-checking tools, in which case such transformations must be done
manually (although, see [51]). At the same time, there would need to be checks
against the potential for circularity in this assume-guarantee setup. Again, while this
is not hard to provide, it is not commonly provided today, and so must be handled
manually.

The reason that such seemingly simple transformations and checks are missing
from many commercial model checkers is not on account of oversight. It is the result
of another vicious circle in the technology transfer saga. Features and enhancements
to a product get implemented in a priority order. When development resources are
scarce, important priorities can repeatedly get displaced by other more urgent prior-
ities (such as fixing bugs and responding to critical customer issues). However, the
inability to deliver such important priorities adversely impacts the attractiveness of
the model checker and thus the sales revenues it can generate. Reduced sales rev-
enues often lead to reduced resources for product development. While this vicious
circle can be broken by enlightened management—and virtually every commer-
cial model checker is testimony to an example of enlightened management—such
enlightenment is very vulnerable when the focus is on near-term returns and cost-
saving (especially in recessionary times).

2This widely cited estimate was confirmed by the independent 2010 Wilson Research Group Func-
tional Verification Study described in a blog by Harry Foster [38].
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23.2.6 The First Commercial Successes

In fact, model-checking technology emerged into the commercial arena mainly
through start-ups, where explicit funding could be secured to break this vicious
circle. Successful examples of these were Verplex (acquired by Cadence), 0-In (ac-
quired by Mentor Graphics) and, most recently, Jasper Design Automation (acquired
by Cadence in 2014). A few commercially successful model checkers were pro-
duced in incubators in larger organizations, including FormalCheck (acquired by
Cadence from Lucent in 1998), and RuleBase and SixthSense developed by IBM
(mainly—but not exclusively—for internal use). Many other model checkers were
developed both in start-ups and larger organizations, but, for one reason or another,
failed to be commercialized.

A singular exception to this start-up/incubator rule was Intel. Intel was possibly
the first design company to seriously support model checking, having begun their
effort in 1990 [58, 81], and continuing it successfully and impressively until today.
That they could break through this vicious circle is probably mostly due to their
sense of urgency to cope with the verification problem, coupled with enormous re-
sources. The verification problem of how to deliver ever more complex designs that
are functionally correct undoubtedly hit Intel first and hardest, and they have def-
initely been a foremost leader in the development of model checking for commer-
cial use. With the exception of Intel and IBM, design companies prefer to acquire
model-checking technology from EDA vendors. (And even Intel and IBM have re-
cently augmented their internal model-checking capabilities with EDA vendor tools,
perhaps attracted by the potentially greater economies of scale afforded to EDA ven-
dors that should enable them to deliver less expensive and better technology.)

A number of other circuit design companies attempted and then abandoned the
development of a model checker, ultimately preferring to acquire the technology
from EDA vendors such as Cadence, Mentor and Synopsys. Design companies also
opened themselves to model checkers from start-ups, sometimes by way of evalu-
ating the model checkers from the larger EDA vendors. Often, a design company
ultimately prefers to get its tools from the large EDA vendors, for reasons of re-
liability, service, long-term relationships, tool interoperability and the opportunity
for package deals. This preference rarely stood in the way, however, of the design
companies licensing the start-up products to “encourage” the larger EDA vendors to
improve their own competitive products. In the end, it works out well for a spectrum
of winners: the best start-ups get acquired by the major EDA vendors and the design
companies drive steady improvement of the products. A stunning exception to this
pattern was Jasper, which remained an exceptionally successful start-up for 15 years
before it was finally acquired by Cadence in 2014. During its start-up period, it had
evolved into a leading vendor of model-checking technology.
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23.2.7 The Essentiality of Being Able to Compare Tools

A client’s ability to compare the variety of model-checking tools available is an im-
portant precursor to a decision to purchase. In the early days of commercial model
checkers, each checker was based on its own property specification language. This
meant that in order to compare several model checkers on one design, the design
specification would need to be rewritten for each tool. Comparing competing model
checkers under such conditions was beyond the wherewithal (or patience) of the
client design companies, and led to a general reluctance to go beyond experimen-
tal usage of one tool or another. While initially experimental usage of a vendor’s
product raised that vendor’s hope of an eventual big sale in which the tool would
be broadly integrated into the client’s development flow, the clients were largely
and understandably reluctant, as they felt that they had not been able to explore all
the competitive options. This situation remained a barrier to widespread client ac-
quisition of model checkers from the EDA vendors until this barrier was overcome
by the establishment of an international standard for property specifications [81].
The urgency for such a standard was so great that, once promised, before the ink
was dry, the EDA vendors were implementing the standard in their tools. With a
standard for property specification supported by all the commercial tools, the client
companies could evaluate all the available model checkers on one and the same set
of designs and property specifications, finally opening the door to serious acquisi-
tion and proliferation of model checking within the client companies. This in turn
emboldened vendors to develop commercial model checkers. The ability of clients
to compare the vendors’ model checkers head-to-head provided a great stimulus
to technology transfer and revenues from model checker sales. Indeed, competi-
tion among vendors breeds confidence. Several vendors advancing similar products
lends verisimilitude to the field, whereas a unique product without competition is
suspect. Today, every major EDA vendor markets a model checker. Although com-
petition is sometimes feared, in this case it increased every vendor’s sales and was
a requirement for widespread acceptance of the product.

Still, capacity (the size model that can be checked) has always been an issue.
The smaller the capacity, the more partitioning is required for verification. Parti-
tioning at RTL block boundaries is natural (given that partitioning is necessary).
If capacity is below the size of a typical RTL block, then the block itself must be
partitioned. Typically, partitioning a single block would be considered too much ef-
fort and too fraught with the risk of introducing errors to be seriously supported in
a real development flow. Therefore, block-level capacity is an essential ingredient
for technology transfer. The advent of BDD-based algorithms to support symbolic
model checking [63] elevated model-checking capacity above block level, thus elim-
inating capacity as a show-stopper in many cases. Since then capacity has steadily
improved, especially with the introduction of SAT-based symbolic model check-
ing [23, 64], which has afforded as much as two orders of magnitude increase in
capacity over BDDs.

As clients began to seriously evaluate competing model checkers, they became
aware of a plethora of confusing issues, details and use models. In some tools,
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considerations driven by capacity limitations require some (usually limited) un-
derstanding of abstraction, partitioning, compositional verification and restriction.
Even when these are automated in the tool, the boundaries of the automation can
be reached and then must be addressed. Since performance is critical, the user often
must become familiar with a variety of “engines” such as BDD-based algorithms
and SAT-based algorithms, or complete algorithms for verification vs. incomplete
falsification engines such as bounded model checking [23]. These have different
sweet spots that may be hard to identify automatically. While such issues did not
present barriers to technology transfer, they did present hurdles that slowed accep-
tance of model-checking technology. Vendors were required to address these issues.
The additional requirements on tool development came together with client reluc-
tance to proliferate model checking until the issues were managed. This retarded the
vendors’ anticipated revenue growth and had an unfortunate damping effect on the
rate of technology transfer.

23.2.8 In Summary

All in all, model-checking clients have complained (with some justification) that
although model checking came with a promise to eliminate the costly task of test
bench development, it was accompanied by the also costly task of writing an en-
vironment model, not to mention all these other growing pains associated with the
adoption of a new tool, let alone a new methodology. That writing an environment
model is actually considerably simpler and less costly than writing a test bench,
especially given the reuse of the environmental constraints as assertions for the ad-
jacent blocks, somehow gets lost in the translation. (The clients are justified, though,
in that support for this typically is inadequate, and in any case would require addi-
tional training.)

And yet, notwithstanding all these impediments to technology transfer, there
have now been many examples of successful model-checking technology transfers
in the last five to ten years. How these transfers first were (unsuccessfully) attempted
and then finally succeeded are the topics of Sects. 23.3 and 23.4.

To successfully transfer a disruptive technology as described here entails a si-
multaneous solution to five challenges:

1. break the vicious circle of funding (transfer requires funding that requires proof
that requires transfer);

2. interface the new technology to the client environment;
3. limit and then integrate methodology changes into client practice;
4. demonstrate the cost-effectiveness of the new technology in the client’s environ-

ment;
5. enable competitive evaluations.

In summary, it takes much time and thus cost to generate confidence in a new
disruptive technology. While it is vitally important that factors such as language
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standards are present to ease the process, these are only necessary but not sufficient.
In view of the high cost of any significant change in methodology, technology trans-
fer requires a compelling need in order to be cost-effective. In fact, as explained in
Sects. 23.3 and 23.4, the industry both waited for the need to overcome the cost and
at the same time took steps to reduce that cost.

23.3 False Starts

In the early days of program verification there were seemingly endless arguments
over which was the best modeling paradigm to support program verification—CCS?
CSP? branching time? linear time? All these late-night fulminations turned out to
be mostly misguided: the choice of modeling syntax or even semantics was not in
fact part of the problem; for better or worse (and many would argue, mostly worse)
the choice of programming language was already cast in stone and could not be
changed. Countless hours invested in developing myriad design model formulations
honed for concurrency and verification, with one or another particular partisan bent,
at best led to academic clarifications of the issues at hand. Eventually, the stark truth
struck: we are stuck with a few RTL programming languages for hardware models
(mainly Verilog and VHDL) and a few flavors of C for software models. While new
programming languages obviously do get born on rare occasion, the ontogeny is
generally obscure. But there was a vibrant supply of purists who did not care: they
insisted on leaving their mark in the dust bin of recorded literature, registering their
take on the perfect language for verification. The alternative pragmatic view was
that it is better to figure out how to verify programs written in the languages that
fate dealt. Once this view became dominant, our community buckled down in the
late 1980s to the first hard task of coupling verification algorithms to an existing
infrastructure of compilers and elaborators.

This is not to say that the development of low-level languages like SMV was
misguided; on the contrary, these provided a vital simple-to-understand interface,
and what is more, imparted a semantics to the (semantics-free!) languages in use.
These low-level languages were the “assembly languages” of formal analysis. They
were needed to capture the essential elements useful for verification, like a single-
assignment syntax from which a transition structure could easily be derived, dec-
larations for property specification, and other special structures that could be ex-
ploited to simplify model checking, like the explicit identification of state. At the
same time, the low-level language needed to be suitable for translation from the lan-
guages in use. While the simplicity and clarity of these low-level languages did gain
them a following who advocated for their use as design languages, such use never
flourished. The reasons for this may in part be on account of their spartan syntax
(a benefit, in some minds), but mostly it was simply that the established languages
already commanded too many interfaces with various applications to be candidates
for replacement. This common situation should provide a reality check for every
grand scheme architect.
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The most distracting false starts in the transfer of model-checking technology
from theory to practice all could be characterized with a single noun: over-ambition.

First, there was the attempt to position model checking at the system level, where
it can confer the greatest benefit by moving verification upstream in the design flow
to catch bugs earlier, scale with design size (by using the compositional techniques
anyway required at that level) and address the most important (system-level) prop-
erties of the design. At the time, this positioning of model checking seemed very
reasonable, but as already discussed in the previous section, this was a non-starter
on account of the immense methodological change it would entail and its depen-
dency on advanced expertise. (In fact, system level model checking is the ultimate
goal for all our EDA tools, although not viable as a first step.)

The path from the first widely disseminated commercial model checker For-
malCheck [37] released in 1997 to today illuminates a succession of decisions to
first replace power and flexibility by automation and ease of use—and then reintro-
duce power and flexibility as users became more sophisticated. At first, users wanted
something that was simple and easy to use, requiring little understanding of the
concepts. As users became more comfortable with model checking, they demanded
greater power and flexibility, and, ironically, sometimes these were provided merely
by turning features back on that had been implemented years earlier and then turned
off in the interest of simplicity. Today, conceptual simplicity in commercial tools is
becoming less of a concern; there are enough expert commercial users to support the
development of many advanced options and warrant having all such implemented
features available, at least as hidden options.

Sometimes the most immediately useful part of a new theory is a trivial part
considered hardly worth the mention. This accurately described the evolution of
commercial model checking. (As a parallel, Emerson [33] has described how model
checking itself came out of his study of the much harder program synthesis prob-
lem.)

Compared with “theorem proving” (automated proof checking), model checking
could be considered much simpler—certainly from the perspective of the user. This
accounts for the much wider proliferation of model checking in EDA, compared
with theorem proving.

Whereas early emphasis in model checking was placed on verification, it did not
take long to realize that as a first step, a tool that focused on falsification was more
accessible and immediately useful to hardware verification groups.

Before the wide spread acceptance of formal verification, one could go to a de-
signer with the claim “I verified that your design is correct” and you might get a
muffled yawn, because “who knows what this claim of verified really means”. But,
show her a bug in a form she could readily comprehend (a simulation error trace)
and she could immediately recognize the value: you found a bug that she did not
know was there. From the first applications of model checking, it was clear that the
first real value of model checking was that it was an uncommonly good debugger—
reductio ad bug. It was more effective to find a bug by trying to prove that there were
none, than to go looking for it directly—the bug is always where you didn’t think to
look. As a debugger, the model checker was forgiven for any black magic that went
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into its application (like abstractions, restrictions, unsoundness) since it was only
the bug that mattered; no need to understand the means. “I don’t need to understand
what model checking is, because I know a bug when I see it (and ‘verified’ only
means ‘failed to find a bug’).”

With the focus on falsification, completeness became less of an issue. This
opened the door for under-approximations such as restrictions on inputs (for ex-
ample, setting some data paths to near-constants) and restriction of the depth of
search as with bounded model checking.

Even soundness became expendable to some extent. This sounds horrific, but
even in the early days, soundness was discarded when error tracks from abstractions
were admitted. Likewise, if a block has been checked, but its environment model
has not been verified, then one cannot be sure of the soundness of the result. Often,
environment models are correct-by-construction abstractions of the actual environ-
ment. Then, however, property failure in a block does not necessarily imply a failure
in the full design (in the full design, the actual block environment may be more con-
strained). The user would need to try to simulate the error track. As long as there
were not too many false fails, the user was content. At no time would a false pass
be considered acceptable, and yet almost no product is without bugs, so there may
well be some false passes out there—if only as an artifact of faulty bookkeeping.
But this is the real world: you do your best, but keep moving. A Herculean effort to
verify the correctness of a model checker would not be a welcome diversion of re-
sources. Early focus on proving the soundness of the model checker was misplaced.
More important than soundness is coverage: instead of worrying about correctness,
worry about writing more properties to check more of the design. That’s the value
assessment. After all, simulation test has known semantic faults [35], and these are
tolerated. Only academics worry about them.

Today, all this is changing. Commercial users understand what “verified” means,
and there is an increasing emphasis on semantic correctness and completeness of
the verification enterprise. In other words, commercial use has converged to the use
intended by the academic community decades ago.

As the developers of commercial model checkers became increasingly in tune
with their clients, tool interoperability became increasingly important. In the early
days, model checking was an alternative to simulation test. The two at best were
disdainful neighbors: model checking could not put simulation out of business, al-
though the secret wish was there. Simulation was the workhorse of the test com-
munity; model checking by comparison seemed a toy. As a result, the two efforts
evolved in different groups. The company 0-In (recently acquired by Mentor Graph-
ics) may have been the first to establish peace between the two in the form of an
alliance aptly called hybrid verification (not to be confused with “hybrid systems”).
The idea was to use a simulator to quickly drive the design to “deep” states un-
reachable with a model checker. From those deep states, model checking (perhaps
on an abstraction) could be started. Synopsys has perfected the idea with their tool
Magellan, Cadence has their hybrid checker IEV, and today others are finding other
useful ways to combine simulation test and model checking. Certainly, a simulator
is handy for validating an error track on the full design. A big virtue of this hybrid
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is that it moves model checking into more familiar territory for the vast majority of
the testing community who practice simulation test. Through this connection lies the
best chance to put a model checker on the desk of everyone who today runs a simula-
tor. The idea of hybrid verification was overlooked (or passed by) because it seemed
to those working in model checking like a meager contribution. In retrospect, it was
an important early opportunity that was overlooked. A small but valuable step.

The most immediately successful mode of model checking has been logic equiva-
lence checking: verifying that two net-lists define the same Boolean function. While
equivalence checking evolved separately from full model checking of sequential de-
signs, its rapid rise to success in the EDA industry should not be overlooked as an
example of a conceptual idea that’s very simple, enjoying broad use (and producing
very significant revenue streams) very quickly. It did not suffer from the principal
barriers to technology transfer because it fit into current methodology. But is it a
good example of the power of a simple idea.

23.4 A Framework for Technology Transfer

Despite the formidable barriers to the transfer of model-checking technology to in-
dustrial use, those barriers eventually were breached. How did this happen? The
answer is simple, although the process was not. Technology transfer was achieved
through a succession of small, incremental steps, each of which moved in the direc-
tion of industrial adoption and collectively, over more than a decade, achieved that
goal. Through small, incremental steps, excessive disruption of existing industrial
design development flows was avoided. However, to be worth the effort of adoption,
each small step nonetheless needed to offer some benefit over the current practice.
The cut point is cost-effectiveness: the small step needs only to provide a short-term
benefit greater than its adoption cost. (Longer-term benefits are too hard to predict
and thus are generally heavily discounted.)

It would be nice to report that at some point those of us involved in the tech-
nology transfer process were smart enough to understand this picture and to drive
technology transfer by its rules. However, even if there were those who understood,
the principle informs but fails to guide. Which small steps comprise the right suc-
cession to repeatedly, step after step, provide the required cost-effectiveness and
lead to the desired goal? The truth is that we blundered into the solution (and in-
deed continue to do so, as this technology transfer will be ongoing for as long as
model-checking technology continues to evolve, and practice continues to trail be-
hind available technology). Trial and error through a process of “natural selection”
led to discovering the succession of cost-effective incremental technology transfer
steps that got us to where we are today.

A Grand Architect of technology transfer could come up with a “road map” of in-
cremental steps that get from where we are today to full adoption of model-checking
technology—solving the “getting from here to there” problem. That would take
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great vision in view of the many course changes that actually occurred in the trans-
fer of this technology. While such a road map is an attractive ideal, reality manages
with blundering forward.

Around 1990, major IC (integrated circuit) designers like Intel, IBM and the cel-
lular telephone manufacturers, along with the automotive and avionics industries,
began to understand that the increasing functional complexity of designs was ren-
dering them untestable. Without a dramatic change, decreasing reliability would
become the gating factor for design complexity. The new circuits could be built,
but they would malfunction. There is nothing like a half-billion dollar bug [28] to
drive this message home. Furthermore, evidence suggests that Toyota’s recent brak-
ing problems may be linked to a “software glitch” [3, 9] whose cost could dwarf
the Intel bug: in the two months following the brake-related recalls of January 2010,
$25 billion of Toyota’s market capitalization was wiped out [48]. While ongoing
computer security bugs are rampant, pervasive and extraordinarily costly ([83] es-
timates a loss exceeding $50 billion in 2006 alone), these are unlikely to be found
through model checking: to think of the model in which the security breach can oc-
cur is to already finger the problem. (The vastness of the Internet with its entirety
of hardware and software certainly precludes modeling, much less verifying.) Yet
there were other bugs, infamous for the high cost of the damage they wrought, that
arguably could have been discovered though model checking. Among these are:
the deadly Therac-25 race bug [60], the 1996 $370 million loss of the Ariane 5
rocket [61], NASA’s 1999 $125 million loss of its Mars Climate Orbiter [27], and
the incalculable losses from AT&T’s 1990 voice network collapse [77, 78] and 1998
data network collapse [13, 62]. All these were soon enough traced to hardware and
software bugs that while easy to understand after the fact, were too hard to imag-
ine and thus discover through conventional scenario-based testing. Alongside this
trail of sensational bugs lies the litter of the mundane bugs that have degraded per-
formance, increased costs and have been shown after the fact to have been discov-
erable through model checking; and along with these are the bugs that could have
degraded performance and increased costs, but were discovered by model checking
after having been missed by simulation test.

The result today is a rapidly growing sector of the IC design community that has
come to realize that maintaining testing-as-usual would drive them out of business
on account of the rapidly degraded quality that accompanies increasingly untestable
functional complexity. They are driven to seek new remedies, including guided-
random simulation mediated by learning, and model checking. This increased need
finally opened the door to model checking in EDA—just as the academic commu-
nity had been predicting for decades. But the EDA industry yet needed to come up
with a cost-effective way to introduce the technology. The trial and error process that
accomplished this was fraught with far more issues than the academic technology
innovators ever imagined.

Equivalence checking, the first major success of model-checking technology
transfer, is such a special case of model checking that it generally is not even con-
sidered as a transfer of model-checking technology. However, it remains a perfect
example of a small step in the grand plan, and it definitely opened the way for more
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general forms of model checking. Equivalence checking grew quietly in the 1990s
before it burst forth as a very successful product that is used extensively and broadly
in the EDA design development flow. The ideas of equivalence checking had been
simmering quietly since around 1980 [19]. Back then the problem was capacity,
but the main ideas—mapping states to convert sequential equivalence checking into
combinational equivalence checking and then further mapping nets via names and
topology—were already established. With the advent of BDDs, the capacity issue
was ameliorated and much better products emerged. The research community took
little note, as the great challenges were in general model checking. But suddenly, by
the turn of the century, equivalence checking was fully established as a mainstream
commercial product. A small step, but one of great significance and value. Clients
of general model checking were less intimidated by its algorithms once they had
become experienced with those algorithms in the framework of equivalence check-
ing and had learned how valuable they could be. Even today, “formal verification”
means equivalence checking to many clients of the EDA industry.

IBM’s equivalence checker Verity developed by Andreas Kuehlmann in 1992
was perhaps the earliest modern (BDD-based) equivalence checker. In 2004 Verity
was sold to Magma, which now markets it as QuartzFormal. Since then other leading
equivalence checkers came into being: Cadence’s Conformal (acquired along with
Verplex), Synopsys’ Formality, Calypto’s SLEC, IBM’s SixthSense and FormalPro
from Mentor Graphics.

The biggest incremental opening for model checking in the course of its tech-
nology transfer odyssey came as unexpectedly as it was in plain view. This opening
was created by the establishment in 2003 of an international standard for functional
property specification languages, the Accellera Standard [2]. (Unfortunately, on ac-
count of commercial pressures, the standard established not one but three alternative
languages: OVL, technically, a library of assertion checkers, PSL and SVA, all of
which EDA vendors were obliged to support.) This standard allowed for head-to-
head evaluations of competing commercial model checkers, and opened the way
for serious sales and proliferation of model checking technology, as already ex-
plained. Interestingly, while the basis of this standard came from model-checking
specification languages, the driving motivation behind the standardization had little
to do with model checking. The motivation came from the parallel needs for clarity,
modularity and standardization of monitors used with simulation test benches. This
evolved as a program known as “Assertion-Based Verification” (ABV) [39], wherein
monitors evolved into “assertions”. This was the start of a beautifully symbiotic re-
lationship between model checking and simulation test. The idea of a functional
property specification language based on assertions originated with model check-
ing; it was popularized and standardized for simulation monitors, and then it was
returned to model checking for commercial use there as well. Thus, model checking
served simulation by providing a way to clean up and standardize simulation mon-
itors; simulation provided the muscle to actually accomplish the standardization
and technology transfer; and then model checking consumed the resulting property
specification languages to surmount a technology transfer obstacle that hitherto had
blocked the possibility of serious commercial proliferation of model checking (as
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described earlier). I do not believe that anyone who advocated for model-checking
technology transfer ever predicted the specification language obstacle that resulted
from its lack of standardization, much less this stunningly serendipitous solution,
until the standardization process already was under way.

The symbiotic relationship between model checking and simulation test contin-
ues to flourish. Combining model checking and simulation for “hybrid” tools is now
rapidly gaining use (after a slow start) as the interoperability between the two im-
proves. The potential for such synergy may not have been predicted in the early days
when the prevailing sentiment among some academics envisioned model checking
as a replacement for simulation. (That this sentiment was quickly repressed in order
to avoid alienating potential EDA clients does not mean that it was not nonetheless
held.)

Most recently, simulation test has benefited from BDD- and SAT-based constraint
solvers used for guided-random simulation. These solvers come directly out of core
model checker technology.

Today, there is a robust respect for formal methods in the EDA community and
model-checking technology is so thoroughly integrated in the verification flow that it
is no longer an alien technology seeking to gain a foothold, but just part of the prod-
uct testing arsenal. Nonetheless, the technology transfer gap is far from closed. The
next big technology transfer challenge for model checking undoubtedly is system-
level verification: how to transfer current technology and techniques for system-
level model checking to commercial practice. There are ideas how to do this, and
behind these ideas, pilot projects. I believe that our recent odyssey has demonstrated
that to breach the barrier that this new challenge presents will require a succession of
small, non-disruptively incremental and yet cost-effective steps. I think history has
demonstrated that technology never stands still, and the increasingly critical need
for system-level model checking will find its way. And I think that experience has
shown that we are unlikely to correctly predict the road map of incremental steps
that will get us there.

23.5 Formal Functional Verification in Commercial Use Today

Equivalence checking is broadly used and of all formal methods is the one that
has most pervasively penetrated the IC industry development flow. An initial circuit
design is subject to various optimizations like retiming, clock-gating (pruning the
clock tree to reduce dynamic power dissipation when a flip-flow has a don’t-care
value) and similarly, at a block level, power-gating (turning off blocks of a design
not in use, to save power). These optimizations, even when automatic (algorith-
mic), cannot always be assumed to be correct by construction. The original design
is typically easier to understand than the transformed design, and may have already
undergone testing. Therefore it must be checked that the optimized design is func-
tionally equivalent to the original design. Functional equivalence checking is thus
an essential and central activity in EDA.
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To verify that an optimized sequential design is functionally equivalent to its
original (unoptimized) design, one tries first to decrease the computational burden
by reducing the problem to a series of combinational equivalence checks—checking
the equivalence of stateless Boolean functions. This can be accomplished through
various techniques that associate the states of the two designs. Checking the equiv-
alence of stateless Boolean functions can often then be further simplified through
associations of logic nets that may remain untransformed between the two designs
or are equivalent at certain states of the original design.

Presently, the focus in EDA is on combinational equivalence checking, as most
commercial circuit equivalence checks have been thus reducible to combinational
checks. However, the remaining parts of the check that cannot be reduced are han-
dled as (sequential) model-checking problems and these seem to be growing along
with an increasing complexity of transformations that defy simple reductions to
combinational equivalence checking. While, organizationally, equivalence check-
ing and model checking have developed separately in the EDA industry, increasing
dependence on full sequential equivalence checking incorporating model checking
seems like it will inevitably bring them together.

Full functional verification of hardware through model checking—at long last—
is now a success story of technology transfer of computer-aided verification. As
recently as 2005, the jury was still out on whether the then nascent commercial
hardware model checking would gain traction in the EDA industry. The barriers to
technology transfer were primarily procedural as already explained, and the technol-
ogy had far outstripped its supported level in EDA. Today, commercially supported
EDA model checking is mostly for local (RTL block-level) properties. These in-
clude properties such as arbitration, resource allocation (request/grant properties),
flow control (underflow/overflow), state unreachability, local message delivery, and
local serialization, as well as an endless list of hardware particulars (sometimes of
questionable value, having been derived from a simulation mindset rather than the
mindset of correct functional behavior). Very recently, we begin to see EDA appli-
cation of model checking to system-level properties, a very welcome sign. Often
this requires some model-checking expertise to push through.

The final great enabler of commercial hardware model checking was the intro-
duction of ABV based upon the Accellera Standard for functional property spec-
ification mentioned in the previous section. Thus, two great enablers of model-
checking technology transfer were provided by established technologies: synthesis
optimizations (Sect. 23.2.1) for state-efficient models, and ABV for standardized
functional property specification. The importance of these for technology transfer—
and the good luck of the synergies for model checking—are often overlooked. Soft-
ware model checking will need both of these: efficient state models and a stan-
dardized functional property specification language before it can become a broadly
supported commercial technology, it would seem.

With EDA providers supporting the Accellera standards, CAD groups could build
their flow for model checking without being tied to a specific product. This libera-
tion was a prime enabler for the acceptance of model checking in mainstream de-
sign flows. The interoperability afforded by the standards bred competition among
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the vendors, predictably increasing the quality of the model-checking products. It
also liberated start-ups from the need to create a functional property specification
infrastructure, allowing them to focus on the core technology. This in turn bred more
competition.

Competition breeds confidence: confidence for the consumer that they can switch
to the best available product without disturbing their flow; confidence for the vendor
that this is a product of significant value.

Today there is an impressive array of EDA vendors competing in the model-
checking arena, including the big three: Synopsys, Cadence and Mentor Graphics,
as well as a swell of start-ups with impressive model-checking products, especially
Jasper (recently, no longer a start-up), as well as Calypto, Prover, Averant, RealIn-
tent, @HDL, and others. Although not really an EDA vendor, IBM has nonetheless
made impressive headway marketing their RuleBase model checker as well. How-
ever, this landscape is constantly moving, and by the time this is published, it may
well be out of date.

While not yet widely supported by the EDA industry, model checking high-level
(abstract) models of complex protocols such as cache coherence is routine in the
processor design industry and support for this is only just now starting to make
its way into commercially available EDA model checkers. However, at the time of
writing, this application of model checking is less mainstream than checking local
properties of RTL blocks, despite its importance and perfect fit with model-checking
technology. Meanwhile, the tool of preference for those who design cache coherence
protocols has been Murϕ [31] designed by David Dill and his students. While David
has moved on to other interests, Murϕ is actively maintained by Ganesh Gopalakr-
ishnan at the University of Utah, thus providing an important service to this segment
of the industry until the EDA industry catches up.

Interactive theorem proving is used today in a few niche applications, primarily
for data-path verification of numerical algorithms such as multipliers. AMD and
Intel have found a way to use this effectively in their development flow [50]. Today
it is not supported commercially by the EDA industry (although in the 1990s it
briefly was, in the UK). The reasons for this have already been discussed.

The application of formal methods to software design and development has
proved much harder than for hardware.3 There are numerous reasons for this. First
is the relative lack of semantics for C code (cf. [11] for a penetrating and sadly hu-
morous reflection on this). Hardware specification languages were no better, but had
a semantics forced on them by the need to automatically synthesize a program into
a circuit. It is precisely this imputed semantics that provides the hooks for model

3In our context, “hardware” means HDL, e.g., Verilog code, whereas “software” means primarily
C or C++ code. Of course, pedantically speaking they are both “software”, whereas “hardware”
is something attached with a soldering iron. The contrast between “hardware” and “software”
becomes more blurred with the advent of “system-level” design languages such as SystemC: with
restricted C syntax, they compile directly into an RTL language. Moreover, there have been cases of
successfully model checking restricted forms of C [8]. Here, when speaking broadly of “verifying
software”, what is meant is verifying the full syntax of C, including, most problematically, pointers
and memory allocation.
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checking. Formal analysis of software entails assigning a semantics that in some
cases may be arbitrary and fails to match the semantics imputed in other contexts.

Moreover, the performance of synthesis for hardware is intimately tied to an
efficient assignment of sequential elements (states) to the design. Optimizing which
program variables are “state” variables has been the object of enormous effort in the
EDA industry for the purpose of efficient synthesis. Model checking capitalizes on
this effort by using the synthesis assignment.

Since software has no such concern for synthesis, model checking for software
must incorporate a step wherein sequentiality is imputed to the program: which
actions can be assumed to happen simultaneously, which must occur sequentially.
Again, doing this efficiently is very important for the performance of the model
checking, but in the case of software, there are no years of effort in this direction to
stand upon. The general solution for software has been to assume that all actions are
sequential, and that actions in different “processes” interleave. This is satisfactory
for small software models, but does not come close to passing the required compo-
nent capacity threshold needed for model checking discussed earlier. Interleaving
also tends to be more efficiently implemented by explicit state analysis, further lim-
iting capacity.

There are still other impediments to software model checking. Since C is the lan-
guage of choice for designs, pointers, memory handling and the general infinite state
of the system all must be handled. While there has been some impressive progress in
this area [26], it has some distance to go before it can be picked up for commercial
use.

Nonetheless, there has been one important achievement in commercial software
model checking: at Microsoft, SLAM [8] has penetrated mainstream driver develop-
ment (for which its principal developers, Thomas Ball and Sriram Rajamani, were
awarded the 2011 CAV Award [80]). It uses a software model based on a driver pro-
gram’s control flow graph to overcome all the problems cited above. Its verification
is based on a push-down automaton associated with the control flow graph. While
SLAM has been fanned out into the design development process in Microsoft and is
an important example of model-checking technology transfer, its very particular ap-
plication must be understood as brushing the boundary of what is currently possible
for model-checking software in an industrial setting.

There have also been some very impressive recent but by now fairly widely used
advances in commercial static analysis tools for C and C++ code (and in at least one
case, Ada). See [32] for a comparative study of a number of these. These commercial
static analyzers include Coverity [30], Klocwork [52], Polyspace [70] acquired by
MathWorks, Parasoft [68], Astree [7] from AbsInt Angewandte Informatik [1] based
upon the theory of abstract interpretation developed by the Cousots [29] and, most
recently, CodeSonar [42] from Grammatech by Tim Teitelbaum and Tom Reps from
the CAV community.

Europe has recently taken a more “progressive” attitude toward technology than
the US or the Far East. (I attribute this to the pervasive availability–at least prior to
the current economic crisis–of government and now EU funding for new technology,
allowing many ideas to flourish without passing the acid test of the free market, as
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required elsewhere. This atmosphere is reminiscent of the lavish post-Sputnik fund-
ing in the US, fueled by freely flowing government grants in the sciences, defining
a period that coincided with the “golden age” of research in the US, but also with a
level of “dead-end” research that would no longer be tolerated.) This also may be re-
flected in the observation that EU applications tend to be more “pure”, compared to
a US focus on the more practical. For example, of the static analyzers listed above,
Polyspace and Astree from the EU are more focused on verification, whereas the
others are focused on falsification (bug-hunting). Be that as it may, there are a num-
ber of commercial formal verification successes in the EU. In addition to Polyspace
and Astree, there was Esterel Technologies whose web site had many pointers to its
industrial applications. Although model checking was not a key to its success, the
ability to analyze formal models may have been. The background technology was
developed over more than a decade by Gérard Berry [10]. Esterel Technologies has
applied formal analysis to high-level models of critical applications, prominently
aerospace and automotive, thereby circumventing the obstacles of C code verifica-
tion.

Likewise, iLogix (acquired by Telelogic, which in turn was acquired by IBM) has
seen commercial success with its implementations of StateCharts. Driven by David
Harel and Amir Pnueli, the basic ideas have evolved in the literature over decades.
Again, the object is analysis of high-level models. iLogix has had successful use
in the telephony industry. Again, while based on a formal semantics that is impor-
tant for the analysis they do, formal verification may have been peripheral to the
company’s success.

23.6 Algorithms

Until the advent of symbolic model checking based on BDDs [63], model checking
was based on explicit state enumeration. This typically allowed a few million states
to be searched, a bit more today with bigger and faster computers, but not enough to
provide the capacity required to break through the RTL block threshold described
above. With BDDs, blocks with 1050 states or more could be checked. This corre-
sponds to 100–200 state bits, in contrast to around 20 state bits for explicit search.

However, BDDs have their own problems, mainly their often mathematically
chaotic and thus unpredictable memory requirements (changing the location in the
design of a single variable declaration can result in an enormous and generally un-
predictable change in the size of the resulting BDD). In the late 1990s Ed Clarke and
his co-authors suggested using SAT as an alternative for model checking [12, 23].
(Some, including this writer, voiced skepticism regarding the value of this approach,
on account of the then very limited capacity of SAT solvers, and in time we were
proved wrong. Ed and his co-authors deserve great credit for their foresight.)

Today, model checking can be based on explicit state enumeration or symbolic
state enumeration based on BDDs or SAT, as well as ATPG (Automatic Test Pattern
Generation). Each of these has given rise to a number of distinct model-checking al-
gorithms (see below). McMillan’s interpolation method [64] was the first complete
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SAT-based model-checking algorithm, and on our benchmark tests in Cadence this
generally outperformed all the others for a number of years. More recently, Aaron
Bradley’s SAT-based IC3 [15] and word-level algorithms based on SMT (Satisfia-
bility Modulo Theories) are among the top contenders.

Unfortunately, there are still a sufficient number of cases where each of a variety
of SAT- and BDD-based algorithms does best, that it has not been feasible to rely
only on one. Therefore, all of these are supported. Until recently, the best result
came from running several of these algorithms in parallel and killing the runs as
soon as the first finished, exploiting the nearly ubiquitous multi-core environments
found today. Experience has shown a super-linear speed-up using this method when
checking many properties, over running only the overall single best algorithm. More
recently, sophisticated combinations utilizing these and other “helper” algorithms in
parallel [16] have come into play and now dominate.

Superimposed on top of the basic model-checking algorithms are a variety of
proof strategies. Many of these are based on abstraction, the most important lever
for lifting large state spaces. One is localization wherein portions of the design that
are irrelevant to checking a given property are eliminated through abstraction. In its
original formulation [54, 56] the algorithm iterates over abstractions determined by
counterexamples on successive refinements. Ed Clarke et al. refined this algorithm
with a SAT-based decision procedure [25]. In a significant SAT-based improve-
ment [65], the successive abstractions are determined not by the counterexamples
but by the unSAT clauses used to refute falsification of the property in the original
model at a given depth. This “Abstraction-Refinement” loop has led to many further
improvements of this basic idea, driven by the strength of the SAT solver in find-
ing efficient refutations. Ranjit Jhala and Ken McMillan have extended the method
using interpolation [49]. Through the successive improvements, the SAT solver is
brought into play more and more as a deductive reasoning engine. Quantifier support
is already in the works. One may speculate whether automated theorem proving will
re-emerge through this thrust as truly automated deduction inspired by DPLL-style
deductive procedures.

Other proof strategies in commercial play today include word-level algorithms
that utilize SMT solvers, predicate abstraction, induction, abduction, symmetry re-
duction and (automatic) assume-guarantee reasoning. Assume-guarantee reasoning
can be flat or can follow the design hierarchy.

The same infrastructure used for model checking is used for synthesis optimiza-
tions and automatic test bench synthesis for simulation. For the latter, BDDs or
SAT are used for constraint-solving in the context of guided-random search. Alter-
natively, properties viewed as constraints are converted to generators that generate
only legal inputs. All of these are in mainstream product use today [86].

For falsification, various restrictions are used. The depth of search can be re-
stricted with bounded model checking. The input space can be restricted as well,
especially by restricting the range of data-path inputs.

Symbolic trajectory evaluation [75] has seen extensive use in hardware verifica-
tion, especially at Intel. It is a very specialized (restricted) form of symbolic model
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checking developed by Randy Bryant and his student Carl Seger, in which proper-
ties are expressed exclusively in terms of the temporal logic next-time operator and
Boolean connectives.

23.7 Future

The easiest prediction for the future of commercial computer-aided verification is
that today’s technology will catch up with that future. This means that commer-
cial model checking will arrive for general software development—perhaps after a
means has been found to provide the same sort of optimizations discussed above
that synthesis routines provide for hardware, and a standardized functional property
specification language is adopted. However, general software presents some daunt-
ing challenges, including pointer analysis and memory allocation. Today, most suc-
cessful software model-checking methodologies circumvent these by focusing on
the software control flow. On the other hand, software also offers some opportu-
nities absent in hardware: much of software is inherently word-level, supporting a
more sophisticated mathematical analysis unhindered by those pesky hardware bits.

For hardware (first) we are headed strongly to the support of hierarchical verifi-
cation for top-down design. Languages such as SystemC and SystemVerilog are first
attempts in this direction, but they do not address how to relate successive levels of
abstraction. We need to be able to write a high-level design, verify it and then refine
it successively to a low-level implementation target in a manner that guarantees that
each successive refinement is consistent with its abstraction. In this way, properties
verified at one level of abstraction are guaranteed to hold at all successive levels
of refinement (and thus do not need to be reverified). This is a divide-and-conquer
method that (potentially) supports the verification of global properties largely be-
yond the reach of today’s commercial model checkers. Global properties are verified
once and for all in high-level abstractions, and then are guaranteed to hold in all re-
finements. A promising way to construct refinements is in a manner that guarantees
that it is correct by construction. This saves the overhead of additional verification,
but places restrictions on the structure of refinements. However, refinements must
be guided by the low-level architecture in any case, so this restriction may be ac-
ceptable. In effect it leads to a dual top-down/bottom-up design methodology [57].
With hierarchical verification the emphasis shifts from falsification to verification,
as the correctness of the implementation depends upon verifying the correctness of
the high-level abstractions.

The next easy prediction—because it is already happening—is integration of
model checking with simulation for “hybrid” algorithms (cf. above) and utilization
of model checking in sequential equivalence checking. The latter is natural because
in the worst case (when states and nets cannot be mapped) sequential equivalence
checking is model checking. Sequential equivalence checking may also be used to
check the correctness of refinements, if they are not already correct by construction.
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Such hybrid algorithms are also used to augment simulation test: a model checker
can be used in a variety of ways as a diagnostic tool to help increase simulation
coverage, by “guiding” simulation test vectors to critical parts of the design.

A problem not yet fully solved is how to “give credit” to model checking in the
context of simulation coverage metrics, for properties already verified by the model
checker.

With hierarchical verification comes the integration of model checking with de-
sign: since a high-level model will be verified before refinements are even designed,
model checking becomes a design tool in which the correctness of architectures
and algorithms are checked. In the course of checking algorithms, theorem proving
may be brought into play, and in the future a theorem prover may be an accessory
to every model checker. (Model checkers are already accessories to many theorem
provers/proof checkers.) While this requires expertise, by this time a new generation
of designers hopefully will be ready for the challenge. Note that, as an accessory,
theorem proving can add its power without delaying the design process.

Theorem proving may re-emerge as a fully automatic DPLL-style deductive en-
gine. There already is a trend in this direction (see above).

Finally, there will undoubtedly be ever greater use of pre-verified components
(“IP”). This “reuse”, a very important productivity enhancer, can fit in with hierar-
chical verification and top-down design. Moreover, when designs are out-sourced,
a more reliable contract than one that describes the design through discourse is one
that specifies the design formally, requiring contractually that the completed design
will be verified for a specified list of properties.

23.8 Conclusion

Computer-aided verification technology has finally—it took 20 years—been trans-
ferred to the EDA industry in the form of equivalence checking, model checking,
and constraint solving for guided-random simulation. Equivalence checking and,
later, constraint solving were fairly easy to transfer because they were not subject to
the three great impediments to the transfer of model checking: a required methodol-
ogy change, the vicious circle of funding, and inventing an acceptable infrastructure
for defining properties to be checked. The required methodology change for model
checking was accomplished through a succession of small steps, each of which was
small enough to avoid significant disruption of existing methodologies, while sig-
nificant enough to demonstrate value. This is why the technology transfer took so
long (and it still continues). The required infrastructure for defining functional prop-
erties was established through standardization of property specification languages.
The gating issues for these technologies remains speed and capacity. Speed is con-
tinually improving as technology advances. Capacity is improving as well, but is
limited by the intrinsic computational complexity of the technologies. To circum-
vent the capacity limitation, the only known general strategy is abstraction-based
divide-and-conquer. This is where much of the cutting edge research is focused.
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Chapter 24
Functional Specification of Hardware
via Temporal Logic

Cindy Eisner and Dana Fisman

Abstract In the late 1970s, Amir Pnueli suggested that functional properties of
reactive systems be formally expressed in temporal logic. For model checking such
a logic to be possible, it must have sufficient expressive power, its semantics must
be formally defined in a rigorous way, and the complexity of model checking it
must be well understood and reasonable. In order to allow widespread adoption in
industry, there is an additional requirement: functional specification must be made
easy, allowing common properties to be expressed intuitively and succinctly. But
while adding syntax is simple, defining semantics without breaking properties of the
existing semantics is a different story. This chapter is about the various extensions
to temporal logic included in the IEEE standards PSL and SVA, their motivation,
and the subtle semantic issues encountered in their definition.

24.1 Introduction

In his seminal 1977 paper [62], Amir Pnueli first suggested that functional proper-
ties of reactive systems be formally expressed in temporal logic (Chap. 2). While the
proposal was widely accepted in academia, the exact nature of the temporal logic
was a topic of long debate. In particular, the nature of time was widely discussed—
whether it should be linear, where each point has a unique next future, or branching,
where each point may have multiple next futures. The choice has implications for
expressivity as well as the complexity of model checking—see [69] for a survey.
Another focus of debate surrounded the question of how to augment LTL (Lin-
ear Temporal Logic), which has the expressive power of star-free ω-regular lan-
guages, to a temporal logic that has the power of full ω-regular languages. Pro-
posals included automata connectives, second-order quantification, and grammar
operators—see [70] for a full exposition.
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With the invention of symbolic model checking in the early 1990s [57], the in-
dustrial applicability of model checking began to be recognized, and in 1998 the
Accellera Formal Verification Technical Committee began an effort to standardize a
temporal logic for use in the hardware industry. Requirements were gathered from
industrial users of hardware model checking as to what kinds of things they needed
to be able to express more easily than they could in existing temporal logics. This
effort eventually resulted in two leading IEEE standards, PSL (Property Specifica-
tion Language, IEEE Standard 1850 [43, 44]) and SVA (SystemVerilog Assertions,
IEEE Standard 1800 [45, 46]).

Both PSL and SVA are based on the linear paradigm, and in particular on
LTL [62], while PSL includes as well an optional branching extension based on
CTL [17] (see also Chap. 2 for a discussion of LTL and CTL). The approach of both
to extending the expressive power of LTL to that of ω-regular languages is to add
regular expressions and the suffix implication operator, which gives implication a
temporal flavor by making the consequent dependent on the end of the regular ex-
pression used as an antecedent. They both also include a number of specialized oper-
ators to allow natural specification of sampling abstractions (e.g., hardware clocks)
and truncated paths (e.g., hardware resets). Finally, both provide local variables,
which can be seen as a mechanism for both declaring quantified variables and con-
straining their behavior. Local variables are another way to extend the expressive
power of LTL, and also provide much succinctness.

When extending a temporal logic with a new operator, it is important not to
break properties of the existing semantics or those of the extension. For instance,
if a common property such as distributivity of union over intersection is broken,
two formulas that are intuitively equivalent may no longer be so, and, even worse, a
tool relying on this property may produce an incorrect result. Even if we are willing
to review and fix existing algorithms, breaking properties of the existing semantics
or its extensions might compromise a user’s intuition, making the logic effectively
unusable.

Extending a logic without breaking existing properties of the semantics is not
trivial, and many early attempts failed. For example, an early attempt at defining the
semantics of a clock operator broke the fixed point characterization of LTL’s strong
until operator in terms of the next operator, and an early attempt at defining local
variables broke the distributivity of union over intersection.

In this chapter we will examine the major issues raised by the extension of LTL
in order to meet the needs of industry. Since syntax is not the interesting part of the
story, we will use a mathematical syntax that allows us to illustrate the semantic
issues addressed by both standards without emphasizing either one. In each section
we present only a fragment of the semantics relevant to the discussion at hand. The
full syntax and formal semantics of PSL and SVA can be found in the correspond-
ing standards [43–46]. Introductions to PSL and SVA aimed at users can be found
in [19] and [16], respectively.

The current standards are not necessarily the final word; standards keep evolving
to meet the growing and changing needs of the industry. In Sect. 24.7 we touch
briefly on some directions for future research.
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Let P be a set of atomic propositions and b a Boolean expression (propositional formula)
over P . The syntax of LTL is given by:

f ::= b | ¬f | f ∧ f | f ∨ f | Xf | Gf | Ff | [f U f ] | [f W f ]
Let f,f1, f2 be LTL formulas over P , and w an infinite word over Σ = 2P . We use � b to
denote that a letter � ∈Σ satisfies a given Boolean expression b. The semantics of LTL is given
by:
• w |= b ⇐⇒ w(0) b

• w |= ¬f ⇐⇒ w �|= f
• w |= f1 ∧ f2 ⇐⇒ w |= f1 and w |= f2
• w |= X f ⇐⇒ w(1..) |= f
• w |= [f1 U f2] ⇐⇒ ∃k such that w(k..) |= f2 and ∀j < k we have w(j..) |= f1

f1 ∨ f2 ≡¬(¬f1 ∧¬f2) Ff ≡ [TRUE U f ] Gf ≡¬F ¬f [f1 W f2] ≡ [f1 U f2] ∨Gf1

Fig. 1 The semantics of LTL [62]

24.2 From LTL to Regular-Expression-Based Temporal Logic

The temporal logics PSL and SVA are linear temporal logics. In contrast to branch-
ing time logics, they follow the view that every point in time has a unique future,
and more precisely a unique next time point (see Chap. 2 for more on linear and
branching time logics). At the core of PSL and SVA lies the temporal logic LTL
standing for linear time logic, as proposed by Pnueli [62].

Formulas of LTL are phrased with respect to a set of atomic propositions P , and
are interpreted with respect to an infinite word over the alphabet Σ = 2P , whose
letters represent points in time. We use the notation [[ϕ]] to denote the set of words on
which formula ϕ holds. We number the letters of word w starting from 0, like this:
w = �0�1�2 · · · , and we use w(k) to denote the k + 1st letter of w (since counting
starts at 0). We use w(j..k) to denote the finite subword of w starting at w(j) and
ending at w(k). We use w(j..) to denote the suffix of w starting at w(j). In addition
to the usual propositional operators ¬, ∧, and ∨, there are temporal operators X
(read “next”), G (read “globally”), F (read “eventually”), U (read “strong until”, or
simply “until”) and W (read “weak until”) as shown in Fig. 1. If ϕ is a formula of
LTL, the formula Xϕ holds if ϕ holds at the next point in time. The formula Gϕ
holds if ϕ holds now and at every point in the future. The formula Fϕ holds if ϕ
holds now or at some point in the future. The formula [ϕ U ψ] holds if ψ holds now
or at some point in the future, and in addition ϕ holds at every point in time until ψ
holds. The formula [ϕ W ψ] holds if either [ϕ U ψ] holds, or ϕ holds forever. The
operators G, F, and W can be derived from the other operators as shown in Fig. 1.

Using LTL we can express many interesting properties. For instance the prop-
erty G(send → XX received) states that signal received should be asserted
exactly two time points after signal send is asserted. The property G(send →
[busy U received]) states that signal received should be asserted some time after
signal send is asserted, and in the meantime signal busy should be asserted.



798 C. Eisner and D. Fisman

One of the most important properties of a formalism is its expressive power. Be-
sides LTL, other known formalisms for reasoning on infinite words are first-order
logic over the naturals, monadic second-order logic of one successor, automata on
infinite words, and ω-regular expressions. In terms of expressive power we can
roughly classify these into two sets: those recognizing all the ω-regular languages,
and those recognizing a strict subset of those, referred to as the star-free ω-regular
languages.

It follows from a sequence of results of [31, 47, 68] that LTL belongs to the latter
(see also [27]). For example, as shown by Wolper [74], the property “p holds on
every even position” is not expressible in LTL. Note that simply adding regular ex-
pressions, without the ω operator, will not achieve the expressive power of ω-regular
languages. However, we can achieve that expressive power through the addition of
regular expressions plus the suffix implication operator, as discussed in Sect. 24.2.1.

Before continuing, we note that in regular expressions as used in PSL and SVA,
the syntactic atoms are Boolean expressions, more than one of which may hold on
a given letter of the alphabet. This is in contrast to standard regular expressions, in
which the syntactic atoms are mutually exclusive. As in standard regular expres-
sions, we use the notation L(r) to denote the set of words recognized by the regular
expression.

24.2.1 Adding Expressive Power—Suffix Implication

Suffix implication, denoted →, and also known as triggers, is an operator taking
two arguments, a regular expression r and a temporal formula ϕ. Suffix implication
gives implication a temporal flavor by making the consequent dependent on the end
of the regular expression used as an antecedent. Intuitively, r →ϕ holds on a word
w if for every prefix of w recognized by r , the suffix of w, starting at the letter on
which that prefix ends, satisfies ϕ.

The suffix implication operator, first proposed in the context of temporal logic
in [8], is reminiscent of the modality [α]ϕ of dynamic logic [28, 38, 63]. It
is different than the other attempts at combining temporal and dynamic logic
([35, 37, 39, 71]) in that it borrows the dynamic modalities but remains state-based
as in temporal logic rather than action-based as in dynamic logic.

Augmenting LTL with the suffix implication operator →, the semantics of which
are shown in Fig. 2, increases the expressive power to that of ω-regular languages,
as stated in the following theorem.

Theorem 1 ([6, 51]) Let L be an ω-regular language. Then there exists a formula
ϕ of LTL extended with suffix implication such that [[ϕ]] = L.

Using suffix implication, we can express the property that p holds on every even
position as follows:

(
(TRUE, TRUE)∗

) →p (1)
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Let r be a regular expression, ϕ a formula of LTL extended with suffix implication and its dual,
and w an infinite word over Σ = 2P .

• w |= r → ϕ ⇐⇒ ∀j if w(0..j ) ∈ L(r) then w(j..) |= ϕ
• w |= r ♦→ ϕ ⇐⇒ ∃j s.t. w(0..j ) ∈ L(r) and w(j..) |= ϕ
• All other LTL operators are as usual.

Fig. 2 Semantics of LTL extended with suffix implication [6–8, 43–46] and its dual

Although suffix implication extends the expressive power to that of ω-regular
languages, expressive power is not the only issue. In order to make suffix implica-
tion really useful to users, we must provide syntactic support for commonly needed
patterns. These are the subjects of Sect. 24.2.2 and Sect. 24.2.3.

24.2.2 Adding Succinctness

24.2.2.1 Counting

The User’s Point of View Consider the property expressing that if a request is
acknowledged (signal ack is asserted four to six cycles after req is asserted, and
in the meantime signal busy is asserted), then signal busy should remain asserted
until done holds. This property can be expressed as follows in LTL:

G
(
req→ X

(
busy→ X

(
busy→ X

(
busy→ X

((
ack→[busy U done])

∧ (
busy→ X

((
ack→[busy U done])

∧ (
busy→ X

(
ack→[busy U done]))))))))) (2)

However, increase “four to six cycles” and the property soon becomes unwieldy.
Thus the user would like there to be an easier way.

Bare suffix implication is not much help. We could use three separate formulas,
or we could use the regular expression union operator ∪ (distinguished from U,
denoting the strong until operator) to write:

G
((
req · ( (busy ·busy ·busy) ∪ (busy ·busy ·busy ·busy)∪

(busy ·busy ·busy ·busy ·busy)) ·ack) →[busy U done]) (3)

However, add the ability to count and Formulas (2) and (3) can be expressed
much more clearly. Let · and ∗ denote concatenation and Kleene star, respectively,
let the repetition operator r[∗k] abbreviate r concatenated to itself k times, and let
r[∗i..j ] abbreviate

⋃j
k=i r[∗k]. Then we can write simply:

G
((
req · busy[∗3..5] ·ack) →[busy U done]) (4)
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The user would like counting operators, so that Formula (2) can be expressed simply
as Formula (4). Other desirable counting operators are the goto repetition operator
b[→ k], abbreviating (¬b∗ ·b)[∗k] and discussed in Sect. 24.2.2.2, and the non-
consecutive repetition operator, b[= k], abbreviating (¬b∗ ·b)[∗k] ·¬b∗.

Semantic Issues Counting operators are simple syntactic sugar, and as such do not
add expressive power. However, they do affect succinctness.

Theorem 2 ([32, 49]) Regular expressions with counting operators are doubly ex-
ponential more succinct than DFAs and exponentially more succinct than standard
regular expressions and NFAs.

24.2.2.2 First Match

The User’s Point of View Consider the properties “the first occurrence of ack after
every req is followed by gnt”. In LTL this would be

G
(
req→ X

[¬ack U (ack ∧ Xgnt)
])

(5)

The user would like a more direct way to express this. Using the goto operator,
b[→], abbreviating ¬b∗b and supported by both PSL and SVA, achieves this as
follows:

G
((
req ·ack[→]) →(gnt)) (6)

Semantic Issues The goto operator is a kind of counting operator, and like the
repetition operators of Sect. 24.2.2.1, designating the ith occurrence of a Boolean
expression is achieved through syntactic sugaring: b[→ i] abbreviates (¬b∗b)[∗i].
SVA includes as well the first match operator, denoted here by FM(r), designating
the first occurrence of a regular expression. First match adds succinctness, but does
not add expressive power. On the other hand, while intuitive, its semantics is not
easily derived from other operators, so it is more than syntactic sugar.

Formally, L(FM(r)) = {w ∈ L(r) | w = uv and u ∈ L(r) implies that v = ε}.
The origin of first match is in [59], which also provides the fail operator, captur-
ing the set of shortest words w such that w is not in L(r). Formally, L(FAIL(r))=
{w /∈ L(r) | w = uv and u /∈ L(r) implies that v = ε}. Intuitively, L(FM(r)) is the
set of shortest words in L(r) (“good prefixes”) and L(FAIL(r)) is the set of shortest
words with no extension in L(r) (“bad prefixes”). These operators raise issues re-
lated to the distinction between bad prefixes and informative prefixes and the related
complexity issues—see Sect. 24.4.3.

24.2.2.3 Intersection

The User’s Point of View Consider the property asserting that if a print request is
issued (glbl_prnt is asserted), then all three printers should issue either a success or
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error message (assertion of succi or erri , or in short, assertion of sei ) before signal
prnt_done is asserted. If we try to formulate it using only the standard operators,
we see that we need to account for all the possible orders in which the printers will
issue the corresponding message.

The user would like an easier way. Using the intersection operator and the non-
consecutive repetition operator b[= k] ≡ (¬b∗ ·b)[∗k] ·¬b∗, the property can be
stated as follows:

G
(
glbl_prnt→
((
se1[= 1] ∩ se2[= 1] ∩ se3[= 1] ∩ prnt_done[= 0]) · prnt_done))

(7)

Semantic Issues The semantics of intersection is straightforward, and is given by
L(r1 ∩ r2) = L(r1) ∩ L(r2). It is well known that regular sets are closed under in-
tersection [42], thus there is no increase in expressive power. However, there is an
increase in succinctness, as stated by the following theorem.

Theorem 3 ([32, 33]) Regular expressions with intersection are doubly exponential
more succinct than standard regular expressions and DFAs and exponentially more
succinct than NFAs.

24.2.2.4 Fusion

The User’s Point of View Let a send transaction be a sequence of cycles where
processing holds for some number (possibly zero) of cycles, then sending holds
for some number (possibly zero) of cycles and then sent holds, and consider the
property that if a granted send-request (assertion of send followed by assertion of
gnt) is followed by a successful send transaction (that starts at the same cycle as the
grant), then signal ok should be asserted at the same time that sent is asserted.

Our formula must distinguish between three different ways in which a send trans-
action might begin, so we get something like this:

G
((
send · ((gnt ∧ sent) ∪ (

(gnt ∧ sending) · sending∗ · sent)

∪ (
(gnt ∧ processing) ·processing∗ · sending∗ · sent))) →(ok)) (8)

The user would like a more straightforward way. Using the fusion operator, a kind
of overlapping concatenation denoted ◦ , we can formulate this more succinctly as
follows:

G
((
(send ·gnt)◦ (processing∗ · sending∗ · sent)) →(ok)) (9)

Semantic Issues The fusion of languages U and V over Σ , denoted U ◦V , is the
set {u�v | � ∈Σ,u� ∈U, and �v ∈ V }. Like the counting operators and intersection,
fusion does not add expressive power, but does add succinctness.
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Theorem 4 ([41]) Regular expressions with fusion are exponentially more succinct
than standard regular expressions and DFAs.

Henceforth we refer to regular expressions augmented with intersection and fu-
sion as semi-extended regular expressions (SEREs) (note that the term extended reg-
ular expression is sometimes used for regular expressions with complementation).

24.2.2.5 Past Operators

The User’s Point of View Consider the following property: “signal dt_complete
should be asserted if and only if a data transfer has just completed,” where a data
transfer is an assertion of signal data_start followed by some number of assertions
of data followed by data_end . One direction of the implication is easy:

G
(
data_start · data∗ ·data_end

) →dt_complete (10)

However, the other direction is extremely difficult to express without past operators,
as it involves negation of a regular expression and thus determinization. The user
would like to be able to say simply:

G
(
dt_complete↔ ended

(
data_start · data∗ ·data_end

))
(11)

where, for SERE r , ended(r) holds in position j of word w iff there exists i ≤ j
such that w(i..j) ∈ L(r). Both PSL and SVA supply the ended() operator, which
can be used wherever a Boolean expression can be used.

Semantic Issues Adding past operators to LTL (for every LTL operator its dual past
operator) does not increase the expressive power:

Theorem 5 ([54]) LTL with (future and) past operators has the same expressive
power as LTL (with just future operators).

It is easy to see by automata construction that the analogous result holds for LTL
augmented with suffix implication and the past operator ended(). Past operators do,
however, add succinctness [52] (see also Chap. 2).

24.2.3 Distinguishing Between Weak and Strong Regular
Expressions

The User’s Point of View Recall Formula (4), repeated below as Formula (12):

G
((
req · busy[∗3..5] ·ack) →[busy U done]) (12)



24 Functional Specification of Hardware via Temporal Logic 803

As long as regular expressions are available, many users prefer to avoid LTL com-
pletely. Can we use regular expressions to formulate the right-hand side of For-
mula (12) as well? The regular expression (busy∗ ·done) seems a good candidate
to represent the right-hand side. But in LTL, it is possible to distinguish between
the formula [busy U done], using the strong until operator, requiring done to even-
tually hold, and the formula [busy W done], using the weak until operator, which
holds also if done never holds and busy holds forever.

Thus the user would like a syntax distinguishing between strong and weak ver-
sions of a regular expression. Using r! to denote a strong regular expression, For-
mula (4) can be rephrased as follows:

G
(
req ·busy[∗3..5] ·ack) →(

busy∗ ·done)! (13)

Similarly, the weak version of Formula (12):

G
(
req ·busy[∗3..5] ·ack) →[busy W done] (14)

can be rephrased as follows, where r (vs. r!) denotes a weak regular expression:

G
(
req ·busy[∗3..5] ·ack) →(

busy∗ ·done) (15)

Semantic Issues The intended semantics of a strong regular expression is clear. An
infinite word satisfies a strong regular expression if it has a prefix in the language of
the regular expression. For a weak regular expression, roughly speaking, we would
like to say that we can get stuck in an infinite loop of a starred subexpression. In-
tuitively, this seems to require that every prefix of the observed word has some
extension in the language of the regular expression.

While initially pleasing, this does not give the desired semantics. To see why,
recall that we want the weak regular expression (busy∗ ·done) to be equivalent to
[busy W done] and the weak regular expression (busy∗ · FALSE) to be equivalent
to [busy W FALSE]. However, using the definition that every prefix has some exten-
sion in the language of the regular expression works for (busy∗ ·done) but not for
(busy∗ · FALSE), whose language is empty over the alphabet 2P . Note that FALSE

can be replaced with a complicated unsatisfiable formula, and so the situation is not
necessarily easy to identify syntactically.

The�,⊥ approach, proposed in [25], shown in Fig. 3 and adopted by PSL 1850–
2005 [43] and SVA [45, 46], addresses this issue (see also Sect. 24.4.2). The idea
is that � and ⊥ are special letters, with the following properties: � satisfies any
Boolean expression, including FALSE, and ⊥ satisfies no Boolean expression, in-
cluding TRUE. The inductive definition of the temporal logic makes the word �ω
satisfy every temporal logic formula, whereas ⊥ω satisfies no temporal logic for-
mula. This way, we can talk about extension without the need to worry about unsat-
isfiable eventualities of a regular expression.

Let r be a regular expression (but not a SERE, see below). Under the �,⊥ se-
mantics, r! and r are related in the same way as other pairs of strong and weak LTL
operators [22] . In analogy to the safety and liveness components of a formula [2, 3],
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Let r be a regular expression, let � be a special letter such that � b for any Boolean
expression b (including FALSE), and let w be an infinite word over Σ = 2P ∪ {�,⊥}.
• w |= r! ⇐⇒ ∃j s.t. w(0..j ) ∈ L(r)
• w |= r ⇐⇒ ∀j w(0..j )�ω |= r!

Fig. 3 Semantics of strong and weak regular expressions [25] adopted by PSL 1850–2005 [43]
and SVA [45, 46]

Let � and ⊥ be special letters such that � b for any Boolean expression b (including
FALSE), and ⊥ / b for any b (including TRUE). For some alphabet Γ , let Γ∞ denote Γ ∗ ∪Γ ω .
Let ϕ be a formula in LTL extended with weak and strong regular expressions. Then its weak
and strong components, denoted weak(ϕ) and strong(ϕ) respectively, are defined as follows.

• weak(ϕ) = {w ∈ (Σ ∪{�,⊥})∞ | ∀ finite u3w : u�ω ∈ [[ϕ]]}
• strong(ϕ) = {w ∈ (Σ ∪{�,⊥})∞ | ∃ finite u3w : u⊥ω ∈ [[ϕ]]}

Fig. 4 Weak and strong components [22]

[22] first defines the weak and strong component of a formula as the topological clo-
sure and interior, respectively, over the extended alphabet Σ ∪{�,⊥}, and shows
that such a definition is equivalent to the definition of Fig. 4. It then states the fol-
lowing characterization.

Theorem 6 ([22]) Let ϕ be a formula of LTL extended with weak and strong reg-
ular expressions in positive normal form. Let ϕw be the formula obtained by weak-
ening all operators (replacing r! with r , X! with X and U with W). Let ϕs be the
formula obtained by strengthening all operators. Then,

• [[ϕw]] = weak(ϕ) • [[ϕs]] = strong(ϕ)

It is shown in [21, 22] that for the semantics of PSL 1850–2005 [43] and of
SVA [45, 46], the characterization does not hold for SEREs, i.e., when intersec-
tion and fusion are included, because of the presence of structural contradictions.
Structural contradictions are SEREs that are unsatisfiable (i.e., whose language is
empty) due to their structure. That is, for any replacement of the propositions in
a SERE, the language of the SERE remains empty. For example, p ∩ (p ·q) is a
structural contradiction, while (p ·q) ∩ (p ·¬q) is a contradiction, but not a struc-
tural one. A semantics fixing this problem was proposed in [21] and was adopted by
PSL 1850–2010 [44]. It defines, in addition to the traditional L(r), the language of
finite proper prefixes of a SERE, denoted F(r), and the loop language of a SERE,
denoted I(r), shown in Fig. 5. Then the truncated semantics of strong and weak
SEREs are as shown in Fig. 6. The topological characterization for this semantics
appears in [23].

It is instructive to illustrate the difference between the weak/strong components
and the safety/liveness components. Often they coincide, but not always. For exam-
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Let ε be the empty word, let λ denote the empty regular expression, let b be a Boolean
expression, let r , r1 and r2 be SEREs and let Σ̂ =Σ ∪ {�,⊥}.
L(λ)= {ε} L(r1 · r2)= L(r1) ·L(r2) L(r1∪ r2)= L(r1)∪L(r2)
L(b)= {� ∈ Σ̂ | � b} L(r1 ◦ r2)= L(r1)◦L(r2) L(r1∩ r2)= L(r1)∩L(r2)

L(r+)= L(r)+

F(λ)= ∅ F(r1 · r2)=F(r1)∪ (L(r1) ·F(r2)) F(r1∪ r2)=F(r1)∪F(r2)
F(b)= ε F(r1 ◦ r2)=F(r1)∪ (L(r1)◦F(r2)) F(r1∩ r2)=F(r1)∩F(r2)

F(r+)= L(r)∗ ·F(r)
I(λ)= ∅ I(r1 · r2)= I(r1)∪ (L(r1) ·I(r2)) I(r1∪ r2)= I(r1)∪I(r2)
I(b)= ∅ I(r1 ◦ r2)= I(r1)∪ (L(r1)◦I(r2)) I(r1∩ r2)= I(r1)∩I(r2)

I(r+)= (L(r)∗ ·I(r))∪ (L(r) \ {ε})ω

Fig. 5 The language L(r), the language of proper prefixes F(r) and the loop language I(r) of a
SERE r [21, 23, 44]

• w |= r! ⇐⇒ ∃j < |w| s.t. w(0..j ) ∈ L(r)
• w |= r ⇐⇒ either w |= r! or w ∈ I(r)∪F(r)∪{ε}

Fig. 6 The truncated semantics of strong and weak SEREs, as proposed by [21] and adopted by
PSL 1850–2010 [44]; see also [23]

ple, the safety component of [p U FALSE] is simply FALSE, while its weak compo-
nent is [p W FALSE], i.e., G p.

A formula ϕ is semantically weak if [[ϕw]] = [[ϕ]] (where ϕw is defined in Theo-
rem 6). The notion of semantic weakness captures exactly the set of “good” safety
properties—those that are computationally easy to verify, as shown by Theorem 19
in Sect. 24.4.3.

Defining the semantics is not enough, of course. We also need to supply an imple-
mentation. Automata construction for LTL augmented with strong regular expres-
sions via suffix implication is given in [9, 13, 14]. Implementation for the enhance-
ment with weak regular expressions as well is given in [9, 13]. Special treatments
of subsets thereof are given in [10, 11].

24.3 Clocks and Sampling

In this section, we present the clock operator (@). We begin with hardware clocks as
a motivating example, and in Sect. 24.3.2 present an example where the @ operator
is used as a time-sampling abstraction, separate from the notion of a hardware clock.

24.3.1 Hardware Clocks

Synchronous hardware designs are based on a notion of discrete time, in which a
clock signal causes memory elements (flip-flops or latches) to transition from one
state to the next. The time from one transition until just before the next is termed a
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clock cycle. In the early days of hardware model checking, designs typically had a
single clock, and tools that built the model from the source code (written in some
Hardware Description Language, or HDL) would abstract away the clock cycle,
assuming that a clock cycle corresponded to a single step in time of the model.
Thus, the following LTL formula:

G(p→ X q) (16)

was used to express the property “globally, if p then at the next clock cycle, q”.
Modern hardware designs, however, are typically based on multiple clocks. In

such a design, for instance, some memory elements may be clocked with clka, while
others are clocked with clkb. In such a case, clock cycles cannot be considered to
be atomic—the clock cycles of clka and clkb might overlap, and the nature of their
interaction affects the behavior of the design in important ways. Thus tools that build
the model cannot abstract away the clock cycle, and it becomes necessary for the
formula to mention the clock signal explicitly. Another complication is that clocking
is often done on the edge of a clock, resulting in what is termed an edge-triggered
design. A positive edge means a point in time when the clock has just risen from 0
to 1, and a negative edge means a point in time when the clock has just fallen from
1 to 0.

The User’s Point of View Consider the property “globally, if p at a positive edge
of clock clka, then at the next positive edge of clka, q”. In LTL, this is:

G (¬clka→ X
(
(clka ∧ p)

→ X
[(¬(¬clka ∧ X clka)

)
W

(¬clka ∧ X (clka ∧ q))]) (17)

Using suffix implication and the goto operator (see Sect. 24.2.2.2), we can make it
slightly more readable, as follows:

G
((
(clka ∧ p)[→] ·¬clka[→] · clka[→]) →q) (18)

However, taking the clock signal into consideration in each formula quickly be-
comes unwieldy. Thus the user would like a clock operator, allowing the behavior
relative to the clock to be expressed more directly as, for instance:

G(p→ X q)@(posedge clka) (19)

Semantic Issues Intuitively, the purpose of the clock operator is to define a pro-
jection onto those letters where the clock holds (or transitions, in the case of edge-
triggered designs). For example, consider the trace shown in Fig. 7. The hardware
designer understands the x-axis as time; the value of each signal is indicated by a
waveform—low indicates a value of 0, and high indicates a value of 1. Formally,
we view each point in time as a letter from the alphabet 2P , mapping the atomic
propositions p, q , etc. to either 0 or 1. The projection of the trace onto those points
in time where clka has a positive edge results in a trace consisting of three points
in time, shown shaded in the figure. Formula (19) holds on the full trace because
Formula (16) holds on the projection.
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Fig. 7 A trace, showing time on the x-axis. The shaded points in time show the projection of the
trace onto the positive edge of clka

When we turn to formalize this intuition, we are confronted with two issues. First,
hardware clocks do not “accumulate”. That is, we want a nested clock operator
to have the effect of “changing the projection”, rather than further projecting the
projected word. This means that while projection is a useful intuition, we cannot
simply define that w |= ϕ@c⇐⇒ w′ |= ϕ, where w′ is the projection of w onto
those letters where c holds, because doing so would mean that we lose the ability to
later “change the projection” of the original word w.

Second, we must define what happens if the clock “stops ticking”. For example,
on an infinite word w such that c holds on w(0) but on no other letter, do we want
(X ϕ)@c to hold or not? Thus, the addition of clocks introduces problems similar to
those of defining LTL semantics for finite words. And not only may the projection
of an infinite word be finite, it may be empty as well.

Early attempts to deal with these issues [6, 18] defined two kinds of clocks, strong
and weak, which behaved differently on finite and empty words. Doing so resulted
in semantics that suffered from various weaknesses, for instance that a liveness for-
mula may hold on some word w, but not on an extension ww′, or that the formula
(F p)∧ (G q) cannot be satisfactorily clocked for a finite word.

The semantics of [26], adopted by PSL and SVA and shown in Fig. 8, solves
these problems. In it, the issues of finite and empty words are cleanly separated
from the clock operator, whose only role is to define a projection, and nesting of
clock operators has the effect of changing the projection. The issue of the semantics
on a finite or empty projection is solved by taking the strength from the formula
itself, and to this end, there are strong and weak versions of every operator and
of Boolean expressions. While the idea of strong and weak clocks has disappeared
from PSL and SVA, the issues raised by a clock that stops ticking are manifested in
the concept of a truncated path, and dealt with by the truncated semantics discussed
in Sect. 24.4.

Note that the semantics are defined for ϕ@c, where c is a Boolean ex-
pression. Edge-triggered designs are supported by defining that posedge clk is
equivalent to ended(¬clk∗ · clk) and similarly that negedge clk is equivalent to
ended(clk∗ ·¬clk) (see Sect. 24.2.2.5).
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Let f , f1, and f2 be formulas in LTL extended with the clock operator @, let b and c be
Boolean expressions, and let w be a word over Σ = 2P . For finite word w, let w |=c tick
denote that w ∈ L(¬c∗ · c).
• w |=c b ⇐⇒ ∀j < |w| s.t. w(0..j ) |=c tick ,w(j) b

• w |=c b! ⇐⇒ ∃j < |w| s.t. w(0..j ) |=c tick and w(j) b

• w |=c ¬f ⇐⇒ w |=/c f
• w |=c f1 ∧ f2 ⇐⇒ w |=c f1 and w |=c f2

• w |=c X! f ⇐⇒ ∃j < k < |w| s.t. w(0..j ) |=c tick and w(j + 1..k) |=c tick and
w(k..) |=c f

• w |=c [f1 U f2] ⇐⇒ ∃k < |w| s.t. w(k) c and w(k..) |=c f2 and ∀j < k s.t. w(j) c,

w(j..) |=c f1

• w |=c f@c1 ⇐⇒ w |=c1 f

Fig. 8 The strengthless clock [26] adopted by PSL and SVA, where the “initial” clock context is
defined to be c = TRUE. The semantics of clocked regular expressions are in the same spirit, but
not shown for brevity. The interested reader is referred to [43–46]

In the following, let |= denote the traditional semantics of LTL, augmented in
the obvious way to support strong and weak next operators and strong and weak
Boolean expressions on finite and empty as well as infinite words.

Theorem 7 ([26])1 Let f be a formula in LTL augmented with strong and weak
next operators and strong and weak propositions, let c be a Boolean expression and
w an infinite, finite, or empty word. Let w|c denote the word obtained from w after
leaving only the letters that satisfy c, and let |=c be as defined in Fig. 8. Then

w |=c f if and only if w|c |= f

Note that Theorem 7 refers to unclocked formulas, and thus shows that intuition
regarding a projection holds for singly clocked formulas. Recall that for multiply
clocked formulas, we wanted (and achieved) something different than a projection.

The clock operator does not add expressive power.

Theorem 8 ([26]) The logic consisting of LTL plus the @ operator is as expressive
as LTL.

The proof of Theorem 8 is by rewriting, thus direct treatment of the @ operator
is not required of a tool. However, it can be advantageous to do so, as shown by [55].

In LTL, [f U g] can be defined as a least solution of the equation S = g ∨ (f ∧
X! S). In the semantics of Fig. 8, there is a fixed point characterization if f and g are
themselves unclocked, because [f U g]@c ≡ (TRUE! ∧ g)∨ (f ∧ X![f U g])@c.
But if f and g contain clock operators, this equivalence no longer holds [26].

1Theorems 7 and 8 were stated and proved in [26]. Later, automated proofs of these theorems were
obtained after an embedding of the semantics of PSL into HOL [34].
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Let f be a formula in LTL extended with the clock operator @, and let w be a word over
Σ = 2P . For finite word w, let w is m clock ticks, for m> 0, denote that w ∈ L((¬c∗ · c)[∗m]).
Then, for i ≥ 0:

• w |=c X! i f ⇐⇒ ∃j < |w| s.t. w(0..j ) is i + 1 clock ticks of c and w(j..) |=c f

Fig. 9 Generalizing the next operator [29], adopted by PSL 1850–2010 [44] and SVA
1800–2009 [46]

As shown in [29], this can be fixed by adding an alignment operator, X! 0, that
moves to the closest clock tick. The semantics of the alignment operator, adopted by
PSL and SVA and shown in Fig. 9, gives the following fixed point characterization
of until under a clocked semantics.

Theorem 9 ([29]) Let f and g be formulas of LTL augmented with the clock oper-
ator. Then:

[f U g] is a least solution of the equation S = X!0 (g ∨ (f ∧ X!S))
[f Wg] is a greatest solution of the equation S = X0 (g ∨ (f ∧ X S)).

24.3.2 Using a Clock as a Time-Sampling Abstraction

The clock operator is a time-sampling abstraction, and as such has uses other than
representing a hardware clock. For example, consider the property that consecutive
writes (signal write is asserted) cannot both be high-priority writes (signal high is
asserted). Without the clock operator, this can be expressed as follows

G
(
(write ∧ high)→ X

[¬write W (write ∧¬high)]) (20)

However, that is quite cryptic. Using the clock operator, we can express it more
simply as:

G(high→ X ¬high)@write (21)

24.4 Hardware Resets and Other Sources of Truncated Paths

A path of a model M with transition relation R is a finite or infinite sequence
of states (s0, s1, . . . , sn) or (s0, s1, . . .), such that each successive pair of states
(si , si+1) is an element of R. A path of model M is maximal if either it is infinite,
or the last state of the path has no successor in M .

Traditionally, the semantics of temporal logic is defined over infinite words cor-
responding to infinite paths in the model (see for example Chap. 2), and indeed
hardware is a reactive system, whose paths are intrinsically infinite. It turns out,
however, that hardware designers do find themselves needing to reason over finite
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paths, specifically, over truncated paths—paths that are finite, but not necessarily
maximal.

The need to reason over truncated paths arises in several different contexts. In-
complete methods of verification, such as bounded model checking or dynamic ver-
ification, naturally reason over truncated paths. A hardware reset can also be under-
stood as truncating a path, because anything that comes after should not affect the
truth value of the property on the infinite path. Finally, hardware clocks are related
to truncated paths, because a clock that stops ticking gives that the projection of an
infinite path may be finite. Early definitions of a clock operator struggled with this
issue, which was solved by the truncated semantics, leaving the clock operator to
define a projection without worrying about whether or not the clock ticks infinitely
often.

Here, we start with a presentation of hardware resets in Sect. 24.4.1. In
Sect. 24.4.2 we move to a discussion of truncated paths arising from other sources,
and then show that hardware resets are a particular case of truncated paths. Sec-
tion 24.4.3 discusses the surprising relation of truncated paths to the classification
of safety formulas.

24.4.1 Hardware Resets

The User’s Point of View Consider the property that if a high-priority request is
received (signal hi_rq is asserted) then one of the next two grants (assertion of
signal gnt) will be to the high-priority destination (signal hi_dt is asserted). In
LTL, this can be expressed as:

G
(
hi_rq→ [¬gnt W

(
gnt ∧ (

(hi_dt)∨ X
[¬gnt W (gnt ∧ hi_dt)]))]) (22)

although the user will usually prefer to use the suffix implication operator to obtain
the much simpler form:

G
(
hi_rq →(

gnt[→ 1..2] ◦hi_dt)) (23)

Now, if the reset signal (rst) is to be taken into consideration, such that when
signal rst is asserted, all outstanding requirements are cancelled, and reckoning
begins again at the next deassertion of rst , then Formula (22) must be modified as
follows:

G
(
(hi_rq ∧¬rst)→
[¬gnt W

(
rst ∨ (

gnt ∧ (
hi_dt ∨ X

[¬gnt W
(
rst ∨ (gnt ∧ hi_dt))])))])

(24)

This is quite cumbersome, and while modifying Formula (23) in a similar manner
is less verbose:

G
((
hi_rq ◦gnt[→ 1..2])∩ (

(¬rst)∗)) →hi_dt (25)
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Fig. 10 Weak until vs. reset. Formula (28) does not hold, but Formula (29) does

It requires moving part of the formula from the right- to the left-hand side of the
suffix implication, which could be problematical if the original LTL version had
used strong until. The user would like an easier way, so that Formulas (22) and (23)
can be reset simply like this:

G
(
hi_rq→
[¬gnt W

(
gnt ∧ (

hi_dt ∨ X
[¬gnt W (gnt ∧ hi_dt)]))]) RESET rst (26)

G
(
hi_rq →(

gnt[→ 1..2] ◦hi_dt)) RESET rst (27)

Semantic Issues Intuitively, the desired semantics of the reset operator is that up
until the reset condition, “nothing has yet gone wrong.” So, informally, we want
w |= ϕ RESET b to hold iff ϕ holds on w truncated at the first occurrence of b.
Before continuing, it is instructive to compare the desired semantics of the reset
operator with the semantics of the weak until operator. Consider

[
(p→ XXX q) W rst

]
(28)

and
(
G(p→ XXX q)

)
RESET rst (29)

on a word w such that p holds on (and only on) w(1), q holds on no letter, and
rst holds on (and only on) w(2). This is illustrated in Fig. 10. Then Formula (28)
does not hold on w, but we want that Formula (29) does hold on w. Thus the rst
in (G ϕ) RESET rst can be thought of as “canceling future obligations of ϕ,” as
opposed to [ϕ W rst], in which the “obligations” of ϕ may extend beyond the first
occurrence of rst .

It is tempting to define that ϕ RESET b holds on w if ϕ holds on w or if there
exist words u and v and letter � such that b holds on �, w = u�v, and u has an
extension on which ϕ holds. However, such a definition does not give us what we
want for reasons similar to those discussed in Sect. 24.2.3 regarding the definition
of weak regular expressions. For example, we would like [busy U FALSE] RESET b

to hold on a word where b holds on some letter and busy holds on every letter up
until the letter where b holds, but a definition that looks for an extension on which
[busy U FALSE] holds does not give us that. Furthermore, the complexity of model
checking using such a definition is non-elementary [4].
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Let ϕ and ψ be formulas of LTL extended with the RESET operator, let a and r be Boolean
expressions, and let w be a word over Σ = 2P .

• 〈w,a, r〉 |= p ⇐⇒ w(0) a ∨ (p ∧¬r)
• 〈w,a, r〉 |= ¬ϕ ⇐⇒ 〈w, r, a〉 �|= ϕ
• 〈w,a, r〉 |= ϕ ∧ψ ⇐⇒ 〈w,a, r〉 |= ϕ and 〈w,a, r〉 |=ψ
• 〈w,a, r〉 |= X ϕ ⇐⇒ w(0) a or both w(0) / r and 〈w(1..), a, r〉 |= ϕ
• 〈w,a, r〉 |= [ϕ U ψ] ⇐⇒ ∃k < |w| s.t. 〈w(k..), a, r〉 |=ψ , and ∀j < k, 〈w(j..), a, r〉 |= ϕ
• 〈w,a, r〉 |= ϕ RESET b⇐⇒ 〈w,a ∨ (b ∧¬r), r〉 |= ϕ

Fig. 11 The reset semantics [4, 6]

The solution of [6] was to add two contexts, the accept condition and the reject
condition. The resulting semantics is shown in Fig. 11, and following [4], we term
these the reset semantics. A formula ϕ holds in a model if 〈w, FALSE, FALSE〉 |= ϕ
for every word in the model. The complexity of the reset semantics is no different
than that of LTL, as stated by Theorem 10.

Theorem 10 ([4]) The satisfiability and model-checking problems for LTL plus the
reset operator under the reset semantics are PSPACE-complete.

The reset operator does not add expressive power. Automata construction for the
reset operator, as well as rewrite rules for translating LTL plus the reset operator
into LTL are given by [4].

Theorem 11 ([4]) The logic consisting of LTL plus the reset operator is as expres-
sive as LTL.

More insight into the reset semantics can be found in the next subsection, which
shows two equivalent statements of the reset semantics.

24.4.2 Other Sources of Truncated Paths

The User’s Point of View Model checking is a tool, but not the only tool. Users
want a specification language that is equally relevant to every verification method in
their toolbox. Consider the property “every request must receive a grant, and once
asserted, the request signal must stay asserted until it receives its grant”. Typically
we would specify this in LTL as follows:

G
(
request→ X [request U grant]) (30)

However, when using an incomplete method of verification, such as bounded
model checking or simulation, the user has a decision to make. Is it possible that the
verification run will end in between a request and its grant, so that

G
(
request→ X [request W grant]) (31)

should be used instead?
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The answer does not depend on the design under verification, but it does depend
on properties of the verification method. For instance, some simulation tests are de-
signed to continue until correct output can be confirmed, and then the answer is that
Formula (30) should be used. On the other hand, some tests have no “opinion” on the
correct length of a test, and they may end at any time. In such a case, Formula (30)
might result in a false negative, and Formula (31) should be used instead.

The answer might depend on properties of the verification method, but designers
want the specification to specify the design, and be reusable no matter the method
of verification. Thus it is desirable for a specification language to provide a means
to distinguish between properties of the design and properties of the verification.

Semantic Issues Distinguishing between properties of the design and properties of
the verification can be achieved by defining separate views of the same formula,
and distinguishing between maximal and non-maximal, or truncated, words [24].
The formula itself describes the design, while each view is useful in a different
verification method. The views differ only on finite words, and only in cases in
which there is doubt whether the formula holds on the original, possibly unknown,
untruncated word. For instance, consider the formula F p on a truncated word such
that p does not hold on any letter, or the formula G q on a truncated word such that
q holds on every letter. In both cases it is impossible to know whether or not the
formula holds on the original, untruncated, word.

In such cases, in which there is doubt as to whether the formula holds on the orig-
inal word, the truncated semantics, shown in Fig. 12, define that it holds in the weak
view, does not hold in the strong view, and holds in the neutral view iff it holds in the
traditional LTL semantics on finite words (this is equivalent to considering the word
to be maximal rather than truncated). Note that Fig. 12 does not show three sepa-
rate semantics, but rather a single semantics, in which the view is a context. Thus
w |=−ϕ, w |=ϕ, and w |=+ϕ should be understood as shorthand for 〈w,weak〉 |= ϕ,
〈w,neutral〉 |= ϕ, and 〈w, strong〉 |= ϕ, respectively.

Let us now return to the example represented by Formulas (30) and (31). The
specification should describe the design, thus Formula (30) is the formula that
should be used. In the case of a test that was designed to continue until correct
output can be confirmed, Formula (30) can be checked under the neutral view. In
the case that the test may end at any time, Formula (30) can be checked under the
weak view. Note that most formulas do not hold under the strong view on finite
words, because for any ϕ, Gϕ does not hold under the strong view on such a word.
Thus the main purpose of the strong view is to serve as a dual to the weak.

As shown in [24], the truncated semantics has the property that the strong view
is stronger than the neutral view, which is in turn stronger than the weak view, as
stated by Theorem 12 below. It also supports the intuition that ϕ holds weakly on w
if up till now nothing “has gone wrong,” and thus holds as well on any prefix of w,
and that ϕ holds strongly on w if “all future obligations have been met,” and thus
holds as well on any extension of w. This is stated by Theorem 13 below.
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Let ϕ and ψ be LTL formulas, let b be a Boolean expression, and let w be a word over Σ = 2P .
Allow “overflow” of indices: for k ≥ |w|, let w(k..)= ε.
holds weakly: For w over 2P such that |w| ≥ 0,
• w |=− b ⇐⇒ |w| = 0 or w(0) b

• w |=−¬ϕ ⇐⇒ w |=+/ ϕ

• w |=−ϕ ∧ψ ⇐⇒ w |=−ϕ and w |=−ψ
• w |=−X! ϕ ⇐⇒ w(1..) |=−ϕ
• w |=− [ϕ U ψ] ⇐⇒ ∃k such that w(k..) |=−ψ and for every j < k, w(j..) |=−ϕ

holds neutrally: For w over 2P such that |w|> 0,

• w |= b ⇐⇒ w(0) b

• w |= ¬ϕ ⇐⇒ w |=/ ϕ
• w |= ϕ ∧ψ ⇐⇒ w |= ϕ and w |= ψ
• w |= X! ϕ ⇐⇒ |w|> 1 and w(1..) |= ϕ
• w |= [ϕ U ψ] ⇐⇒ ∃k < |w| such that w(k..) |= ψ and for every j < k, w(j..) |= ϕ

holds strongly: For w over 2P such that |w| ≥ 0,
• w |=+ b ⇐⇒ |w|> 0 and w(0) b

• w |=+¬ϕ ⇐⇒ w |=−/ ϕ

• w |=+ϕ ∧ψ ⇐⇒ w |=+ϕ and w |=+ψ
• w |=+X! ϕ ⇐⇒ w(1..) |=+ϕ
• w |=+ [ϕ U ψ] ⇐⇒ ∃k such that w(k..) |=+ψ and for every j < k, w(j..) |=+ϕ

Fig. 12 The truncated semantics of LTL [24]

Theorem 12 (Strength Relation Theorem [24]) Let w be a non-empty word. Then:

• w |=+ϕ =⇒w |= ϕ • w |= ϕ =⇒w |=−ϕ

Theorem 13 (Prefix/Extension Theorem [24])

• v |=+ϕ⇐⇒∀w B v : w |=+ϕ • v |=−ϕ⇐⇒∀u3 v : u |=−ϕ

The reset operator, discussed in detail in the previous subsection, is easily stated
in the truncated semantics, as a reset can be understood as truncating an infinite
word, and moving to the weak view. Figure 13 shows the formal statement of the
truncated semantics of the reset operator.

The reset semantics and the truncated semantics accomplish their goal by restat-
ing the semantics of every operator. This complicates things considerably in a tem-
poral logic that has many core operators (as is the case in PSL and SVA). Using ideas
from [22] discussed in Sect. 24.2.3 one can restate the semantics more succinctly
without requiring a restatement of the semantics of each operator. This approach
makes use of the special letters � and ⊥. Recall that � satisfies all Boolean expres-
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Let ϕ be a formula of LTL extended with the RESET operator, let b be a Boolean expression,
and let w be a word over Σ = 2P .

• w |=−ϕ RESET b ⇐⇒ either w |=−ϕ or ∃j < |w| s.t. w(j) b and w(0..j − 1) |=−ϕ
• w |= ϕ RESET b ⇐⇒ either w |= ϕ or ∃j < |w| s.t. w(j) b and w(0..j − 1) |=−ϕ
• w |=+ϕ RESET b ⇐⇒ either w |=+ϕ or ∃j < |w| s.t. w(j) b and w(0..j − 1) |=−ϕ
• All other LTL operators are as usual.

Fig. 13 The truncated semantics of LTL extended with the RESET operator [24]

Let ϕ be a formula of LTL extended with the RESET operator, let b be a Boolean expression.
Let � and ⊥ be special letters such that � b and ⊥ / b for any b (including TRUE and
FALSE). Let w be a word over Σ = 2P ∪ {�,⊥}. Let w denote the word obtained from w by
switching every � with ⊥ and vice versa.

• w |= ¬ϕ ⇐⇒ w �|= ϕ
• w |= ϕ RESET b⇐⇒ either w |= ϕ or ∃j < |w| such that w(j) b and w(0..j − 1)�ω |= ϕ
• All other LTL operators are as usual.

Fig. 14 �,⊥ approach to the truncated semantics [25], adopted by PSL 1850–2005 [43] and
SVA [45, 46]

sions including FALSE while⊥ satisfies no Boolean expression, not even TRUE. The
resulting semantics, referred to as the �,⊥ approach, is given in Fig. 14.

Theorem 14 ([24, 25]) Let ϕ be a formula of LTL extended with the reset operator.
Let w be a word over Σ = 2P . Then 〈w, FALSE, FALSE〉 |= ϕ in the reset semantics
iff w |= ϕ in the truncated semantics iff w |= ϕ in the�,⊥ approach to the truncated
semantics.

As mentioned in Sect. 24.2.3, the�,⊥ approach breaks when regular expression
intersection and fusion are included [21, 22]. Thus the semantics of PSL 1850–
2010 [44] uses a version of the truncated semantics that supports SEREs, defined
in [21], characterized in [23], and shown in Figs. 5 and 6.

24.4.3 The Truncated Semantics and Classification of Safety
Formulas

A bad prefix of a safety formula ϕ is a finite word w all of whose infinite extensions
violate ϕ. An informative prefix, defined syntactically in [50] in order to classify
safety properties, is, loosely speaking, a bad prefix that provides enough information
to “explain” why ϕ does not hold. For instance, an informative prefix of ϕ = X!X!p
would be a word of length at least 3 where p does not hold on the third letter.
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The formulaψ = FGp∧FG¬p has no informative prefixes, since no finite prefix
is long enough to “explain” why it fails. This, despite the fact that ψ is a contradic-
tion, thus every finite word is a bad prefix of it.

The motivation for the classification of safety formulas is complexity. For general
LTL properties, the automata-theoretic approach to model checking [53, 66, 72]
builds the product of the design under verification and a Büchi automaton for the
negation of the property and checks for emptiness. For safety properties it suffices to
work with automata on finite words (see Chap. 2), and an automaton on finite words
recognizing bad prefixes can also be used by simulation, simply by translating it into
a checker coded in some Hardware Description Language [1]. Model checking with
a finite automaton rather than a Büchi automaton should be easier since it replaces a
search for fair cycles with an invariant check. However, the complexity results tell a
different story. For an arbitrary LTL formula ϕ, the equivalent Büchi automaton is of
size exponential in |ϕ|, while for a safety LTL formula ϕ, the size of an automaton
recognizing its bad prefixes is doubly exponential in |ϕ|.
Theorem 15 ([72]) Let ϕ be an LTL formula of size n. Then there exists a non-
deterministic Büchi automaton of size 2O(n) recognizing [[ϕ]].
Theorem 16 ([50]) Let ϕ be an LTL formula of size n. The size of an NFA recog-

nizing the bad prefixes of ϕ is 22O(n) and 22Ω(
√
n)

.

As shown by [50], if we are willing to limit ourselves to recognizing all informa-
tive, rather than bad, prefixes, we return to a single exponent.

Theorem 17 ([50]) Let ϕ be a safety LTL formula of size n. There exists an NFA of
size 2O(n) recognizing all the informative prefixes of ϕ.

The question then becomes whether we can use the automaton for informative
prefixes instead of the one for bad prefixes. As noted in [50], it suffices to recog-
nize a single bad prefix for each violating word. Thus they classify safety properties
according to whether all, some, or none of its bad prefixes are informative. A prop-
erty is intentionally safe if all of its bad prefixes are informative. A property ϕ is
accidentally safe if every computation that violates it has an informative prefix.
A property is pathologically safe if there is a computation that violates ϕ and has no
informative prefix. It follows from Theorem 17 that for non-pathological formulas,
an automaton of exponential (rather than doubly exponential) size exists that rec-
ognizes at least one bad prefix for each violating word, matching our intuition that
(non-pathological) safety formulas are easier to check than general LTL formulas.

The motivation for the classification of safety formulas was very different from
the motivation for the truncated semantics, but it turns out that the two are related
in an interesting way. While [50] defines an informative prefix syntactically, the
truncated semantics provides a semantic definition:

Theorem 18 ([24]) Let ϕ be an LTL formula and w a finite non-empty word. Then
w is an informative prefix for ϕ iff w |=−/ ϕ.
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Let b be a Boolean expression and r a regular expression. Then RLTLLV consists of the formulas
defined by the following grammar:

ϕ ::= b | ϕ ∧ ϕ | X ϕ | (b ∧ ϕ)∨ (¬b ∧ ϕ) | [(b ∧ ϕ) W (¬b ∧ ϕ)] | r →ϕ

Fig. 15 RLTLLV, a syntactic subset of LTL extended with suffix implication (see Sect. 24.2.1)

Furthermore, the notion of semantic weakness discussed in Sect. 24.2.3 and cap-
tured by the truncated semantics provides a semantic characterization of the set of
safety properties that are computationally easy to verify:

Theorem 19 ([22, 23]) Let ϕ be an LTL formula. Then ϕ is semantically weak iff
it is non-pathologically safe.

24.5 The Simple Subset

In Sect. 24.4.3 we saw a subset of safety formulas that are computationally easy to
verify, relative to all of LTL. Finding a syntactic subset for which simulation and
model checking are guaranteed to be even more efficient was the intention of the
simple subset of PSL, defined in [43, 44]. Figure 15 shows RLTLLV, a syntactic
subset of LTL extended with suffix implication (see Sect. 24.2.1), defined in [10]
and subsuming the fragment of the simple subset that uses only weak operators.
The lv of RLTLLV stands for linear violation, and as we shall see below, formulas
of RLTLLV can be model checked using an NFA that is linear in the size of the
formula, rather than exponential as for arbitrary non-pathologically safe formulas.

Intuitively, time flows from left to right through formulas in the simple sub-
set, and syntactically every temporal binary operator has only one non-temporal
operand. In this respect, the simple subset shares much in common with the subset
of RCTL formulas that can be model checked using invariance checking [8] (RCTL
is an extension of CTL with suffix implication). It is also reminiscent of the syn-
tactic subset LTLDET of LTL described by [56], in which every formula that can be
expressed in both LTL and ACTL has an equivalent. In fact, the restriction of PSL’s
simple subset to LTL formulas is a subset of LTLDET.

While the motivation in [56] was expressiveness, it was also shown there that
formulas in LTLDET have a 1-weak Büchi automaton of linear size, where a 1-
weak Büchi automaton is a Büchi automaton in which every strongly connected
component is a singleton. The structure of 1-weak Büchi automata make them more
efficiently checkable than general Büchi automata [12, 60], making formulas in the
simple subset more efficiently checkable than formulas not in the subset.
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Theorem 20 ([56]) Let ϕ be an LTLDET formula of size n. There exists a 1-weak
Büchi automaton of size O(n) recognizing [[ϕ]].

The analogous result for RLTLLV provides the promised efficiency for both sim-
ulation and model checking:

Theorem 21 ([10]) Let ϕ be an RLTLLV formula of size n. There exists an NFA of
size O(n) recognizing the informative prefixes of ϕ.

24.6 Quantified and Local Variables

Both PSL and SVA provide quantified and local variables. Quantified variables, dis-
cussed in Sect. 24.6.1, are variables in the familiar sense in logic. Local variables,
discussed in Sect. 24.6.2, are different—the intuition behind them borrows from pro-
gramming languages. Intuitively, local variables are a mechanism for both declaring
quantified variables and constraining their behavior.

24.6.1 Quantified Variables

The User’s Point of View Suppose that we want to check that every read request
returns correct data, in a design that uses tagged requests. In such a design, every
request gets an identifying number (the tag), which is used to identify the corre-
sponding data. Thus we want to check that if there is a read request to address a,
tagged with tag t , and the value of the data at address a is d , then the next time that
data for tag t appears on the data bus, the value of the data is d . Conceptually, the
formula we want to check is that for every value of a, t and d ,

G
((
(addr = a)∧ (tag = t)∧ (

mem(a)= d))→
[¬(data_valid ∧ (tag = t)) W

(
data_valid ∧ (tag = t)∧ (data = d))])

(32)

If an address is 32 bits wide, a tag is 8 bits wide, and data is 128 bits wide, then
without quantifiers, we will need to write 2168 LTL formulas. Thus the user wants
quantified variables, allowing the 2168 formulas to be expressed more succinctly in
a single formula.

Semantic Issues Formula (32) requires quantification over rigid variables—
variables whose valuation stays constant over time. Clearly, adding quantification
over such variables does not increase the expressive power (though as discussed
above it adds much succinctness). Both PSL and SVA support quantification over
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rigid variables, allowing the 2168 formulas referred to above to be expressed as a
single formula, as follows:

∀a ∈ B32 ∀t ∈ B8 ∀d ∈ B128 (33)

G
((
(addr = a)∧ (tag = t)∧ (

mem(a)= d))

→ [¬(data_valid ∧ (tag = t)) W
(
data_valid ∧ (tag = t)∧ (data = d))])

Adding quantification over flexible variables—variables that may have different
values at different time points—increases the expressive power of LTL to that of ω-
regular languages. While LTL cannot count (a fact known through [31, 47, 58]), LTL
extended with universal/existential quantification over flexible variables, henceforth
referred to as QLTL, can. Indeed, the following QLTL formula:

∀t.(t ∧ G(t↔ X¬t))→ G(t→ p) (34)

expresses that p holds at every even position, a property expressible in PSL and
SVA using regular expressions, but not expressible in LTL [74] (see also Chap. 2).
Note that here t is a variable standing for an atomic proposition whose behavior
over time is unknown, whereas rigid variables play the role of constants rather than
atomic propositions.

QLTL was introduced in [65]. It was shown in [67] that its expressive power is ω-
regular and the complexity of the satisfiability problem is non-elementary. In [48]
it was argued that QLTL is also important for reasoning about abstraction refine-
ment methods, and a complete axiomatic proof system for this logic was provided.2

The QLTL property expressed by Formula (34) can practically be checked by a
model checker for plain LTL by introducing an unconstrained auxiliary variable t
and checking the formula (t ∧ G(t↔ X ¬t))→ (G(t→ p)). Obviously this is not
a general solution, for example if quantifications are nested with alternating quanti-
fiers.

24.6.2 Local Variables

The User’s Point of View Consider now the property that every request must re-
ceive a unique grant, where n is the maximum number of requests that may be
outstanding (i.e., that have not yet received a grant). Designate a request by r and a
grant by g, and assume for simplicity that requests and grants are mutually exclu-
sive. Then for n= 1, the property can easily be expressed as

G
(
r→ X[¬r U g]) (35)

2While [48] considers a logic with past operators, [30] enhances the result to a logic without them.
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For n > 1, we can turn to the power of regular expressions. If we can express
the set of shortest counterexamples by a regular expression, then we can assert that
that regular expression never occurs. As previously, let r stand for request and g for
grant, and let e stand for “else”, that is, ¬r ∧¬g. Then the set of shortest counterex-
amples for n= 2 is the language of the following regular expression:

e∗ · r · (e∪ (
g · e∗ · r)∪ (

r · e∗ ·g))∗ · r · e∗ · r (36)

and for n= 3 it is the language of this:

e∗ · r · ((g · e∗ · r)∪ e∪ (
r · (e∪ (

r · e∗ ·g))∗ ·g))∗ ·
r · (e∪ (

r · e∗ ·g))∗ · r · e∗ · r (37)

As n grows, the set of shortest counterexamples (and thus our property) turns
out to be surprisingly difficult to express. In contrast, it is very easy to construct a
non-deterministic finite automaton for a particular n. The user would like the same
ease of expression inside the specification language. For instance, she would like to
be able to say the following:

NEW(v=0)
((
(r ∨ g)[→], v=(r ? v++ : v– –)

)∗ → (
(v ≥ 0)∧ (v ≤ n))) (38)

where b[→] abbreviates ¬b∗ ·b and = stands for assignment. Formula (38) declares
a local variable v, controlled from within the regular expression. Its initial value is 0,
and it is incremented every time there is a request (r) and decremented every time
there is a grant (g). The formula holds iff v stays in the range 0≤ v ≤ n.

Semantic Issues Intuitively, local variables can be seen as a mechanism for both
declaring quantified variables and constraining their behavior. For instance, consider
the following formula using local variables:

NEW(i, j)
(
(a, i=0, j=0) · (b, i++)∗ · (c, j++)∗ · (i==j)

) →d (39)

It states that a sequence consisting of an a followed by some number of b’s followed
by the same number of c’s should be followed by a d . It uses the local variables i
and j to make sure the same number of b’s and c’s are observed. If i and j are
unbounded, local variables may increase the expressive power to that of context-
free languages. In practice, however only bounded local variables are considered.
Restricting attention to bounded local variables, there is no increase in expressive-
ness over ω-regular languages, but there is an increase in succinctness. Use of local
variables was advocated in [61, 64].

When we try to formulate the semantics of a logic with local variables we con-
front the issue that for a given wordw and a given regular expression r we may want
more than one value of a local variable in each letter of w. For instance, consider
Formula (39) and a word where a holds on the first letter and only on the first letter,
and both b and c hold on the second to fifth letters and only on the second to fifth
letters. What is the value of i and j on the fifth letter? It could be i = 2, j = 2 by
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Let V be a set of local variables and let Z ⊆ V . Let D be the domain of the local variables
and let γ1, γ2 ∈DV be assignments to the local variables. Let γ1

Z∼ γ2 (read “γ1 agrees with γ2
relative to Z”) denote that for every z ∈ Z we have that the value of variable z in valuation γ1 is
the same as its value in γ2. For an expression e, and an enhanced letter a, the notation e[a|σγ ]
provides the value of e with respect to the σ and γ components of a. The notation v |≡Z r

means that the good enhanced word v tightly models r with respect to controlled variables Z.

• v |≡Z b, x=e ⇐⇒ |v| = 1 and b[v(0)|σγ ] = T and v(0)|γ ′ Z∼ γ̂
where γ̂ results from v(0)|γ by assigning e[v(0)|σγ ] to x

• v |≡Z r1 · r2 ⇐⇒ ∃v1,v2 such that v= v1v2 and v1 |≡Z r1 and v2 |≡Z r2

• v |≡Z r1∪ r2 ⇐⇒ v |≡Z r1 or v |≡Z r2

• v |≡Z r1∩ r2 ⇐⇒ v |≡Z r1 and v |≡Z r2

• v |≡Z {NEW(Y) r} ⇐⇒ v |≡Z∪Y r

• v |≡Z {FREE(Y) r} ⇐⇒ v |≡Z\Y r

Fig. 16 Parts of the PSL semantics for SEREs with local variables as per [20, 44]

matching the b’s on the second and third letters and the c’s on the fourth and fifth
letters; it could also be i = 3, j = 1 by matching b’s on the second to fourth letters
and c on the fifth letter. Several other options are possible as well. For the formula
to hold d should hold on both the third and fifth letters—the locations where i and
j may be equal.

Another issue one confronts when formulating the semantics has to do with
the intersection operator. Suppose we want a SERE whose language includes only
words where the number of a’s between s and e equals the number of b’s between
s and e. Consider the following formula:

NEW(i)
(
(s, i=0) · ((¬a∗ · (a, i++)

)∗ ∩ (¬b∗ · (b, i++)
)∗) · e) (40)

Using simple intersection will require the a’s and the b’s to hold on the same cycles
on the words being intersected, which is not what we want.

For this reason, the idea in the first formal definition for a logic augmented with
local variables, given in [15, 45], was to control local variables only at the beginning
and end of the word. Regular expression semantics is defined with respect to a word
w and two contexts L0 and L1 standing for the values of local variables at the
beginning and end of the word, respectively. It was shown in [40] that this semantics
breaks distributivity of union over intersection.

This drawback was addressed in the definition proposed in [20] and adopted by
PSL. Parts of the semantics of SEREs with local variables as per [20] are given
in Fig. 16. It is argued in [20] that any semantics that try to automatically divide
the responsibility for the set of controlled variables between the SERE operands of
intersection and union will break distributivity or another basic algebraic property.
Instead, the approach was to define the semantics with respect to (1) good enhanced
words and (2) a set of controlled local variables.

The semantics without local variables is defined with respect to words over
Σ = 2P where P is the set of atomic propositions. The enhanced alphabet is
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Σ × Γ × Γ where Γ = DV , V is the set of local variables, and D is their do-
main. Let 〈σ,γ, γ ′〉 be an enhanced letter. The component σ provides a valuation
to the atomic propositions; the component γ provides a valuation to the local vari-
ables before assignments are executed; and the component γ ′ provides a valuation
to the local variables after assignments are executed. An enhanced word is good if
the component γ of a given letter is equivalent to the component γ ′ of the previ-
ous letter (if such a letter exists). Thus, in comparison to [15], local variables are
watched at every letter of the word rather than just at the beginning and end of a
word.

To deal with the problem imposed by the intersection operator, the semantics is
defined with respect to a set of controlled variables Z which is a subset of the local
variables V corresponding to the variables whose valuation should be observed.
A controlled variable should change its value according to an assignment given
to it, if such was made, and retain its value otherwise. The values of uncontrolled
variables do not play a role in the semantics. The control over which variables should
be controlled is given to the user by means of two operators NEW(x) and FREE(x)

which add and remove, respectively, a variable from the set of controlled variables.

Theorem 22 ([20]) The following properties hold for SEREs extended with local
variables using the semantics of [20]:

• The operators ∪ and ∩ are commutative, and ∪ , ∩ , and · are associative.
• The operator ∪ distributes over ∩ and ∩ distributes over ∪ .
• r ≡ (r ∪ r)≡ (r ∩ r)≡ (λ · r)≡ (r ·λ)≡ (FALSE∪ r)≡ ((FREE(V ) TRUE)∗ ∩ r).

The addition of local variables increases the complexity of the model-checking
problem from PSPACE to EXPSPACE [15]. This holds for both approaches to the
semantics. Automata construction for the semantics of the first approach was given
in [15] and for the second approach in [20]. The lower bound appears in [15].

Theorem 23 ([15, 20]) Let V be a set of local variables and P be a set of atomic
propositions. The satisfiability and model-checking problems for formulas of LTL
extended with suffix implication, local variables, and the intersection operator using
the semantics of [15] or [20] are EXPSPACE-complete with respect to |V | · |P |.

The source of the increase in complexity lies in the need to track different values
for the same local variable on the same time instance of the same run. This issue was
analyzed in [5]. It was shown there that in a significant syntactic fragment of PSL
this situation will not occur. Given an alternating Büchi automaton for the formula
at hand, roughly speaking, we may have more than one value for a certain local
variable on a certain time point of the same state (a local variable conflict) if there
are assignments after a universal branch that loops back. It was shown in [5] that
on the subset given in Fig. 17, referred to as the practical subset, there will be no
conflicts, and the complexity of model checking goes back to PSPACE.

Theorem 24 ([5]) The space complexity of the verification problem of any formula
ϕ in PSLpract is polynomial in |ϕ|.
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Let b be a Boolean expression. Let Y be a sequence of local variables and E a sequence of
expressions of the same length as Y. The grammar below defines the formulae ϕ that compose
the practical subset, denoted PSLpract, where the R operator is a dual to strong until: ϕ R ψ ≡
¬[¬ϕ U ¬ψ].

r ::= b | r · r | r ∪ r | r+

R ::= b | (b,Y := E) | R ·R | R∪R | R+ | (NEW(Y)R) | (FREE(Y)R)

ψ ::= r! | ¬r! | ψ ∨ψ | ψ ∧ψ | X!ψ | [ψ U ψ] | [ψ R ψ] | r ⇒ ψ

ϕ ::= ¬R! | ψ | ϕ ∨ ϕ | ϕ ∧ ϕ | X!ϕ | [ϕ U ψ] | [ψ R ϕ] | R ⇒ ψ |
(NEW(Y) ϕ) | (FREE(Y) ϕ)

Fig. 17 The practical subset, PSLpract [5]

24.7 Summary and Open Issues

We have seen that both PSL and SVA extend the expressive power of LTL to that of
ω-regular languages by adding regular expressions and the suffix implication opera-
tor. They both also include a number of specialized operators to allow natural spec-
ification of sampling abstractions and truncated paths. Finally, both provide local
variables, which can be seen as a mechanism for both declaring quantified variables
and constraining their behavior. But neither PSL nor SVA is perfect, nor necessarily
done. Below we mention a few directions in which we think there might be room
for improvement.

24.7.1 One-to-One Correspondence

The User’s Point of View Consider the property that every request must receive a
unique grant. This property is a common one, and most hardware designers need to
express something of this sort.

Semantic Issues It is well known that the property {w | |w|a = |w|b}, where |w|�
denotes the number of occurrences of the letter � in word w, is not regular (see for
example [42]), and cannot be expressed in any of the logics that we have considered
in this chapter. On the one hand, this seems to be a non-issue. In every piece of
hardware that obeys the desired property, there can be only a finite number n of
requests outstanding (i.e., that have not yet received a grant), and Formulas (35)–
(38) state the property for particular n’s. Also, if the requests are tagged with unique
identifiers, then the problem goes away.

However, from the user’s point of view, the expressive power is not enough.
She does not want a formula for a specific n, but rather one stating that there ex-
ists such an n. Therein lies an interesting paradox. Although ω-regular expressive
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power is sufficient to describe the behavior of any particular design, the wish list
of the user includes more. This is because we often want a specification to describe
not a particular implementation, but a family of implementations, for instance all
implementations in which every request receives a unique grant.

24.7.2 Triggering Procedural Code from Within a Formula

The User’s Point of View Temporal logic is such a powerful tool, wouldn’t it be
nice to harness that power in order to “trigger” procedural code? A simple moti-
vation for this would be to print out debugging information when the calculation
“reaches” a particular point in the formula. Another application would be to drive
simulation inputs or to collect coverage information.

Such an ability exists in SVA [45, 46], in which a subroutine call is allowed
wherever a local variable assignment is allowed, and in PSL 1850–2010 [44], where
a procedural block is similarly allowed.

Semantic Issues Triggering of procedural code from within a formula can be
viewed as an extension of local variables as discussed in Sect. 24.6. However,
whereas the semantics of local variables are well defined, and given by the for-
mal semantics of SVA and PSL, the semantics of triggering procedural code are not
formally defined at all in either specification language.

Doing so is non-trivial, not only because it is difficult to write down the precise,
mathematically well-behaved semantics, but also because first it must be decided
what they are. For example, what side effects are allowed in the procedural code
(i.e., how does the procedural code interact with the design under verification)?
And if a property consists of the disjunction of two sub-properties, one of which
has already been determined to hold, must we continue to trigger procedural code
attached to the other sub-property if it holds as well? And if a regular expression
is “matched” in two different ways at the same cycle, do we trigger the relevant
procedural code once or twice? Note that any decision on such issues limits the
implementation of a tool checking properties in the specification language.

24.7.3 Separation of Concerns

The User’s Point of View Consider the property “If p occurs followed eventually
by q , then v will not occur between p and q , will not occur at q , and furthermore
will occur one cycle after q .” This can be expressed in LTL as follows:

G
(
p→ ([¬v W (q ∧¬v)]∧ [¬q W (q ∧ Xv)

]))
(41)

However, this formulation blurs the distinction between cause and effect: in the
English language description of the formula it is quite clear that the “responsibility”



24 Functional Specification of Hardware via Temporal Logic 825

for the property lies with signal v, but in an LTL formula all variables are created
equal, so to speak.

Semantic Issues The hardware specification language ITL [73] (distinct from the
logic of the same name described in [36]) enforces a “separation of concerns,” by
providing a syntactic distinction between the antecedent and the consequent of every
formula. For this example, separating cause from effect clearly is possible in PSL
and SVA as well. For example, the following pair of formulas is together equivalent
to Formula (41) while restricting the p’s and q’s to be on the left and the v’s to be
on the right of a suffix implication operator:

G
((
p ·¬q∗) →¬v) (42)

G
((
p ·¬q∗ ·q) →(¬v ·v)) (43)

However, this approach is quite far from the philosophy of ITL, in which the sep-
aration of cause and effect is enforced by the syntax of the language. It would be
interesting to see whether there is an elegant way to incorporate the separation of
concerns into PSL and SVA without breaking useful features of these languages.
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Chapter 25
Symbolic Trajectory Evaluation

Tom Melham

Abstract Symbolic trajectory evaluation is an industrial-strength formal hardware
verification method, based on symbolic simulation, which has been highly success-
ful in data-path verification, especially for microprocessor execution units. It is a
‘model-checking’ method in the basic sense that properties, expressed in a simple
temporal logic, are verified by (symbolic) exploration of formal models of sequen-
tial circuits. Its defining characteristic is that it operates by symbolic simulation over
abstractions of sets of states that only partially delineate the circuit states in the set.
These abstract state sets are ordered in a lattice by information content, based on a
three-valued domain for values on circuit nodes (true, false, and don’t know). The
algorithm operates over families of these abstractions encoded by Boolean formu-
las, providing a flexible, specification-driven mechanism for partitioned data ab-
straction. We provide a basic introduction to symbolic trajectory evaluation and its
extensions, and some details of how it is deployed in industrial practice. The aim is
to get across the essence and value of the method in clear and accessible terms.

25.1 Introduction

Symbolic Trajectory Evaluation (STE) is a model-checking method based on sym-
bolic simulation over a lattice of abstract state sets [64]. STE’s combination of ab-
straction and algorithmic efficiency is especially suited to verification of large data-
paths and memories, and has been demonstrated on many hard industrial verification
problems at Intel Corporation [42, 52, 58]. Two notable successes are the verifica-
tion, using Intel’s Forte system [65], of the entire execution cluster of the Intel Core
2 Duo and Core i7 processors [26, 41]. Motorola has also used STE extensively
for verification of embedded custom memories [45], and has developed a suite of
advanced methodologies and tools to support this task [10, 11, 71].

In the abstraction lattice at the heart of STE, each circuit node (i.e. wire carrying
a single bit) is assigned a value in the set {X,0,1}, with ‘X’ representing an ‘un-
known’ value. An assignment of such values to every circuit node is an abstraction
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of a set of Boolean circuit states. It is abstract in the sense that it ambiguously stands
for any one of a family of Boolean state sets, one for each replacement of every X by
0 or 1. The collection of all such abstractions forms a lattice, ordered by the amount
of information we have about node values.

The STE model-checking algorithm uses three-valued circuit simulation [14] to
compute a reachable abstract state-set in this representation. The algorithm is space-
efficient because it operates over abstractions of sets of states; any parts of the circuit
function not relevant to the specification get ‘abstracted away’ to X. Any correctness
result verified in this abstract model transfers over to the real, Boolean model of
circuit states. Formally, there is a Galois connection between the three-valued model
and the Boolean model of states [19].

This abstraction machinery is controlled by the way in which the user writes
properties for model checking. By careful coding of the property, the user can guide
the symbolic simulation done during model checking through the right layers of the
abstract state lattice to verify the property with contained complexity. A good illus-
tration of success is the content-addressable memory verification done by Pandey
and colleagues [52], in which a careful encoding of properties gives a logarithmic
reduction in complexity.

Specifications themselves are written in a very simple linear-time temporal logic,
limited to implications between formulas with only conjunction and the next-time
operator. STE specifications therefore express only bounded time properties, and
it may take more properties to verify the same functionality in STE than in, say,
CTL—the approach is in some ways similar to the FSM decomposition methodol-
ogy of Interval Property Checking [50]. Different versions and extensions of STE
with more expressive logics exist [32, 35, 64, 77]. But the simple form is the most
widely tested on industrial applications and the focus of this chapter.

Although the logic of STE seems weak, its expressive power and abstraction ca-
pability are greatly enhanced by use of symbolic ternary simulation [16]. On top
of the abstraction lattice, STE provides a layer of symbolic representation whereby
whole families of abstractions, each covering only a part of the circuit’s function,
may be checked simultaneously. This mechanism, sometimes called ‘symbolic in-
dexing’, provides a flexible way to achieve case-splitting by a data abstraction
scheme. A characteristic example is a memory verification, in which an n-element
memory is verified with an indexed family of n abstractions, one for each address at
which some target data might be located.

In STE, the cases covered by the abstractions in an indexed family can overlap, in
contrast to existential abstraction for CTL [22, 28], which partitions the state space.
Symbolic indexing can also record inter-dependencies among node values, and so
increases the expressive power of specifications for STE. For example, input/output
functions can be extracted from a circuit by using symbolic simulation to derive for-
mulas for the values on output nodes as functions of variables standing for arbitrary
values on input nodes. These can then be checked against a specification in the form
of some reference formulas provided by the verification engineer. Disjunction can
also be expressed.

This chapter explains the theory of STE model checking in detail and briefly
describes how the method is implemented and used in practice. It also gives a brief
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sketch of some extensions to STE, including Generalized Symbolic Trajectory Eval-
uation (GSTE). A full account of the theory of STE by its originators, Carl Seger
and Randy Bryant, can be found in [64]. An illuminating perspective on the foun-
dations of STE is provided by Chou in [19]. There is an in-depth tutorial on STE
by Seger and Hazelhurst [32]. Roorda and Claessen also provide a tutorial account
of STE in [20] and discuss its semantics in [54]. A usage methodology for STE in
industrial practice can be found in [1, 38, 65]. GSTE is introduced and explained
in [21, 67, 68, 77], and its relationship to conventional symbolic model checking is
explored in [59].

25.2 Notational Preliminaries

We write
F= to mean equals by definition. We assume familiarity with elementary

propositional logic and predicate calculus notation and use the symbol⊃ for logical
implication. We denote the set of Boolean truth-values by B= {T,F}. We use lower-
case letters (e.g. a, v, x, y1) as Boolean variables, and use upper-case letters (e.g. P ,
Q) to stand for formulas of propositional logic (‘Boolean functions’). We write Hx to
mean a vector of unique variables x1, . . . , xn for indeterminate n and similarly HP to
stand for a vector of formulas P1, . . . ,Pn.

The notation P [ HQ/Hx] stands for the result of simultaneously substituting the for-
mulas HQ for all occurrences of the respective Boolean variables Hx in P . The notation
P [Hx] should be taken to mean a formula that may contain free occurrences of the
distinct Boolean variables Hx. In a context in which a formula has been written P [Hx],
subsequent use of the notation P [ HQ] can then be understood to mean the result of
substituting the formulas HQ for the variables Hx in P [Hx].

If P is a propositional formula and φ is a function that assigns a truth-value to
each Boolean variable in it, we write φ � P to mean that φ satisfies P [56].

We also assume familiarity with the notation of naive set theory [29] and the
rudiments of conventional functional programming notation for higher-order func-
tions [12]. If A and B are sets, we write A→ B for the set of all total functions
from A to B . We assume that → associates to the right, so A→ (B→ C) may be
written A→ B → C. We write function applications by mere juxtaposition: f x
instead of f (x). For higher-order functions, function application associates to the
left; so if f ∈A→ B→ C, a ∈A, and b ∈ B , then we can write f a b for (f a) b.

The semantics of symbolic trajectory evaluation uses some elementary concepts
of lattice theory [24]. A poset (S, 8) is a partial order 8 on a set S. If (S,8) is a
poset and A ⊆ S, then x ∈ S is an upper bound for A exactly when a 8 x for all
a ∈ A. A lower bound is defined dually. An upper bound x of A is the least upper
bound of A, written 7A, if x 8 y for every upper bound y of A. The greatest lower
bound, written <A, is defined dually. We also write a7b (read ‘a join b’) for 7{a, b}
when it exists and a < b (read ‘a meet b’) for <{a, b} when it exists.

A poset (S,8) is a complete lattice iff 7A and <A exist for all A ⊆ S. If S is
finite and a 7 b and a < b exist for all a, b ∈ S, then (S,8) is a complete lattice.



834 T. Melham

25.3 Sequential Circuit Models in STE

We suppose there is a finite set of circuit nodes N , naming observable points in
circuits. We can think of a node as the name of a wire—i.e. just an identifier, such as
‘reset’ or ‘input32’. As usual for sequential circuit models, there is a node in N to
name each primary circuit input, as well as a node to name the output of each latch
or other state-holding element. In STE, we can also give names to selected inter-
nal wires within a block of combinational logic, if we wish to express verification
properties that make reference to values on these wires. In the interest of clarity,
however, we will ignore this possibility for now.

25.3.1 States and Sequences

To describe the behaviour of a circuit formally, we need to say which succession of
values will be present on each of its nodes as the circuit evolves over time. Symbolic
trajectory evaluation employs a three-valued state model, with values drawn from
the set D = {X,0,1}. The usual binary values 0 and 1 are augmented with an addi-
tional value X. This stands for an unknown, which we represent mathematically by
a partial order ≤ on D , in which X≤ 0 and X≤ 1:

X

0 1

����

This orders values by information content: X stands for an unknown value and so is
ordered below 0 and 1.

A state is an instantaneous snapshot of circuit behaviour given by an assignment
of values in D to all the node names in N . A state is represented mathematically
by a function

s ∈N →D

that maps each node name to a value.
If the set of circuit nodes is small enough, we can write down specific states just

by giving the function explicitly. For example, for N = {a, b, c}, we might write

{
(a,0), (b,X), (c,1)

}
or {a �→ 0, b �→X, c �→ 1}

for the state in which a is 0, b is X, and c is 1. We can use a more compact notation
if we give an ordering on nodes. If the nodes in this example are ordered a< b< c,
we can just write ‘0X1’ to denote this state. In what follows, we will feel free to use
either of these notations, as appropriate.

The ordering ≤ on D is extended point-wise to get an ordering 8 on states. For
reasons that will be clear later, we wish this to form a complete lattice, and so we
will use a special symbol, �, for the top element of this state lattice. We then define
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the set of states S to be (N →D)∪{�}. The required ordering is defined for states
s1, s2 ∈S as follows:

s1 8 s2 F=
{
s2=�,or
s1, s2 ∈N →D and s1(n)≤ s2(n) for all n ∈N

The intuition is that if s1 8 s2, then s1 may have ‘less information’ about node values
than s2—i.e. it may have Xs in place of certain 0s and 1s.

25.3.2 Abstraction

The term state just introduced is really a misnomer: a ‘state’ in STE, such as 0X1,
is really an abstraction—an abstract predicate on sets of actual circuit states. Real
circuit states are always Boolean-valued: each circuit node is either 0 or 1 and there
isn’t really a value ‘X’. Roughly speaking, we can think of a lattice state as standing
for a set of ordinary, Boolean-valued states. More precisely, a single lattice state
stands (ambiguously, because it is an abstraction) for any one of a certain group of
structurally related sets of Boolean states.

Computational manipulation of sets of circuit states is a key idea in classical
model checking. STE model checking also operates over sets of Boolean circuit
states, but there is an abstraction: the sets are only incompletely known or specified.
This abstraction scheme is related to the Cartesian abstraction employed in some
approaches to software model checking [6].

Suppose we have only two circuit nodes, a and b, and for the purpose of com-
pactly writing down lattice states, we order them a< b. The lattice state 0X can be
seen as an abstraction of the set of Boolean-valued states

{{a �→ 0, b �→ 0}, {a �→ 0, b �→ 1}}.
In the abstract ‘state’ 0X the node b is assigned the unknown value X. In the concrete
set of Boolean states, there is one state in which b is 0 and one in which b is 1. So
the node b can have either value. In STE, the lattice state 0X is also an abstraction
of the following singleton set of Boolean-valued states:

{{a �→ 0, b �→ 0}}.
Here, node b must be 0. Finally, the lattice state 0X is also an abstraction of the set
of Boolean states

{{a �→ 0, b �→ 1}},
in which node b must be 1. The lattice-valued ‘state’ 0X is an abstraction of all three
of these sets of real circuit states. That is, there is loss of information, the defining
characteristic of being an ‘abstraction’.

In practice, we can often think informally of a lattice state s as standing for the set
of Boolean states obtainable by replacing all occurrences of X in s by a combination
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of 0s and 1s in every possible way. Every set of Boolean states of which s is an
abstraction is some subset of this ‘maximal’ set of Boolean states. A characteristic
of this abstraction is that it ignores information about dependencies between node
values. Consider, for example, the set of states {{a �→ 0, b �→ 1}, {a �→ 1, b �→ 0}},
in which a and b always have values that are the negation of each other. The only
abstraction of this set of states is XX.

One can view abstract ‘states’ s1 and s2 as constraints or predicates on sets of
actual states of the hardware. If s1 8 s2, then every set of Boolean states that satisfies
s2 also satisfies s1. For example, suppose we again have nodes a< b and consider
0X 8 01. Lattice state 01 unambiguously stands for the singleton set of Boolean
states {{a �→ 0, b �→ 1}}, which also satisfies the ‘constraint’ 0X. More precisely,
any set of states of which s2 is an abstraction is a subset of any set of states of
which s1 is an abstraction. We say that s1 is ‘weaker than’ s2. (Strictly speaking, 8
is reflexive and we really mean ‘no stronger than’, but it is common to be a little
inexact and just say ‘weaker than’.) The top value � represents the unsatisfiable
constraint. The join operator on pairs of states in the lattice is denoted by ‘7’.

25.3.3 Time-Dependent Behaviour

To model dynamic behaviour, we represent time by the natural numbers N. A se-
quence of states that the circuit passes through as it evolves over time is then repre-
sented by a function from time to states:

σ ∈N→S .

Such a function is called a sequence. A sequence (that never produces the over-
constrained top state �) just assigns a value in {X,0,1} to each circuit node at each
point in time. For example, σ 3 reset would be the value assigned to the reset node
at time 3.

The ordering on states is extended point-wise to sequences in the usual way:

σ1 8 σ2
F= σ1(t)8 σ2(t) for all t ∈N.

If σ1 8 σ2, then we say that the sequence σ1 is ‘weaker than’ the sequence σ2. As
before, it would be more accurate to say ‘no stronger than’.

We now introduce an operation on sequences that is used later in stating the
semantics of STE. For any i ≥ 0, the ith suffix of a sequence σ is written σ i and
defined by

σ i t
F= σ (t+i) for all t ∈N.

Taking the ith suffix just shifts the sequence σ forward i points in time, discarding
the first i states.
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Fig. 1 Unit-delay AND-gate

25.3.4 The Next State Function and Trajectories

In symbolic trajectory evaluation, the formal model of a circuit c is given by a next-
state function Yc that maps states to states:

Yc ∈S →S .

The subscript in Yc identifies the particular circuit of interest; we can think of ‘c’ as
a constant that names the circuit. This subscript is frequently omitted, as it is usually
clear or doesn’t matter which circuit is being discussed.

Intuitively, the next-state function expresses a constraint on the set of possible
Boolean states into which the circuit may go for any set of Boolean states it might
currently be in. Suppose the circuit is in abstract state s ∈S . Then Y s is the most-
specified abstract state that covers all the sets of states the circuit can make a transi-
tion to from any set of states that satisfies s. Roughly speaking, if the only possible
value for a circuit node n in every next state is one of 0 or 1, then Y s will assign
that value to n. Otherwise n will be X in the next abstract state.

A small example is the trivial unit-delay AND-gate in Fig. 1. This circuit has
three nodes, which for the purpose of writing down states we order a< b< c. Sup-
pose the current state is 111, i.e. all nodes are known to be high. Then the next state
Y(111) will be XX1. Similarly, if the current state is 110, then the next state Y(110)
will also be XX1. In fact, the next value of c doesn’t depend on its value in the cur-
rent state, so Y(11X)=XX1 as well. In all these cases, we see that in the next state
a and b are both X because they are primary inputs—they are ‘non-deterministic’.
If b is 0 in the current state, then c is going to be 0 in the next state, regardless of the
value of a in the current state. Hence Y(X0X)=XX0. Finally, we sometimes have
insufficient information to determine the value of the output. If the current state is
X1X, for example, then we don’t know whether c is going to be 0 or 1. It may be
either, and hence Y(X1X)=XXX.

In essence, X serves as a ‘don’t care’ (or, depending on context, ‘don’t know’)
value in STE reachable-state calculations. This allows an STE model checker to
prune away parts of a circuit function that have no effect on the properties being
validated—a kind of semantic ‘cone of influence’ reduction [23]. On the other hand,
if not enough is known about initial states of the system, Xs can permeate the com-
putations enough to make the satisfaction of target properties indeterminate. We
discuss this issue later.

A requirement for trajectory evaluation is that the next-state function Y is mono-
tonic. That is, for all states s1 and s2

s1 8 s2 implies Y s1 8Y s2.
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Fig. 2 Unit-delay inverter

This is consistent with the idea that 8 is an information ordering: any increase
in knowledge about the range of possible current states should produce only an
increase—not a reduction or revision—of knowledge about the range of possible
next states. Implementations of STE are designed to extract a next-state function
that has this property from the circuit under analysis. This condition can be met,
with some careful engineering, for a wide variety of common circuit design styles,
including synchronous systems with latches as well as flip-flops, and systems with
gated clocks. Transistor switch-level models can also be devised for STE [32, 64].

For a circuit c, we define the set of all its trajectories, Tc , as follows:

Tc
F= {
σ
∣
∣ Yc(σ t)8 σ (t+1) for all t ∈N

}
.

For a sequence σ to be a trajectory, each successor state in the sequence must be at
least as specified as (and not contradict) the result of applying the next-state function
Yc to the previous state in the sequence. This ensures that σ is consistent with the
circuit model Yc, i.e. that the succession of abstract state constraints given by σ does
not contradict what the hardware would actually do.

For example, suppose N = {i,o}with i< o and consider the circuit in Fig. 2. The
partial sequence σ = 1X,XX, . . . does not begin a trajectory. In the second state of
circuit execution we ‘know’ that o must be 0, because Yc(1X)=X0. But the value of
o is unconstrained by the second state, XX, in the sequence σ . On the other hand, a
trajectory can still over-approximate real circuit execution. For example, the partial
sequence σ = XX,X0, . . . can begin a trajectory, because Yc(XX) = XX 8 X0.
But this sequence does not constrain node i to be 1 in the first state. Of course, any
sequence completely free of Xs is a trajectory exactly when it represents an actual
Boolean execution trace of the circuit being modelled.

25.4 Trajectory Evaluation Logic

One of the keys to the efficiency of STE and its success with data-path circuits is
its restricted temporal logic, which we now define. Certain formulas in this logic
contain, as sub-formulas, expressions of ordinary propositional logic with (free)
Boolean variables. Let P range over propositional formulas whose free variables
are drawn from some set V . A trajectory formula is a simple linear-time temporal
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logic formula with the following syntax:

f := n is 0 —node n has value 0
| n is 1 —node n has value 1
| f and g —conjunction of formulas
| Nf —f holds in the next time step
| P � f —f is asserted only when P is true

where f and g range over formulas and n ∈N ranges over the nodes of the circuit.
The formula P is called a guard and may contain propositional variables in V . The
role of these variables will be discussed later—for now, it is helpful to note that they
are distinct from the names of circuit nodes in the set N.

The basic trajectory formulas ‘n is 0’ and ‘n is 1’ say that the circuit node n has
value 0 or value 1, respectively. The operator and forms the conjunction of trajectory
formulas. The trajectory formula Nf says that the trajectory formula f holds at the
next point of time. It is easy to see that any formula containing only these first four
syntactic constructs simply asserts the presence of 0 or 1 at certain fixed points of
time on the specified circuit nodes. For example,

clk is 0 and N
(
clk is 1 and N

(
clk is 0 and N(clk is 1)

))

describes two cycles of a clock clk that starts off low. It is obvious that the next-time
operator distributes over conjunction.

The final construct P � f weakens the sub-formula f by requiring it to be sat-
isfied only when the guard P is true. In essence, a trajectory formula represents a
whole set of assertions about the presence of the Boolean values 0 and 1 on par-
ticular circuit nodes over time. A guard is a propositional formula that may contain
Boolean variables, and a trajectory formula P � f with a guard P asserts f only
for satisfying assignments of values to the Boolean variables in P . So for any tra-
jectory formula, each assignment of values to the variables in all its guards gives
a (possibly different) assertion about the presence of 0s and 1s on certain circuit
nodes at particular points in time.

A trivial example is this trajectory formula:

x � (a is 0 and b is 1) and x � (a is 1 and b is 0).

The guards here are just the literals x and x. The formula encodes two of the four
possible input bit patterns we might present to the unit-delay AND-gate in Fig. 1,
namely the ones in which a and b are mutex. More generally, the guards in a tra-
jectory formula can be any propositional logic expressions and can have variables
in common. This gives STE the expressive power to represent inter-dependencies
among node values—and, as will be seen, to encode families of state abstractions
for efficient model checking.

We can associate an arbitrary propositional formula P with a circuit node using
the construct ‘n is P ’ defined by

n is P
F= (P � n is 1) and (P � n is 0)
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We suppose that � binds more tightly than and, so may drop the brackets:

n is P
F= P � n is 1 and P � n is 0

In the simplest case, we use this construction to attach distinct Boolean variables to
input nodes for direct symbolic simulation of circuits. For example, we might assert
the formula ‘a is x and b is y’ for our unit-delay AND-gate. Here, the variables x
and y just name the values present on the input nodes a and b. We might expect,
after simulation, the circuit model to satisfy ‘N(c is x ∧ y)’.

25.4.1 Correctness Properties for Verification

Circuit correctness in symbolic trajectory evaluation is stated by trajectory asser-
tions of the form A⇒ C, where A and C are trajectory formulas. The intuition is
that the antecedent A provides stimuli to circuit nodes and the consequent C speci-
fies the values expected on circuit nodes as a response, after simulation. We might,
for example, write

a is x and b is y ⇒ N(c is x ∧ y)
for a direct, exhaustive simulation of our little AND-gate. Using guards, this single
property encodes all the four possible bit-patterns that might be presented on the
two inputs a and b. To check just the mutex cases mentioned earlier, we write

x � (a is 0 and b is 1) and x � (a is 1 and b is 0) ⇒ N(c is 0)

Here there is not such a direct correspondence between ‘Boolean variables’ and
‘values on circuit nodes’. The variable x doesn’t correspond to an input value at all,
but just enumerates the two input stimuli we wish to consider. In fact, because x
doesn’t appear in the consequent, this formula effectively expresses a disjunction in
the antecedent. It is essential for a full understanding of STE to bear in mind that
the Boolean variables used in guards, in the general case, need not correspond to
node values. They are a case-enumeration mechanism, situated a layer above circuit
values.

We now say what it means for a sequence σ to entail a trajectory formula f .
Entailment is defined with respect to an assignment of Boolean truth-values to the
Boolean variables in the guards of the formula. Suppose V is the set of all such
variables and φ ∈ V →{T,F} is an assignment of values to them. Define

σ |=φ n is 0
F=
{
σ(0)=�, or
σ(0) ∈N →D and σ 0 n= 0

σ |=φ n is 1
F=
{
σ(0)=�, or
σ(0) ∈N →D and σ 0 n= 1

σ |=φ f and g
F= σ |=φ f and σ |=φ g

σ |=φ Nf
F= σ 1 |=φ f

σ |=φ P � f
F= φ � P implies σ |=φ f
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where φ � P means that the propositional formula P is satisfied by the assignment
φ of truth-values to the Boolean variables in P . It follows that if σ1 |=φ f and
σ1 8 σ2 then σ2 |=φ f . That is, if a sequence σ1 entails f , then any sequence σ2
consistent with σ1 but having ‘more information’ about node values also entails f .
Informally, we can think of both trajectory formulas and sequences as predicates on
sets of circuit states. And both |=φ and 8 (backwards) as forms of entailment.

A trajectory assertion A⇒ C is true for a given φ exactly when every trajectory
of the circuit that entails A also entails C. For a given circuit c, define |=φ A⇒ C

to mean that for all σ ∈ Tc, if σ |=φ A then σ |=φ C. Intuitively, saying σ ∈ Tc
means σ is an abstraction (over-approximation) of a set of actual execution traces of
the circuit. For a given φ, the antecedent A describes a certain finite scattering of 0s
and 1s across selected circuit nodes over a bounded period of time. Every trajectory
σ ∈ Tc that conforms to this description must also exhibit the scattering of 0s and
1s expected by the consequent C.

The use of propositional formulas as guards enables a single trajectory assertion
A⇒ C to encode a whole family of stimulus-response correctness properties, one
for each φ. An example is the partial correctness specification for the unit-delay
AND-gate (Fig. 1) discussed earlier:

x � (a is 0 and b is 1) and x � (a is 1 and b is 0) ⇒ N(c is 0).

When φ(x) = T, this property enforces correctness for the specific case where the
input values are a = 0 and b = 1. When φ(x) = F, it enforces correctness for the
case where a= 1 and b= 0. As will be seen, the model-checking algorithm for STE
treats this dependence on φ symbolically, verifying all the cases simultaneously. We
write |=A⇒ C to mean that |=φ A⇒ C holds for all φ.

It can be seen from the semantics just given that STE is fundamentally a logic of
forward propagation of information about circuit values over time. We might hope
the following trajectory assertion would hold of the little unit-delay AND-gate in
Fig. 1:

N(c is 1) ⇒ a is 1 and b is 1

The output c cannot possibly be high, unless both inputs a and b were high on the
last clock cycle. Observe, however, that σ = XXX,XX1,XXX,XXX, . . . is a tra-
jectory of this circuit that satisfies the antecedent but not the consequent. So this
property is false. A sketch of what it would take to have the semantics of a ‘bidi-
rectional STE’ in which this property could hold is given by Roorda in [53]. The
fundamentally forwards nature of the STE logic flows from its basis as a logic of
(forwards) circuit simulation. Roorda and Claessen have proposed to use SAT to en-
code the circuit along with the verification in an STE model-checking run, allowing
backward information propagation.

We also note in passing that it is possible for an antecedent to be unsatisfiable,
either outright or by all (or just some) real circuit executions. This is the problem
of antecedent failure [7] or, more generally, vacuity in logic-based verification [8].
The most obvious case is where the antecedent places inconsistent values on some



842 T. Melham

circuit node, as for example in

x � a is 0 and y � a is 1.

This is inconsistent when φ assigns the truth-value T to x and y. Another case is
when the antecedent places a value on a circuit node that disagrees with what circuit
execution itself produces. (For this to happen, the node in question must be the
output of a state-holding element, not a primary input.) The semantic representation
for the circuit state arising in the presence of such an inconsistency is the special top
state, �, introduced in Sect. 25.3.1.

Both types of antecedent failure can be detected by STE implementations and an
error raised or warning given. Typically, a practitioner will then investigate the cause
and rewrite the offending antecedent. Sometimes antecedent failure can safely, if
cautiously, be ignored because it is known that cases in which inconsistency occurs
do not to arise in practice. A more subtle problem is so-called hidden vacuity [69].
This can occur when the antecedent requires some specific value, 1 say, on a par-
ticular node that in any actual circuit execution would be 0, but which is assigned
X by the circuit model because of incomplete information. For a full analysis and
some methods to detect vacuity in STE, including the hidden type, see [69].

25.4.2 Correctness Properties Under Assumptions

It is convenient to have a notation that restricts the valuations φ for which a correct-
ness property |=φ A⇒ C is verified to those that satisfy some given predicate. If P
is a formula of propositional logic, we write P ? A⇒ C to mean that |=φ A⇒ C

holds for all φ that satisfy P . This is used extensively in practice to express environ-
mental constraints or assumptions on input values represented directly by Boolean
variables. The verification script for an industrial-scale sub-circuit may well have
hundreds of lines of text generating such formulas in order to accurately charac-
terise the complex environment in which it operates.

Note that antecedents alone can also encode assumptions: writing the antecedent
‘a is x and b is x’ makes the implicit assumption that two input nodes a and b have
the same value. A methodology used by Intel for structuring both kinds of assump-
tions and translating them into System Verilog Assertions is presented in [44]. This
supports a form of assume-guarantee reasoning; blocks of circuitry are verified in
STE under assumptions about the operating environment, which are then translated
into System Verilog Assertions and checked with simulation.

25.4.3 Internal Combinational Circuitry

It remains to note that what real implementations of STE do is not fully reflected
in the simple story presented above. We have assumed throughout, and in particu-
lar in our formulation of next-state functions, that models and formulas refer only
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to circuit nodes that are primary inputs or outputs of state-holding elements. But,
as mentioned earlier, STE trajectory formulas can also mention internal nodes of
combinational logic. A precise formulation of the semantics of this is a little in-
volved [54], but the intuition is roughly the following. Suppose n is an internal
node, driven by some fan-in cone of combinational logic. The sub-formula ‘n is 1’
should hold exactly when forward propagation through this logic of all known infor-
mation about other node values in the circuit implies that n must have value 1. The
practical value of this capability is that it exposes the fine detail of internal values
within complex circuits to inspection and debugging by STE model checking.

25.5 The Fundamental Theorem of Trajectory Evaluation

A key property of trajectory evaluation logic is that for any trajectory formula f
there exists a unique weakest sequence that entails f (assuming a fixed assignment
φ of Boolean values to variables). This is called the defining sequence for f and
is written [f ]φ . It is defined by recursion over the syntax of trajectory formulas.
Recall that a sequence is an element of N→ ((N →D) ∪ {�}); in the definition
that follows, t ∈N ranges over points in time and n ∈N ranges over node names.

[m is 0]φ t n
F= 0 if m=n and t=0, otherwise X

[m is 1]φ t n
F= 1 if m=n and t=0, otherwise X

[f and g]φ t F= ([f ]φ t) 7 ([g]φ t)
[Nf ]φ t n

F= [f ]φ (t−1) n if t �=0, otherwise X

[P � f ]φ t n F= [f ]φ t n if φ � P, otherwise X.

Note that, in the clause for and, we take the lattice join (7) of states.
The crucial property enjoyed by this definition is that [f ]φ is the unique weakest

sequence that satisfies f for the given φ. That is, for fixed φ and any trajectory σ ,
we have that σ |=φ f if and only if [f ]φ 8 σ . STE enjoys this property only because
the language of trajectory formulas is monotonic—the defining sequence would not
exist if the logic included negation or disjunction. (But see [32] for a more general
presentation that does include negation, and a strong ‘until’ operator too.)

We can also define the weakest trajectory that satisfies each formula, for a
given φ. Recall that a trajectory is a sequence of abstract states that respects the next-
state function of the circuit—an abstract constraint on sequences of circuit states that
is consistent with the circuit function. The defining trajectory for a formula, written
�f �φ , is given by the following recursive calculation over time points:

�f �φ 0
F= [f ]φ 0

�f �φ (t+1)
F= [f ]φ (t+1) 7Yc( �f �φ t).

(1)

The defining trajectory of a formula f is its defining sequence with the added con-
straints on state transitions imposed by the circuit, as modelled by the next-state
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function Yc. The first state �f �φ 0 is just given by any assumptions on node values at
time 0 made by the antecedent. (Hence, in STE model checking, the initial state of a
circuit is completely unknown by default. If we want to start in some specified initial
state space, we have to characterise this explicitly in the antecedent.) Each succes-
sive state is obtained by combining, using the lattice join operator, any assumptions
about node values at that time made by the antecedent with the constraints given by
applying the model to the previous state. It is easy to see that folding in the effect of
Yc ensures that the sequence �f �φ is indeed a trajectory of the circuit c. Note also
that if there is a conflict between the circuit and the antecedent at any point in time,
then joining the two constraints will result in the top state �.

It can be shown that �f �φ is the unique weakest trajectory that satisfies f , for the
given φ. That is, for fixed φ and any trajectory σ ∈ Tc , we have that σ |= f if and
only if �f �φ 8 σ .

The Fundamental Theorem of Trajectory Evaluation [64] follows immediately
from the previously stated properties of [f ]φ and �f �φ . It states that for a given φ,
the trajectory assertion |=φ A⇒ C holds exactly when [C]φ 8 �A�φ . The intuition
is that the weakest trajectory satisfying the antecedent must entail the defining se-
quence characterising the consequent: what the circuit ‘does’, under the assumptions
made, must be among the things it is intended to do.

25.6 STE Model Checking

The Fundamental Theorem of Trajectory Evaluation gives a model-checking algo-
rithm for trajectory assertions: to see whether |=φ A⇒ C holds for a given φ, just
compute the sequences of states [C]φ and �A�φ and compare them point-wise for
every circuit node at every relevant point in time. This works because both A and C
will have only a finite number of nested next-time operators, and so only finite ini-
tial segments of the defining trajectory and defining sequence need to be calculated
and compared.

In practice, the defining trajectory of A is computed iteratively, and each re-
sulting state is checked against the consequent as it is generated. In essence, the
algorithm does a step-by-step unrolling of the recursive definition of �A�φ shown
above as Eq. (1). Throughout the computation, the current state is maintained as an
assignment of a value from D to each circuit node. Initially, all nodes are set to X.
Any nodes assumed to have specific values by the antecedent A at time 0 are then
updated to have these values. Any constraints on nodes at time 0 in the consequent
can then be checked against these initial node values. At each subsequent step, the
algorithm first computes the next state of the circuit from the current one, according
to the next-state function Yc. This is done in practice by three-valued simulation
of a circuit net-list description [14], in which logic gates or other primitive circuit
elements are interpreted to operate over the domain {X,0,1}. It is here, at the heart
of STE, that propagation of ‘information’ about states is enacted. For example, the
simulator’s truth table for an AND-gate is shown in Fig. 3. Notice that the output is
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∧ X 0 1
X X 0 X
0 0 0 0
1 X 0 1

Fig. 3 Three-valued truth-table for an AND-gate

known to be 0 when any input is 0, even if another input is X. With some ingenu-
ity, three-valued interpretations for simulation can be given to circuits in a range of
design styles and at various abstraction levels—including, notably, transistors at the
‘switch’ level [15, 64]. Once the next state has been obtained, it is combined with
any assumptions about circuit values in the current step stated by the antecedent.
This is done by taking the lattice join (7) of the values, node by node—effectively
calculating the join of the next state obtained from Yc and the corresponding state
in the defining sequence of the antecedent. (If there is a clash of values on any node,
then the result is � and we have an antecedent failure.) Finally, any constraints
on particular nodes at this time step in the consequent are checked against the cal-
culated node values. The process continues for as many time steps as the deepest
nesting of next-time operators in the trajectory assertion. If at any point there is a
conflict between the consequent and a node value in the states being calculated, the
property has been falsified. If they always agree, the property has been proved.

As already noted, all information about node values in the ‘initial state’ of an
STE verification comes from only the antecedent of the property checked: each node
starts out X, unless the antecedent explicitly assigns 0 or 1. A subtle issue of large
practical significance is that the verification engineer must choose which input and
state nodes to ‘drive’ via the antecedent, in order to produce a determinate circuit
response to the antecedent stimulus. If too few input nodes are driven, Xs propagate
into the simulation and the result fails to satisfy the consequent. The appearance of
X on a node where the consequent expects a 0 or 1 is known as a weak disagreement.
In this case the property is neither falsified nor proved.

For complex or industrial-scale circuits, it can be quite hard to find a minimal
set of input nodes that need to be stimulated by the antecedent to get a determi-
nate result—to eliminate weak disagreements. Doing this is important because it
increases the abstraction level and hence tractability of the verification, especially
in the symbolic algorithm discussed in Sect. 25.6.1. The Forte methodology has a
whole phase of work for this activity, dubbed wiggling by Robert Jones, and the
Forte environment has specialised computational tools to support it [1, 38]. Some
research on automated methods for refining STE properties to eliminate unwanted
Xs is reported in [18, 55, 69].

As briefly mentioned earlier, properties in full STE can refer to internal nodes of
combinational logic, as well as primary inputs and the outputs of state-holding ele-
ments. In the simulation engine that underlies STE there is, therefore, a phase during
which values asserted on internal nodes by antecedents are propagated through this
logic, before the consequent is checked. This can involve computing fixed points,
for certain models of some circuit design styles.
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Fig. 4 Lattice of node values, encoded by pairs of Booleans

25.6.1 The Symbolic Model-Checking Algorithm

The model-checking algorithm just sketched requires φ to be supplied: given a fixed
assignment φ of values to variables in the guards, we calculate and compare [C]φ
and �A�φ point-wise. But much of the power of STE comes from the key observation
that it is not necessary to supply φ in advance; instead, the comparison can be com-
puted for all possible valuations, i.e. parametrically in φ. The result is a constraint
on φ—a formula called a residual—that gives precisely the condition on Boolean
variables in the guards under which the trajectory assertion A⇒ C is verified. If
the residual is T, the circuit satisfies all the properties encoded by this assertion. If
it is F, the circuit satisfies none of them. Otherwise, the residual encodes the class
of all variable assignments under which an STE trajectory assertion A⇒ C holds.
In other words, a residual is the weakest constraint R such that R |= A⇒ C, in
the notation of Sect. 25.4.2. This provides an enormously valuable and flexible de-
bugging aid because, with R in hand, a verification engineer can explore the whole
counterexample space computationally. The set of all counterexamples is encoded
by R.

The symbolic STE model-checking algorithm works as follows. At the level of
basic data values in {X,0,1}, the required computation is to show that

[C]φ t n≤ �A�φ t n (2)

for all t ≥ 0 and n ∈N . For each circuit node at each relevant point in time, we
compare the value expected by the consequent to that given by the antecedent and
circuit simulation. To make this comparison ‘parametric’ in φ, we use a pair of
Boolean formulas to encode functions from φ to data values in D and do the com-
parison on this encoding.

The encoding is the following. First, enhance the three-valued set D = {X,0,1}
with an additional ‘top’ element, Z, that represents the value of an over-constrained
node. This is not really a fundamental extension; any sensible implementation will
raise an exception if any node individually becomes Z, so any state with one or
more nodes being Z in effect represents the top state �. Now encode the four values
{X,0,1,Z} by pairs of Booleans in B×B, as follows:

X
F= (T,T) 0

F= (F,T) 1
F= (T,F) Z

F= (F,F)

Then define an information ordering ≤ on these values to make it a lattice as in
Fig. 4. Formally, define (a1, a2) ≤ (b1, b2) to hold exactly when b1 implies a1
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∧ X 0 1 Z
X X 0 X 0
0 0 0 0 0
1 X 0 1 Z
Z 0 0 Z Z

Fig. 5 Four-valued truth-table for conjunction

and b2 implies a2. It is easy to check that this definition captures the Hasse dia-
gram in Fig. 4. The join of two elements is equally straightforward and is given by
component-wise conjunction: (a1, a2) 7 (b1, b2) equals (a1 and b1, a2 and b2).

This is the so-called ‘dual-rail’ encoding of four-valued logic employed in STE
implementations [62]. It is straightforward to define logical operators over these
values in terms of ordinary logical operations on the component Booleans. For ex-
ample, the four-valued truth-table for conjunction is given by Fig. 5 and can be
defined by

(a1, a2)∧ (b1, b2)
F= (a1 and b1, a2 or b2).

As will be seen below, the underlying simulation engine of full symbolic STE inter-
prets circuit net-lists in a symbolic version of this four-valued logic.

Now, a valuation is a function in V → B, from variables V to the Boolean truth-
values B. We want the node values computed by our model-checking algorithm to
depend on a valuation, so the value associated with each node will now be a function
from valuations to (encoded) lattice elements:

(V → B)→ (B×B).

Any such function f can be represented by a pair of formulas of propositional logic
(P1,P2). Define P1 so that it is satisfied by just those valuations that f maps to
(T, a2) for some a2. Likewise, define P2 so that it is satisfied by just those valuations
that f maps to (a1,T) for some a1. In a nutshell, (V → B)→ (B× B) is isomor-
phic to ((V → B)→ B)× ((V → B)→ B), and so a function from valuations to
Booleans is straightforwardly represented by a pair of propositional formulas with
free variables.

Given two functions f and g in this representation, we can compute a condition
that characterises the valuations φ for which f φ ≤ g φ. Suppose f is represented by
the pair of formulas (P1,P2) and g is represented by the pair of formulas (Q1,Q2).
Simply form the following formula of propositional logic:

(Q1 ⊃ P1)∧ (Q2 ⊃ P2), (3)

corresponding to the definition of the ordering ≤ just given. The result is a proposi-
tional formula satisfied precisely by the valuations φ for which f φ ≤ g φ.

Using this idea, the symbolic version of STE proceeds just as indicated in
Sect. 25.6, except that node values are now computed parametrically in the valua-
tion. The algorithm maintains a pair of formulas for each circuit node, representing
the value on each node as a function of an arbitrary valuation. Initially, every circuit
node gets the dual-rail value (T,T), representing X for every valuation. Node val-
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Fig. 6 A simple state-holding circuit

ues are then updated, step by step, to new symbolic dual-rail values according to the
general scheme already explained. Note that values coming from the antecedent and
consequent are now conditional on guards that constrain variables and so also repre-
sented by the dual-rail encoding. For example, if the antecedent says ‘P � n is 1’,
this becomes the dual-rail value (T,P ). Under any valuation that satisfies P , this
equals (T,F), the encoding for 1; under any other valuation, it equals (T,T), the
encoding for X. The circuit net-list is also interpreted over this dual-rail paramet-
ric representation of four-valued logic. For example, if (P1,P2) and (Q1,Q2) are
the dual-rail values currently on the two inputs of an AND gate, then the output
is given by the pair of formulas (P1 ∧Q1,P2 ∨Q2). Lattice joins are also com-
puted symbolically—by component-wise conjunction, as before. Finally, whenever
a comparison is made between a computed node value and a value specified by the
consequent, a formula of propositional logic is built of the form shown in Eq. (3).
The conjunction of all such formulas is the residual delivered as the final outcome
of model checking.

We note in passing that weak disagreements in this symbolic version of STE
can be conditional on the valuation parametrically encoded in dual-rail values. That
is, there may be a weak disagreement between the computed value of a node and
the consequent’s specification of its required value for only some valuations of the
Boolean variables in play. This adds an extra dimension of complication and subtlety
to the process of eliminating unwanted Xs and tools that support it.

In implementations of STE, the propositional formulas of the dual-rail encoding
are represented by BDDs, or by some non-canonical representation such as AIGs
(and-inverter graphs [33]). In the latter case, SAT technology can be used to check
the final results of STE verification runs. Intel’s Forte system has full support for
both approaches.

25.6.2 Some Small Examples in Detail

We now illustrate the symbolic algorithm, in detail, by showing its calculations for
a few properties of the little example circuit in Fig. 6.

Suppose we want to use STE to perform a full verification of this device by
symbolic simulation. We introduce two Boolean variables, x and y, to stand for
the initial values of the input node a and state node b, respectively. The trajectory
assertion we want to check is

a is x and b is y⇒ N(b is x ∨ y).
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This employs a distinct, unconstrained Boolean variable to name the value on each
node initially, and then checks that the expected function of these values appears on
node b at the next cycle.

Model checking begins by assigning the dual-rail value X= (T,T) to all nodes,
and then overlaying the assumptions made by the antecedent at time 0 onto this
initial state. Recall that ‘n is P ’ abbreviates ‘P � n is 1 and P � n is 0’. So the
antecedent really makes two guarded assertions about node a, encoded by dual-rail
values as follows:

x � a is 1, encoded by (T, x) and x � a is 0, encoded by (x,T).

The semantics of trajectory formulas for and takes the lattice join of states, so the
overall assumption made by the antecedent about node a is

(T, x) 7 (x,T)= (T∧ x, x ∧ T)= (x, x).

Likewise, the dual-rail encoding of the antecedent’s assumptions about node b are
given by (y, y). State 0 of the defining trajectory for the antecedent, τ say, is there-
fore given by

τ 0 a= (x, x) and τ 0 b= (y, y)
Notice that neither of these nodes is ever X—for every valuation, we get either
(T,F) = 1 or (F,T) = 0, so there is going to be no abstraction in this verification.
In general, if the two ‘rails’ of a dual-rail value are the negation of each other, the
encoded function on valuations never yields lattice values X or Z.

Now circuit simulation computes the state at time 1. The conjunction of values
on a and b, according to the truth table given earlier, is encoded by (x ∧ y, x ∨ y).
Negation of dual-rail values is done simply by swapping the components of the pair,
so the state of the circuit at time 1 is given by

τ 1 a= (T,T) and τ 1 b= (x ∨ y, x ∧ y)

Notice that a has been reset to X, because it is a primary input and therefore free to
take on any new value at each cycle. The antecedent makes no assumptions about
values at time 1, so this is also the state at time 1 in the defining trajectory.

It remains to check this state against the expectations of the consequent—i.e. state
1 of the defining sequence of the consequent. It is easy to see that the dual-rail value
that encodes ‘b is x ∨ y’ exactly matches the computed value just calculated for b in
state 1 of the defining trajectory. Plugging both values into Eq. (3) yields a tautology,
so the residual is equivalent to T and the property is satisfied outright.

In this example, there is no abstraction and the property holds for all valuations.
It is instructive to sketch—very briefly—examples that illustrate abstraction and a
non-constant residual. For the first, consider the property

x � a is 0 and x � b is 0⇒ N(b is 1).
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This verifies all the input cases of our little circuit for which the next state of b
is 1. This time, the propositional variable x does not straightforwardly correspond
to ‘the value on an input’, but serves as a symbolic ‘index’ to enumerate the two
input stimuli we want to cover.

It is easy to see the first state of the defining trajectory, τ , for this example is

τ 0 a= (x,T) and τ 0 b= (x,T)
There is abstraction here. Node b is X for valuations that set x to true, and node a
is X for valuations that set x to false. After four-valued symbolic simulation, state 1
of the defining trajectory is found to be

τ 1 a= (T,T) and τ 1 b= (T∨ T, x ∧ x)
The dual-rail encoding of values on node b simplifies to (T,F), which encodes the
constant lattice value 1. This agrees with the consequent, and so the property holds.

To see a non-constant residual, consider the following property:

a is x and b is y⇒ N(b is 1).

We have again ‘driven’ both nodes a and b with symbolic Boolean values x and y,
respectively. As before, state 1 of the defining trajectory will be

τ 1 a= (T,T) and τ 1 b= (x ∨ y, x ∧ y)
To get the residual, we compare this, node-by-node, to state 1 of the defining se-
quence, σ , of the consequent:

σ 1 a= (T,T) and σ 1 b= (T,F)
We conjoin the results. Calculating with the symbolic version of ≤ gives:

Node a : (T,T)≤ (T,T)= (T⊃ T)∧ (T⊃ T)= T

Node b : (T,F)≤ (x ∨ y, x ∧ y)= (x ∨ y ⊃ T)∧ (x ∧ y ⊃ F)= x ∨ y
The overall residual is therefore ‘x ∨ y’, representing the precise set of cases for
which the circuit satisfies the specification. It is easy to see that this is right: node b
will be 1 after one clock cycle exactly when at least one of a and b starts off 0.

25.6.3 Model Checking Properties Under Assumptions

Few industrial verifications take place in isolation from environmental and other
operating assumptions about the blocks of circuitry under inspection. In practice,
the properties to be verified in STE are virtually always of the form P |= A⇒ C,



25 Symbolic Trajectory Evaluation 851

where P expresses some potentially complex assumptions about the environment
the circuit will operate in. Typically, there are a number of primary inputs directly
driven by distinct Boolean variables in the antecedent, and the formula P says that
these values satisfy some relational assumptions [44]. For example, when verify-
ing a floating-point arithmetic unit, it may (and, for correctness, probably must) be
assumed that the vectors of Boolean variables representing the incoming operands
conform to the format laid down by the IEEE 754 floating-point standard. When ver-
ifying normal modes of operation, it will have to be assumed that any reset or test-
scan inputs are tied to the inactive state, and so on. Constraints may also arise from
case-splitting strategies that partition the input space into tractable sub-spaces [65].

Conditional verifications like these are efficiently handled in STE as follows.
Suppose the assumption P [x] constrains some Boolean variables Hx = x1, . . . , xn
that occur in a trajectory assertion A[Hx] ⇒ C[Hx]. One obvious but inefficient way
to establish this assertion is to use STE to obtain a residual and then check that
P [Hx] implies this. But this is usually not practical. If BDDs are used, it may be
too complex to compute the defining trajectory for A[Hx] with a symbolic simulator,
for unrestricted Hx. We might be able to get around this by using a non-canonical
form such as AIGs for the formulas in our dual-rail values. But then it may anyway
be intractable to check that P [x] implies the residual, either by SAT or any other
means.

A better way is to evaluate the defining trajectory only for variable assignments
that actually do satisfy P [Hx]. This can be done by using a parametric representation
of P [Hx] to incorporate the assumptions this formula makes into the model-checking
calculations of STE. Given a satisfiable P [Hx], we compute a vector of n proposi-
tional formulas HQ = param(P [Hx], Hx) that are substituted for the variables Hx in the
original trajectory assertion. These formulas contain fresh Boolean variables, dis-
tinct from those in Hx, and are constructed so that P [ HQ/Hx] is a tautology. Moreover,
for any assignment of truth-values to Hx that satisfies P [Hx], there is some valuation
of all the variables in HQ under which assigning the truth-value of each formula
Qi to the corresponding variable xi , for 1≤ i ≤ n, gives this satisfying assignment
to Hx. An algorithm for computing the parametric representation of a formula and its
correctness proof are given in [37].

These properties ensure that the original property P [Hx] |= A[Hx] ⇒ C[Hx] holds
just when |=A[ HQ/Hx] ⇒ C[ HQ/Hx] holds. They are equivalent, but the latter property
has the assumption implicitly encoded into the guards of the antecedent and con-
sequent and can be much easier to model check. A minor complication is that any
non-constant residual resulting from A[ HQ/Hx] ⇒ C[ HQ/Hx] will be a formula over the
fresh variables in HQ, which are an encoding artifact unlikely to be meaningful to the
verification engineer. But methods exist to map such residuals back into the original
variable space for counterexample analysis.

In practice, parametric representation of assumption formulas is virtually essen-
tial to the use of STE on serious examples, and is extensively used to restrict verifica-
tions to a care set and to tackle complexity by input space decomposition [3, 36, 37].
The technique is independent of the symbolic simulation algorithm in STE, does not
require modifications to the circuit, and can be used to constrain both input and state
values, as well as the values of internal combinational logic.
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25.7 Abstraction and Symbolic Indexing

The lattice of abstract sets of states underlying STE provides an integral and flexible
way to control model-checking complexity. As with all abstraction mechanisms, the
strategy is to provide a means to minimize the information about circuit operation
that is computationally represented when verifying a property. Crudely speaking,
complexity is controlled in STE by having as many Xs as possible in place of irrel-
evant information about selected node values, as circuit simulation proceeds.

This mechanism of complexity control is intimately connected with the encod-
ing, using Boolean variables, of the families of abstractions of circuit states that
are computed during simulation. As already explained, propositional guards occur-
ring in trajectory formulas introduce a layer of symbolic representation above the
level of abstractions, by means of which families of abstractions are checked para-
metrically. The abstractions are ‘indexed’ by the Boolean variables present, with
each valuation of the variables giving a separate abstraction case. In this setting,
controlling complexity through abstraction means, in essence, controlling the com-
plexity of the parametric representation of node values computed during simula-
tion. When BDDs are used for the formulas in the dual-rail encoding, this reduces
the simulation-time complexity of the BDDs computed to verify a circuit property.
When a non-canonical representation such as AIGs is used, this can reduce the com-
plexity of checking the eventual propositional logic problem that is produced by an
STE model-checking run.

The mechanism of indexing by Boolean variables is pervasive in STE. Even the
commonplace verification idiom of representing ‘the value on a wire’ symbolically
by a variable is achieved through it. The most straightforward way of using STE
is direct symbolic simulation with a kind of ‘semantic cone-of-influence reduction’
given by X-propagation. The antecedent attaches a distinct Boolean variable to each
primary input that ‘matters’ to the property and leaves the remaining nodes X. These
input values, fully determined as Boolean and named symbolically by variables,
are then propagated through the circuitry to produce symbolic circuit states that are
tested against the consequent. Internal node values computed during simulation may
be X for some valuations of the variables, provided all the nodes inspected by the
consequent have the stipulated Boolean functions of the inputs.

This simplistic approach often does not scale to complex or large circuits, and
further abstraction may have to be introduced to control the complexity of model
checking. This is known as weakening. In essence, weakening consists in making
interventions in the model-checking algorithm that result in the trajectory computed
during symbolic simulation being weaker than the defining trajectory of the property
being checked. If this weaker trajectory still entails the consequent, then the property
still holds. If the verification fails with the weakened trajectory, then we can draw
no conclusions about the original property.

More formally, recall that the Fundamental Theorem of Trajectory Evaluation
says that, for a given φ, the assertion |=φ A⇒ C holds just when [C]φ 8 �A�φ .
Now suppose we have some sequence σ 8 �A�φ that is weaker than �A�φ . This
means that some nodes at some points in time are given values by σ that are lower
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in the value lattice than those given by �A�φ . Informally, the defining trajectory has
been weakened by throwing away knowledge about some node values. If σ still
entails the defining sequence of the consequent, that is if [C]φ 8 σ still holds, then
we know that [C]φ 8 �A�φ also holds and so |=φ A⇒ C is verified.

The justification just sketched extends to the parametrically encoded families
of trajectories computed by the symbolic model-checking algorithm. Weakening in
this case means setting the values of one or more nodes, at selected points in the
simulation, to X for some or all valuations of the variables occurring in their dual-
rail encoding. The dual-rail value (P1,P2) on a selected node at a certain point
in time can simply be set to X = (T,T) or, more generally, be moved arbitrarily
‘closer’ to X by setting it to any pair of formulas (Q1,Q2) for which P1 ⊃Q1 and
P2 ⊃ Q2. This makes the node have value X for more valuations of the Boolean
variables at that point in time.

Forte provides fine-grained access to weakening by user-level directives that
specify the nodes to weaken and—separately for each node—both the simulation
times at which to weaken it and a condition on Boolean variables that stipulates
for which valuations to weaken it. Users can therefore manually weaken individual
nodes at arbitrary points of time during simulation and to arbitrary degrees, with
a view to reducing the BDD complexity of their dual-rail values whilst retaining
just enough information about node values to satisfy the consequent. This is safe,
because the theory just sketched tells us that however a node’s value is weakened
during a verification, if the consequent is satisfied then the trajectory assertion being
checked still holds. Weakening may, however, introduce hidden vacuity (discussed
in Sect. 25.4.1).

A more automated mechanism is dynamic weakening [65], in which a complexity
threshold is set to limit the size of the BDDs representing dual-rail values. If, at
any point during simulation, the size of the dual-rail value for a particular node
exceeds the threshold, it is simply set to the unknown value X= (T,T). This works
well when the BDDs of the internal nodes along the ‘relevant paths’ within some
complex circuitry are well behaved, while the BDDs along other paths blow up in
size. Some detailed and illuminating examples of how this mechanism can solve
practical verification problems can be found in [65, pp. 1389–1390].

Intel’s Core i7 processor verification effort used some more sophisticated au-
tomated weakening methods that compute ‘causal fan-in information from a cir-
cuit trace to determine weakening points’ [41]. The Intel engineers who conducted
this impressive large-scale STE verification report that dynamic weakening together
with these automated weakening techniques ‘solve most circuit simulation capacity
problems without need for human intervention’.

25.7.1 Symbolic Indexing

Symbolic indexing is the systematic use of weakening, controlled through the way in
which antecedents are formulated, to perform partitioned abstraction that is highly
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Fig. 7 Three-input, unit-delay AND-gate

effective for verifying certain regular or symmetric circuit structures. Like weaken-
ing, it is an implementation optimisation that reduces model-checking complexity.
But instead of only controlling BDD sizes by driving node values towards X, it
also exploits symmetry to reduce the number of Boolean variables needed to verify
certain circuit properties.

The idea can be illustrated by the following trivial example. Consider a unit-delay
AND-gate with three inputs as in Fig. 7. For the purpose of writing down states, we
will order the nodes a< b< c< o. A direct STE verification that does not exploit
the abstraction lattice is achieved by checking the following trajectory assertion:

a is v1 and b is v2 and c is v3 ⇒ N(o is v1 ∧ v2 ∧ v3). (4)

This is just direct Boolean symbolic simulation. The antecedent attaches a distinct,
unconstrained Boolean variable to each input node, and the consequent asserts that
the expected function of these variables appears on the output.

We can be more clever than this by using STE’s abstraction lattice to reduce the
number of Boolean variables needed to verify this gate. The key observation is that
if any one input is 0, then the output will be 0 regardless of the other inputs. We can
exploit this to introduce X-abstraction in the model-checking run. There are four
cases to check—three in which one of the inputs is known to be 0 and the others are
unknown, and one in which all three inputs are known to be 1. We can enumerate
or ‘index’ these with two Boolean variables, say x1 and x2. We write the following
property:

x1 ∧ x2 � a is 0 and
x1 ∧ x2 � b is 0 and
x1 ∧ x2 � c is 0 and
x1 ∧ x2 � a is 1 and b is 1 and c is 1
⇒

N(x1 ∨ x2 � o is 0 and x1 ∧ x2 � o is 1).

(5)

Model checking this with STE will simultaneously check all four cases, each with a
different abstraction of the sets of states arising during circuit simulation. Since any
property verified in STE with a node set to X also holds when the node is either 0
or 1, this verification covers all input cases and is complete.

Notice that some of the abstractions in this trivial example overlap. For example,
when x1 = F and x2 = F, the initial abstract state of the defining trajectory is 0XXX.
The maximal set of Boolean states of which this is an abstraction is

{0000,0001,0010,0011,0100,0101,0110,0111}.
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When x1 = T and x2 = F, the initial abstract state of the defining trajectory is X0XX.
The maximal set of Boolean states of which this is an abstraction is

{0000,0001,0010,0011,1000,1001,1010,1011}.
The two sets have the nonempty intersection {0000,0001,0010,0011}, comprising
the Boolean initial circuit states covered by both abstractions. This overlapping of
‘partitioned’ abstraction cases is a characteristic of STE not shared by, for example,
existential abstraction in CTL model checking.

Symbolic indexing finds its greatest utility in verification of regular memory
structures, where it can significantly reduce the number of BDD variables required
to encode data values [13, 52, 70]. Consider an n×m-bit memory, with n words of
memory and m bits per word. Suppose we want to verify the simple property that
the read operation correctly returns the data word stored at any given address. We
could write an STE property whose antecedent associates a Boolean variable di,j
with each bit of the initial state of the memory, for 1 ≤ i ≤ n and 1 ≤ j ≤ m, and
then presents a symbolic address given by a vector of Boolean variables Ha of length
l = log2 n on the read address input. The consequent would stipulate that the data
delivered at the output is the word stored at the addressed location.

A little notation must be introduced before we can write this trajectory assertion
formally. We first introduce the circuit nodes that are involved. Suppose the circuit
nodes holding the individual bits of memory are systematically named ‘mem[i][j ]’,
where 1 ≤ i ≤ n identifies the word of memory and 1 ≤ j ≤ m is the bit position
within the word. Let mem[i] be the vector of nodes mem[i][1], . . . ,mem[i][m] for
1 ≤ i ≤ n. Suppose also that the circuit nodes of the address input bits are given
by the vector addr= addr1, . . . ,addrl . Finally, suppose out= out1, . . . ,outm are the
circuit nodes of the memory’s m-bit data output.

We will need a way to associate a vector of Boolean variables, or more generally a
vector of propositional expressions, with a vector of nodes. For any vector of circuit
nodes n= n1, . . . ,nk and vector of propositional expressions HP = P1, . . . ,Pk , both
of any length k ≥ 1, define

n is HP F= n1 is Pi and · · · and nk is Pk.

So ‘n is HP ’ just asserts that each circuit node in the vector n has the value given by
the respective Boolean expression in the vector HP .

As mentioned, the antecedent of our trajectory assertion will associate Boolean
variables di,j with the individual bits of memory state, where 1≤ i ≤ n is the mem-
ory location and 1≤ j ≤m is the bit position within that location. To express this,
we will write Hdi = di,1, . . . , di,m for the vector of m Boolean variables associated
with the bits of the word stored at memory location i.

To formulate the consequent, we first need a way to state, in propositional logic,
that the address input Ha has a specific value in the interval [1, n]. It is routine to
encode this by propositional assertions ‘Ha ∼ i’, where 1 ≤ i ≤ n, that hold exactly
when the address bits Ha form the unsigned binary number corresponding to the
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integer i−1. We can then define propositional expressions dHa,j , for 1≤ j ≤m that
give the j th bit of the data word at the memory location addressed by Ha. Define

dHa,j
F= (Ha ∼ 1∧ d1,j )∨ · · · ∨ (Ha ∼ n∧ dn,j ).

We are now in a position to express the required trajectory assertion formally:

addr is Ha and

mem1 is Hd1 and · · · and memn is Hdn
⇒ out is dHa,1, . . . , dHa,m.

The antecedent simply associates a Boolean variable with each bit of memory state
and introduces a vector of Boolean variables to name the bits of the read address.
The consequent says that each bit of the data output will be the bit at the correspond-
ing position within the word stored at the given address.

Distinguishing each memory location in this direct verification requires n × m
unique Boolean variables. There are a further l = log2 n Boolean variables for
the address input. For even a small memory, the number of variables used and
the complexity of the state obtained during simulation are too large for symbolic
verification. But with symbolic indexing we can get away with only m variables,
Hd = d1, . . . , dm say, to represent the data in only the addressed memory location.
We write the trajectory assertion as follows:

addr is Ha and

(Ha ∼ 1 � mem1 is Hd) and · · · and (Ha ∼ n � memn is Hd) ⇒ out is Hd.

Here, the antecedent assumes that the memory node storing the j th bit of the ith lo-
cation has the Boolean value dj under a guard Ha ∼ i stating that the ith row is in fact
addressed. For example, when the address bits select location 1, the memory node
mem[1][j ] is set to dj , for 1 ≤ j ≤ m. But when the address is not 1, these nodes
are set to the unknown value X. (It is important to recall that all cases are simulated
simultaneously in STE.) Now, with this indexed arrangement, we can expect the j th
output node always to have the same Boolean value dj whatever the value of the ad-
dress bits, which is what the consequent stipulates. In this verification by symbolic
indexing, only m + l variables are required—a very significant reduction. More-
over, in a BDD-based verification, the BDDs representing the bits on each column
in the memory array will have a significant amount of sharing, since each of these
bits is essentially driven by the same Boolean variable but under different guard
conditions. The result is an extremely efficient memory verification computation.

Symbolic indexing is highly effective and widely used in memory verification
and similar circuits such as CAMs, but has seen relatively limited adoption for other
circuit structures. This is because users have to create the right indexed family of ab-
stractions by manually encoding them into the antecedent. To make symbolic index-
ing easier, Melham and Jones [47] describe an algorithm for computing a trajectory
assertion that encodes a user-given symbolic-indexing scheme from a trajectory as-
sertion that specifies a direct symbolic simulation of the circuit. The transformation
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is sound, in the sense that if the resulting trajectory assertion holds then so does the
original one. This method, however, still requires the user to specify the indexing
scheme, albeit with much less effort than manually writing it into the antecedent.

An algorithm that leverages this transformation to automatically abstract proper-
ties by symbolic indexing is presented in [5]. This takes as input a specification for
the circuit to be verified, in the form of a Boolean expression that states the required
I/O function for the circuit. By analyzing the information requirements for interme-
diate computations in the specification, the algorithm computes a candidate scheme
for symbolic indexing that can then be applied to the verification property using the
Melham and Jones transformation. Experimental results show that this approach not
only simplifies memory verification, but also enables symbolic indexing of certain
other designs fully automatically.

Another technique for memory verification that employs a very different form of
symbolic indexing was introduced by a company called InnoLogic Systems, which
was later acquired by Synopsys [57]. The technique, described in [78], uses sym-
bolic Boolean variables to encode regular circuit structures, so that a single simula-
tion ‘node’ records the state values for multiple identical circuit nodes. This enables
the verification of very large regular memory arrays, since this encoding overcomes
the need to have state information proportional to the number of circuit nodes.

25.8 Compositional Reasoning

The practical application of symbolic trajectory evaluation—indeed of any model-
checking method—to complex, industrial-scale circuit designs inevitably faces the
serious challenge of fundamental capacity limitations. STE’s native abstraction
mechanism helps with scalability, and in particular can make the method scale well
for circuits whose semantics admits of a good symbolic-indexing scheme. But for
many industrial-scale design verifications, abstraction must be complemented by
some form of decomposition into sub-problems that STE model checking can han-
dle. To fit into the capacity of the model checker, a high-level correctness property
may have to be broken down into many individual trajectory assertions, which com-
bine in potentially complex ways to establish the overall correctness result [51, 65].

To provide a theoretical foundation for problem decomposition, STE can be
equipped with a system of formal inference rules for proving trajectory assertions
from an axiomatic base of assertions generated by STE model checking [31, 79]. In
Sect. 25.8.1, we give a brief overview of one formulation of such a system. We then
sketch, in Sect. 25.8.2, an alternative approach to compositional reasoning, called
‘Relational STE’ [51]. This bypasses the language of trajectory assertions entirely,
raising verification properties to a purely logical level suitable for compositional
reasoning in ordinary predicate logic.

The use of mechanised, deductive theorem proving—as exemplified by the HOL
system [27]—has often been proposed to support compositional reasoning using
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systems of STE inference rules. The combination of algorithmic STE model check-
ing and deductive proof was pioneered in the early 1990s in an academic prede-
cessor of Intel’s Forte system called Voss [62]. This was followed by numerous ex-
periments in designing and using systems that linked STE and theorem proving of
various kinds [2, 4, 31, 39, 61, 65], culminating in a mature integration within Forte
of a comparatively full-featured theorem prover, called ‘Goaled’. This provides an
integrated combination of STE and theorem proving that is seeing increasing use in
production verification projects at Intel [51].

25.8.1 The STE Deductive System

In this section, we briefly sketch a system of STE inference rules originally pre-
sented by Hazelhurst and Seger in [31]. Another formulation can be found in Hazel-
hurst’s Ph.D. dissertation [30] and is also presented and illustrated by examples in
the tutorial [32]. The main use of these deductive systems is to combine individ-
ual STE model-checking results together to derive correctness properties that are
infeasible to check directly. But the rules can also be used to transform correctness
assertions to increase STE model-checking efficiency [2].

Rules of Consequence. These rules are analogous to the classical Hoare logic
rules for pre-condition strengthening and post-condition weakening, and are used in
proofs for a similar purpose: aligning antecedents and consequents to enable further
deductions, primarily transitivity. They are defined semantically, via the ordering on
defining sequences, rather than in terms of syntactic implication:

Antecedent Strengthening. For any trajectory formulas A and C, if |= A⇒ C

then for any trajectory formula A′ for which [A]φ 8 [A′]φ for all valuations φ,
we have |=A′ ⇒ C.
Consequent Weakening. For any trajectory formulas A and C, if |= A⇒ C then
for any trajectory formula C′ for which [C′]φ 8 [C]φ for all valuations φ, we
have |=A⇒ C′.

The Antecedent Strengthening rule says that the antecedent of any proved trajectory
assertion can be replaced by one that adds further information about node values,
i.e. that has 0 or 1 in place of some Xs, under some valuations of the Boolean vari-
ables in the guards. In essence, this rule encapsulates the fundamental abstraction
mechanism of STE: complexity is controlled by abstracting away from irrelevant in-
formation about node values, and running the STE model-checking algorithm with
the weakest possible antecedent that still establishes the consequent. Similarly, Con-
sequent Weakening says that the consequent of a proved trajectory assertion can be
replaced by one with less information about node values—we can discard estab-
lished information about node values.

Logical and Structural Rules. The first of these is a simple axiom:

Reflexivity. |=A⇒A holds for any trajectory formula A,
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that provides a syntactic starting point for deductive proofs. Of course the other way
to begin a deduction is to establish one or more trajectory assertions semantically,
by STE model checking.

The next two inference rules allow compositional reasoning about complex cir-
cuit behaviours, in which ‘larger’ circuit properties are built up from ‘smaller’ ones:

Conjunction. For any trajectory formulas A1, A2, C1, and C2, if |=A1 ⇒ C1 and
|=A2 ⇒ C2, then |=A1 andA2 ⇒ C1 and C2.
Transitivity. For any trajectory formulasA, B , and C, if |=A⇒ B and |= B⇒ C,
then |=A⇒ C.

Conjunction allows circuit properties proved separately, typically because of model-
checking capacity limits—or because different parts of a large circuit must be sim-
ulated under different BDD orderings—to be combined into a single property. If
the assumptions expressed by both antecedents hold, then the conjunction of the
consequents is established. Transitivity allows one to break a simulation of circuit
behaviour over a long period of time into a succession of smaller intervals. Start-
ing from the antecedent A, first establish some relationship B among the values on
some intermediate circuit nodes by proving |= A⇒ B . Then show that simulation
beginning with the assumption that B holds establishes the final consequent C.

Time Shift. This rule allows the baseline time at which simulation of the circuit be-
gins in its initial state to be shifted forward. This is used, for example, to align time
points to allow Transitivity to be applied. It also allows a single, general assertion
to be instantiated for use in many contexts, differing only in the specific finite in-
terval of time over which the instantiated property needs to specify behaviour. The
inference rule is the following:

Time Shift. For any trajectory formulas A and C, if |=A⇒ C then |= NA⇒ NC.

Time Shift holds because, in STE, the initial state at which simulation begins is
arbitrary. The only constraints on it are those explicitly imposed by the antecedent,
as discussed in Sect. 25.5.

Substitution. The final rule is the only one (in this formulation) that has specifically
to do with Boolean variables and guards. In simplified form, the rule is:

Substitution. For any trajectory formulas A and C, if |= A ⇒ C, then |=
A[ HP/Hx] ⇒ C[ HP/Hx] for any substitution of formulas HP for Boolean variables Hx.

A somewhat more flexible form of the rule, which deals with some essentially syn-
tactic complexities, is presented in [31]. A primary use of Substitution is, again, to
align antecedents and consequents so Transitivity applies. Suppose, for example, we
have proved some unit-delay input-output relationship |= a is x⇒ N(b isE1). Now
suppose we separately simulate the next stage in the circuit’s sequential behaviour,
setting node b to a fresh variable y and proving |= b is y⇒ N(c isE2). Using time-
shifting, we obtain |= N(b is y)⇒ N(N(c is E2)). We can then use Substitution to
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replace the input variable y for the second stage by the output expression E1 ac-
tually computed in the first stage, to obtain |= N(b is E1)⇒ N(N(c is E2[E1/y])).
The two stages can then be composed using Transitivity.

As already mentioned, several software tools that combine STE and deductive
theorem proving have been designed to support compositional reasoning using this
and other systems of specialised STE inference rules. These commonly embed rea-
soning about STE properties within a more general, higher-order logic: a formalised
syntax is introduced that constitutes a ‘deep embedding’ of trajectory formulas and
assertions, and then the inference rules are added to give an axiomatic theory of this
embedded ‘STE logic’. The connection to model checking is achieved by an axiom
scheme that admits any trajectory assertion that has been (externally) checked by
the STE model-checking algorithm.

This approach yields a two-level integration, in which the deductive system for
inferring circuit properties is largely separate from the general higher-order logic of
the theorem prover. Some bridges between the two levels can, however, be achieved
by adding certain quantifier rules and axioms about parametric encoding of assump-
tions. See Sect. VII of [65] for details.

25.8.2 Relational STE

The primitive language of STE trajectory assertions, introduced in Sect. 25.4.1, in
essence requires a circuit specification to be functional. Given some inputs, the spec-
ification stipulates the values that the outputs shall have, potentially under some
constraints that the inputs must satisfy. But many informal circuit specifications
seen in practice do not fall into this category—the simplest example being ‘nodes
a and b are mutually exclusive’. Such relational specifications become especially
important at higher levels of abstraction, where it may be most appropriate for spec-
ifications to be partial [51]. For example, a natural specification of a processor’s
micro-operation scheduler might say ‘a micro-operation with ready sources will be
scheduled for execution’, while intentionally leaving open the selection between
different ready micro-operations. Even at lower abstraction levels, the most natural
form of specification may not be functional.

Relational STE is an approach to compositional reasoning about circuit proper-
ties that retains STE’s underlying symbolic simulation engine but lifts the proper-
ties to the level of ordinary predicate logic [51]. This allows much more general
properties to be expressed—in particular, properties can be relations, rather than
only I/O functions. Perhaps equally important, it also avoids the rather intricate,
low-level process of reasoning with specialised STE inference rules illustrated in
Sect. 25.8.1. Developed as an extension to Intel’s Forte system, Relational STE has
been used very effectively for difficult, industrial-scale verifications of floating-point
dividers [42] and control-dominated microarchitectural algorithms, such as bus re-
cycle logic and register renaming [40]. These are all circuits for which the natural
form of specification is relational.
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We now briefly sketch Relational STE, first establishing some basic terminology.
Given a circuit c with nodes N , an execution is a function e ∈ (N ×N)→ B that
assigns a Boolean value to each circuit node at each point in time. (So an execution
is just an STE sequence that is Boolean-valued; see Sect. 25.3.3.) The behaviour of
a circuit is the set of all its possible executions. We write

‖c‖ ⊆ (N ×N)→ B

for the behaviour of a circuit c. This is simply the classical ‘relational’ approach
to representing circuit behaviour mathematically that is well known from hardware
modelling in higher-order logic [17, 46].

Relational STE uses the symbolic simulation algorithm at the heart of STE to
check that the behaviour of a circuit, in the sense just defined, satisfies specifications
formulated as constraints. In essence, a constraint

p ⊆ (N ×N)→ B

is a predicate on circuit executions that requires a certain relationship to hold among
the values that appear on a stipulated set of circuit nodes at some individually spec-
ified points of time. The signature of a constraint is a finite subset of N × N that
defines what these nodes and times are.

Constraints define relationships that are expected to hold among the values on
some circuit nodes at certain times. Consider, for example, the informal specification
mentioned earlier: ‘circuit nodes a and b are mutually exclusive at time point 2’.
This can be expressed by the constraint

{
e ∈ (N ×N)→ B

∣
∣ e(a,2)∧ e(b,2)}

with signature {(a,2), (b,2)} ⊆N × N. This represents a predicate that holds of
just those circuit executions in which nodes a and b are mutually exclusive at time 2.
Note that this form of specification is expressed—in essence at least—through ordi-
nary (higher-order) propositional logic. For concise presentation, we have explained
constraints in set theoretic notation. But it’s not hard to see this as a higher-order
predicate on functions:

mutex e
F= e(a,2)∧ e(b,2)

A theorem of higher-order logic that says that all the executions of a circuit c sat-
isfy this predicate would then look something like ? ∀e : (N ×N)→ B . e ∈ ‖c‖ ⊃
mutex e.

In practice, circuit correctness properties are formulated in Relational STE as
a pair of constraints: an input constraint, Pi , and an output constraint, Po. Given
such a pair, the underlying symbolic simulation algorithm of STE is used to check
that any circuit execution that satisfies the input constraint will (under simulation)
also satisfy the output constraint. Formally, Relational STE proves correctness state-
ments of the form ? ∀e : (N ×N)→B . e ∈ ‖c‖ ⊃ (Pi e⊃ Po e).
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The algorithm for verifying these relational correctness properties is simple, at
least conceptually: it is just Boolean symbolic simulation. First construct a classical
STE antecedent that attaches a unique, unconstrained Boolean variable to every
circuit node. Then run the STE simulator—for as many steps as needed, according to
the signatures of the input and output constraints—and record all the symbolic node
values that arise at each step of the simulation. This produces a single, symbolic
execution, ê say, that encompasses all the behaviours of the circuit. The implication
Pi ê⊃ Po ê can then be evaluated to get the result using BDDs or a SAT solver.

Of course this simplistic algorithm is vastly too complex, computationally, to be
practical for industrial-scale problems. The implementation of Relational STE in
Intel’s Forte system employs a sophisticated array of optimisations that exploit the
power of native STE. For example, not all nodes are set to variables at the start of
simulation, only the ones needed to evaluate the input and output constraints. (Or
that have to be Boolean to avoid weak disagreements; see Sect. 25.6.) The remaining
inputs have value X at the start of the simulation, raising the general level of abstrac-
tion and lowering complexity. In addition, many inputs are typically set to constants,
for example clock patterns and certain testability signals. More importantly, some
elements of the input constraint will be injected into the simulation using paramet-
ric representation, as discussed in Sect. 25.6.3. Dynamic weakening and some other
abstraction mechanisms are also used. Exploitation of the full power of symbolic
indexing, however, remains for future development of the framework [51].

This relational form of symbolic trajectory evaluation preserves the power of
the underlying STE algorithm while enabling much richer specifications: ones that
stipulate relations among node values, rather than just functions. Relational STE
also eliminates the need to use specialised STE inference rules and apparatus for
temporal reasoning; the relational formulation makes it ‘just’ higher-order logic.
Since its introduction, Relational STE has been the workhorse of data-path formal
verification at Intel; many thousands of individual operations have been verified in
several microprocessor families and over the course of several generations [51].

25.9 GSTE and Other Extensions

Relational STE essentially discards the fixed temporal logic of STE trajectory logic
in favour of much less restricted assertions about behaviour under simulation, ex-
pressed in conventional predicate logic. This represents a step away from the clas-
sical idea of ‘model checking’ temporal formulas. Almost since the inception of
STE, however, variants and extensions of STE have been formulated that remain
in the realm of temporal model checking, but have more expressive specification
languages than the simple language of trajectory formulas and trajectory assertions
introduced in Sect. 25.4.

In their cornerstone article on STE [64], Seger and Bryant formulate a version
with higher expressive power at the level of trajectory assertions. In addition to the
basic form of trajectory assertion, A⇒ C, they allow sequences A⇒ C ; G and
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iterations (A⇒ C)�; G, where G is another trajectory assertion. Sequences allow
circuit behaviours to be specified as the concatenation of a temporal succession
of sub-behaviours. Roughly speaking, an iteration (A⇒ C)�; G specifies that any
trajectory of the circuit must satisfy C for as long as it satisfies A, after which
it will satisfy G. Neither form of correctness assertion is reported to have found
widespread use in industrial practice.

In their comprehensive STE tutorial [32], Hazelhurst and Seger give a version of
STE in which the property language, called TL, is a four-valued linear-time temporal
logic that includes negation and a strong Until operator. In contrast to the trajectory
formulas of Sect. 25.4, the formulas of TL have four possible truth-values, true (t),
false (f), unknown (⊥), and inconsistent (�), ordered in a lattice in the obvious way.
It is important to distinguish between this four-valued lattice of truth-values of TL
formulas and the lattice of state values, ordered by information content, introduced
in this chapter in Sect. 25.3.1. The former represents the degree of knowledge we
have of the truth or falsity of propositions in the property language; the latter cap-
tures the amount of information there is about the values on circuit nodes. Hazelhurst
and Seger give an interesting justification for maintaining this distinction [32, p. 19],
a key point of which is that it allows a formulation of STE with negation.

The theory of STE in this extended form is a little more involved than the simpler
version presented in this chapter. For example, there is no longer a single ‘defining’
sequence and trajectory for a formula—instead TL formulas have defining sets of
minimal sequences and trajectories. An analogue of the Fundamental Theorem of
Trajectory Evaluation (see Sect. 25.5) can be obtained in this system, but exploiting
this to actually check properties in an algorithmic way is rather more involved than
the method sketched in Sect. 25.6. In practice, certain restrictions must be placed
on the formulas checked, and some approximations are involved. Full details of
the theory and model-checking algorithms—as well as a theory of compositional
reasoning—can be found in Hazelhurst’s Ph.D. dissertation [30].

This chapter has focussed on bit-level hardware models and their verification in
symbolic trajectory evaluation—a level of hardware modelling at which STE has
been spectacularly successful for industrial data-path verification. Right from the
start, however, the theory of STE was framed in the much more general setting of an
arbitrary lattice of state abstractions [64], and was not restricted to the bit-level ab-
straction of Boolean states introduced in Sect. 25.3.2. The idea was that one could
have STE-style algorithms that analyse systems at a higher (or at least different)
level of data abstraction [46], provided a good representation for the indexed fam-
ilies of abstract states could be devised. The arrival of highly efficient SMT solvers
has paved the way for this ambition to be realised in the form of word-level STE.
This is a verification method based on symbolic simulation and a lattice of abstract
states in which the underlying notion of concrete data is a group of binary digits,
rather than individual bits. Work is underway at Intel to create such word-level STE
verification tools [63].
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Fig. 8 Memory cell specification as an assertion graph

25.9.1 Generalized Symbolic Trajectory Evaluation

A more radical departure from classical STE is Generalized Symbolic Trajectory
Evaluation, GSTE. This aims to preserve the power of abstraction and efficiency
benefits of STE while making the property language much more expressive, using
some of the fundamental techniques of classical symbolic model checking.

GSTE builds on several prior efforts to increase the expressive power of STE,
including the introduction of iterations in [64]. Beatty first generalised specifications
to arbitrary labelled transition graphs [7], and a model-checking algorithm for these
specifications was proposed by Nelson and Jain [48]. Jain proposed a semantics
that existentially quantifies over paths in a transition graph and gave an incomplete
model-checking algorithm [35]. The next step was the insightful development by
Chou of a more natural semantics that universally quantifies over paths, together
with a sound and complete model-checking algorithm [19]. Yang and Seger then
introduced GSTE, using a graphical specification notation, and adding backwards
reasoning and other algorithmic developments [76, 77]. GSTE has also been further
extended to introduce a variant called concurrent (or compositional) GSTE [72, 75].
This allows different parts of circuits to be analysed by independent simulations and
the results combined.

GSTE overcomes the two main limitations of classical STE. It can express prop-
erties over unbounded periods of time, and it allows reasoning by propagation of
information backward in time. The resulting extension is significant—algorithms
for GSTE can verify all ω-regular properties [77]. Specifications are presented in
a notation called assertion graphs. These are directed graphs with an initial ver-
tex, where each edge is labelled by antecedent and consequent conditions on circuit
nodes. The vertexes represent sets of circuit states and the edges discrete transi-
tions between them. As with conventional STE, the antecedents drive simulation
with a constrained input stimulus and the consequents stipulate the expected circuit
response. Roughly speaking, the property specified by an assertion graph is the fol-
lowing. The graph defines a set of finite paths, each starting at the initial vertex. For
each such path, all finite sequences of circuit states of the same length that satisfy all
the antecedents along the path must also satisfy all the consequents along the path.

A simple example, taken from [68], is the memory cell specification in Fig. 8.
The edges are labelled with pairs of the form antecedent / consequent. The property
specified is that whenever the write enable node we is high and the input node has the
value named symbolically by u, the output node out should subsequently present the
value u for as long as no further writes are enabled. Much more complex examples
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can be found in the literature. The verification of FIFO circuits is explored in [74],
and a FIFO case study is again used to illustrate GSTE in [73]. The specification
and verification of a complex memory unit is explained in [77]. Concurrent GSTE
is applied to the verification of Intel Pentium 4 scheduler circuits in [72, 75].

The GSTE model-checking algorithm presented in [77] records a set of states of
the circuit model for each assertion graph edge. This contains all the states that are
reachable along some path from the initial vertex via a trace of circuit execution that
satisfies all the antecedents along the path. The algorithm is similar to reachability
analysis, computing the fixed point of taking the post-images of each transition. This
and other connections between GSTE and conventional symbolic model checking
are discussed in [59]. Overlaid onto this basic algorithmic framework are a number
of technical devices for controlling and localising abstraction levels across an asser-
tion graph. These include a mechanism for limiting the scope of symbolic variables
to a specific edge [74] and for manually controlling certain other points at which
variables are quantified—so called knots [49]. Another variable-handling mecha-
nism, called precise nodes [74], is used to maintain node value inter-dependencies
across temporally overlapping scopes.

As discussed in Sect. 25.4.1, an essential limitation of conventional formula-
tions of STE is that they reason by forwards simulation only. They therefore cannot
verify properties that require the propagation of information backwards along state
transitions. GSTE aims to overcome this by adding an initial phase to the model-
checking algorithm; a pre-image fixed-point calculation is done that strengthens
earlier antecedent constraints in the assertion graph by propagating later antecedent
constraints backwards. See [74, 77] for more details of this algorithm.

Although Generalized Symbolic Trajectory Evaluation has seen some success
at Intel Corporation, it has not—at the time of writing—yet been established in
widespread use. Moreover, as some of the practical complexities just hinted at sug-
gest, GSTE may not yet be mature and may see further development and modifica-
tion. For example, Smith’s Ph.D. dissertation recasts GSTE into a system compris-
ing generalized trajectory logic, a low-level temporal logic for reasoning about sym-
bolic ternary simulations, and assertion programs, an executable high-level spec-
ification language [68]. The resulting system is, it is claimed, cleaner and more
amenable to formal reasoning. We therefore do not give full technical details of
GSTE in this chapter, but refer the reader to the literature cited in this section.
Good starting points for learning about GSTE in depth are the background section
of Smith’s Ph.D. dissertation [68, Sect. 2.5] and the semantic account by Claessen
and Roorda [21].

25.10 Summary and Prospects

STE and its descendent GSTE provide a uniquely effective approach to formal veri-
fication of difficult, industrial-scale circuit designs—especially data-paths, but some
control-dominated designs too. Their effectiveness comes from a combination of
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symbolic simulation with a two-level system of abstraction, whereby (overlapping)
families of abstractions can be represented compactly and checked simultaneously.
Intel Corporation has been a prominent user, and developer, of this model-checking
technology. At the time of writing, Intel’s deployment of STE through its Forte
environment was one of the most substantial and sustained formal (property) verifi-
cation efforts anywhere in industry. But STE-based formal verification has also seen
significant use at Motorola and IBM.

More recently, an in-house framework for processor verification has been devel-
oped at Centaur Technology that has many parallels with Intel’s Forte environment,
as well as some significant differences [34, 66]. This, too, is based on symbolic
circuit simulation, provides abstraction, and has a logic for compositional reason-
ing. A notable feature of the Centaur framework is that it is built on top of pub-
licly available software tools: the well-established ACL2 [43] theorem prover and
special-purpose tools such as the ZZ framework [25] and ABC [9].

The successful industrial deployment of two major verification frameworks
based on symbolic simulation—Forte at Intel and the ACL2-based tools at Cen-
taur Technology—suggest that this idea has come of age industrially, at least for
processor verification. Moreover the parallels between the two systems, each quite
different from the other in numerous matters of detail, strengthens the conclusion
that this kind of approach represents a general solution in this important domain. To
date, there are no commercial STE tools, though the technology is well documented
and seems ripe for more widespread take-up.

GSTE is not as well established as STE, but seems to be a very promising idea
that merits much further development and experimentation. Perhaps the best way
to think of GSTE, with its assertion graphs or (in Smith’s formulation) assertion
programs, is as a framework for articulating ‘reference’ hardware algorithms at a
flexible, intermediate layer of abstraction above the circuit level.

There is, of course, a very sizable literature on partitioning and abstraction in
both hardware and software verification. A few connections have been made in the
literature between the use of these ideas in other settings and the specific mecha-
nisms provided in STE and GSTE. For example, a combination of partitioned ab-
straction, similar to that provided in GSTE and STE, with predicate abstraction and
counterexample-guided abstraction refinement in the context of symbolic model
checking, is explored in [60]. A fruitful research direction would be to look for
other ways in which underlying ideas of STE and GSTE, which have made them so
successful in processor verification, might be adapted to other contexts, especially
software verification.
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Chapter 26
The mu-calculus and Model Checking

Julian Bradfield and Igor Walukiewicz

Abstract This chapter presents that part of the theory of the μ-calculus that is rel-
evant to the model-checking problem as broadly understood. The μ-calculus is one
of the most important logics in model checking. It is a logic with an exceptional
balance between expressiveness and algorithmic properties.

The chapter describes at length the game characterization of the semantics of
the μ-calculus. It discusses the theory of the μ-calculus starting with the tree-model
property, and bisimulation invariance. Then it develops the notion of modal automa-
ton: an automaton-based model behind the μ-calculus. It gives a quite detailed ex-
planation of the satisfiability algorithm, followed by results on alternation hierarchy,
proof systems, and interpolation. Finally, the chapter discusses the relation of the μ-
calculus to monadic second-order logic as well as to some program and temporal
logics. It also presents two extensions of the μ-calculus that allow us to address
issues such as inverse modalities.

26.1 Introduction

The μ-calculus is one of the most important logics in model checking. It is a logic
with an exceptional balance between expressiveness and algorithmic properties. In
this chapter we present that part of the theory of the μ-calculus that seems to us
most relevant to the model-checking problem as broadly understood.

This chapter is divided into three parts. In Sect. 26.2 we introduce the logic,
and present some basic notions such as: special forms of formulas, vectorial syntax,
and alternation depth of fixpoints. The largest part of this section is concerned with a
characterization of the semantics of the logic in terms of games. We give a relatively
detailed exposition of the characterization, since in our opinion this is one of the
central tools in the theory of the μ-calculus. The section ends with an overview of
approaches to the model-checking problem for the logic.
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Section 26.3 goes deeper into the theory of the μ-calculus. It starts with the tree-
model property, and bisimulation invariance. Then it develops the notion of modal
automaton: an automaton-based model behind the μ-calculus. This model is then
often used in the rest of the chapter. We continue the section with a quite detailed
explanation of the satisfiability algorithm. This is followed by results on alternation
hierarchy, proof systems, and interpolation. We finish with a division property that
is useful for modular verification and synthesis.

Section 26.4 presents the μ-calculus in a larger context. We relate the logic to
monadic second-order logic as well as to some program and temporal logics. We
also present two extensions of the μ-calculus that allow us to express inverse modal-
ities, some form of equality, or counting.

This chapter is short, given the material that we would like to cover. Instead of
being exhaustive, we try to focus on concepts and ideas we consider important and
interesting from the perspective of the model-checking problem as broadly under-
stood. Since concepts often give more insight than enumeration of facts, we give
quite complete arguments for the main results we present.

26.2 Basics

In this section we present some basic notions and tools of the theory of the μ-
calculus. We discuss some special forms of formulas such as guarded or vectorial
forms. We introduce also the notion of alternation depth. Much of this section is
devoted to a characterization of the semantics of the logic in terms of parity games,
and its use in model checking. The section ends with an overview of model-checking
methods and results.

26.2.1 Syntax and Semantics

The μ-calculus is a logic describing properties of transition systems: potentially
infinite graphs with labeled edges and vertices. Often the edges are called transitions
and the vertices states. Transitions are labeled with actions, Act = {a, b, c, . . . },
and the states with sets of propositions, Prop= {p1,p2, . . . }. Formally, a transition
system is a tuple:

M= 〈
S, {Ra}a∈Act, {Pi}i∈N

〉

consisting of a set S of states, a binary relation Ra ⊆ S × S defining transitions for
every action a ∈ Act, and a set Pi ⊆ S for every proposition. A pair (s, s′) ∈ Ra is
called an a-transition.

We require a countable set of variables, whose meanings will be sets of states.
These can be bound by fixpoint operators to form fixpoint formulas. We use Var =
{X,Y,Z . . . } for variables.
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Syntax. The formulas of the logic are constructed using conjunction, disjunction,
modalities, and fixpoint operators. The set of μ-calculus formulas Fmc is the small-
est set containing:

• p and ¬p for all propositions p ∈ Prop;
• X for all variables X ∈ Var;
• α ∨ β as well as α ∧ β , if α, β are formulas in Fmc;
• 〈a〉α and [a]α, if a ∈ Act is an action and α is a formula in Fmc;
• μX.α and νX.α, if X ∈ Var is a variable and α ∈Fmc is a formula.

Disambiguating parentheses are added when necessary. It is generally agreed that
〈a〉 and [a] bind more tightly than Boolean operators, but opinions vary on whether
μ and ν bind more or less tightly than Booleans. We will assume that they bind
more loosely. For example, consider the important formula “infinitely often p on
some path”, which fully parenthesized is νY. (μX. ((p ∧ 〈a〉Y) ∨ 〈a〉X)). We shall
write it as νY.μX. (p ∧ 〈a〉Y)∨ 〈a〉X.

We write σX.α to stand for μX.α or νX.α. We will use tt as an abbreviation
of (p1 ∨ ¬p1), and ff for (p1 ∧ ¬p1). Note that there is no negation operation in
the syntax; we just permit negations of propositions. Actually, the operation of the
negation of a sentence will turn out to be definable.

Semantics. The semantics of the logic is concise and yet of intriguing depth. We
will see later that it pays to study it in detail from different points of view. The
meaning of a formula in a transition system is the set of states satisfying the for-
mula. Since a formula may have free variables, their meaning should be fixed be-
fore evaluating the formula. As with formulas, the meaning of a variable will be
a set of states of the transition system. More formally, given a transition system
M= 〈S, {Ra}a∈Act, {Pi}i∈N〉 and a valuation V : Var→ P(S) we define the mean-
ing of a formula [[α]]MV by induction on its structure. The meaning of variables is
given by the valuation. The meanings of propositional constants and their negations
are given by the transition system.

[[X]]MV = V(X), for every X ∈ V;
[[pi]]MV = Pi and [[¬pi]]MV = S − Pi, for every pi ∈ Prop.

Disjunction and conjunction are interpreted as union and intersection:

[[α ∨ β]]MV = [[α]]MV ∪ [[β]]MV [[α ∧ β]]MV = [[α]]MV ∩ [[β]]MV .

The meaning of modalities is given by transitions. The formula 〈a〉α holds in some
state if it has an outgoing a-transition to some state satisfying α. Dually, the formula
[a]α holds in some state if all its outgoing a-transitions go to states satisfying α:

[[〈a〉α]]MV ={
s ∈ S : ∃s′.Ra

(
s, s′

)∧ s′ ∈ [[α]]MV
}
,

[[[a]α]]MV ={
s ∈ S : ∀s′.Ra

(
s, s′

)⇒ s′ ∈ [[α]]MV
}
.
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Finally, the μ and ν constructs are interpreted as fixpoints of operators on sets of
formulas. A formula α(X) containing a free variable X can be seen as an operator
on sets of states mapping a set S′ to the semantics of α when X is interpreted as S′,
in symbols: S′ �→ [[α]]MV[S′/X]. Since by definition of the basic operators of the logic
this operator is monotonic, it has well-defined least and greatest fixpoints. Formally,

[[μX.α]]MV =
⋂{

S′ ⊆ S : [[α]]MV[S′/X] ⊆ S′
}
,

[[νX.α]]MV =
⋃{

S′ ⊆ S : S′ ⊆ [[α]]MV[S′/X]
}
.

We will often write M, s,V � α instead of s ∈ [[α]]MV . Moreover we will omit V or
M if it is not important, or clear from the context.

Examples: The simplest formulas are just those of modal logic: 〈a〉tt means “there is
transition labeled by a”. With one fixpoint, we can talk about termination properties
of paths in a transition system. The formula μX.[a]X means that all sequences of a-
transitions are finite. The formula νY.〈a〉Y means that there is an infinite sequence
of a-transitions. We can then add a predicate p, and obtain νY.p∧〈a〉Y saying that
there is an infinite sequence of a-transitions, and all states in this sequence satisfy p.
The formula μX.〈a〉X is just false, but the formula μX.p ∨ 〈a〉X says that there
is a sequence of a-transitions leading to a state where p holds. With two fixpoints,
we can write fairness formulas, such as νY.μX. (p ∧ 〈a〉Y) ∨ 〈a〉X meaning “on
some a-path there are infinitely many states where p holds”. Changing the order of
fixpoints we get μX.νY. (p ∧ 〈a〉Y)∨ 〈a〉X saying “on some a-path almost always
p holds”. To see why these formulas mean what they do, one can of course use the
semantics directly, but it is often easier to use some alternative approaches that we
introduce in the following. As these examples suggest, the semantics depends on the
order of fixpoint operators, and the expressive power increases with the number of
fixpoints (see Sect. 26.2.2).

Some Syntactic Conventions. The fixpoint operators μX and νX bind occurrences
of the variable X, in the sense that the meaning of μX.α does not depend on the
valuation of X. We leave to the reader the formal definition of bound and free oc-
currence of a variable in a formula. A sentence is a formula without free variables.
In particular, the meaning of a sentence does not depend on the valuation of vari-
ables. By α[β/X] we denote the result of substitution of β for every free occurrence
of X in α; when doing this we suppose that the free variables of β are disjoint from
the bound variables of α. Clearly μX.α is equivalent to μY.(α[Y/X]), so we can al-
ways make sure that no variable has at the same time a free and a bound occurrence
in a formula.

In order to underline the dependency of the value of α on X, we will often write
μX.α(X) instead of μX.α. In this context we write α(β) for α[β/X]. We imme-
diately employ this notation to introduce the idea of unfolding. A fixpoint formula
μX.α(X) is equivalent to its unfolding, α(μX.α(X)). This is a very useful rule that
allows us to “delay” reasoning about fixpoints. The equivalence of a formula with
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its unfolding follows directly from the fact that μ is a fixpoint operator. Of course
the same applies for ν in place of μ.

Semantics Based on Approximations. There is another very convenient way of
defining meanings of fixpoint constructs. It comes directly from the Knaster–Tarski
theorem characterizing fixpoints in a complete lattice in terms of their approxima-
tions. Let us start with a definition of formal approximations of fixpoint formulas:
μτX.α(X) and ντX.α(X) for every ordinal τ . The meaning of μ0X.α(X) is the
empty set. The meaning of μτ+1X.α(X) is that of α(Z) where Z is interpreted as
μτX.α(X). Finally, the meaning of μτX.α(X) when τ is a limit ordinal is the least
upper bound of meanings of μρX.α(X) for ρ < τ . Similarly for ντX.α(X) but for
the fact that ν0X.α(X) is the set of all states, and the greatest lower bound is taken
when τ is a limit ordinal.

Example: Let us look at the meaning of approximations of a formula μX.[a]X:

μ0X.[a]X =∅ false

μ1X.[a]X = [a]∅ states with no a-path

μ2X.[a]X = [a][a]∅ states with no aa-path

. . .

μωX.[a]X =
⋃

n<ω

μn states s.t. ∃n. no an-path

. . .

If every state has only finitely many a-successors, then the approximation closes at
ω, i.e., μω+1 = μω; but for infinite-branching systems we may need to go further,
and the approximation closes at the least upper bound of ordinal heights of an a-tree
in the system (Fig. 5). In general, the least ordinal such that μτX.α = μτ+1X.α in a
transition system M is called the closure ordinal of μX.α in M. The closure ordinal
always exists; its cardinal is bounded by the cardinality of the transition system.

For a more complex example, consider the formula νY.μX. 〈a〉((p ∧ Y) ∨ X)
which is another way of writing the previously seen formula “along some a-path
there are infinitely many states where p holds”. Here we have to calculate the ap-
proximations of the ν formula, and during each such calculation, we have to cal-
culate the approximations of the μ formula, relative to the current ν approxima-
tion. For ease of tabulation, write ντ for ντY.μX. 〈a〉((p ∧ Y) ∨X), and μτ,τ

′
for

μτ
′
X.(〈a〉((p ∧ Y)∨X))[ντ /Y ]. Now we have, with some abuse of notation:

ν0 S

μ0,0
∅

μ0,1 [[〈a〉((p ∧ S)∨μ0,0)]]= [[〈a〉p]]
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μ0,2 [[〈a〉((p ∧ S)∨μ0,1)]]= [[〈a〉(p ∨ 〈a〉p)]]

. . .

ν1 =μ0,∞ 〈a〉eventually(p)

μ1,1 [[〈a〉((p ∧ ν1)∨∅
)]]= [[〈a〉(p ∧ ν1)]]

μ1,2 [[〈a〉((p ∧ ν1)∨μ1,1)]]= [[〈a〉((p ∧ ν1)∨ 〈a〉(p ∧ ν1))]]

. . . . . .

ν2 =μ1,∞ eventually
(
p ∧ 〈a〉eventually(p)

)

. . . . . .

ν∞ infinitely often p

In this example, “eventually p” means “on some a-path, p will occur”. If the
modality 〈a〉 were replaced by the [a] modality, then it would mean “on every a-
path, p will occur”.

Negation. Since the syntax we propose does not have the negation operation, it
is useful to see that negation can be defined in the language. We first define by
induction on the structure a formal negation operation ¬α on formulas and then
state that it has the required properties.

¬(¬p)= p ¬(¬X)=X
¬(α ∨ β)=¬α ∧¬β ¬(α ∧ β)=¬α ∨¬β
¬〈a〉α = [a]¬α ¬[a]α = 〈a〉¬α

¬μX.α(X)= νX.¬α(¬X) ¬νX.α(X)= μX.¬α(¬X).
Observe that when applying this translation to a formula without free variables,
the final result has all variables occurring un-negated, because of the two negations
introduced when negating fixpoint expressions.

Fact 1 (Definability of Negation) For every sentence α, every transition system M
over the set of states S, and every valuation V :

[[¬α]]MV = S − [[α]]MV .

Examples: The negation of the “everywhere always p” formula νX.p ∧ [a]X is
¬νX.p ∧ [a]X = μX.¬(p ∧ [a](¬X))= μX.¬p ∨¬[a](¬X)= μX.¬p ∨ 〈a〉X,
the “eventually somewhere ¬p” formula.

For a more complicated example let us come back to νY.μX. (p∧ 〈a〉Y)∨ 〈a〉X
meaning “along some a-path there are infinitely many states where p holds”. Its
negation is μY. νX. (¬p ∨ [a]Y) ∧ [a]X expressing, in a slightly cryptic way, “on
every path almost always ¬p”.
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Special Forms of Formulas. Let us mention some useful special forms of formulas.
First, as we have noted above, we can require that bound and free variables are dif-
ferent. We can also require that every variable is bound at most once in a formula. If
both of these are the case, we say the formula is well-named. Moreover, we can even
ensure that in every formula μX.α(X) variable X appears only once in α(X). This
is because μX.μY.α(X,Y ) is equivalent to μX.α(X,X). Similarly for νX.α(X).

Another useful syntactic property is guardedness. A variable Y is guarded in
β(Y ) if all occurrences of Y are preceded (not necessary directly) by a modality.
For example, Y is guarded in 〈a〉μX.(X∧Y ∧p). A formula is guarded if for every
subformula σY.β(Y ), variable Y is guarded in β(Y ). It turns out that every formula
is equivalent to a guarded formula.

The algorithm for constructing an equivalent guarded formula uses an operation
of removing open occurrences of a variable. An occurrence of a variable is open
if it is neither guarded, nor preceded by a fixpoint operator. To see how it works,
consider a formula μY.β(Y ) and suppose we want to obtain an equivalent formula
without open occurrences of Y in β(Y ). For this it suffices to replace every open
occurrence of Y in β(Y ) by ff . To see why this may work, observe that μY.Y ∧
γ (Y ) is equivalent to ff while μY.Y ∨ γ (Y ) is equivalent to μY.γ (Y ). Now, due
to the laws of propositional logic, the formula β(Y ) is equivalent to Y ∧ γ (Y ) or
Y ∨ γ (Y ) for some γ (Y ) with no open occurrence of Y . We get that μY.β(Y ) is
equivalent to μY.Y ∧γ (Y ) or μY.Y ∨γ (Y ). By the observation above, these in turn
are equivalent to ff or to μY.γ (Y ), respectively. The translation for νY.β(Y ) is dual:
open occurrences of Y are replaced by tt.

To convert a formula to a guarded formula we repeatedly remove open occur-
rences of variables, starting from innermost fixpoint formulas. For example, con-
sider a formula νY.μX.α(X,Y ), where α(X,Y ) does not have fixpoint subfor-
mulas. We first remove open occurrences of X in μX.α(X,Y ). In the obtained
formula, μX.α′(X,Y ), all occurrences of X are guarded as the formula does
not have proper fixpoint subformulas. In consequence, every occurrence of Y in
α′(μX.α(X,Y ),Y ) is either open or guarded. Hence we remove open occurrences
of Y in νY.α′(μX.α(X,Y ),Y ) and obtain a guarded formula.

Fact 2 (Special Form of Formulas) Every formula can be transformed into an
equivalent guarded, well-named formula. Moreover, one can require that in every
subformula of the form σX.β(X) variable X appears at most once in β(X).

As observed in [53], contrary to some claims in the literature, the transformation
into a guarded form described above can induce an exponential growth in the size
of the formula. It is not known whether there is a better transformation. Often it is
enough to remove open occurrences of bound variables though, and this transfor-
mation does not increase the size of the formula. A way of avoiding exponential
blowup is to use vectorial syntax described below [108].

Vectorial Syntax. The original syntax of the μ-calculus allows us to freely mix all
types of operators. In some contexts it is more interesting to have a formula in a



878 J. Bradfield and I. Walukiewicz

prenex form where all the fixpoint operators are on the outside. This is possible in
the vectorial syntax we will now introduce. Another advantage of this syntax is that
it is in general more compact, as it allows the sharing of common subformulas.

A modal formula is a formula of the μ-calculus without fixpoint operators. As we
do not allow negation of a variable in the syntax, this formula is positive. A sequence
α = (α1, . . . , αn) of n modal formulas is a vectorial μ-calculus formula of height n.
If X=X1, . . . ,Xn is a sequence of n variables and α a vectorial formula of height
n then μX.α and νX.α are vectorial formulas of height n.

The meaning of a vectorial formula of height n is an n-tuple of sets of states.
Apart from that, the semantics is analogous to the scalar (i.e., ordinary) μ-calculus.
More precisely, if α = (α1, . . . , αn) is a sequence of modal formulas then its mean-

ing in a model M with a valuation V is [[α1]]MV × · · · × [[αn]]MV . Observe that with
the variables X distinguished, the meaning of α is a function from P(S)n to P(S)n.
The meaning of μX.α is then the least fixed-point of this function. Similarly for
νX.α.

It turns out that vectorial and scalar μ-calculi have the same expressive power.
This is one more example of the remarkable closure properties of the logic. The
translation from scalar to vectorial formulas is rather direct. One introduces a vari-
able for every subformula and then writes a fixpoint formula in the obvious way. The
obtained vectorial formula has the property that the first component of its meaning
is exactly the meaning of the scalar formula. The translation in the other direction
relies on repeated use of the so-called Bekič principle [10]:

μ

[
X

Y

]

.

[
α(X,Y )

β(X,Y )

]

=
[
μX.α

(
X,μY.β(X,Y )

)

μY.β
(
μX.α(X,Y ),Y

)

]

.

This principle allows us to eliminate the prefix of fixpoint operators. In the result
we obtain a vector of formulas. The formula at the i-th coordinate will give the
semantics of the i-th coordinate of the original vectorial formula.

Fact 3 (Vectorial Syntax) Everyμ-calculus formula can be converted into an equiv-
alent vectorial formula. Every vectorial formula can be converted into an equivalent
(scalar) μ-calculus formula.

The translation from scalar to vectorial form does not yield a blowup in size. It
is conjectured that vectorial formulas may be exponentially smaller than their scalar
equivalents.

26.2.2 Alternation Depth

The examples above suggest that the power of the logic comes from fixpoint op-
erators. While most useful properties can be expressed with few fixpoints, it is the
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nesting of the two types of fixpoints that is the source of both expressive power and
algorithmic difficulties. We introduce some notions to state this formally.

Let α be a well-named formula. So for every bound variable Y we have a unique
subformula σY.βY in α; and it makes sense to say that Y is a μ-variable or a ν-
variable depending on the binder. This syntactic convention makes it easier to de-
fine the notion of alternation depth, otherwise we would need to refer to specific
occurrences of variables.

Definition 1 (Alternation Depth) The dependency order on bound variables of α
is the smallest partial order such that X ≤α Y if X occurs free in σY.βY . The al-
ternation depth of a μ-variable X in formula α is the maximal length of a chain
X1 ≤α · · · ≤α Xn where X = X1, variables X1,X3, . . . are μ-variables and vari-
ables X2,X4, . . . are ν-variables. The alternation depth of a ν-variable is defined
similarly. The alternation depth of formula α, denoted adepth(α), is the maximum
of the alternation depths of the variables bound in α, or zero if there are no fixpoints.

Examples: The now-familiar “on some a-path there are infinitely many states where
p holds” formula νY.μX. (p∧〈a〉Y)∨〈a〉X is a canonical example of an alternation
depth 2 formula since Y has alternation depth 2. Indeed Y ≥ X in the dependency
order, and Y is a ν-variable while X is a μ-variable. In contrast, the “there is a path
where p holds almost always” formula μX. (νY. (p∧〈a〉Y))∨〈a〉X has alternation
depth 1, since X does not occur free in νY. (p ∧ 〈a〉Y) and in consequence has
alternation depth 1.

The following fact gives a first good reason for this seemingly complicated defi-
nition.

Fact 4 (Alternation Depth and Unfolding) A formula μX.β(X) has the same al-
ternation depth as its unfolding β(μX.β(X)). Similarly for the greatest fixpoint.

Indeed, after renaming bound variables to avoid their repeated use, the depen-
dency order of a sentence β(μX.β(X)) is the disjoint union of the dependency or-
der for μX.β(X) and that for β(X). The number of alternations in the latter is not
greater than in the former.

Alternation depth is a parameter that appears in many contexts. It is crucial in
translations between the logic and automata. It induces a hierarchy with respect to
expressive power. The complexity of all known model-checking algorithms depends
exponentially on this parameter.

We will see alternation depth often in this chapter. At the moment let us only
observe that this apparently technical definition becomes much more readable in
vectorial syntax: the alternation depth is just the number of alternations between
μ and ν in the prefix. It is tiresome but not difficult to check that the translations
between scalar and vectorial formulas introduced in Sect. 26.2.1 preserve alternation
depth.

There is a commonly seen alternative formulation, analogous to the definition
of arithmetic hierarchy. Rather than talking about the “alternation depth”, we may
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classify formulas into a hierarchy of Σμn andΠμ
n classes according to the nesting of

fixpoint operators. So, for example, Σμ1 consists of formulas with only μ fixpoints,
andΠμ

1 consists of formulas having only ν fixpoints. ThenΣμ2 is the closure ofΠμ
1

under Boolean operations, substitutions, and μ. Observe that unlike for arithmetic,
we need to explicitly mention substitutions in the definition. Class Πμ

2 is defined
similarly but using closure under ν. It can be shown that a formula has alternation
depth n if and only if it is syntactically both in Σμn+1 and in Πμ

n+1.

Examples: The “always on every a-path p” formula νX.p ∧ [a]X is a Πμ
1 for-

mula, and the “on every a-path eventually p” formula μX.p ∨ [a]X is Σμ1 ; both
are alternation depth 1. However, the “on some a-path p holds almost always” for-
mula μX. (νY. (p ∧ 〈a〉Y))∨ 〈a〉X also has alternation depth 1 but it is neither Πμ

1
nor Σμ1 . It is Σμ2 because it can be obtained by substituting the (Πμ

1 and there-
fore) Σμ2 formula νY. (p ∧ 〈a〉Y) for Z in the (Σμ1 and therefore) Σμ2 formula
μX.Z ∨ 〈a〉X. It is also Πμ

2 , for the same reason. Note also that the alternation
depth 2 formula “on some a-path there are infinitely many states where p holds”
written νY.μX. (p ∧ 〈a〉Y)∨ 〈a〉X is Πμ

2 but not Σμ2 .

26.2.3 Semantics in Terms of Games

There are two good reasons why the μ-calculus has the right to its own chapter
in this Handbook: expressive power and algorithmic properties. Indeed the logic
can encode most of the other logics used in verification, and still algorithmically it
is not substantially more difficult than the others. Nevertheless, the μ-calculus has
been relatively slow in gaining acceptance, mainly because of its compact syntax.
It is quite difficult to decode the meaning of a formula using the semantic clauses
presented above. This is why the semantics in terms of games that we introduce here
is conceptually very useful.

To see what we are aiming at, consider the formula [a](p1 ∨ (p2 ∧ p3)). Sup-
pose that we want to verify that the formula holds in a state s of some transition
system M. We describe the verification process as a game between two players:
Eve and Adam. The goal of Eve will be to show that the formula holds, while Adam
aims at the opposite.

The game is presented in Fig. 1. The positions of Eve are pointed, and those of
Adam are square. For example, the initial position belongs to Adam, and he has to
choose there a state t reachable from s on an a-transition. The leaf position t �? pi
is winning for Eve iff pi holds in t . Looking at the game, it should be clear that the
initial formula holds iff Eve has a strategy to reach a winning leaf. Her strategy is
to choose in every position t �? p1 ∨ (p2 ∧ p3) a disjunct that holds in t , if there is
one.

To see a more challenging case consider the formula “infinitely often p on every
path” νY.μZ.[a](Z ∨ (p ∧ Y)). Observe that apart from the two fixpoints the for-
mula very much resembles the previous one. The game presented in Fig. 2 is also
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Fig. 1 Game for verifying
s �? [a](p1 ∨ (p2 ∧ p3))

Fig. 2 Game for verifying
s �? νY.μZ.[a](Z ∨ (p ∧ Y ))

similar. For fixpoints we just apply the unfolding rule; we use αY to stand for the
whole formula and αZ for its subformula μZ.[a](Z∨ (p∧Y)). We have not marked
to whom belong nodes with fixpoint formulas since it is not important: they always
have a unique successor. Observe that this time the game may be infinite: from the
bottom rightmost node we restart the whole game; from the bottom leftmost node
we restart from the μ-subformula. The main point is to be able to decide who is the
winner of an infinite play. As it will turn out, we cannot just say that all infinite plays
are winning for one of the players. In this example, we will declare a path winning
for Eve if the path passes infinitely often through the ν-formula (as in the rightmost
bottom node).

In the following we will introduce the notion of a game with parity winning con-
ditions, sufficient to deal with the μ-calculus. Parity conditions allow us to express
properties like passing infinitely often through some node. Another chapter [19] of
this Handbook describes many more variants of games used in model checking.
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Fig. 3 A parity game

After presenting parity games, we will examine more closely the reduction of the
model-checking problem to the problem of deciding the winner in a parity game
constructed along the lines presented above.

26.2.3.1 Games

A game is a graph with a partition of nodes between two players, called Eve and
Adam, and a set defining the winning condition. Formally it is a tuple

G = 〈
V,VE,VA,T ⊆ V × V,Acc⊆ V ω〉

where (VE,VA) is a partition of the set of nodes or positions V into those of Eve and
those of Adam, T is the transition relation determining what are possible successors
for each node, and Acc is a set defining the winning condition.

A play between Eve and Adam from some position v ∈ V = VE ∪VA proceeds as
follows: if v ∈ VE then Eve makes a choice of a successor, otherwise Adam chooses
a successor; from this successor the same rule applies and the play goes on forever
unless one of the parties cannot make a move. The player who cannot make a move
loses. The result of an infinite play is an infinite path v0v1v2 . . . This path is winning
for Eve if it belongs to Acc. Otherwise Adam is the winner.

In the game presented in Fig. 3 the positions of Adam are marked with squares
and the positions of Eve with diamonds. Additionally, each position is given a nu-
merical rank in order to define Acc as we will see below. Observe that the unique
position with no successors belongs to Adam, so he loses there. Let us say that Eve
wins a play if it passes infinitely often through the position labeled with 2. For in-
stance, if in the unique node for Eve she always chooses to go down, then she wins
as 2 is on the loop. Actually Eve can also allow herself to go up, as then Adam has
to go back to the position of rank 1. So as long as Eve goes down infinitely often
she sees 2 infinitely often and wins.

A strategy for Eve is a function θ assigning to every sequence of nodes v ending
in a node v from VE a node θ(v) which is a successor of v. A play respecting θ is a
sequence v0v1 . . . such that vi+1 = θ(v0 . . . vi) for all i with vi ∈ VE . The strategy
θ is winning for Eve from a node v iff all the plays starting in v and respecting
θ are winning. A node is winning if there exists a strategy winning from it. The
strategies for Adam are defined similarly. A strategy is positional if it depends only
on the last node in the sequence. So such a strategy can be represented as a function
θ : VE→ V and identified with a choice of edges in the graph of the game.
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In this chapter we will consider only parity winning conditions. Such a condition
is determined by a function Ω : V →{0, . . . , d} in the following way:

Acc=
{
v0v1 . . . ∈ V ω : lim sup

i→∞
Ω(vi) is even

}
.

Hence, each position is assigned a natural number, called its rank, and we require
that the largest rank appearing infinitely often is even. This condition, discovered
by Mostowski [87] and independently by Emerson and Jutla [45], is the most use-
ful condition in the context of the μ-calculus. The condition “infinitely often 2, or
finitely often both 2 and 1” from the game in Fig. 3 is an example of a parity condi-
tion.

The main algorithmic question about such games is to decide who of the two
players has a winning strategy from a given position. In other words to decide
whether a given position is winning for Eve or for Adam. Principal results that we
need about parity games are summarized in the following theorem. We refer the
reader to [19, 114] for more details. We discuss complexity issues at the end of
Sect. 26.2.4.

Theorem 5 (Solving Parity Games [45, 80, 88]) Every position of a game with a
parity winning condition is winning for one of the two players. Moreover, a player
has a positional strategy winning from each of his winning positions. It is algorith-
mically decidable who is a winner from a given position in a finite game with a
parity condition.

26.2.3.2 Verification Game

We want to understand when aμ-calculus sentence α holds in a state s of a transition
system M. We characterize this by existence of a winning strategy in a specially
constructed game G(M, α). More precisely, we want that M, s � α iff Eve has a
winning strategy from a position corresponding to s and α in G(M, α). As we will
need such a game for formulas with free variables as well, we will also take into
account valuations. So, we will define a game GV (M, α), with G(M, α) being the
special case when α is a sentence.

Positions in the game GV (M, α) are of the form (s, β) where s is a state of M,
and β is a formula from the closure of α, that is the smallest set containing α and
closed under subformulas and unfolding. The intention is that Eve has a winning
strategy from (s, β) iff M, s,V � β .

We define the rules of the game by induction on the syntax of the formula (see
Fig. 4). Clearly (s,p) should be declared winning for Eve if and only if proposition
p holds in s. So we put no transition from this state and make it belong to Adam
iff p holds in s. For a position (s,¬p) we proceed in the same way but exchange
the roles of Adam and Eve. Observe that since there are no outgoing transitions,
the player to whom the position belongs loses in it. For similar reasons a position
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Fig. 4 Rules of the verification game G(M, α)

(s,X), with X a variable, has no outgoing transitions and it belongs to Adam iff
s ∈ V(X).

From positions (s,α∨β) and (s,α∧β) we put transitions to (s,α) and to (s, β).
Position (s,α ∨ β) should belong to Eve, as α ∨ β is satisfied in a state if and only
if at least one of α or β is satisfied. This means that Eve has to express her opinion
on which of the two formulas holds. Dually, (s,α ∧ β) belongs to Adam.

From positions (s, 〈a〉β) and (s, [a]β) there are transitions to (t, β) for all t
reachable from s by an a-transition, that is for all t such that (s, t) ∈ Ra . Position
(s, 〈a〉β) should belong to Eve as in order for a formula to be satisfied there should
be an a-edge to some t satisfying β . Dually, (s, [a]β) belongs to Adam.

Finally, from positions (s,μX.β(X)) and (s, νX.β(X)) there are transitions to
(s, β(μX.β(X))) and (s, β(νX.β(X))) respectively. This corresponds to the intu-
ition that a fixpoint is equivalent to its unfolding. As these positions have exactly
one successor, it does not matter to which player they belong.

It remains to assign ranks to positions. We will be interested only in formulas
starting with μ or ν; that is of the form μX.β(X) or νX.β(X). For a position with a
formula of this form, we assign a rank in such a way that those starting with μ have
odd ranks and those starting with ν have even ranks. Moreover, if γ is a subformula
of β we require that the rank of γ is not bigger than that of β . One way to assign
the ranks like this is to use the alternation depth (Definition 1).

Ω(γ )= 2 · ⌊adepth(X)/2
⌋

if γ is of the form νX.γ ′(X)

Ω(γ )= 2 · ⌊adepth(X)/2
⌋+ 1 if γ is of the form μX.γ ′(X)

Ω(γ )= 0 otherwise

Observe that we are using the alternation depth of X and not that of γ in this defi-
nition. This is because γ may contain formulas of big alternation depth not related
to X. The sketch of the proof presented below provides more intuition behind this
definition of rank.
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Examples: Consider the example formulas from the end of Sect. 26.2.2. The rank
of formula νX.p ∧ [a]X is 0, while the rank of μX.p ∨ [a]X is 1. The rank of
μX. (νY. (p ∧ 〈a〉Y))∨ 〈a〉X is also 1 since the alternation depth of X is 1. But the
rank of νY.μX. (p ∧ 〈a〉Y)∨ 〈a〉X is 2.

Having defined GV (M, α), and G(M, α) which is the special case when α is a
sentence, we are ready to formulate one of the main theorems of this chapter.

Theorem 6 (Reducing Model Checking to Parity Games [45]) For every sen-
tence α, transition system M, and its state s: M, s � α iff Eve has a winning strat-
egy from the position (s,α) in G(M, α).

The rest of this subsection is devoted to the proof of this theorem.
We fix M and α. For a valuation V we will denote by GV the game GV (M, α).

By induction on the structure of the formula we show that for every state s and
valuation V :

M, s,V � β iff Eve wins from (s, β) in GV .

The cases when β is a proposition or a variable follow directly from the definition.
Among the other cases, the interesting ones are for the fixpoint operators. We will
do the one for μ. In the proof we do not assume that M is finite, and this is why we
need to consider ordinals.

Take a formula μX.β(X) and consider left to right implication. Using the char-
acterization of μ via approximations, we know that there is an ordinal τ such that
M, s,V � μτX.β(X). We can suppose that τ is the smallest such ordinal. Directly
from definitions of approximations (see Sect. 26.2.1), it then follows that τ is a
successor ordinal, so τ = ρ + 1. In other words: M, s,Vρ � β(X), where Vρ is V
modified so that the value of X is [[μρX.β(X)]]MV . We will do additional induction
on ρ.

The outermost induction on the structure of the formula gives a winning strategy
for Eve from (s, β(X)) in the game GVρ . This strategy may reach a winning posi-
tion (s′,X) for some s′ ∈ Vρ(X). Since Vρ(X)= [[μρX.β(X)]]MV , the induction as-
sumption on ρ tells us that Eve has a winning strategy from (s′,μX.β(X)) in GV . So
the winning strategy for Eve in GV from (s,μX.β(X)) is to go to (s, β(μX.β(X)))
and then follow the winning strategy from (s, β(X)) in the game GVρ . If a play re-
specting this strategy reaches (s′,μX.β(X)), Eve can change to a winning strategy
that exists there.

For the implication in the other direction, we suppose that Eve has a win-
ning strategy from (s,μX.β(X)) in GV . Note that this position has an odd rank,
say r . The first crucial observation is a refinement of Fact 4. For every subfor-
mula σY.γ (Y ) of β(μX.β(X)) there are two possibilities: (i) either μX.β(X)
is not a subformula of γ (Y ), or (ii) adepth(Y ) ≤ adepth(X) and the inequality
is strict if Y is a ν-variable. Indeed suppose that μX.β(X) is a subformula of
σY.γ (Y ) that is itself a subformula of β(μX.β(X)). Then μX.β(X) can be writ-
ten as μX.θ(X,σY.γ ′(X,Y )), and the required inequalities between the alternation
depths of X and Y follow by the definition. This observation would not be true if we
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Fig. 5 A transition system
where the closure ordinal of
μZ.[a]Z is infinite

had defined the rank of a position using the alternation depth of μX.β(X) instead
of the alternation depth of the variable X, for example, when μX.β(X) has a sub-
formula νY.γ (Y ) that itself has a subformula with an alternation depth bigger than
that of μX.β(X).

The observation from the preceding paragraph implies that if a game from a
position (s,μX.β(X)) reaches some position (s′, β ′) with rank bigger than r then
μX.β(X) is not a subformula of β ′. As the rank r is odd and every play is win-
ning, this means that on every play there are finitely many positions of the form
(s′,μX.β(X)) for some s′. We call such positions critical. Consider a tree of all
plays starting in (s,μX.β(X)) and respecting the winning strategy for Eve. We can
assign to every critical position an ordinal, bounding the number of occurrences of
critical positions on the paths starting from it. We call this ordinal the height of the
position. All critical positions that do not have critical positions in their subtree will
have height 1. Then, by induction, we take a critical position p such that all criti-
cal positions in its subtree already have a height assigned. Let τ be the least upper
bound of these heights. We assign to p the height τ + 1. It is not difficult to see
that this procedure will assign a height to every critical position. Figure 5 gives an
example of a tree where this procedure needs infinite ordinals.

Now, by induction on the ordinals assigned to critical positions we show that
if (s′,μX.β(X)) has height τ then M, s,V � μτ .β(X). First take a position
(s′,μX.β(X)) of height 1. This means that Eve has a winning strategy from this
position that never enters another critical position. But then Eve also has a win-
ning strategy from (s′, β(X)) in the game GV1 where V1 is a valuation assigning ∅

to X. By induction hypothesis, M, s,V1 � β(X), which is equivalent to M, s,V �
μ1X.β(X). By a similar argument if we take a critical position (s′,μX.β(X)) of
height τ +1 then Eve has a strategy winning from (s′, β(X)) in the game GVτ where
Vτ is a valuation assigning to X the set of all nodes s′′ such that (s′′,μX.β(X))
has height at most τ . By induction hypothesis, M, s,Vτ � β(X). From the in-
duction on the height we can deduce that Vτ (X) ⊆ [[μτX.β(X)]]MV . We obtain
M, s,V � μτ+1X.β(X). This completes the induction and the proof.
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26.2.4 Model Checking

The model-checking problem for the μ-calculus is: given a sentence α, a transition
system M, and its state s, decide whether M, s � α. Formulating the question in
such a way, we silently assume that M is finite and given explicitly.

One approach to model checking is to directly use the μ-calculus semantics, or
its variation through approximations. Since M is finite, there is a finite number of
sets of states of M and such a computation will terminate.

The semantics via games gives a more efficient way to treat the problem. Observe
that the size of the game G(M, α) is linear both in the size of M and in the size of α.
So there is a linear-time reduction from the model-checking problem to deciding a
winner in a parity game. We should remark that the reduction is also linear for
formulas in vectorial syntax.

Theorem 7 (Equivalence of Games and Model Checking [42, 45]) The model-
checking problem is linear-time equivalent to the problem of deciding whether Eve
has a winning strategy from a given position in a given parity game. The game
constructed from a transition system of size m and a formula of size n has size
O(m ·n), the number of ranks in the game is equal to one more than the alternation
depth of the formula. Conversely, from a game one can construct a transition system
and a formula. The transition system is of the same size as the game. The formula
depends only on the ranks used in the game, its size is linear in the number of ranks,
and its alternation depth is not bigger than the number of ranks.

The increase by one of the number of ranks in the game in the above theorem is
less disturbing than it looks. Such an increase can appear for formulas that are both
in Σμn and in Πμ

n classes (see Sect. 26.2.2). For example, the formula (μX.[a]X)∧
(νY.〈a〉Y) is of alternation depth 1, and the constructed game needs rank 1 for μ,
and rank 0 for ν (see Sect. 26.2.3.2). This does not really increase the complexity
of solving the game as there will be no strongly connected component of the game
graph containing both ranks 0 and 1. In general, in every connected component of a
game constructed from a transition system and a formula of alternation depth d , the
number of ranks in a connected component will be not bigger than d . Games with
this property can be solved as quickly as games with d ranks.

The problem of solving parity games is in its turn equivalent to checking empti-
ness of alternating automata on infinite sequences over a one-letter alphabet. The
latter is the same as checking emptiness of nondeterministic tree automata. For def-
initions of these types of automata we refer the reader to [59, 113, 120] and to the
automata chapter of this Handbook [76]. Here we just state the corollary that is a
consequence of these equivalences.

Theorem 8 (Equivalence of Model Checking and Automata Emptiness) The
model-checking problem is linear-time equivalent to checking emptiness of alternat-
ing parity word automata over a one-letter alphabet. It is also equivalent to checking
emptiness of nondeterministic parity tree automata. The automata in question have
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the same number of states as there are nodes in the graph of the game from Theo-
rem 7, and the same parity condition as the game.

Going back to Theorem 7, we briefly discuss the reduction from games to model
checking as the other reduction is already provided by Theorem 6. It turns out that
once the ranks are fixed, one can write a formula defining Eve’s winning positions in
a game with those ranks. Moreover, the size of this formula is linear in the number of
ranks. More precisely, let us suppose that the ranks range from 0 to 2d + 1. A game
G = 〈V,VE,VA,T ⊆ V ×V,Ω : V →{0, . . . ,2d+1}〉 can be represented as a tran-
sition system MG where V is the set of states, and T is a transition relation on some
letter, say b. The additional information as to whether a position belongs to VE and
what is its rank is coded with auxiliary propositions: pEve,pAdam,p0, . . . , p2d+1. To
write a formula defining the winning position we take variables Z0, . . . ,Z2d+1, one
for every possible value of the rank. The formula is:

μZ2d+1.νZ2d . . .μZ1.νZ0. γ (Z0, . . . ,Zd) where

γ (Z0, . . . ,Zd) is
∧

i=0,...,2d+1

pi⇒
[(
pEve ∧ 〈b〉Zi

)∨ (
pAdam ∧ [b]Zi

)]
. (1)

The subformula γ (Z0, . . . ,Zd) verifies the rank of a position using propositions pi ;
this determines the fixpoint variable to be used. The formula also uses a 〈b〉 or [b]
modality depending on whether the position belongs to Eve or Adam, respectively.
The alternation of fixpoints captures the parity condition. It can be verified that the
above fixpoint formula defines the set of positions from which Eve has a winning
strategy. Indeed the formula is constructed in such a way that the model-checking
game G(MG, γ ) is essentially the same as G. If the range of the Ω function is not
as we have assumed, then it is enough to extend the range, write a formula for the
extended range, and then remove the unnecessary fixpoint variables.

Hierarchical Boolean Equations. Games are not the only way to simplify the
structure of the model-checking problem. It turns out that the problem is equiv-
alent to checking whether a vectorial μ-calculus formula holds in a particularly
simple model: the one containing just one state and no transitions. Such problems
are known as hierarchical Boolean equations because the value of a variable is a
Boolean: it can be either the empty set or the singleton containing the unique state.

Let M0 = 〈{s}, {Ra}a∈Act, {Pi}i∈N〉 be the transition system with one state s and
all transition relations and predicates empty:Ra =∅, Pi =∅. The meaning of every
variable is then either ∅ or {s}. All formulas 〈a〉α are equivalent to ff , and formulas
[a]α are equivalent to tt. Hence essentially we are left with Boolean connectives and
fixpoints. Relying on the equivalence between games and model checking described
above, the following fact states the announced reduction.

Fact 9 (Model Checking and Hierarchical Boolean Equations) For every game G
and its position v there is a vectorial formula αG,v , of height equal to the number of
positions in G and size linear in the number of edges in G, such that for the one-state
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transition system M0 described above: the first coordinate of [[αG,v]]M0 is equal to
{s} iff v is winning for Eve in G.

We will briefly explain this reduction. Given a finite game

G = 〈V,VE,VA,T ⊆ V × V,Ω : V →N〉
we write a vectorial formula of height n = |V |. We introduce variables Xvi where
v ∈ V is a position, and i ∈ Ω(V ) is one of the possible ranks. Then we define a
formula:

αv =
{∨{Xv′

Ω(v′) : T (v, v′)} if v is a position of Adam,
∧{Xv′

Ω(v′) : T (v, v′)} if v is a position of Eve.

Let us fix some arbitrary order on positions V such that our chosen position is the
first one in this order. We get a vectorial formula α = (αv1 , . . . , αvn). Let Xi stand
for the vector Xv1

i . . .X
vk
i . Then the desired formula is

νXd .μXd−1. . . . νX0.α. (2)

Observe that this formula does not have free variables. While the presented transla-
tion is superficially quadratic, it should be clear that of the variables Xv1 . . .X

v
d , only

the one with the subscript Ω(v) is used. So the size of the formula not counting
dummy variables is proportional to the number of edges in the game.

Complexity of Model Checking. The complexity of model checking is the great
unanswered question about the modal μ-calculus. Effectiveness on finite systems is
easy: the obvious algorithm based on the semantics via approximations has com-
plexity O(nd+1), where n is the size of the state space, and d is the alternation
depth of the formula. The reduction to parity games quickly gives some new in-
sights. To decide whether Eve wins from a given position it is enough to guess a
strategy and check that it is winning. By Theorem 5 it is enough to consider only
positional strategies, which are nothing else but subsets of edges of the game graph.
It is not difficult see that one can check in a polynomial time whether a given po-
sitional strategy is winning. The algorithm essentially involves analysis of strongly
connected components in the game graph. Consequently, solving the game is in NP,
and since everything is closed under negation, also in co-NP. The obvious lower
bound is PTIME since alternating reachability is a very simple parity game.

Most of the effort on complexity analysis of the model-checking problem has
concentrated on the game formulation [17, 19, 42, 45, 47, 71, 72, 83, 102, 122, 125],
although it is worth mentioning also the approaches through vectorial syntax and
Boolean equations [78, 107]. In the discussion below let n stand for the number of
vertices in the game and d for the number of ranks. In terms of the model-checking
problem, n is the product of the sizes of the transition system and the formula, while
d is the alternation depth of the formula.
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One of the most classical approaches to solve parity games is based on re-
moving positions of the highest rank and recursively analysing the resulting sub-
game [83, 113, 125]. Since the subgame is analysed twice, this approach gives
O(nd) complexity. A different technique proposed by Jurdziński [71] is based
on so-called progress measures and gives an O(n(d/2)) algorithm. More recently,
Schewe [102] used a combination of the two to obtain an O(n(d/3)) algorithm. Bet-
ter approaches are known if there are many priorities with respect to the number of
nodes, more precisely if d =Ω(n(1/2)+ε). The randomized algorithm of Björklund

et al. [17] gives nO(
√
n/ log(n)) complexity. If the out-degree of all vertices is bounded

then the same complexity is achieved by a relatively simple, and very clever, mod-
ification of McNaughton’s algorithm [72] proposed by Jurdziński, Paterson, and
Zwick. In the case when there is no bound on the degree, the same algorithm is only
slightly worse: nO(

√
n). For all of those algorithms superpolynomial or exponential

lower bounds are known [52, 71, 102].
There exists another class of algorithms, based on strategy improvement tech-

niques [65]. The idea is that one puts an order on positional strategies, so that the
biggest elements in this order are the optimal strategies. The algorithm is an iteration
of improvement steps: in each step some edges of the strategy are changed to im-
prove with respect to the order on strategies. This technique has been used in many
contexts. It has been adapted to parity games by Vöge and Jurdziński [122]. Later
Schewe [103] has proposed a modification of the strategy improvement policy. Even
for this improvement, Friedmann gives examples of games requiring exponentially
many iterations [51].

It is actually not that surprising that the quest for polynomial-time algorithm
for model checking is still on. The problem is closely related to other stubborn
questions of a similar type, such as: solving mean pay-off games, discounted pay-off
games, and turn based simple stochastic games [35, 70]. Not much more is known
about fragments of the logic. The reduction to games gives an easy model-checking
algorithm for the alternation depth 2 fragment. This algorithm is quadratic in the
size of the formula and the model. No essentially better algorithms are known, but
it is worth mentioning in this context a recent advance on related problems [31]. Let
us note that model checking for alternation-free μ-calculus (alternation depth 1) can
be done in linear time [3, 7, 33].

26.3 Fundamental Properties

In this section we will give an overview of the theory of the μ-calculus. Our in-
tention is to cover a representative selection of results having in mind applica-
tions in verification. We will start with some basic results on theory of models: the
tree-model property and bisimulation invariance. Then we will introduce modal au-
tomata: an automata model for the μ-calculus. We will discuss some basic features
of this model, and in particular disjunctive form for automata. Disjunctive modal
automata can be seen as a nondeterministic counterpart of modal automata. Among
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other things, these automata allow us to treat the satisfiability problem. We present
a relatively short proof of EXPTIME-completeness of the problem. On the way we
also get a small-model theorem. Next, we briefly describe another central result of
the theory: strictness of the alternation hierarchy. This is followed by the complete-
ness theorem and two other properties of a more syntactical nature: the interpolation
theorem and the division property.

26.3.1 Bisimulation Invariance and the Tree-Model Property

Bisimulation was introduced in the context of modal logics as an attempt to formu-
late the notion of similarity between models. Later it turned out that it is perfectly
adapted to express the intuition that two systems behave in the same way. Formally,
a bisimulation between two transition systems

M1 = 〈
S1,

{
R1
a

}
a∈Act,

{
P 1
i

}
i∈N

〉
and M2 = 〈

S2,
{
R2
a

}
a∈Act,

{
P 2
i

}
i∈N

〉

is a relation ≈ between S1 and S2 such that if s1 ≈ s2 then

• s1 and s2 satisfy the same propositions;
• for every action a, and s′1 such that R1

a(s1, s
′
1) there is s′2 with R2

a(s2, s
′
2) and

s′1 ≈ s′2;
• and symmetrically, for every a, and s′2 such that R2

a(s2, s
′
2) there is s′1 with

R1
a(s1, s

′
1) and s′1 ≈ s′2.

We say that a state of M1 is bisimilar to a state of M2 if there is a bisimulation
relating the two states.

The intuition that the μ-calculus is about behaviors finds further support in the
following result saying that the logic cannot distinguish between bisimilar states.

Theorem 10 (Invariance Under Bisimulation) If a state s1 of a transition system
M1 is bisimilar to a state s2 of a transition system M2 then for every μ-calculus
sentence α: M1, s1 � α iff M2, s2 � α.

A consequence of this theorem is the tree-model property. A transition system
is a (directed) tree if it has a state with a unique path to every other state in the
transition system. This special state is called the root. A tree can be obtained as an
unfolding of a transition system from a state s by taking all the paths starting in s as
states of the unfolding. In the result, state s of the initial system and the root of the
unfolding are bisimilar.

Proposition 1 (Tree Models) Every satisfiable sentence of the μ-calculus is satis-
fied in a root of some tree transition system.

Theorem 10 can be deduced from the semantics of the μ-calculus in terms of
games. To see this, we define bisimulation relation between games as a bisimulation
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between transition systems representing games (see Sect. 26.2.4). A parity game
G = 〈V,VE,VA,T ⊆ V × V,Ω : V →N〉 can be considered as a transition system
with V being a set of states and T the transition relation on some action. The addi-
tional information as to whether a position belongs to VE and the rank of a position
are coded with auxiliary propositions: pEve,pAdam,p0, . . . , pd . So a bisimulation
relation between games will be a bisimulation relation between their representa-
tions as transition systems. It is obvious that if a position v1 in G1 is bisimilar to
a position v2 in G2 then Eve has a winning strategy from v1 iff she has a winning
strategy from v2. The proof of Theorem 10 follows from the fact that if a state s1
of M1 is bisimilar to a state s2 of M2 then the positions (s1, α) in G(M1, α) and
(s2, α) in G(M2, α) are bisimilar. This reasoning is a good example of the use of
the semantics in terms of games. Let us point out though that Theorem 10 is one of
the rare facts in the theory of the μ-calculus that can be proven directly by induction
on the syntax of the formula, using approximations in the case of fixpoint formulas
(see Sect. 26.2.1).

26.3.2 Modal Automata

The characterization of the semantics of the μ-calculus in terms of games suggests
a kind of operational understanding of the logic. This idea is pushed a bit further
here, by introducing an automata model that corresponds to the logic. As we will
see the automata model is very close to formulas, but has its technical advantages.
First, automata come with a notion of state and this helps in some constructions
(Sects. 26.3.3 and 26.3.7). Moreover, modal automata have a very convenient spe-
cial form called disjunctive modal automata. It is used, for example, to prove the
interpolation property (Sect. 26.3.6). Modal automata can also be smoothly gener-
alized to give extensions of the μ-calculus with good properties (Sect. 26.4.3).

Fix finite setsΣA ⊆ Act of actions,ΣP ⊆ Prop for propositions, andQ of states.
The set of modal formulas over these three sets, Fm(ΣA,ΣP ,Q), is the smallest set
containing ΣP ∪Q and closed under conjunction (α ∧ β), disjunction (α ∨ β), and
two modalities (〈b〉α and [b]α), for b ∈ΣA. Observe that modal formulas are just
like μ-calculus formulas but without the fixpoint constructs.

A modal automaton is a tuple:

A= 〈
Q, ΣA, ΣP , q

0 ∈Q, δ :Q→Fm(ΣA,ΣP ,Q), Ω :Q→N
〉
.

It has a finite set of statesQ, finite action and proposition alphabetsΣA andΣP , one
initial state q0, and the parity acceptance condition given by Ω . The least standard
part of the automaton is its transition function: the dependence on the alphabet is
hidden in modal formulas.

Example: Let us write an automaton to represent the formula μX.p1 ∨ 〈b〉X. The
alphabets of the automaton are ΣA = {b}, ΣP = {p1}. It has one state q , and we let
δ(q)= p1 ∨ 〈b〉q . Since the formula uses the least fixed point we put Ω(q)= 1.
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Fig. 6 The acceptance game G(M,A) for a modal automaton

A modal automaton accepts transition systems with distinguished states. The ac-
ceptance is defined by games. Given a transition system M= 〈S, {R}a∈Act, {Pi}i∈N〉
we consider the acceptance game G(M,A):

• The set of positions V of the game consists of pairs (s,α), where s ∈ S is a state
of M and α is a subformula of δ(q) for some q ∈Q. A position (s,α) is for Eve
if α is of one of the forms: q , β ′ ∨ β ′′, or 〈a〉β ′. Eve also has a position (s,p) if
s � p, and a position (s,¬p) if s � p. The remaining positions are for Adam.

• From (s,α ∨ β) and (s,α ∧ β) there are transitions to (s,α) and (s, β). From
(s, 〈a〉α) and (s, [a]α) there are transitions to (t, α) for all t such that (s, t) ∈Ra .
From (s, q) there is a unique transition leading to (s, δ(q)).

• The rank of a position of the form (s, q) is Ω(q), all other positions have rank 0.

The automaton accepts a transition system M from the state s iff Eve has a winning
strategy in the game G(M,A) from the position (s, q0); recall that q0 is the initial
state of A. We will denote this by (M, s) ∈ L(A), so the language of A is the set of
transition systems with distinguished states.

Example: Let us take the automaton A from the previous example and some struc-
ture M. Figure 6 shows the game G(M,A). Starting in the position (s0, q) the
unique next position is (s0,p1 ∨ 〈b〉q). If p1 holds in s0 then Eve can choose this
disjunct and win. Otherwise she chooses 〈b〉q , and then she chooses a successor s1
of s0 by a b-transition. The game reaches the position (s1, q), and the whole rea-
soning repeats. It is possible that the game does not end. In this case Eve loses as
the rank of q is odd. Observe that for this simple automaton Adam has no choice to
make. Hence the automaton accepts iff there is a path of b-transitions leading to a
state satisfying p1.

Example: It may be instructive to see how nondeterministic automata on binary
trees [113] can be represented as modal automata. A full labeled binary tree over
an alphabet ΣP is a function t : {l, r}∗ →ΣP with the empty word ε being the root
and every word w ∈ {l, r}∗ being a node with a label t (w), the left successor wl,
and the right successor wr . Such a tree can be represented as a transition system
M= 〈{l, r}∗,Rl,Rr, {p}p∈ΣP 〉. A transition function of a nondeterministic tree au-
tomaton has a shape δB : Q × ΣP → P(Q ×Q), that is, to each state and letter
it assigns a set of pairs of states: the state to send to the left child, and the state to
send to the right child. The corresponding transition function for a modal automaton
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becomes:

δA(q)=
∨

p∈ΣP

(

p ∧
∨

(ql ,qr )∈δ(q,a)
〈l〉ql ∧ 〈r〉qr

)

.

The first element of the conjunct checks what is the label of the node, the second
conjunct applies one of the possible transitions.

Equivalence with the μ-Calculus. We say that a modal automaton A is equivalent
to a μ-calculus sentence α if for every transition system M and its state s:

(M, s) ∈ L(A) iff M, s � α.

Thanks to the form of automata, it is easy to show that automata are equivalent to
the logic.

Theorem 11 (Modal Automata [68]) For every sentence of the μ-calculus there is
an equivalent modal automaton. Conversely, for every modal automaton there is an
equivalent sentence of the μ-calculus.

It is worth looking at the constructions involved in this theorem. For the first
statement of the theorem we take a formula α where every variable is bound at most
once. This means that for every variable Y bound in α there is precisely one fixpoint
subformula of α binding Y , which we denote by σY.βY .

We construct an equivalent automaton Aα . LetΣA be the set of actions appearing
in α, let ΣP be the set of propositions appearing in α. We take as Q the set con-
taining q0 and all bound variables appearing in α. The initial state of the automaton
is q0, and the acceptance condition Ω is defined using the notion of alternation
depth (Definition 1). The value Ω(q0) is irrelevant since the automaton will never
come back to q0; for the other states we have:

Ω(Y)= 2 · ⌊adepth(Y )/2
⌋

if Y is bound by ν in α,

Ω(Y)= 2 · ⌊adepth(Y )/2
⌋+ 1 if Y is bound by μ in α.

It remains to define the transition function of the automaton. For a subformula γ
of α, we denote by γ̂ the formula obtained by replacing every fixpoint subformula
σY.βY by the variable Y . So γ̂ is a modal formula from Fm(ΣA,ΣP ,Q). With the
help of this notation we put:

δ(q0)= α̂; and δ(Y )= β̂Y for every Y ∈Q.
In order to see that the automaton defined in such a way is equivalent to α, it suffices
to observe that the evaluation game G(M, α) is isomorphic to the acceptance game
G(M,A); in the former valuation is irrelevant as α is a sentence.

For the second statement of Theorem 11 let us take an automaton A =
〈Q,ΣA,ΣP ,q0, δ :Q→ Fm(ΣA,ΣP ,Q),Ω :Q→ N〉. We construct the desired
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formula in the vectorial syntax. The values of the transition function, δ(q), are from
Fm(ΣA,ΣP ,Q). These are formulas where the elements ofQ play the role of vari-
ables. We introduce fresh variables Xqi for every state q ∈ Q, and every possible

rank i ∈Ω(Q). Let αq be the formula δ(q) with every state q ′ replaced by Xq
′
Ω(q ′).

With this notation we set α = (αq0 , . . . , αqn) where q0, . . . , qn is some enumeration
of Q. The formula we are after is σXd . . .μX1.νX0.α; where the least fixed point
is used to bind variables with odd index, and the greatest fixed point is used for
variables with even index. Using the semantics of formulas in terms of games it is
not difficult to show the equivalence of the formula with the automaton.

Closure Properties of Modal Automata. From the above theorem it follows that
modal automata are closed under Boolean operations because the μ-calculus is.
The proof also shows that one can directly use logical laws on transitions of modal
automata without changing the accepted language. More precisely, if A1 and A2 are
two automata over the same alphabet and the same set of states such that for every
q ∈Q, δ1(q) is equivalent as a modal formula to δ2(q), then A1 and A2 accept the
same structures. This observation allows us to simplify transitions of automata.

As a side remark let us observe that unlike nondeterministic automata on binary
trees, modal automata are not closed under projection. This is not a surprise since we
want the automata to be equivalent to the μ-calculus. The automata, and logic, are
closed under a weaker form of projection as explained in the interpolation section
below.

Disjunctive Normal Form for Automata. Modal automata are essentially alternat-
ing automata [76, 89]. This is so because conjunction appearing in modal formulas
permits the encoding of universal choice. In some contexts though, nondeterministic
automata are much easier to handle than alternating automata. It is well known that
over binary trees every alternating automaton can be converted to a nondeterministic
one. Here we present a similar result for modal automata.

A simple solution to define nondeterministic automata would be to disallow con-
junctions in modal formulas. This is not satisfactory though, as we would have no
way to write properties like (〈a〉p1)∧ (〈a〉p2). There is an interesting modal oper-
ator that allows control over the use of conjunction. If Γ is a finite set of formulas
and a is an action then

(a→ Γ ) stands for
(∧{〈a〉α : α ∈ Γ })∧ [a]

(∨
Γ
)
.

We adopt the convention that the conjunction of the empty set of formulas is equiv-
alent to tt, and its disjunction is equivalent to ff . So for example (a→∅) says that
there are no successors on action a. The new operator can express both existential
and universal modalities:

〈a〉α is
(
a→{α, tt}) and [a]α is

(
a→{α})∨ (a→∅).

This operator was introduced in [68] and independently in [86] in the context of a
coalgebraic approach to modal logic.
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Define a disjunctive formula to be a disjunction of formulas of the form α ∧∧
a∈Σ(a→ Γa) where α is a conjunction of propositions and each Γa is a set of

states. Let DF(ΣA,ΣP ,Q) denote the set of disjunctive formulas over the three
alphabets. A disjunctive modal automaton is a modal automaton using disjunctive
modal formulas in its transitions.

Theorem 12 (Disjunctive Modal Automata [68]) Every modal automaton is equiv-
alent to a disjunctive modal automaton.

As we have noticed, modal automata may exhibit alternating behavior. Let us see
why disjunctive modal automata have only nondeterministic behavior, that is they
do not have universal branching. For this we need to look at their behavior on some
transition system M that is a tree. The crucial property is that for every strategy
of the automaton in the semantics game induced by M, if two plays respecting the
strategy differ at some position then they do not visit the same state of M after
this position. So in the tree of all plays respecting a strategy, no state of M can
appear in two different subtrees. This property corresponds to the fact that a run
of a nondeterministic automaton on a binary tree can be presented as a labeling of
the tree with states. Observe, incidentally, that the translation of nondeterministic
tree automata to modal automata presented in the third example of this subsection
in fact gives a disjunctive modal automaton. Similarly to (general) nondeterministic
automata, the emptiness problem is easier for disjunctive modal automata: it suffices
to guess a subgraph of the transition graph of the automaton. Complexity-wise the
problem is in NP, while the emptiness problem for modal automata is EXPTIME-
complete.

26.3.3 Satisfiability

Suppose that we want to decide whether given two formulas are equivalent. For
this we should decide whether the two formulas are satisfied in the same set of
models; in other words, decide whether the logical equivalence of the two formulas
holds in every model. Thus formula equivalence is nothing else than the satisfiability
problem: deciding whether there exists a model and a state where the formula is true.
In this subsection we will discuss what is needed to solve the satisfiability problem.

Theorem 13 (Satisfiability [44, 46]) The satisfiability problem for the μ-calculus
is EXPTIME-complete.

Using the correspondence between modal automata and μ-formulas (Theo-
rem 11) instead of studying the satisfiability problem we can study the emptiness
problem for modal automata: a formula is satisfiable iff the language of the modal
automaton is not empty. Our goal is to reduce the emptiness problem for modal
automata to the same problem for alternating automata on binary trees. Although
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it would be much simpler to use disjunctive automata, we do not follow this path,
as we have not discussed how to obtain disjunctive automata. Indeed, a translation
to disjunctive automata would contain all the complexity of the satisfiability prob-
lem. The argument we present below is an example of an interesting technique of
simplifying a problem by enriching transition systems with additional information.

Recall that a modal automaton is a tuple

A= 〈
Q,ΣA,ΣP ,q

0 ∈Q,δ :Q→Fm(ΣA,ΣP ,Q),Ω :Q→N
〉
,

where Fm(ΣA,ΣP ,Q) is a set of modal formulas over actions in ΣA, propositions
in ΣP , and variables in Q. Acceptance is defined in terms of the existence of a
winning strategy for Eve in the game G(M,A); see Sect. 26.3.2.

Our first step will be to define witnesses for the existence of such a winning strat-
egy. A witness will be a deterministic transition system over a bigger alphabet such
that all its paths satisfy certain conditions (Lemma 1). Then we will encode such
witnesses into a binary tree, and construct an alternating automaton recognizing all
encodings of all possible witnesses. This will give a reduction of the satisfiability
problem to the emptiness problem for alternating automata on binary trees.

The whole argument crucially depends on the fact that in parity games it is
enough to consider positional strategies (Theorem 5). Positions in the acceptance
game G(M,A) are of the form (s,α) where s is a state of M and α a subformula
of δ(q) for some q ∈Q. In particular, the set of formulas appearing in positions of
the game is finite. A positional strategy for Eve makes two kinds of choices: (i) in
a position of the form (s,α ∨ β) it chooses (s,α) or (s, β); (ii) in a position of the
form (s, 〈a〉α) it chooses (s′, α) for some state s′. So for a fixed state s the informa-
tion provided by the strategy is finite: for every disjunction one disjunct is chosen,
for every diamond formula 〈a〉α a successor state is chosen. These choices can be
encoded in the label of a node, and we will still have only a finite number of labels.

Take a positional strategy σ for Eve in G(M,A). We introduce new propositions
and actions. A proposition pαα∨β will hold in s when σ(s,α ∨ β)= (s,α). A tran-

sition on action b〈a〉α from s to s′ will mean that σ(s, 〈a〉α)= (s′, α). Let Σ̂P and
Σ̂A be the alphabets of these new propositions and actions. Let σ(M) stand for the
transition system obtained from M by adding the new propositions and transitions
in the way we have described.

We claim that looking at σ(M)we can decide whether σ is winning in G(M,A).
To make this precise we define a notion of a trace. This is a sequence of pairs (s,α)
consisting of a state of σ(M) and a formula, such that:

• (s, q) is followed by (s, δ(q));
• (s,α ∧ β) is followed by (s,α) or (s, β);
• (s,α ∨ β) is followed by (s,α) if pαα∨β holds in s, and by (s, β) otherwise;
• (s, 〈a〉α) is followed by (s′, α) if there is transition from s to s′ on action b〈a〉α ;
• (s, [a]β) is followed by (s′, β) if for some α there is transition from s to s′ on

action b〈a〉α .

Examining this definition one can observe that a trace in σ(M) is just a play in
G(M,A) respecting the strategy σ . So we can say that a trace is winning if it is
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winning when considered as a play in G(M,A). Finally, we say that σ(M) is trace-
accepting from (s0, q0) if all the traces starting in (s0, q0) are winning.

The first observation is that without loss of generality we can assume that σ(M)

is deterministic, in the sense that from every state, there is at most one outgoing
transition on each action. Indeed, if σ(M) is trace-accepting and it has a state with
two outgoing transitions on action b〈a〉α then we can just remove one of them. This
operation cannot add new traces, so the resulting structure is trace-accepting: the
structure is even of the form σ ′(M) for some strategy σ ′.

Lemma 1 For our fixed modal automaton A and alphabet Σ̂ , there is a transition
system accepted by A iff there is a deterministic transition system over Σ̂ that is
trace-accepting.

We have defined σ(M) and the notion of a trace in such a way that if σ is a
positional winning strategy in G(M,A) then σ(M) is trace-accepting. As noted
above, σ(M) can be made deterministic. This shows left to right implication of the
lemma.

For the converse implication, let us take a deterministic transition system N over
the alphabet Σ̂ . We define the structure M′ by keeping the states of N and putting
a transition on a from s to s′ if there is a transition from s to s′ on b〈a〉β for some
formula β . The positional strategy σ ′ in the game G(M′,A) can be read from N
as follows: σ ′(s,α ∨ β)= α iff s satisfies pαα∨β in N , and σ ′(s, 〈a〉α)= (s′, α) iff
there is a transition from s to s′ on 〈a〉α. It can be verified that σ(M′) is isomorphic
to N . Moreover every play in G(M′,A) respecting σ ′ and starting from a position
(s, q) is a trace in N starting in (s, q). Hence if N is trace-accepting from (s0, q0)

then σ ′ is winning from (s0, q0). Since q0 is the initial state of A, this means that
the pair (M′, s0) is accepted by A.

The above lemma permits us to reduce the satisfiability problem to the problem
of finding a deterministic structure N over the alphabet Σ̂ that is trace-accepting.
Observe that if M is a tree then σ(M) is also a tree. Hence, by the tree-model
property, Corollary 1, if there is such a structure N then there is one that is a deter-
ministic tree. Since the set of labels of transitions is finite, N is a tree of bounded
degree.

We have reduced the satisfiability problem to the problem of finding a tree of
bounded degree satisfying the trace-acceptance condition. Using a straightforward
encoding of bounded degree trees into binary trees we can reduce the problem to
a question about full binary trees. So finally we need to construct an automaton
recognizing binary trees that are encodings of bounded degree trees satisfying the
trace-acceptance condition. Such an automaton B3 can be constructed in three steps:
(i) taking a simple nondeterministic parity automaton B1 recognizing paths having
a trace that is not winning; (ii) dualizing B1 to obtain an alternating parity automa-
ton B2 recognizing paths on which all traces are winning; and (iii) constructing an
alternating parity tree automaton B3 running B2 on every path of a tree.
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Theorem 14 (Satifiability via Automata Emptiness [45]) For a given μ-calculus
formula of size n and alternation depth d , one can construct in linear time an al-
ternating automaton over trees such that the formula is satisfiable iff there is a tree
accepted by the automaton. The automaton has O(n) states and d + 1 ranks.

This theorem gives an algorithmic solution to the satisfiability problem. As the
emptiness check for such automata can be done in EXPTIME, this gives an upper
bound on the complexity of the satisfiability problem, as announced in Theorem 13.
The matching lower bound can be obtained, for example, by encoding of the univer-
sality problem for root-to-leaves automata over finite trees [106].

The above construction also proves the small-model theorem. A regular tree can
be presented as a graph with a distinguished root vertex: the tree is obtained by un-
folding such a graph, that is taking all the paths starting at the root. If an alternating
automaton accepts some tree then it accepts a regular tree that is the unfolding of a
transition system of size exponential in the size of the automaton.

Theorem 15 (Small-Model Property [112]) A satisfiable formula of the μ-calculus
is satisfied in a transition system of size exponential in the size of the formula.

26.3.4 Alternation Hierarchy

We have seen that the alternation depth (Definition 1) of a formula appears to give
a strong measure of its complexity, both psychological and computational: formu-
las rapidly become incomprehensible above alternation depth 2, and all algorithms
known so far depend exponentially or super-polynomially on the alternation depth
(Sect. 26.2.4). Recall the definition of sets Σμn and Πμ

n from Sect. 26.2.2. Roughly,
Σ
μ
n is the set of formulas of alternation depth n where all variables of alternation

depth n are μ-variables. Similarly for Πμ
n but for ν-variables.

For a number of years, it was open whether the alternation hierarchy is strict
in terms of expressive power, that is, whether for every n there is a Σμn formula
that is not equivalent to any Πμ

n formula—and consequently, whether alternation
depth n + 1 is strictly more expressive than alternation depth n. The first proof
by Bradfield [27] used the standard technique of diagonalization, via a transfer to
arithmetic, relying on the small-model property for the transfer back. Subsequently,
Arnold [6] gave a version of the proof in which diagonalization was effected with a
topological argument—as this is probably the simplest proof, we will sketch it here.

Theorem 16 (Strictness of the Alternation Hierarchy [27]) For every n > 0, there
is a formula in Σμn which is not equivalent to any formula of Πμ

n .

The proof relies on the semantics of formulas in terms of games (Sect. 26.2.3).
Recall that by Theorem 6 for a transition M and a formula β we can construct a
game G(M, β) such that M, s � β if and only if Eve has a winning strategy from
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the node (s, β) in G(M, β). If β ∈Σμn then G(M, β) is a parity game over the ranks
{1, . . . , n} or {0, . . . , n− 1}; depending on whether n is odd or even, respectively.
Let us suppose n is odd, the argument for the other case is very similar. As we
have discussed in Sect. 26.2.4, the game G(M, β) can be represented as a transition
system. A small but crucial observation is that if we start with a sufficiently large
alphabet then we can actually suppose that this new transition system is over the
same alphabet as M. Hence a formula β determines a function Fβ on transition
systems over some fixed alphabet: for a transition system M, the system Fβ(M) is
the transition system representing the game G(M, β).

We have supposed that games we consider are over ranks {1, . . . , n}. Now recall
the formula (1) from Sect. 26.2.4 defining the set of winning positions for Eve in a
parity game over priorities {0, . . . , n}. Let us call this formula αn. This means that
for every position (s, γ ) in game G(M, β), formula αn holds in (s, γ ) iff (s, γ ) is
winning for Eve. Combining this with the previous paragraph we get that for every
transition system M and formula β ∈Σμd , M, s � β iff F(M), (s, β) � αn. For
our argument we will need a slightly more refined construction that works on tree
transition systems: transition systems whose underlying graph is a tree. We fix a
sufficiently big alphabet and a variation of formula αn adapted to this alphabet, and
construct a function F ′β such that for every tree transition system N :

N , root � β iff F ′B(N ), root � α′n ;

here root stands for the root node of a tree transition system. We will omit the
exact definition of F ′β . Formula αn belongs to Σμn , and the same will be true for

formula α′n. We will show that it cannot belong to Πμ
n .

Trees can be equipped with the usual metric: trees are 2−n apart if they first differ
at a node of depth n. The set of infinite trees with this metric is a complete metric
space. So the mapping F ′β described above is a mapping on a complete metric space.
It turns out that this mapping is contracting. The Banach Fixed Point Theorem says
that every contracting mapping on a complete metric space has a fixpoint. In our
case this means that for every formula β there is a tree transition system Nβ such
that Nβ = F ′β(Nβ).

We want to show that αn /∈ Πμ
n . Suppose conversely. Then there is a formula

γ ∈Σμn equivalent to ¬αn. We consider the mapping F ′γ and its fixpoint Nγ . We get
Nγ , root � γ iff F ′γ (Nγ ), root � αn. But Nγ is a fixpoint of F ′γ so F ′γ (Nγ )=Nγ ;
a contradiction.

This proof shows concrete examples of formulas at each level of the hierarchy:
the formulas αn expressing existence of a winning strategy. Nevertheless the hier-
archy is far from being well understood. We do not know for example whether the
semantic alternation depth, the smallest alternation depth of an equivalent formula,
is a decidable property. This is an area of active research, which is mostly formulated
in terms of automata theory rather than the μ-calculus.
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26.3.5 Proof System

In order to show that a formula is satisfiable it is enough to exhibit a model for
it. Theorem 15 tells us that every satisfiable formula has a finite model. So there
is always a finite witness of satisfiability. The question arises, what about unsat-
isfiability? Since satisfiability is a decidable property (Theorem 13) the run of the
algorithm is such a witness. A proof system gives a much more informative wit-
ness, moreover it gives reasoning principles that can be used to simplify formulas.
To look at the question more positively, one prefers to talk about validity instead of
unsatisfiability: a formula is valid if its negation is not satisfiable.

Validity of μ-calculus formulas can be axiomatized. This means that for a valid
formula one can provide a finite witness, a proof, of its validity. To describe the proof
system we will use inequalities α ≤ β . We will say that such an inequality is valid
if the implication α⇒ β is valid. In other words, whenever under some valuation
formula α is true in some state of a model then β is true too in the same state with the
same valuation. For example, a formula α is valid iff tt ≤ α is valid; and a formula
β is satisfiable iff β ≤ ff is not valid. We present a finitary proof system allowing us
to deduce all valid inequalities. As examples of useful inequalities consider:

μX.α ≤ νX.α μX.νY.α ≤ νY.μX.α
The proof system proposed by Kozen [75] consists of axioms and rules for modal

logic together with an axiom and a rule determining the semantics of the least fix-
point:

α(μX.α)≤ μX.α
α[β/X] ≤ β
μX.α(X)≤ β

The last rule expresses rather directly the semantic clause defining the least fixpoint
(see Sect. 26.2.1). Additionally to these two, there is a dual axiom and a rule for the
greatest fixpoint operator. This system is finitary as it contains only a finite number
of axioms and rule schemes. The system is sound and complete in the sense that it
proves exactly the valid inequalities.

Theorem 17 (Completeness [123]) For every formula α, there is a proof of tt ≤ α
in the system if and only if the formula is valid.

26.3.6 Interpolation Property

Craig interpolation is a desirable property of a logic. It testifies some kind of ade-
quacy between the syntax of the logic and its semantics. On a more practical side,
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it allows us to simplify formulas by just looking at their vocabulary [82]. Interpola-
tion properties are scarce. Many program logics, such as LTL, CTL, and CTL∗, for
example, do not have the interpolation property [79]. Propositional logic and modal
logic do have the interpolation property. So does the μ-calculus.

In order to simplify the presentation, let us consider here only the μ-calculus
where the only propositions are tt and ff . In this case, the Craig interpolation prop-
erty says that given two formulas α and β over sets of actions Σ1 and Σ2 respec-
tively, if α⇒ β is valid then there is a formula γ over the set of common actions
Σ1 ∩Σ2 such that α⇒ γ ⇒ β . Actually an even stronger version of interpolation
holds for the μ-calculus. In this version γ does not depend on β but only on its
alphabet.

Theorem 18 (Interpolation [36]) Given a formula α over the set of actions Σ1 and
another set of actions Σ2, there is a formula γ over Σ1 ∩Σ2 such that α⇒ γ is
valid and for every formula β over the set of actions Σ2, if α⇒ β is valid then
γ ⇒ β is valid.

The construction of γ as required in the theorem is very straightforward once we
have a disjunctive automaton for α (Theorem 12). For every action a not appearing
inΣ1∩Σ2 it is simply enough to replace every formula (a→ Γ ) by tt if the formula
is satisfiable and by ff otherwise.

26.3.7 Division Property

We want to present one more interesting closure property of the μ-calculus. The
motivation comes from modular verification and synthesis. As in the previous sub-
section, we will consider μ-calculus formulas with only two propositional letters: tt
and ff . This restriction simplifies the notion of a product of transition systems. In a
product M×N the states are pairs (sm, sn) of states of the two systems. We have
a transition from (sm, sn) to (s′m, s′n) on a letter a iff there is one from sm to s′m and
one from sn to s′n. As we do not have propositions we do not need to say which
propositions hold in (sm, sn).

Imagine that we fix a transition system M together with a formula α and face
the task: given a transition system N verify whether M ×N � α. That is, verify
whether the product of a fixed system with a system given as input satisfies the fixed
formula. A straightforward way to solve this problem is to construct the product
M×N and then apply a model-checking algorithm. It is possible though to do some
pre-processing and construct a formula α/M as stated in the following theorem.

Theorem 19 (Division Operation [4]) For every transition system M and every μ-
calculus formula α, there is aμ-calculus formula α/M such that for every transition
system N :

N � α/M iff M×N � α.
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The construction of α/M is particularly short using the formalism of modal au-
tomata (Sect. 26.3.2). So below we will talk about A/M instead of α/M. Consider
a modal automaton A = 〈Q,Σ,q0, δ :Q→ F(Σ,Q),Ω〉 and a transition system
M= 〈S, {Ra}a∈Σ 〉 both over the same set of actions. In both we just have proposi-
tions tt and ff ; this justifies writing F(Σ,Q) instead of F(Σ, {tt, ff },Q). Our goal
is to construct an automaton A/M.

We first define a division α/s for α a formula from F(Σ,Q), and s a state of M.
The result is a formula from F(Σ,Q× S):

q/s = (q, s)
(α ∨ β)/s = α/s ∨ β/s (α ∧ β)/s = α/s ∧ β/s
(〈a〉α)/s = 〈a〉

∨{
α/s′ : s a→ s′

} ([a]α)/s = [a]
∧{

α/s′ : s a→ s′
}

The set of states of A/M will be Q/ =Q× S. The rank function will be inherited
from A: Ω/(q, s) = Ω(q). Finally, the transition function will be defined using
the above operation: δ/(q, s) = δ(q)/s. Recall that δ(q) ∈ F(S,Q), so δ(q)/s ∈
F(S,Q × S) as required. Once again, the semantics in terms of games gives the
tools to prove correctness of the construction. One can show that Eve can win in
G(N ,A/M) iff she can win in G(M×N ,A).

The division operation lets us solve some kinds of synthesis problems. Suppose
that we are given a finite transition system M modeling behaviors of a device. We
want to restrict these behaviors so that the result satisfies a specification given by
a formula α. The restriction is modeled by taking the product of M with another
transition system C. This is a restriction in the sense that every path in M× C is a
path in M. Transition system C is considered to be a controller for M. One may
also want to put some constraints on C. For example one can single out a set of
uncontrollable actions and demand that these actions cannot be restricted by C. This
constraint translates to the requirement that from every state of C there is a transition
on every unobservable action. Hence, this condition can be written as a μ-calculus
formula βunc. The synthesis problem then becomes: given M and α find C such that

M× C � α and C � βunc.

Thanks to Theorem 19 the latter is equivalent to

C � (α/M)∧ βunc.

Thus finding a controller C is reduced to the satisfiability problem for the μ-calculus
(Theorem 13). Let us remark that the Church synthesis problem [32, 116] for μ-
calculus formulas is an instance of the above for a particular choice of M.

Not all important constraints though can be expressed in the μ-calculus. For ex-
ample one can ask that some actions of the system are invisible to a controller. This
translates to the requirement that in C transitions on these actions should be self-
loops. This requirement is not invariant under bisimulation, and in consequence is
not expressible in the μ-calculus (Theorem 10). Fortunately, it turns out that similar
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constructions to the above work for the μ-calculus with the self-loop predicate [9],
and that the extended logic is still decidable in EXPTIME.

26.4 Relations with Other Logics

In this section we look at the μ-calculus in a wider context. Monadic second-order
logic (MSOL) is a reference for all temporal and program logics because it is a
classical formalism capturing recognizability on words and trees [113]. We will
explain why the μ-calculus is closely related to MSOL, and why it is in some sense
the strongest behavioral logic included in MSOL. It is no surprise then that other
well-known temporal and program logics can be translated into the μ-calculus. We
briefly present the translations of some of them, and discuss their properties. In order
to give a broader picture, we briefly describe two interesting extensions of the μ-
calculus. One has a semantical flavor: we add some structure to successors of a node
in a transition system. The other is more syntactic: we add a fragment of first-order
logic to the μ-calculus.

26.4.1 MSOL, Binary Trees and Bisimulation Invariance

A transition system M = 〈S, {Ra}a∈Act, {Pi}i∈N〉 can be considered as a model of
first-order logic, over the signature consisting of binary relations Ra and unary rela-
tions Pi . This logic is not sufficiently expressive for verification as it cannot express
such a fundamental property as reachabilty: there is a path from x to y. For this
and many other reasons [113] it is interesting to consider monadic second-order
logic, MSOL. This is an extension of the first-order logic with set variables, denoted
X,Y, . . . , the membership predicate y ∈ X, and quantification using set variables
∃X.ϕ. For example the formula

∀X. [(y ∈X)∧ ∀z, z′. (z ∈X ∧Rb
(
z, z′

))⇒ z′ ∈X]⇒ (
y′ ∈X)

,

expresses that y′ is reachable from y by a sequence of b actions. The formula liter-
ally says that for every set X, if y is in X and X is closed under taking successors
with respect to b actions, then y′ is in X.

We write M,V � ϕ to say that an MSOL formula ϕ holds in the transition system
M under valuation V . Observe that V assigns states of M to first-order variables
in ϕ and sets of states of M to set variables in ϕ. If s is a state of M, and ϕ(x) is
a formula with unique free first-order variable x then we simply write M,V � ϕ(s)
for M,V [x �→ s] � ϕ(x), i.e., to say that ϕ(x) is true under a valuation that maps x
to s.

Since the satisfiability problem for first-order logic over transition systems is
undecidable, so is the one for MSOL. The situation is much more interesting for tree
transition systems. Rabin’s theorem [98, 113] says that MSOL over tree transition
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systems is decidable. So it is natural to try to compare its expressive power with
that of the μ-calculus over trees. To this end we need to find a common ground for
the two logics. A small problem we need to overcome is that MSOL talks about the
truth in a tree, while the μ-calculus talks about the truth in a node of the tree. Then
also we need to take care of first-order variables that are allowed in MSOL, but not
in the μ-calculus. We will discuss these points in more detail.

It is quite straightforward to translate the μ-calculus to MSOL. The translation
goes by induction on the structure of the formula. For a formula α of the μ-calculus
we construct a formula ϕ(x) of MSOL with the same second-order variables and one
free first-order variable x. The translation has the property that for every transition
system M, its state s, and valuation of second-order variables V , we have:

M, s,V � α iff M,V � ϕ(s). (3)

For example, we translate a variable Y of the μ-calculus to a formula x ∈ Y . Sim-
ilarly, a proposition p is translated to P(x). We translate Boolean connectives to
the same Boolean connectives. For modalities and fixpoints we express semantic
clauses from Sect. 26.2.1 in MSOL.

The translation in the other direction is not so obvious. First of all, we consider
formulas with only one free first-order variable x. So below when we talk about
MSOL we consider only such formulas. We say that such a formula is equivalent
to a μ-calculus formula α if the equivalence (3) holds. Observe that MSOL can ex-
press properties that are not bisimulation invariant, for example “a node has three
successors” or “there is a cycle”. Since the μ-calculus can express only bisimulation
invariant properties (Theorem 10), it cannot be equivalent to MSOL over transition
systems. This observation justifies the restriction to deterministic tree transition sys-
tems where every successor has a unique name, and there are no cycles.

Theorem 20 (Equivalence with MSOL [90]) Over deterministic tree transition sys-
tems MSOL is equivalent to the μ-calculus.

An interesting variation of MSOL, called weak-MSOL, is obtained by restricting
the set variables to range over finite sets only. Another interesting class is that ofΣ1
MSOL formulas, which have a prefix of (unrestricted) existential quantifiers fol-
lowed by a formula without second-order quantifiers. Rabin has shown [99] that an
MSOL formula is equivalent to a weak-MSOL formula iff both the formula and its
negation are equivalent to Σ1 MSOL formulas. He has also shown that Σ1 MSOL
formulas are equivalent to tree automata with Büchi acceptance conditions. It turns
out that weak-MSOL is equivalent to the alternation-free fragment of the μ-calculus
(which we recall from Sect. 26.2.2 is the fragment consisting of formulas of alter-
nation depth 1).

Theorem 21 (Equivalence with Weak-MSOL [90]) Over deterministic tree transi-
tion systems, weak-MSOL is equivalent to the alternation-free μ-calculus. The Σ1
fragment of MSOL is equivalent to the Πμ

2 fragment of the μ-calculus.
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If we drop the determinacy restriction then there is a simple extension of the μ-
calculus that captures MSOL on tree transition systems. It is enough to introduce
counting modalities 〈b〉=nα for every action b and natural number n. The meaning
of this modality is that there are exactly n distinct b-successors of a node satisfy-
ing α. This observation is an instance of the more general framework described in
Sect. 26.4.3.1.

Let us come back to the case of transition systems with no restrictions. We have
noted above that if an MSOL formula ϕ(x) is equivalent to a μ-calculus formula
then it is bisimulation invariant: if a formula holds in a state then it holds in every
state bisimilar to it. It turns out that the converse implication holds.

Theorem 22 (Expressive Completeness [69]) The μ-calculus is expressively equiv-
alent to the bisimulation invariant fragment of MSOL: if an MSOL formula ϕ(x) is
bisimulation invariant then it is equivalent to a μ-calculus formula.

Recall that the satisfiability problem for MSOL over transition systems is not decid-
able [41]. In consequence, it is not decidable if a given MSOL formula is bisimu-
lation invariant. So it is not decidable whether an MSOL formula can be written in
the μ-calculus.

26.4.2 Embedding of Program Logics

The μ-calculus is one of the numerous program logics designed to express proper-
ties of transition systems. Theorem 22 implies that the μ-calculus is as expressive
as any logic that is at the same time bisimulation invariant and not more expressive
than MSOL. This covers most program logics, for example, propositional dynamic
logic (PDL), computational tree logic (CTL), and its extension CTL∗ [43, 50]. It is
anyway worthwhile to see explicit translations of these logics into the μ-calculus
and discuss their relative expressive powers.

Translating PDL or CTL into the μ-calculus is easy. For an example let us look at
CTL. The formulas of this logic are built from tt and ff using Boolean connectives,
the 〈a〉 modality, and two operators:

E(αUβ) E¬(αUβ).

As for the μ-calculus, the meaning of a CTL formula is a set of states. The only
construct with non-obvious semantics is the until operator:

M, s � E(αUβ) iff there is a path s0, s1, . . . , sk such that s0 = s, sk � β , and
si � α for i = 0, . . . , k − 1.

For the translation into the μ-calculus, denoted [α]', we just need to take care of the
two new operators. We show the translation only for the first one:

[
E(αUβ)

]' is μX.[β]' ∨
(

[α]' ∧
∨

a∈Σ
〈a〉X

)

.
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The translation produces an alternation-free formula and is linear in size. The trans-
lation for PDL is equally easy, but to get linear-size formulas we need to use the
vectorial syntax of the μ-calculus (Sect. 26.2.1).

Translating linear-time logics, like LTL, is much more complicated. First one
needs to make LTL express properties of transition systems. This can be done easily
by saying that a formula is true in a state if it is true on all maximal paths from that
state. For example, a formula is true in a structure with one state and self-loops on
every action iff it is true on every infinite path. Since validity of LTL formulas is
PSPACE-complete, this indicates that one can expect an exponential blowup when
translating from LTL to the μ-calculus. It is easy to write a μ-calculus formula that
is equivalent to LTL over linear models, i.e., transition systems consisting of only
one path. For the general case, the problem is that the μ-calculus does not have an
explicit path quantifier, and there is no easy way to say “every path satisfies some
formula”. The solution for translating LTL is more complicated. One translates an
LTL formula into a Büchi automaton accepting the sequences not satisfying the
formula ([54] or [76] in this Handbook). Then this automaton is translated into a
μ-calculus formula over linear models. It can be shown that such a formula can be
directly used to express the property that there is a path in the transition system
not satisfying the initial LTL formula. The negation of this formula is the desired
translation. Since CTL∗ is a common extension of both CTL and LTL, its translation
into the μ-calculus combines the two translations described above [16, 38]. One
can show that CTL∗ is contained in the Σμ3 level of the alternation hierarchy. In the
translation described above one can use nondeterministic Büchi automata instead of
parity automata. This gives a Πμ

2 formula for every path quantifier. Due to negation
and other constructs of CTL∗, the complete translation gives a combination of Πμ

2
and Σμ2 formulas.

Fact 23 (Embedding of Program Logics) Every formula of CTL, PDL, or CTL∗ can
be translated into an equivalent μ-calculus formula.

Concerning expressiveness, CTL is quite a weak logic. It cannot express for ex-
ample that there is a path with infinitely many b events on it. This follows from
the strictness of the μ-calculus hierarchy (Theorem 16) as CTL can be translated
into the alternation-free μ-calculus. Even though CTL∗ can express the “infinitely
many” property, it is still expressively weaker than the μ-calculus. For example,
it cannot express properties describing infinite interaction of the type “there is a
way of repeatedly choosing an output for a given input so that the resulting infinite
sequence of inputs and outputs satisfies some given LTL property”. In particular,
CTL∗ cannot express all game formulas (1) as these formulas can express proper-
ties arbitrarily high in the alternation hierarchy (Sect. 26.3.4).

The last remark provided an inspiration for the introduction of alternating-time
temporal logic [2]. It has been defined over a large class of so-called game mod-
els, so it is not immediately comparable to the μ-calculus. Yet, in the cases when
alternating-time temporal logic behaves well, the logic can be translated into the μ-
calculus. Another interesting logic is game logic [93]. This logic can be translated
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into the μ-calculus with only two variables, yet it can express properties arbitrarily
high in the alternation hierarchy [12].

26.4.3 Beyond μ-Calculus

Because of its simple formulation, its expressive power, and its algorithmic proper-
ties, the μ-calculus has proved to be a very valuable logic for verification. Like every
system, the logic has its limitations, and some of them we have already mentioned
in this chapter. The μ-calculus does not allow any form of equality: we cannot say
that a transition is a self-loop, or that transitions on a and b go to the same state. It
permits no form of counting: we cannot say that there is only one a-transition from
a state. It does not have quantification: we cannot say that a formula holds in every
state. It does not allow derived transition relations: we cannot talk about the reverse
of a transition relation. Obviously, such a wish list has no end, but it provides good
motivation in a search for extensions of the μ-calculus. Of course it is not very diffi-
cult to define very expressive logics. What is important is to find extensions without
losing good properties of the logic, or at least not all of them.

In this subsection we will present two extensions of the μ-calculus of different
natures. The first starts from model-theoretic ideas, the second is motivated by the
syntax. The two extensions are quite different in what they accomplish, but both
have proved to be very useful.

26.4.3.1 Iterated Structures

Till now we have considered logics over transition systems. Here we would like
to consider what happens when we put some structure on the set of successors of
a state of a transition system. For example, what would happen if we added an
order among successors. Instead of considering particular cases we will introduce
a general method of constructing transition systems with additional structure. Then
we will discuss how to handle this added structure in extensions of the μ-calculus.
For this we will define automata that are a generalization of modal automata. We
will present their closure properties as well as their relation to MSOL.

Let N = 〈D,r1, . . . 〉 be a structure over a relational signature; this means that
functional symbols are not allowed. For example, 〈N,≤〉 is a structure over a signa-
ture containing one relation, the standard ordering; the structure 〈N,+〉 is allowed
when + is considered as a ternary addition relation, and not as a binary function.

An iterated structure is a structure N ∗ = 〈D∗, child, clone, r∗1 , . . . 〉 where D∗ is
the set of all finite sequences over D, and the relations are defined by:

child= {
(w,wd) :w ∈D∗, d ∈D}

,

r∗i =
{
(wd1, . . . ,wdk) :w ∈D∗, (d1, . . . , dk) ∈ ri

}
,

clone= {
wdd :w ∈D∗, d ∈D}

.
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Fig. 7 Structure N ∗≤, and a representation of the sequence 1,2,1, . . . in N ∗≤

So N ∗ is a tree where every node has a rank equal to the size of D; indeed a node
w ∈D∗ has successors wd for every d ∈D. The relation child gives the successors
of a node. The relations r∗i induce additional dependencies among siblings that come
from the initial structure. The unary relation clone is a curious predicate saying that a
node ends in the same symbol as its parent. This predicate is very useful in encoding
of other structures into iterated structures.

Example: Consider a two element structure N2 = 〈{0,1}, left〉 with one unary re-
lation that holds only for 0. The structure N ∗

2 has elements {0,1}∗. The relation
left∗(w) holds if w ends with 0. Hence N ∗

2 is the full binary tree with left∗ designat-
ing left sons. The clone relation is not important here: it holds in a left child whose
parent is also a left child (or analogously for right).

Example: Consider the set of natural numbers with the standard ordering: N≤ =
〈N,≤〉. In this case N ∗≤ is a tree of infinite branching where siblings are linearly
ordered. Moreover, the clone predicate designates a node whose position among its
siblings is the same as that of the father. The structure is shown in Fig. 7, where
the circled nodes satisfy the clone predicate. The clone predicate allows us to define
in this tree paths representing a possible behavior of one register with +1 and −1
operations: paths of the form i1i2 . . . with i1 = 0 and |ik+1 − ik| ≤ 1. The idea is
presented in Fig. 7. The clone predicate allows us to go one step to the left or one
step to the right in the horizontal linear order when going one level down in the tree.

In general, for a given structure N = 〈D,r1, . . . 〉, the structure N ∗ can be seen
as a generalization of the notion of the full binary tree. Given a finite alphabet Σ ,
a Σ -labeling of N is just a function t :N ∗ →Σ . We are going to define the notion
of an automaton that accepts sets of labeled iterated structures.

First, let MF(Σ,Q) be the set of monadic second-order formulas with free
variables {Xclone} ∪ {Xq : q ∈Q} over the signature of N enriched with monadic
predicates Pa for a ∈Σ . The automaton is:

A= 〈
Q,Σ,q0 ∈Q,δ :Q→MF(Σ,Q),Ω :Q→N

〉

The acceptance of t :N ∗ →Σ by A is defined in terms of the acceptance game
G(t,A).
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• The positions for Eve areD∗×Q, the positions for Adam areD∗×(Q→P(D)).
The initial position is (ε, q0). Recall that D∗ is the set of elements of N ∗, in
particular ε is the root of N ∗.

• In a position (w,q) Eve chooses a function f :Q→ P(D) so that N ,V � δ(q)
where V(Xq)= f (q) and V(Xclone) is the set consisting of the last element of w,
or ∅ if w has length ≤ 1. The game moves to the position (w,f ).

• In a position (w,f ) Adam chooses q ′ ∈Q and d ′ ∈ f (q ′). The game moves to
(wd ′, q ′).

• The rank of a position (w,q) is Ω(q). All the positions for Adam have rank 0.

A labeled iterated structure is accepted if Eve has a winning strategy in this game
from the initial position. Hence an automaton accepts a set of labeled iterated
structures, for a fixed initial structure. The following theorem was formulated by
A. Muchnik. The sketch of his proof can be found in [109]. The result is proved
with a different proof method in [124].

Theorem 24 (Transfer Theorem [109, 124]) Let N be a relational structure. Au-
tomata over labeled N -iterated structures are closed under Boolean operations and
projection. If the MSOL theory of N is decidable then the emptiness of automata
over labeled N -iterated structures is decidable.

In particular, when N2 is the two-element structure from the example above,
Theorem 24 gives decidability of the MSOL theory of the binary tree. Observe that
modal automata (Sect. 26.3.2) are a special case of automata from this section for
the structures of the empty signature. We have seen that modal automata and the
μ-calculus are essentially the same. Following the same ideas one can construct
μ-calculi for different kinds of relations on the set of successor states.

Structure iteration is a powerful operation preserving decidability of MSOL the-
ories, that is, it transforms a structure with decidable MSOL theory into another
structure with decidable MSOL theory. Among other things, it is an entry point to
the so-called pushdown hierarchy, model-checking higher-order pushdown systems,
and higher-order recursive schemes. This is a vast subject that would require a chap-
ter on its own [29, 30, 73, 74, 92, 115].

26.4.3.2 Guarded Logics

The idea of guarded logics comes from looking at the translation of the modal logic
into first-order logic. In this translation the Boolean connectives are translated to
themselves, and the modalities are translated as follows:

[〈a〉α]∗(x) is ∃y. Ra(x, y)∧ [α]∗(y)
[[a]α]∗(x) is ∀y. Ra(x, y)⇒ [α]∗(y).

As for MSOL, the translation is parameterized by a free variable intended to stand
for the current state.
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The image of this translation is called the modal fragment of first-order logic.
Recall that the satisfiability problem for first-order logic over transition systems is
undecidable. But it is decidable for the modal fragment since it is decidable for
modal logic. This immediately brings up the questions: what makes the modal frag-
ment so special, and can it be extended? The idea behind the guarded fragment is to
provide an answer to this question by focusing on the restricted use of quantifiers.

We say that a quantification is guarded if it is of the form

∃y.γ (x, y)∧ψ(x, y) or ∀y.γ (x, y)⇒ψ(x, y),

where γ (x, y) is Rb(x, y) or Rb(y, x) for some action b, and ψ(x, y) is a formula
whose free variables are at most x and y. The name “guarded” comes from the fact
that the quantified variable has to be related to the free variable by the transition
relation. For example the formula

∀y.Ra(x, y)⇒ x = y
says that all transitions on a are self-loops. The syntax also permits one to talk
directly about the reverse of transitions.

The guarded fragment [5] is the set of formulas of first-order logic that contains
atomic formulas, and is closed under Boolean operations and guarded quantification.
The presentation here is limited to the simplest variant. The fragment gets even more
interesting for signatures with relations of higher arity.

Since the guarded fragment inherits many good properties of modal logic, its
extension with fixpoints should inherit those of the μ-calculus. This is indeed the
case. If one takes some care as to how fixpoints are applied, one can even recover
many good properties of the μ-calculus.

LetW be a unary relation variable, let ψ(W,x) be a guarded formula whose free
variables are as displayed, and where W appears only positively and not in guards.
Then we can build formulas:

[lfpWx. ψ](x) and [gfpWx. ψ](x).
The semantics is as expected: The formula [lfp Wx.ψ](s) is true in a transition
system M iff s is in the least fixpoint of the operator mapping a set of states S′
to {s′ :M � ψ(S′, s′)}, i.e., to the set of states s′ that satisfy ψ(W,x) when W is
interpreted by S′. The extension of the guarded logic with these two constructs is
called guarded fixpoint logic.

Let us see an example formula of guarded fixpoint logic that is not equivalent to
a μ-calculus formula:

(∃xy. Rb(x, y)
)∧ (∀xy. Rb(x, y)⇒∃z. Rb(y, z)

)

∧ ∀xy. Rb(x, y)⇒
[
lfpWz. ∀y. Rb(y, z)⇒W(y)

]
(x).

The first two conjuncts say that there is a transition labeled by b, and that every
such transition can be extended to an infinite path. The third conjunct says that
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every source of a b-transition has only finitely many predecessors on b transitions.
Thus the formula implies that there is an infinite forward chain of b-transitions but
no infinite backward chain. This example shows the use of backwards modalities
and the price to pay for them: we can write formulas having only infinite models.

Despite this observation the satisfiability problem for the guarded fragment ex-
tended with fixpoints is decidable, and the complexity is the same as for the μ-
calculus.

Theorem 25 (Guarded Fixpoint Logic [60]) The satisfiability problem for guarded
fixpoint logic over transition systems is EXPTIME-complete.

Adaptations of many results presented in this chapter hold for guarded fixpoint
logic: game characterization of model checking, a tree-model property, bisimulation
invariance, and iteration of structures [20, 56, 57].

26.5 Related Work

As with any good concept, the μ-calculus can be approached from many directions.
The first point of view is to consider it as a logic of programs. The family of logics
of programs is divided into two groups. In exogenous logics, a program is a part of
a formula; in endogenous logics, a program is a part of a model. Dynamic logic and
Hoare logic are examples of exogenous logics. Temporal logic and Floyd diagrams
are endogenous logics. The μ-calculus also belongs to this second group.

Exogenous logics merit a small digression. Among them, dynamic logics are
the closest to the μ-calculus. Historically, the research on dynamic logics has been
an intermediate step to major results of the theory of the μ-calculus [110, 111].
Dynamic logics were developed independently by Slawicki [101] and Pratt [97].
A propositional version of dynamic logic was proposed and studied by Fisher and
Ladner [49]. A survey of Harel gives a very good overview of the subject [61].
A more recent reference is the book of Harel, Kozen and Tiuryn [62].

The second point of view is that the μ-calculus is a propositional version of the
least fixpoint logic: an extension of first-order logic with fixpoint operators. From
this point of view Y. Moschovakis’ work in model theory laid foundations for the
logic [85]. Least fixpoint logic and the closely related inflationary fixpoint logic are
intensively studied in finite-model theory [40, 58, 66, 77]. Inflationary fixpoint logic
has its propositional version too [39]; while it has greater expressive power, it is less
algorithmically manageable than the μ-calculus.

The third point of view is to consider the μ-calculus as a basic modal logic ex-
tended with a fixpoint operator. Modal logic was proposed by philosophers at the
beginning of the twentieth century [18]. In the 1950s a possible worlds semantics
was introduced, and since then modal logic has proven to be an appealing language
to describe properties of transition systems. A number of ways of using a fixpoint
operator in program logics have been proposed [64, 94, 97, 105]. The μ-calculus as
it is known now was formulated by Kozen in [75].
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The expressive completeness theorem for the μ-calculus, Theorem 22, is an ana-
log of van Benthem’s theorem [117] saying that a first-order formula is equivalent
to a modal formula if and only if it is bisimulation invariant. So Theorem 22 says
that μ-calculus is to MSOL what modal logic is to first-order logic. Expressive com-
pleteness results have also been proved for extensions of the μ-calculus as well as
for its fragments [57, 67].

As stated in Theorem 8, the model-checking problem is equivalent to check-
ing the emptiness of nondeterministic parity automata on infinite trees. Similarly,
the satisfiability problem is linked to automata emptiness (see Theorem 14). Many
arguments in this chapter have an automata-theoretic flavor. This explains the rele-
vance of the study of determinization and complementation operations for automata
for the theory of the μ-calculus [34, 95, 100, 104, 119].

As with any successful formalism it is very tempting to extend the μ-calculus
while retaining most of its good properties. In some sense the expressive com-
pleteness theorem tells us that it is not possible to keep all the good properties. In
Sect. 26.4.3.2 we have described guarded fixpoint logics. The μ-calculi with back-
wards modalities, loop modalities, etc. have been studied separately [9, 25, 118].
There exists also a μ-calculus for timed transition systems [26, 63]. Quantitative
versions of the μ-calculus have also been proposed: be it for probabilistic transition
systems [1, 55, 81, 84], or for some form of discounting [48]. In Sect. 26.4.3.1 we
have seen how to extend μ-calculus to the case when the set of successors of a state
has some structure, for example linear order. Another extension in a similar spirit is
the coalgebraic μ-calculus [121].

The results on the model-checking problem have been discussed in Sect. 26.2.4.
It is worth mentioning that the problem has also been studied on some special
classes of transition systems: bounded tree and clique-width [91], bounded entan-
glement [13], and undirected graphs [15, 37].

The alternation hierarchy discussed in Sect. 26.3.4 is the most established way
of stratifying μ-calculus properties. Another hierarchy is the variable hierarchy ob-
tained by limiting the number of variables that can be used to write a formula. Most
common program logics, CTL, PDL, CTL∗, and even the game logic of Parikh [93]
are contained in the first two levels of this hierarchy. Still the variable hierarchy is
strict [14].

As we have seen in Sect. 26.4.2, most program logics such as CTL∗ or PDL
can be translated into the μ-calculus. It would be interesting to understand which
formulas of the μ-calculus correspond to formulas of, say, CTL. Put differently, for
a logic L we would like to decide whether a given μ-calculus formula is equivalent
to a formula of L. Decidability of this problem is known for several fragments of
first-order logic [11, 21–24, 96]. However, the problem is open for all major program
logics like CTL, CTL∗, or PDL.

There exist two other surveys on the subject that present the logic from different
angles [28, 120]. For coverage in depth of the theory of the μ-calculus we refer the
reader to the book of Arnold and Niwiński [8].
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71. Jurdziński, M.: Small progress measures for solving parity games. In: Reichel, H., Tison, S.
(eds.) Annual Symposium on Theoretical Aspects of Computer Science. LNCS, vol. 1770,
pp. 290–301. Springer, Heidelberg (2000)

72. Jurdzinski, M., Paterson, M., Zwick, U.: A deterministic subexponential algorithm for solv-
ing parity games. SIAM J. Comput. 38(4), 1519–1532 (2008)



26 The mu-calculus and Model Checking 917

73. Knapik, T., Niwinski, D., Urzyczyn, P.: Higher-order pushdown trees are easy. In: Nielsen,
M., Engberg, U. (eds.) Intl. Conf. on Foundations of Software Science and Computational
Structures (FoSSaCS). LNCS, vol. 2303, pp. 205–222. Springer, Heidelberg (2002)

74. Kobayashi, N.: Types and higher-order recursion schemes for verification of higher-order
programs. In: Shao, Z., Pierce, B.C. (eds.) Ann. ACM Symp. on Principles of Programming
Languages, pp. 416–428. ACM, New York (2009)

75. Kozen, D.: Results on the propositional mu-calculus. Theor. Comput. Sci. 27, 333–354
(1983)

76. Kupferman, O.: Automata theory and model checking. In: Clarke, E.M., Henzinger, T.A.,
Veith, H., Bloem, R. (eds.) Handbook of Model Checking. Springer, Heidelberg (2018)

77. Libkin, L.: Elements of Finite Model Theory. Springer, Heidelberg (2004)
78. Long, D.E., Browne, A., Clarke, E.M., Jha, S., Marrero, W.R.: An improved algorithm for

the evaluation of fixpoint expressions. In: Dill, D.L. (ed.) Intl. Conf. on Computer-Aided
Verification (CAV). LNCS, vol. 818, pp. 338–350. Springer, Heidelberg (1994)

79. Maksimova, L.L.: Absence of interpolation and of Beth’s property in temporal logics with
“the next” operation. Sib. Math. J. 32(6), 109–113 (1991)

80. Martin, D.: Borel determinacy. Ann. Math. 102, 363–371 (1975)
81. McIver, A., Morgan, C.: Results on the quantitative μ-calculus qMμ. Trans. Comput. Log.

8(1) (2007)
82. McMillan, K.L.: Interpolation and model checking. In: Clarke, E.M., Henzinger, T.A., Veith,

H., Bloem, R. (eds.) Handbook of Model Checking. Springer, Heidelberg (2018)
83. McNaughton, R.: Infinite games played on finite graphs. Ann. Pure Appl. Log. 65, 149–184

(1993)
84. Mio, M.: Game semantics for probabilistic mu-calculi. Ph.D. thesis, University of Edinburgh

(2012)
85. Moschovakis, Y.: Elementary Induction on Abstract Structures. North-Holland, Amsterdam

(1974)
86. Moss, L.S.: Coalgebraic logic. Ann. Pure Appl. Log. 96, 277–317 (1999). Erratum published

Ann. Pure Appl. Log. 99, 241–259 (1999)
87. Mostowski, A.W.: Regular expressions for infinite trees and a standard form of automata. In:

Skowron, A. (ed.) Fifth Symposium on Computation Theory. LNCS, vol. 208, pp. 157–168.
Springer, Heidelberg (1984)

88. Mostowski, A.W.: Games with forbidden positions. Tech. Rep. 78, University of Gdansk
(1991)

89. Muller, D., Schupp, P.: Alternating automata on infinite trees. Theor. Comput. Sci. 54, 267–
276 (1987)
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Chapter 27
Graph Games and Reactive Synthesis

Roderick Bloem, Krishnendu Chatterjee, and Barbara Jobstmann

Abstract Graph-based games are an important tool in computer science. They have
applications in synthesis, verification, refinement, and far beyond. We review graph-
based games with objectives on infinite plays. We give definitions and algorithms
to solve the games and to give a winning strategy. The objectives we consider are
mostly Boolean, but we also look at quantitative graph-based games and their ob-
jectives. Synthesis aims to turn temporal logic specifications into correct reactive
systems. We explain the reduction of synthesis to graph-based games (or equiva-
lently tree automata) using synthesis of LTL specifications as an example. We treat
the classical approach that uses determinization of parity automata and more mod-
ern approaches.

27.1 Introduction

Reactive synthesis is the problem of automatically constructing a correct reactive
system from a given specification [75]. Graph games (or, equivalently, tree au-
tomata) are a central tool in solving the synthesis problems [30, 101]. In this chap-
ter, we shall review the theory of games and synthesis. Besides reactive synthe-
sis, Syntax-Guided Synthesis (SYGUS) has become a popular and promising ap-
proach to automatically generate (parts of) programs from specifications. SYGUS
differs from reactive synthesis in its goals and especially in the techniques it uses:
it is typically done inductively instead of deductively, and is often driven by coun-
terexamples (hence the related term Counterexample-Guided Inductive Synthesis or
CEGIS). We refer the interested reader to [8] and the references contained in that
paper.

R. Bloem (B)
Graz University of Technology, Graz, Austria
e-mail: roderick.bloem@iaik.tugraz.at

K. Chatterjee
IST Austria, Klosterneuburg, Austria

B. Jobstmann
École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

© Springer International Publishing AG, part of Springer Nature 2018
E.M. Clarke et al. (eds.), Handbook of Model Checking,
DOI 10.1007/978-3-319-10575-8_27

921

mailto:roderick.bloem@iaik.tugraz.at
http://dx.doi.org/10.1007/978-3-319-10575-8_27


922 R. Bloem et al.

We consider two-player perfect-information nonterminating games played on
graphs, that proceed for an infinite number of rounds. The state of a game is a
vertex of a graph. The graph is partitioned into player-1 states and player-2 states:
in player-1 states, player 1 chooses the successor vertex; in player-2 states, player 2
chooses the successor vertex. In each round, the state changes along an edge of
the graph to a successor vertex. Thus, the outcome of the game being played for
an infinite number of rounds is an infinite path through the graph. These games
play a central role in several areas of computer science. One important application
arises when the vertices and edges of a graph represent the states and transitions of
a reactive system, and the two players represent controllable versus uncontrollable
decisions during the execution of the system, which corresponds to the synthesis
problem for reactive systems. Game-theoretic formulations have proved useful not
only for synthesis, but also for the modeling [1, 79], refinement [104], verifica-
tion [6, 9], testing [17], and compatibility checking [3, 4] of reactive systems. The
use of ω-regular objectives is natural in these application contexts. This is because
the winning conditions of the games arise from requirements specifications for reac-
tive systems, and the ω-regular sets of infinite paths provide an important and robust
paradigm for such specifications [124].

Synthesis is the problem of automatically constructing a correct reactive system
from a given specification. Thus, synthesis goes beyond verification, in which both
a specification and an implementation have to be given, by automatically deriving
the latter from the former. Synthesis is thus a fundamental approach that aims at
moving the construction of reactive systems from the imperative to the declarative
level. If one is convinced that a complete specification should be written before the
implementation is constructed, synthesis is a natural and important endeavor.

In this chapter, we employ the term synthesis exclusively in the setting of syn-
chronous reactive systems, which maintain a constant interaction with the environ-
ment. We will assume that both the inputs and the outputs of such a system are
Boolean. One way to specify the behavior of such systems is as a set of infinite
words over the input and output valuations. The distinction between inputs and out-
puts is crucial: outputs are under direct control of the system whereas inputs are
not. Thus, at any point in time, we must find some output that works for all inputs.
More precisely, given a finite input sequence, we must find some output that allows
a correct execution for any possible future input.

The synthesis question and the corresponding decidability problem, called re-
alizability, were originally posed by Church [75], who used the monadic second-
order logic of one successor (S1S) as a specification language. The problem was
solved by Rabin [146] and by Büchi and Landweber [30] in the late 1960s. In this
chapter, we will focus on the more modern Linear Temporal Logic (LTL) [141].
Initial work on synthesizing systems from temporal specifications assumed cooper-
ative environments and reduced the synthesis problem to satisfiability [76, 84, 126].
The problem of synthesizing systems from specifications in LTL (in adversary en-
vironments, which are the focus of this chapter) was studied in [142], where it was
shown that the problem is complete for 2EXPTIME. Even though the complexity
of the synthesis problem from LTL is significantly lower than that from S1S, which
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is non-elementary [166], it discouraged researchers and led to few developments
for several decades. This relative silence has been followed by a flurry of activity
since around 2005. In this chapter, we will give an overview of both the classical
approach to LTL synthesis and the relatively practical approaches that have been
proposed recently.

The question of synthesis can be generalized to controller synthesis: the question
of finishing an incompletely specified system. This problem was first studied by Ra-
madge and Wonham [148] under the name of Synthesis of Discrete Event Systems.
The question here is to control a plant in such a way that it fulfills its specification.
Again, we must distinguish between the inputs of the plant, which are determined
by an uncontrollable environment, and its control parameter: the control parameter
must be adjusted continually in such a way that the plant works correctly for any
input. The original approach aimed at safety properties only, but can be extended to
more expressive specification formalisms using the same techniques that are used in
synthesis. Note that in synthesis we have only a specification, whereas in controller
synthesis we have both a specification and an incomplete implementation. The dis-
tinction is somewhat fluid as implementations can be expressed in temporal logic
(using extra variables), while specifications can be expressed as automata, which
are a form of transition systems.

A standard approach to verification is automata theoretic: we build an automaton
corresponding to the negation of the specification and construct the product with the
system that we wish to verify. The system can evolve in several ways, depending
on the inputs, which means that the product is nondeterministic, and multiple paths
must be searched for an incorrect execution. In synthesis, in contrast, we have two
types of freedom: the freedom to choose the inputs, which we cannot control, and
the freedom to choose the outputs, which are under our control. Thus, instead of a
nondeterministic automaton, the natural model here is a game, or more precisely, an
infinite zero-sum graph-based game with two players, which is won iff the specifi-
cation is satisfied. (Equivalently, we can use tree automata.)

In the next section, we will discuss game theory, with a focus on the games that
arise in synthesis settings. We will start with qualitative games, i.e., we will look
at games with various Boolean winning conditions that occur in practice. Then,
we will consider quantitative games, which occur when we consider more subtle
specifications. In Sect. 27.3 we will discuss the classical and some more modern
algorithms for LTL synthesis. In Sect. 27.4, we will conclude with related work that
we cannot discuss in full detail.

27.2 Theory of Graph-Based Games

In this section we present definitions of game graphs, plays, strategies, and objec-
tives. We will define when a game is won and introduce the appropriate decision
problems. We will then discuss the basic techniques and algorithms to solve them.



924 R. Bloem et al.

27.2.1 Game Graphs and Strategies

Game Graphs. A game graph G = 〈(S,E), (S1, S2)〉 consists of a finite set S of
states partitioned into player-1 states S1 and player-2 states S2 (i.e., S = S1 ∪ S2

and S1 ∩ S2 = ∅), and a set E ⊆ S × S of edges such that for all s ∈ S, there exists
(at least one) t ∈ S such that (s, t) ∈ E. In other words, every state has at least
one outgoing edge. A player-1 game is a game graph where S1 = S and S2 = ∅,
and vice versa for player 2. The sub-graph of G induced by U ⊆ S is the graph
〈(U,E ∩ (U ×U)), (U ∩ S1,U ∩ S2)〉 (which is not a game graph in general); the
sub-graph induced by U is a game graph if for all s ∈ U there exists a t ∈ U such
that (s, t) ∈E.

Plays and Strategies. A game on G starting from a state s0 ∈ S is played in rounds
as follows. If the game is in a player-1 state, then player 1 chooses an outgoing
edge to determine the successor state; otherwise the game is in a player-2 state, and
player 2 chooses the successor state. This way, the game results in a play from s0,
i.e., an infinite path ρ = s0s1 · · · ∈ Sω such that (si , si+1) ∈ E for all i ≥ 0. We
denote the set of all plays as Plays(G). The prefix of length n of ρ is denoted by
ρ(n). We often identify ρ with the set of states in ρ, and we use expressions such
as s0 ∈ ρ. A strategy for player 1 is a recipe that prescribes how to extend the pre-
fix of a play. Formally, a strategy σ for player 1 is a function σ : S∗S1 → S such
that (s, σ (w · s)) ∈ E for all w ∈ S∗ and s ∈ S1. An outcome of σ from s0 is a
play s0s1 . . . such that σ(s0 . . . si) = si+1 for all si ∈ S1. Strategy and outcome for
player 2 are defined analogously. We denote by Σ and Π the set of strategies for
player 1 and player 2, respectively. Given strategies σ and π for player 1 and 2,
respectively, and a starting state s0, there is a unique play (or outcome) s0s1 . . . , de-
noted ρ(s0, σ,π), such that for all i ≥ 0, if si ∈ S1, then si+1 = σ(s0s1 . . . si) and if
si ∈ S2, then si+1 = π(s0s1 . . . si).

Finite-Memory and Memoryless Strategies. A strategy uses finite-memory if it
can be encoded by a deterministic transducer 〈M,m0, σu, σn〉 whereM is a finite set
(the memory of the strategy), m0 ∈M is the initial memory value, σu :M ×S→M

is an update function, and σn :M × S1 → S is a next-move function. The size of the
strategy is the number |M| of memory values. If the game is in a player-1 state s,
the strategy chooses t = σn(m, s) as the next state (where m is the current memory
value), and the memory is updated to σu(m, s). Formally, 〈M,m0, σu, σn〉 defines
the strategy σ such that σ(w ·s)= σn(σ̂u(m0,w), s) for allw ∈ S∗ and s ∈ S1, where
σ̂u extends σu to sequences of states in the usual way. A strategy is memoryless if
it is independent of the history of the play and depends only on the current state.
In other words, a memoryless strategy σ has only one memory state, i.e., |M| = 1,
and hence the strategy is specified as σ : S1 → S. For a finite-memory strategy
σ , Gσ is the graph obtained as the product of G with the transducer defining σ ,
where (〈m,s〉, 〈m′, s′〉) is a transition in Gσ if m′ = σu(m, s) and either s ∈ S1 and
s′ = σn(m, s), or s ∈ S2 and (s, s′) ∈E.
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27.2.2 Objectives

In this section we will define objectives. An objective for G is a set ϕ ⊆ Sω.

Qualitative Objectives. For an infinite play ρ we denote by Inf(ρ) the set of states
that occur infinitely often in ρ. We consider the following objectives:

• Reachability Objectives. A reachability objective is defined by a set F ⊆ S of
target states, and the objective requires that a state in F is visited at least once.
Formally, ReachG(F) = {ρ ∈ Plays(G) | ∃s ∈ ρ : s ∈ F }. The dual of reacha-
bility objectives are safety objectives, and a safety objective is defined by a set
F ⊆ S of safe states, and the objective requires that only states in F are visited.
Formally, SafeG(F)= {ρ ∈ Plays(G) | ∀s ∈ ρ : s ∈ F }.

• Büchi Objectives. A Büchi objective is defined by a set B ⊆ S of target states,
and the objective requires that a state in B is visited infinitely often. Formally,
BuchiG(B) = {ρ ∈ Plays(G) | Inf(ρ) ∩ B �= ∅}. Büchi objectives represent live-
ness specifications, and the dual of a Büchi objective is called a co-Büchi objec-
tive. A co-Büchi objective consists of a set C ⊆ S of states and requires states out-
side C to be visited finitely often, i.e., coBuchiG(C) = {ρ ∈ Plays(G) | Inf(ρ)⊆
C}.

• Rabin and Streett Objectives. Rabin and Streett objectives are obtained as
Boolean combinations of Büchi and co-Büchi objectives. A Rabin specification
for the game graph G is a finite set R = {(E1,F1), . . . , (Ed,Fd)} of pairs of sets
of states, that is, Ej ⊆ S and Fj ⊆ S for all 1≤ j ≤ d . The pairs in R are called
Rabin pairs. We assume without loss of generality that

⋃
1≤j≤d(Ej ∪ Fj ) = S.

The Rabin objective requires that for some 1 ≤ j ≤ d , all states in the left-
hand set Ej are visited finitely often, and some state in the right-hand set Fj
is visited infinitely often. Thus, the Rabin objective defined by R is the set
RabinG(R)= {ρ ∈ Plays(G) | (∃1≤ j ≤ d)(Inf(ρ) ∩Ej = ∅∧ Inf(ρ) ∩ Fj �= ∅)}
of winning paths. Note that the co-Büchi objective coBuchiG(C) is equal to
the single-pair Rabin objective RabinG({(S \ C,S)}), and the Büchi objective
BuchiG(B) is equal to the two-pair Rabin objective RabinG({(∅,B), (S,S)}).1
The complements of Rabin objectives are called Streett objectives. A Streett spec-
ification for G is likewise a set Q = {(E1,F1), . . . , (Ed,Fd)} of pairs of sets of
states Ej ⊆ S and Fj ⊆ S such that

⋃
1≤j≤d(Ej ∪ Fj ) = S. The pairs in Q are

called Streett pairs. The Streett objective Q requires that for every Streett pair
(Ej ,Fj ), 1 ≤ j ≤ d , if some state in the right-hand set Fj is visited infinitely
often, then some state in the left-hand set Ej is visited infinitely often. For-
mally, the Streett objective defined byQ is the set StreettG(Q)= {ρ ∈ Plays(G) |
(∀1 ≤ j ≤ d)(Inf(ρ) ∩ Ej �= ∅ ∨ Inf(ρ) ∩ Fj = ∅)} of winning paths. Note that
StreettG(Q)= Plays(G) \RabinG(Q).

1Note that no run can satisfy the condition expressed by the second pair, which is however required
by the definition.



926 R. Bloem et al.

• Parity Objectives. Let p : S → N0 be a priority function. The parity objective
ParityG(p) = {ρ ∈ Plays(G) | min{p(s) | s ∈ Inf(ρ)} is even} requires that the
minimum of the priorities of the states visited infinitely often be even. The special
cases of Büchi and co-Büchi objectives correspond to the case with two priorities,
p : S→ {0,1} and p : S→ {1,2} respectively. (Here, priorities 0 and 2 are for
the accepting states, 1 is for the rejecting states.)

We refer to the above objectives as qualitative objectives since they are defined by
Boolean combinations of sets that are subsets of S.

Relationship Between Rabin, Streett and Parity Objectives. We have already
seen how Büchi and co-Büchi objectives are special cases of Rabin, Streett and
parity objectives. We now present the relationship between Rabin, Streett and par-
ity objectives. Parity objectives are also called Rabin-chain objectives, as they
are a special case of Rabin objectives [169]: if the sets of a Rabin specification
R = {(E1,F1), . . . , (Ed,Fd)} form a chain E1 � F1 � E2 � F2 � · · · � Ed � Fd ,
then RabinG(R) = ParityG(p) for the priority function p: S→ {0,1, . . . ,2d} that
for every 1≤ j ≤ d assigns to each state inEj \Fj−1 the priority 2j−1, and to each
state in Fj \Ej the priority 2j , where F0 = ∅. Conversely, given a priority function
p: S→ {0,1, . . . ,2d}, we can construct a chain E1 � F1 � · · ·� Ed+1 � Fd+1 of
d + 1 Rabin pairs such that ParityG(p) = RabinG({(E1,F1), . . . , (Ed+1,Fd+1)})
as follows: let E1 = ∅ and F1 = p−1(0), and for all 1 ≤ j ≤ d + 1, let Ej =
Fj−1 ∪ p−1(2j − 3) and Fj = Ej ∪ p−1(2j − 2). Hence, the parity objectives are
a subclass of the Rabin objectives that is closed under complementation. It follows
that every parity objective is both a Rabin objective and a Streett objective. The par-
ity objectives are of special interest, because every ω-regular objective can be turned
into a parity objective by modifying the game graph (take the synchronous product
of the game graph with a deterministic parity automaton that accepts the ω-regular
objective) [133]. Moreover, parity objectives enjoy several attractive computational
properties (see discussion of algorithms for parity games in Sect. 27.2.4).

Quantitative Objectives. We consider three classical quantitative objectives de-
fined with weight functions on the edges of the graph. Let w : E→ Z be a weight
function, where positive numbers represent rewards. We denote by W the largest
weight (in absolute value) according to w.

• Energy Objectives. Given a play ρ, the energy level of a prefix γ = s0s1 . . . sn of
the play is EL(γ )=∑n−1

i=0 w((si, si+1)). Given an initial credit c0 ∈N∪ {∞}, the
energy objective PosEnergyG(c0)= {ρ ∈ Plays(G) | ∀n≥ 0 : c0+EL(ρ(n))≥ 0}
requires that the energy level is always non-negative.

• Mean-Payoff Objectives. The mean-payoff value of a play ρ = s0s1 . . . is
MP(ρ) = lim infn→∞ 1

n
· EL(ρ(n)). Given a threshold θ ∈ Q, the mean-payoff

objective MeanPayoffG(θ)= {ρ ∈ Plays(G) |MP(ρ)≥ θ} requires that the mean-
payoff value be at least θ .

• Discounted Objectives. Given a discount factor 0 < λ < 1, the discounted
value of a play ρ = s0s1 . . . is Disc(λ,ρ) =∑∞

i=0 λ
i · w((si, si+1)). Given a
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threshold θ ∈ Q, the discounted objective DiscountedG(λ, θ) = {ρ ∈ Plays(G) |
Disc(λ,ρ)≥ θ} requires that the discounted value be at least θ .

In the sequel, when the game G is clear from the context, we omit the subscript in
objective names.

27.2.3 Winning and Optimal Strategies; Decision Problems

We now define the notion of winning in games and decision problems.

Winning Strategies and Sets. Given a game graph G, a starting state s0 and an
objective ϕ, a strategy σ is winning for player 1 from s0 for ϕ if for all strategies
π for player 2 we have ρ(s0, σ,π) ∈ ϕ. The set of winning states W1(ϕ) = {s0 |
∃σ ∈ Σ. ∀π ∈ Π. ρ(s0, σ,π) ∈ ϕ} is the set of states s0 such that player 1 has a
winning strategy from s0 for ϕ (note that an objective is a set of plays). The winning
set W2(ϕ) = {s0 | ∃π ∈ Π. ∀σ ∈ Σ. ρ(s0, σ,π) ∈ ϕ} is defined analogously. We
will consider the winning sets and strategies for objectives defined in the previous
subsection, i.e., reachability, safety, Büchi, co-Büchi, parity, Rabin, Streett, energy,
mean-payoff and discounted objectives. For energy objectives, we will also consider
the finite initial credit problem, where the winning region is the set of states s0 such
that there exists a finite initial credit c0 such that s0 ∈W1(PosEnergyG(c0)).

Decision Problems. The decision problems that we consider consist of an input
game graphG, an objective ϕ and a state s0, and the decision problem asks whether
s0 ∈W1(ϕ). We will also consider the decision problem for the finite initial credit
problem, which asks whether a given state s0 is in the winning set for the finite
initial credit problem.

27.2.4 Complexity and Algorithms for Graph Games
with Qualitative Objectives

In this section we will discuss the results related to graph games with qualitative
objectives. We will focus on the strategy complexity, computational complexity,
and algorithms. We will mention the basic techniques and relevant pointers to the
literature. We will first discuss symbolic algorithms for game solving.

Symbolic Algorithms. The symbolic algorithms for game solving are obtained by
characterizing the winning set using μ-calculus formulae (cf. Chap. 26 in this Hand-
book [24]). A μ-calculus formula is a succinct description of a nested iterative algo-
rithm that uses only set operations and the predecessor operators (described in the
next paragraph). All the set operations and predecessor computations are symbolic
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steps that are available as primitive operations in, e.g., a BDD library (cf. Chap. 7
in this Handbook [29]) such as CuDD [164]. Thus, a μ-calculus formula for the
winning set presents a symbolic algorithm for game solving. We will describe the
μ-calculus formula for reachability and Büchi games. The μ-calculus formulas for
parity games are presented in [86] and they were later generalized to Rabin and
Streett games in [138].

Reachability and Safety Games. We first present the classical algorithm to solve
reachability games. Let us first define the predecessor operator. Given a set X ⊆ S
of states, the predecessor operator Pre1(X) is defined as follows

Pre1(X)=
{
s ∈ S1

∣
∣ ∃t ∈X.(s, t) ∈E}∪ {

s ∈ S2
∣
∣ ∀t ∈ S.(s, t) ∈E→ t ∈X}

.

In other words, Pre1(X) is the set of states such that either the state is a player-1
state and there is a next state in X or the state is a player-2 state and all choices lead
to a next state in X. The dual predecessor operator is as follows:

Pre2(X)=
{
s ∈ S2

∣
∣ ∃t ∈X.(s, t) ∈E}∪ {

s ∈ S1
∣
∣ ∀t ∈ S.(s, t) ∈E→ t ∈X}

.

The classical algorithm for games with reachability objectives is the fixpoint compu-
tation of the Pre1(·) operator. Given a target set T , let T0 = T , and for i ≥ 0, let Ti+1
be defined inductively as Ti+1 := Ti ∪ Pre1(Ti). Let us consider the fixpoint, which
is also called the attractor of player 1 to T . Let T∗ = Attr1(T )=⋃

i≥0 Ti . A memo-
ryless strategy for player 1 for T∗ is defined as follows: for a state s ∈ (Ti+1 \Ti)∩S1
choose an edge (s, t) such that t ∈ Ti (such an edge exists by construction). It is
easy to show by induction that for all s ∈ Ti , player 1 can ensure to reach T within
i steps against all player-2 strategies. Hence T∗ ⊆W1(Reach(T )). Let T ∗ = S \ T∗.
For all s ∈ T ∗ ∩ S1, there are no outgoing edges (s, t) with t ∈ T∗ (otherwise, s
would have been included in T∗); and for all s ∈ T ∗ ∩ S2, there is an outgoing
edge (s, t) with t ∈ T ∗ (otherwise, s would have been included in T∗). A memory-
less strategy for player 2 that for all s ∈ T ∗ ∩ S2 chooses an outgoing edge (s, t)
with t ∈ T ∗ ensures against all player-1 strategies that T ∗ is not left. Thus we have
T ∗ ⊆W2(Safe(S \T )). A linear-time algorithm to computeW1(Reach(T )) is given
in [13, 106]. We summarize the main results of reachability and safety games in the
following theorem.

Theorem 1 Given a game graphG with n vertices andm edges and a target set T ,
the following assertions hold:

1. W1(Reach(T ))= S \W2(Safe(S \ T )) and memoryless winning strategies exist
for both players.

2. The winning set W1(Reach(T )) can be computed in O(m) (linear) time.
3. The winning set W1(Reach(T )) can be computed symbolically with the μ-

calculus formula μX.[T ∪ Pre1(X)].

Büchi and co-Büchi Games. The algorithm for Büchi games is obtained by repeat-
edly applying the attractor computation (reachability game solutions). Informally,
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Fig. 1 Büchi game of Example 1

the algorithm is as follows: let B be the set of Büchi states. We first compute the set
A1 =W1(Reach(B))= Attr1(B) such that player 1 has a strategy to reach B at least
once. In the complement set of A1, player 1 cannot even reach B once and hence is
clearly not winning. The complement set A1 and the player-2 attractor Attr2(A1) are
removed from the graph. The process is iterated unless the set A1 is empty. If A1
is empty, then from all states in A1 player 1 can ensure to reach B and stay in A1
and hence ensure that the set B is visited infinitely often. We now formally describe
an iteration j of the algorithm: the set of states at iteration j is denoted by Sj , the
game graph byGj , and the set of Büchi states B ∩Sj by Bj . Given a game graphG
and a set U of states, we denote by G � U the game graph induced by U . We have
that Gj is the game graph induced by Sj . At iteration j , the algorithm first finds
the set of states Aj1 from which player 1 can ensure that the play reaches the set Bj ,

i.e., computes Attr1(B
j ) in Gj . The rest of the states A

j

1 = Sj \Aj1 are winning for

player 2. Then the set of states Wj+1, from which player 2 can ensure reaching A
j

1

i.e., Attr2(A
j

1) in Gj , is computed. The set Wj+1 is winning for player 2, and not
for player 1 in Gj and also in G. Thus, it is removed from the vertex set to obtain
game graph Gj+1. The algorithm then iterates on the reduced game graph, i.e., pro-
ceeds to iteration j + 1 on Gj+1. The correctness proof of the algorithm shows that
when the algorithm terminates, all the remaining states are winning for player 1. The
pseudocode of the algorithm is described in Algorithm 1. For improved algorithms
for Büchi games see [52, 53, 61, 64].

Example 1 We illustrate the algorithm for Büchi games on the example game graph
shown in Fig. 1. The player-1 states are depicted as circles and player-2 states as

boxes; and Büchi states are indicated as double circles. The set A
0
1 is the set {s0, s1}

and its player-2 attractor is {s0, s1, s2}. In the following iteration the set A
1
1 is the

set {s3, s4} and its player-2 attractor is also the set {s3, s4}. In the next iteration

the set A
2
1 is empty, and thus the algorithm returns ({s5, s6, s7}, {s0, s1, s2, s3, s4}).

The winning strategy for player 1 in the set {s5, s6, s7} (indicated by bold arrows
in Fig. 1) is as follows: in state s5 choose the successor s6 and in s6 choose the
successor s5.

Characterization of Winning Set by μ-calculus Formula. The μ-calculus for-
mula to characterize the winning set for Büchi objectives is as follows:

νY.μX.
[(
B ∩ Pre1(Y )

)∪ (
(S \B)∩ Pre1(X)

)]
.
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Algorithm 1: Classical algorithm for Büchi Games

Input : A game graph G= 〈(S,E), (S1, S2)〉 and B ⊆ S.
Output: (S \W,W): the winning set partition.
1. G0 :=G; S0 := S; 2. W0 := ∅; 3. j := 0
4. repeat

4.1 Wj+1 := AvoidSetClassical(Gj ,B ∩ Sj )
4.2 Sj+1 := Sj \Wj+1; Gj+1 =G � Sj+1; j := j + 1;

until Wj = ∅
5. W :=⋃j

k=1Wk ;
6. return (S \W,W).

Procedure AvoidSetClassical
Input: Game graph Gj and Bj ⊆ Sj .
Output: set Wj+1 ⊆ Sj .

1. Aj1 := Attr1(B
j ) in Gj ; 2. A

j

1 := Sj \Aj1; 3. Wj+1 := Attr2(A
j

1) in Gj ;

The argument that the above formula gives the winning set for Büchi objectives is
as follows: let Y∗ = νY.μX.[(B ∩ Pre1(Y )) ∪ ((S \ B) ∩ Pre1(X))]. Since Y∗ is a
fixpoint, if we replace Y by Y∗ we would obtain the same result, i.e.,

Y∗ = μX.
[(
B ∩ Pre1(Y∗)

)∪ (
(S \B)∩ Pre1(X)

)]
.

Let T = B ∩ Y∗; and all states in B ∩ Y∗ satisfy Pre1(Y∗), i.e., in states of B ∩ Y∗
player 1 can ensure that the next state is in Y∗. Treating the set T = B ∩ Y∗ =
B ∩Pre1(Y∗) as the target set for reachability objectives, it follows that for all states
in Y∗ player 1 can ensure to reach T . Hence player 1 can ensure to reach T from all
states in Y∗ and Y∗ is never left, and thus T is visited infinitely often. Since T ⊆ B ,
it follows that the Büchi objective is satisfied. A similar argument shows that in
the complement of the μ-calculus formula, player 2 can ensure the complement
co-Büchi objective (we also refer the reader to Chap. 26 in this Handbook [24]
for an excellent exposition on μ-calculus). The main results for Büchi games are
summarized as follows.

Theorem 2 Given a game graph G, with set B of Büchi states, the following asser-
tions hold:

1. W1(Buchi(B)) = S \ W2(coBuchi(S \ B)) and memoryless winning strategies
exist for both players.

2. The winning set W1(Buchi(B)) can be computed in O(n ·m) (quadratic) time.
3. The winning set W1(Buchi(B)) can be computed symbolically with the μ-

calculus formula νY.μX.[(B ∩ Pre1(Y ))∪ ((S \B)∩ Pre1(X))].

Parity Games. Emerson and Jutla [86] established the equivalence of solving 2-
player parity games and μ-calculus model checking (see Chap. 26 in this Hand-
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book [24]). This intriguing connection led to much research attempting to solve
2-player parity games in polynomial time. Alas, the problem is still open. The classi-
cal algorithm for solving parity games proceeds by a recursive decomposition of the
problem and repeatedly solving games with reachability objectives [128, 169]. The
algorithm generalizes the algorithm presented for Büchi games, and the correctness
proof establishes the existence of memoryless winning strategies for both players.
The running time of the algorithm for games with n states, m edges, and d priorities
is O(nd−1 ·m). Jurdziński [111] gave an improved algorithm to solve parity games
based on a notion of ranking functions and progress measures. This algorithm, called

the small progress measure algorithm, has a running time of O(( 2n
d
)/ d2 0 ·m); more-

over, there exists a family of games on which the running time of the algorithm
is exponential. Another notable algorithm for solving parity games is the strategy
improvement algorithm [175]. This algorithm iterates local optimizations of mem-
oryless strategies which converge to a globally optimal strategy. Also see [154] for
another strategy improvement scheme. Based on the strategy improvement algo-
rithm, a randomized subexponential-time algorithm (with an expected running time
of O(2

√
n·logn)) for solving parity games was presented by Björklund et al. [15].

Friedmann [97] showed that there exists a family of games on which the running
time of the strategy-improvement algorithms is exponential, and for a more elabo-
rate description of lower bounds for strategy-improvement schemes see [98]. Jur-
dziński et al. [112] gave a deterministic subexponential-time algorithm for solving
2-player games with parity objectives. By combining the small progress measure
algorithm [111] and the deterministic subexponential-time algorithm [112], an im-

proved algorithm was presented in [153] with roughlyO(( 3n
d
)/ d3 0 ·m) running time.

We summarize the results in the following theorem.

Theorem 3 Given a game graph G, with a priority function p with d priorities,
the following assertions hold:

1. W1(Parity(p))= S \W2(Plays(G) \ Parity(p)) and memoryless winning strate-
gies exist for both players.

2. Given a state s, whether s ∈W1(Parity(p)) can be decided in NP ∩ coNP.

3. The winning set W1(Parity(p)) can be computed in O(( 3n
d
)/ d3 0 ·m), and also in

nO(
√
n) time.

4. The winning set W1(Parity(p)) can be computed symbolically with a μ-calculus
formula of alternation depth d − 1.

Rabin and Streett Games. Gurevich and Harrington [101] showed that for 2-player
games with ω-regular objectives, finite-memory strategies suffice for winning. The
construction of finite-memory winning strategies is based on a data structure, called
a latest appearance record (LAR), which remembers the order of the latest appear-
ances of the states in a play. Emerson and Jutla [85] established that for 2-player
games with Rabin objectives, memoryless strategies suffice for winning. The results
of Dziembowski et al. [80] give precise memory requirements for strategies in 2-
player games with ω-regular objectives: their construction of strategies is based on
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a tree representation of a Muller objective, called the Zielonka tree, which was in-
troduced in [180] (for details of Muller objectives see [169, 180]). It follows from
these results that for Streett objectives with d-pairs, d! memory is both necessary
and sufficient. Emerson and Jutla [85] showed that the solution problem for Rabin
objectives is NP-complete, and dually, coNP-complete for Streett objectives. The
notable algorithms for games with Rabin and Streett objectives include the adap-
tation of the classical algorithm of Zielonka [180] for Muller games specialized to
Rabin and Streett games (see [105] for an exposition); an algorithm that is based on
a reduction to the emptiness problem for weak alternating automata [119]; a gen-
eralization of the small progress measure algorithm for parity games to Rabin and
Streett games [138]; and a generalization of the subexponential-time algorithm for
parity games [112] to Rabin and Streett games [62]. Symbolic algorithms for Rabin
and Streett games are presented in [138].

Theorem 4 Given a game graph G, with a set P = {(E1,F1), . . . , (Ed,Fd)} of d
pairs of sets of states, the following assertions hold:

1. We haveW1(Rabin(P ))= S \W2(Plays(G) \Rabin(P )), andW1(Streett(P ))=
S \W2(Plays(G) \ Streett(P )). Memoryless winning strategies exist for Rabin
objectives, and for Streett objectives d! memory is necessary and sufficient.

2. Given a state s, the decision problem whether s ∈W1(Rabin(P )) is NP-complete,
and the decision problem whether s ∈W1(Streett(P )) is coNP-complete.

3. The winning sets W1(Rabin(P )) and W1(Streett(P )) can be computed in O(d! ·
nd ·m) time.

Boolean Combinations. We now discuss some Boolean combinations of the above
objectives that have been used in synthesis. The class of GR(1) (Generalized Re-
activity(1)) conditions was introduced in [140]. A GR(1) objective is specified as
an implication between a conjunction of k1 Büchi objectives (the assumptions)
and a conjunction of k2 Büchi objectives (the guarantees). A large class of objec-
tives in synthesis can be specified as GR(1) specifications [140], and games with
GR(1) conditions can be solved in time O(n2 · m · k1 · k2) [140] and also in time
O(n ·m · (k1 · k2)

2) [18]. Games with generalized parity objectives (conjunction and
disjunction of parity objectives) have been studied in [62].

27.2.5 Complexity and Algorithms for Graph Games
with Quantitative Objectives

In this section we will discuss the results related to solving graph games with quan-
titative objectives. Again we will focus on the strategy complexity, computational
complexity, and algorithms. We will mention the basic techniques, and the relevant
pointers to literature.
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Mean-Payoff and Energy Games. The existence of memoryless winning strategies
in mean-payoff games was established in [83], and the proof was based on induction
on the number of edges and establishing the equivalence of the mean-payoff game
played for finitely many steps and the mean-payoff game played forever. The algo-
rithmic solution for mean-payoff games was given in [181], using a value iteration
algorithm. Consider a sequence of valuations (vi)i≥0, where each valuation vi is a
function vi : S→ Z defined as follows: (1) v0(s)= 0 for all s ∈ S; and (2) for i ≥ 0
we have

vi+1(s)=
{

max(s,t)∈E{w(s, t)+ vi(t)} for s ∈ S1

min(s,t)∈E{w(s, t)+ vi(t)} for s ∈ S2.

Observe that vk can be computed in timeO(k ·m), where m is the number of edges.
Let v∗ be the optimal valuation of the mean-payoff game. The results of [181] show
that

vk

k
− 2 · n ·W

k
≤ v∗ ≤ vk

k
+ 2 · n ·W

k
,

whereW is the maximum absolute value of the weights. Furthermore, it was shown
in [181] that by computing vk for k = 4 · n3 ·W , the optimal value vector v∗ can be
computed. The result for energy games is similar: existence of memoryless winning
strategies was established in [33], and a value iteration algorithm was also given.
The running time of the value iteration algorithm is O(n3 · m ·W). Recently, the
value iteration algorithm has been improved by [28] to obtain an algorithm that runs
in O(n2 ·m ·W) time. A strategy improvement algorithm for mean-payoff games
is presented in [16]. We summarize the result in the following theorem (we present
the result for mean-payoff objectives, but the result for energy objectives is similar).

Theorem 5 Given a game graph G, with a weight function w,

1. For all θ ∈N, we haveW1(MeanPayoff(θ))= S \W2(Plays(G)\MeanPayoff(θ))
and memoryless winning strategies exist for both players.

2. Given a state s and θ ∈ N, whether s ∈ W1(MeanPayoff(θ)) belongs to NP ∩
coNP.

3. For θ ∈N, the winning setW1(MeanPayoff(θ)) can be computed inO(n2 ·m ·W)
time.

Discounted Games. The existence of memoryless strategies in discounted games
can be obtained as a special case of the result of Shapley [159]. The algorithm to
solve discounted games is similar to the value iteration for mean-payoff games,
and in discounted games the valuations need to be computed for O(n3 · 1

1−λ ) steps
(see [92, 181] for details). The results for discounted games are as follows.

Theorem 6 Given a game graph G, with a weight function w,

1. For all θ ∈ N and rational 0 < λ < 1, we have W1(Discounted(λ, θ)) = S \
W2(Plays(G) \ Discounted(λ, θ)) and memoryless winning strategies exist for
both players.
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2. Given a state s, rational 0< λ< 1, and θ ∈N, whether s ∈W1(Discounted(λ, θ))
can be decided in NP ∩ coNP.

3. For θ ∈N and rational 0< λ< 1, the winning set W1(Discounted(λ, θ)) can be
computed in O(n3 ·m · 1

1−λ ) time.

27.2.6 Reducibility Between Graph Games

We now discuss the reducibility between various classes of games.

Parity to Mean-Payoff Games. A reduction of parity games to mean-payoff
games was presented in [110]. The reduction is defined on the same game graph,
and the reduction function is as follows: for a state with priority i, the reward
is (−1)i · ni , where n is the number of states. Then we have W1(Parity(p)) =
W1(MeanPayoff(0)), i.e., the winning sets for parity and mean-payoff objectives
coincide. The question of whether the decision problem for mean-payoff objectives
can be reduced to parity objectives is open.

Mean-Payoff to Discounted Games. The reduction of mean-payoff games to dis-
counted games was presented in [181]. The reduction was defined on the same
game graph, with the same reward function, and the discount factor of λ defined
as 1 − 1

4·n3·W , where n is the number of states and W is the maximum absolute
value of the weights. The question of whether the decision problem for discounted
objectives can be reduced to mean-payoff objectives is open.

Energy Games and Mean-Payoff Games. The equivalence of the decision problem
for finite initial credit for energy objectives and the mean-payoff objectives was
established in [22]. The main argument is as follows: by the existence of memoryless
strategies it follows that if the answer to the mean-payoff objectives with threshold
θ = 0 is true, then player 1 can fix a memoryless strategy such that in all cycles
the sum of the rewards is non-negative, and this exactly coincides with the finite
initial credit problem (where after a prefix, the sum of the rewards in cycles is non-
negative). A similar argument holds for the reduction in the other direction.

27.2.7 Extensions

We briefly discuss several extensions of such games which have been studied in the
literature, and give a few relevant references (there is no attempt to be exhaustive).

Stochastic and Concurrent Games. In this chapter we focused on games where the
transitions are deterministic, and the games were turn-based (in each round one of
the players makes a move). The class of turn-based stochastic games (games with
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a probabilistic transition function) has been widely studied, for example in [34–
36, 65, 77, 78]. The class of concurrent games where both players make their move
simultaneously has also been studied in depth [5, 7, 37–39, 67, 91, 102, 127, 159].
For a survey of stochastic and concurrent games see [56].

Partial-Information Games. In partial-information games, the players choose
their moves based on incomplete information about the state of the game. Such
games are harder to solve than the corresponding perfect-information games. For
example, turn-based deterministic (2-player) games with partial information and
zero-sum reachability/safety objectives are EXPTIME-complete [149]. In the pres-
ence of more than two players, turn-based deterministic games with partial informa-
tion and reachability objectives (for one of the players) are even undecidable [149].
A key technique to solve partial-information games (when possible) is reduction to
perfect-information games, using a subset construction on the state space similar to
the determinization of finite automata. The results in [54] present a close connection
between a subclass of partial-information turn-based games and perfect-information
concurrent games. The algorithmic analysis of partial-information stochastic games
with ω-regular objectives has been studied in [44, 48, 49, 135]; the complexity of
partial-information Markov decision processes has been studied in [40, 46, 136].
The more general class of partial-information stochastic games where both players
have partial information has been studied in [14, 43]. Another interesting variety
of partial-information games is the class of games where the starting state is un-
known [103]. See [41, 47] for surveys related to partial-observation games.

Infinite-State Games. There are several extensions of games played on finite state
spaces to games played on infinite state spaces. Notable examples are pushdown
games and timed games. In the case of pushdown games, the state of a game en-
codes an unbounded amount of information in the form of the contents of a stack.
Deterministic pushdown games are solved in [176] (see [178] for a survey); prob-
abilistic pushdown games in [89, 90]; and pushdown games with quantitative ob-
jectives in [51, 68, 72]. In the case of timed games, the state of a game encodes an
unbounded amount of information in the form of real-numbered values for finitely
many clocks. Timed games are studied in [2, 123].

Quantitative and Qualitative Objectives. The problem of solving turn-based
games with a conjunction of quantitative and qualitative objectives has been studied
in [42, 60]; and multi-dimensional quantitative objectives in [27, 45, 71, 73, 174].
The problem of multi-dimensional objectives has also been widely studied for
stochastic models [25, 26, 50, 66, 74, 87, 96].

Logical Framework for Games. Logical frameworks where properties for games
can be described concisely with precise semantics for reasoning about games have
also been studied in the literature. Some prominent examples of logical frameworks
for reasoning about games are alternating-time temporal logic (ATL) and game
logic [9]; strategy logic and various fragments [63, 130, 131]; and coordination
logic [95].
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27.3 Reactive Synthesis

27.3.1 Introduction

In this section, we summarize techniques to automatically construct reactive systems
from specifications. A reactive system [124, 125] is a system that maintains an on-
going interaction with its environment. Examples of reactive systems are concurrent
programs, air traffic control systems, controllers for mechanical devices, and digital
hardware designs. We will use LTL as our representative specification language for
concurrent systems (see Chap. 2 in this Handbook [139]). Many interesting proper-
ties such as mutual exclusion, deadlock freedom, fairness, and termination can be
expressed in LTL.

We will limit ourselves to synchronous systems. This limitation implies that we
consider games in which the players strictly alternate turns. The theory needed for
asynchronous systems is somewhat different [115, 143, 145, 155, 170], as for such
systems the interleaving of processes is not under the control of (or even known to)
the system. Thus, it is not possible, for instance, to guarantee that the value of an
output changes before a given input changes [1, 5]. (See also [79], where realizabil-
ity is used to define the concept of “receptiveness” for asynchronous systems.)

The classical approach to synthesis (presented in Sect. 27.3.4) reduces the LTL
synthesis problem to the problem of synthesizing a system that realizes a language
defined by a Büchi automaton. Thus, this approach can be seen as a solution to
the more general problem of deriving a system from a specification given as an
ω-regular language.

Every synthesis problem consists of two inputs: (1) a specification that defines
the desired behavior of the system and (2) a partition of variables used in the specifi-
cation into input and output variables. Let us fix a set I of Boolean input signals and
a set O of Boolean output signals. Thus, the input and output alphabet are ΣI = 2I

and ΣO = 2O , respectively, where a letter is a subset of ΣI ∪ΣO that consists of
those signals that are true (cf. Chap. 2 in this Handbook [139]). In LTL synthesis
the specification is an LTL formula over a set of atomic propositions I ∪O .

The synthesis problem can be described as a turn-based game between two play-
ers: the environment and the system. In each round, the system picks an output from
ΣO and then the environment picks an input from ΣI , and the next round starts.
(This order corresponds to a Moore machine, we will consider Mealy machines be-
low.)

Example 2 Figure 2(a) gives a safety automaton for the specification �(r →
g ∨©g)—every request r must be followed by a grant g in the current or in the
next step. States are represented by circles and transitions by arrows. Each transi-
tion is labeled with one or more conjuncts of atomic propositions or their negations
(denoted by a bar), which indicate that a transition can only be taken with a letter
that satisfies one of these conjuncts. A word is accepted by this safety automaton if
its run stays within the accepting states (denoted by a double circle).
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Fig. 2 A safety automaton, a labeled safety game, and a system that wins the game

Fig. 3 A nondeterministic safety automaton, and a safety game that does NOT correspond to it

Figure 2(b) shows the safety game corresponding to this specification. The game
is between the system (player 1, owner of the states depicted as circles), which con-
trols output g, and the environment (player 2, owner of the boxes), which controls
input r. The game is created by splitting every transition of the automaton into two
parts: (i) one part controlled by the system and (ii) one part controlled by the en-
vironment. For instance, the self-loop on state q0 with the label r̄ḡ in Fig. 2(a) is
split into (i) the transition from state q0 to q0ḡ in Fig. 2(b), which indicates that the
system has chosen to set g to 0, and the transition from q0ḡ back to q0, which indi-
cates that the environment chooses to set r to 0. The winning condition for player 1
mirrors the acceptance condition of the automaton: stay within the accepting states.

Any player-1 strategy that follows the specification is winning for this game.
The bold arrows in Fig. 2(b) indicate one such winning strategy. Since strategies on
safety games are memoryless (see Theorem 1), a correct system can be implemented
by keeping track of the state of the game and always playing the proper response,
as shown in Fig. 2(c).
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For the acceptance conditions that we consider, this simple transformation works
as long as the specification is given by a deterministic automaton. For nondetermin-
istic automata it does not work: the nondeterministic automaton in Fig. 3 accepts
any word, but the game in the same figure on the right is lost for player 1. (The bold
arrays indicate a winning strategy for player 2, which shows that player 1 cannot
win this game from the initial state.) The need for determinization has a significant
impact on complexity, as we will see later.

In order to define the LTL synthesis problem formally, we first give a formal
definition of transducers, which describe the desired systems. We refer the reader to
Chap. 2 in this Handbook [139] for a detailed description of LTL.

27.3.2 Games, Transducers, Trees, and Automata

In the following, we define labeled games as deterministic tree automata. The two
formalisms are equivalent. We will need universal tree automata as an intermediate
step between a logical specification and the resulting transducer. The relation be-
tween (nondeterministic) tree automata and games without labels is formalized in
[101].

Note that the complete behavior of a transducer is a tree, where nodes are labeled
with outputs and edges with inputs: the output of the transducer after input word
w is the label of the node at the end of the path labeled w. Thus, a tree automaton
defines a set of transducers. In the following, we will formalize this notion.

Definition 1 (Tree, Labeled Tree) Given a finite alphabet D of directions, a D-tree
T ⊆D∗ is a prefix-closed set of words over D. The nodes v · d for d ∈D are the
children of v; v is their parent. The empty word ε is called the root of T .

A path ρ of T is a prefix-closed subset of T such that (1) the root is in ρ (i.e.,
ε ∈ ρ), and (2) every node has at most one child (i.e., ∀v ∈ T ∀d1, d2 ∈D, if d1 �= d2
and v · d1 ∈ ρ, then v · d2 /∈ ρ). A tree T is complete if T =D∗.

AΣ -labeledD-tree is a pair (T , τ ), where T is a tree and τ : T →Σ is a labeling
function mapping every node in T to a letter from a finite alphabet Σ .

Definition 2 (Transducer) A (finite-state Moore) transducer is a tuple M =
〈I ,O,M,m0, α,λ〉, where M is a (finite) set of states, m0 ∈M is the initial state,
α :M ×ΣI →M is a transition function mapping a state and an input to a suc-
cessor state, and λ : M → ΣO is a labeling function that maps every state to an
output.

We extend α from input letters to input words in the usual way, i.e., α(m,ε) =
m and α(m,v0 . . . vn) = α(α(m,v0 . . . vn−1), vn). An execution of M on input
x0, x1, · · · ∈ ΣI is a word m0,m1, . . . , where mi = α(mi−1, xi−1) for all i > 0.
The associated I/O word is λ(m0)∪ x0, λ(m1)∪ x1, . . . , and L (M ) is the set of all
I/O words of M .
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Every transducer M = 〈I ,O,M,m0, α,λ〉 generates a complete ΣO -labeled
ΣI -tree (T , τ ) with τ(ε) = λ(m0) and τ(v0 . . . vn) = λ(α(m0, v0 . . . vn−1)). We
denote by LT (M ) the singleton set that contains this tree. A complete labeled tree
(T , τ ) is called regular if there exists a finite-state transducer that generates (T , τ ).

Definition 3 (Deterministic Tree Automaton) A deterministic tree automaton (on
infinite labeled trees) is a tuple A = 〈D,Σ,Q,q0, δ,φ〉, where D and Σ are a
finite set of directions and letters, respectively, Q is a finite set of states, q0 ∈ Q
is the initial state, δ : Q × Σ → D→ Q is the transition function, and φ is an
acceptance condition that specifies a subset of Qω .

Given a ΣO -labeled ΣI -tree (T , τ ), a run of a deterministic tree automaton A
on (T , τ ) is an isomorphic Q-labeled tree (T , τr ) in which (1) τr (ε)= q0 and (2) if
τr(v) = q and τ(v) = σ , then τr(v · d) = δ(q, σ, d). (The acceptance conditions
correspond to the winning objectives defined in Sect. 27.2.2. We will discuss them
more below.)

Example 3 The labeled game in Fig. 2(b) is formally defined by a determinis-
tic tree automaton with D = {∅, {r}}, Σ = {∅, {g}}, Q = {q0, q1, q2}, δ(q0,∅) =
{(∅, q0), ({r}, q1)},2 δ(q0, {g}) = {(∅, q0), ({r}, q0)}, δ(q1,∅) = · · · , and φ =
{q0, q1}ω. The player-1 states (circles) correspond to states of the automaton; the
player-2 states (boxes) can be seen as the different transitions of the automaton, i.e.,
pairs of states and letters. Note that the automaton is deterministic, because in every
state for every pair of letters and directions, there exists exactly one successor state.

As an intermediate step in some synthesis procedures, we will use universal tree
automata. They differ from deterministic tree automata by being able to send multi-
ple copies of the automaton, in different states, to a child of a tree node.

Definition 4 (Universal Tree Automaton) A universal tree automaton is a tuple
A = 〈D,Σ,Q,q0, δ,φ〉, where δ :Q×Σ→ 2D×Q is the transition function, and
everything else is defined as for deterministic tree automata.

Deterministic tree automata are a special case of universal tree automata. Runs
of universal automata, however, are more complicated: they are not isomorphic to
the input tree. Thus, we label each node of the run tree with the node of the input
tree to which it pertains.

Note that the relation between universal and deterministic automata is more com-
plicated for infinitary acceptance conditions than in the finitary case, even for word
automata. By symmetry, the same holds for the relation between nondeterministic
and deterministic automata. For instance, not every Nondeterministic Büchi Word

2We use a set of tuples D×Q to represent a function D→Q.
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automaton has an equivalent Deterministic Büchi Word automaton [167] (and sym-
metrically, a Universal co-Büchi automaton cannot always be translated to Deter-
ministic co-Büchi Word automaton). In other cases, the construction may be possi-
ble but very complicated, as with the determinization of parity automata [137, 151],
or it may be close to the well-known subset construction (as for the translation of
Universal Büchi automata to Deterministic Büchi automata) [129]. As we will see
later, the complexity of the determinization procedure for parity automata is an im-
portant reason that the standard approach to synthesis is quite expensive.

Given a ΣO -labeled ΣI -tree (T , τ ), a run of a universal tree automaton A on
(T , τ ) is a T ×Q-labeled tree (Tr , τr ) in which (1) τr (ε)= (ε, q0) and (2) for any
v ∈ Tr , if τr(v) = (n, q), τ(n) = σ , and δ(q, σ ) = {(d1, q1), . . . , (dn, qn)}, then v
has children v1, . . . , vn labeled (n · d1, q1), . . . , (n · dn, qn). Note that branches of
the run tree can be finite if δ(q, σ )= ∅.

Acceptance Condition. A run (Tr , τr ) is accepting if all its infinite paths ρ satisfy
the acceptance condition. The acceptance condition φ on paths is defined in the
same way as winning objectives on plays (see Sect. 27.2.2). For example, a Büchi
condition is given by a set B ⊆Q of target states and we define φ to be all the paths
on which we see infinitely often a state from B , i.e., φ = {q0q1 · · · ∈ Qω | ∀i ≥
0∃j > i, qj ∈ B}. The language LT (A ) of A is the set of all trees t such that the
run of A on t is accepting. Note that finite paths can never be a reason for rejection.

If |D| = 1, then A is called a word automaton. In this chapter, we are not inter-
ested in nondeterministic and alternating tree automata [86, 134]. Automata types
are typically denoted by three letter acronyms, where the first letter denotes the
branching (A for alternating, U for universal, N for nondeterministic, or D for deter-
ministic), the second letter describes the acceptance condition (B for Büchi, C for
co-Büchi, or P for parity), and the third letter is T for tree automata or W for word
automata.

Example 4 We will ignore Fig. 4 for now. Figure 5 shows a universal co-Büchi
tree automaton (UCT) with letters Σ = 2{g1,g2} (two grant signals) and directions
D = 2{r1,r2} (two request signals). Recall that a UCT accepts a tree if none of its
paths visits a co-Büchi state infinitely often (cf. Sect. 27.2.2). We show part of
an input tree and the corresponding run in Fig. 6. Consider the infinite path indi-
cated with dashed bold lines Fig. 6. The sequence of directions along this path is
{r1r2},∅,∅, {r1r2},∅,∅, . . . , which captures the behavior in which the environment
sends two requests in every third step.

This path of the input tree is labeled with the following output letter sequence
{g1},∅, {g2}, {g1},∅, {g2}; the sequence states that the system responds to this input
behavior by the following three-step pattern: first it sets g1 to high, then it lowers
both grants, and finally it sets g2 to high.

On the right of Fig. 6 we depict the corresponding part of the run of the UCT
on the input tree. Initially, the automaton is in state q0 and it reads the label of the
root of the tree (i.e., {g1}), which enables transition t1. From t1 we have to move
according to the direction that we consider. In our example this direction is {r1r2},
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Fig. 4 NBW for ¬ϕ

Fig. 5 UCT for ϕ

which enables the edge from t1 to q0 and the edge from t1 to q1. Since the automaton
has universal branching mode, we have to follow both edges and the run continues
in both states. From state q0 with label ∅ (input tree node: 3), the automaton has to
select transition t0 and the direction ∅ leads again to q0. From state q1 the label ∅
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Fig. 6 (Left) Part of an input tree. (Right) UCT-run on the dashed path of the input tree

enables transition t6, which brings us back to q1. When the automaton is in state q1
and it reaches node 30 labeled {g2} no transition is enabled, therefore this path of
the run ends here. Recall that a run is accepting if none of the paths visits a co-
Büchi state (indicated by a double circle) infinitely often, and a finite path is always
accepting. In Fig. 6, we show only the first part of the input tree and part of the
corresponding run. The depicted part of the run will repeat as the input repeats.

27.3.3 Realizability and Synthesis Problem

Given an LTL formula ϕ over I ∪O , and a transducer M = 〈I ,O,M,m0, α,λ〉,
we say that M realizes (or implements) ϕ if L (M )⊆L (ϕ).

Definition 5 (LTL Realizability and Synthesis Problem) Given an LTL formula ϕ
over the atomic propositions I ∪O , the realizability problem asks whether there ex-
ists a transducer M that realizes ϕ. If the answer to the realizability problem is yes,
then we call the specification ϕ realizable. The synthesis problem is to construct M .

Let us make two simple observations: First, constructing a Mealy machine is
equally easy (or hard) as constructing a Moore machine. It can be achieved by shift-
ing inputs by one time step. Taking LTL as an example, φ is Mealy-realizable iff
φ′ is Moore-realizable, where φ′ is obtained from φ by replacing every occurrence
of an output signal y by ©y. Equivalently, one can switch the order of the play-
ers in the corresponding game. Second, when negation is possible and the game is
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determined (as with LTL), then φ is Mealy-realizable with inputs I and outputs
O iff ¬φ is Moore-realizable with inputs O and outputs I . In other words, there
is a system that fulfills the specification iff there is no environment that guarantees
violation (and vice versa).

27.3.4 Classical Approach to LTL Synthesis

In this section we summarize the classical approach to LTL synthesis [30, 142, 146].
The approach consists of the following steps:

1. Translate the LTL formula ϕ into a nondeterministic Büchi word automaton A.
2. Translate A into a deterministic parity word automaton (DPW) B.
3. Construct a deterministic parity tree automaton (DPT) AT from B.
4. Check language emptiness of AT (i.e., solve the parity game).
5. If AT is non-empty, construct a finite-state transducer M , otherwise report that
ϕ is not realizable.

Example 5 (Arbiter Example) We use a specification for a simple arbiter to show
the approach. The arbiter controls the access of two clients, C1 and C2, to a shared
resource. It has two input variables r1 and r2 and two output variables g1 and g2.
Client i can request the resource by setting the input variable ri to true. The arbiter
grants the resource to Client i by setting the corresponding output variable gi to
true.

We require the arbiter to ensure (i) mutually exclusive and (ii) fair access to the
resource. Formally, the specification ϕA = ψ ∧ ϕ1 ∧ ϕ2 is the conjunction of the
following three properties:

ψ = �(¬g1 ∨¬g2) mutually exclusive access of the clients,
ϕ1 = �( r1 → ♦g1) fair access for Client 1, and
ϕ2 = �( r2 → ♦g2) fair access for Client 2.

Step 1: LTL to NBW

Given an LTL formula ϕ, we first construct a nondeterministic Büchi word automa-
ton Aϕ such that Aϕ accepts all the words that satisfy ϕ, i.e., L (ϕ)=L (Aϕ) with
|Aϕ | = 2O(|ϕ|) [171]. (Several people have worked on improving this translation,
e.g., [88, 99, 157, 158, 165].)

Step 2: NBW to DPW

Using Piterman’s determinization construction [137] (an improved version of
Safra’s construction [151]), we translate A into a deterministic Parity word au-
tomaton B such that L (A )=L (B). This automaton has 22O(|ϕ|) states and 2O(|ϕ|)
priorities.
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Fig. 7 Deterministic Streett word automaton for ϕA with the Streett pairs R = {(Q, {q0, q1}),
(Q, {q0, q2})}

Example 6 (Arbiter Example (Cont.)) For simplicity, we show in Fig. 7 a determin-
istic Streett (instead of parity) word automaton for the specification ϕA. The winning
condition is that sets {q0, q1} and {q0, q2} (marked with double circles and filled cir-
cles, respectively) must be visited infinitely often (a generalized Büchi condition).
Formally, the automaton AS has two Streett pairs (Q, {q0, q1}) and (Q, {q0, q2}).
The intuitive meaning of the four states q0, q1, q2 and q3 is as follows: there are no
outstanding requests in state q0. There is an outstanding request from Client 1 (or
Client 2) in state q1 (or q2, respectively). In state q3 both requests are outstanding.

Step 3: DPW to DPT

It is easy to convert the DPW B obtained in Step 2 to a DPT A T
ϕ such that A T

ϕ

accepts a tree iff all its paths satisfy ϕ. Intuitively, we split the transitions into two
parts: the first part refers to the output variables (the alphabet of the tree automaton),
the second part to the input variables (the directions of the tree automaton).

Example 7 (Arbiter Example (Cont.)) Figure 8 shows the tree automaton generated
from the automaton in Fig. 7. The construction was described in Example 2, and
will not be formalized.

Step 4: DPT Emptiness Check

The language of A T
ϕ is non-empty iff it contains a ΣO -labeled ΣI -tree, i.e., iff

player 1 (the system) has a winning strategy in the corresponding game. (See Exam-
ple 3 for the correspondence between DPTs and games.) We can use the techniques
describes in Sect. 27.2 to check whether A T

ϕ (a parity game) is empty.
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Fig. 8 Streett tree automaton for ϕA (generated from the automaton in Fig. 7). The bold arrows
denote a winning (memoryless) strategy for player 1 in the corresponding Streett game

In general, the LTL formula is translated into a parity game with 22O(|ϕ|) states and
2O(|ϕ|) priorities, which can be solved in polynomial time in the number of states
and exponential time in the number of priorities (see Theorem 3). A corresponding
doubly exponential lower bound for LTL synthesis was shown by Rosner [150].

Step 5: Construction of Finite-State Transducer

If the language of the deterministic parity tree automaton A T
ϕ is non-empty, then

there exists a winning memoryless strategy for player 1 in the corresponding parity
game. The strategy corresponds to a regular tree, and regular trees coincide with
finite-state transducers.

Example 8 (Arbiter Example (Cont.)) The winning objective of player 1 is to visit
the set {q0, q2} and {q0, q1} infinitely often. The bold arrows in Fig. 8 denote a
memoryless winning strategy for player 1 in the corresponding game, where states
q0, . . . , q3 correspond to player-1 states of the game and the transitions t1, . . . , t8
are the player-2 states. Note that memoryless strategies suffice for parity games.
(For Streett games, which we use in the example, memoryless strategies are not
sufficient, see Sect. 27.2.2.)

The strategy corresponds to the finite-state transducer shown in Fig. 9 with the
three states q0, q1 and q2 labeled with {g2}, {g1ḡ2}, and {g2}, respectively. Following
the strategy, the transducer initially outputs g2, and then moves to q0 or q1 depend-
ing on the input. If Client 1 sends a request (i.e., r1 is high), then the transducer
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Fig. 9 Finite-state transducer
implementing the
specification ϕA

moves to state q1 and sends a grant to Client 1 (i.e., it outputs g1). Otherwise, the
arbiter grants the shared resource to Client 2 by raising g2. State q3 is not reachable
with the given strategy.

Theorem 7 ([30, 142, 146]) Given an LTL formula ϕ, we can decide in 22O(|ϕ|) time
whether ϕ is realizable. If an LTL formula ϕ is realizable, then there exists a finite-
state transducer with at most 22O(|ϕ|) states that satisfies it. Both these bounds are
tight.

27.3.5 Recent Approaches to LTL Synthesis

We describe two main ideas to cope with the complexity of the LTL synthesis prob-
lem: (i) bounding the size of the generated systems and (ii) specialized procedures
for specification with restricted expressiveness, and combinations thereof. Recent
approaches are based on one or both ideas.

27.3.5.1 Bounded (or Safraless) Approaches

The idea of bounded synthesis approaches [93, 120, 156] is to restrict the size of the
generated system. These algorithms are also called Safraless, because they avoid
Safra’s determinization construction. Bounded synthesis algorithms are based on
the following two key insights, which were first presented by Kupferman and Vardi
[120].

1. The LTL synthesis problem can be reduced to the language emptiness check of a
universal co-Büchi tree automaton (UCT).

2. The language emptiness problem of UCTs can be reduced to a parametric empti-
ness check, where the parameter restricts the size of the trees of interest (and
hence the size of the generated system).

In [120], the emptiness problem of a universal co-Büchi tree automaton with param-
eter k (k-UCT) is reduced to the emptiness problem of a nondeterministic Büchi tree
automaton. Checking emptiness of a nondeterministic Büchi tree automaton in turn
corresponds to solving a Büchi game [101]. For the purpose of this paper, we can
assume that k limits the number of times that the automaton can visit a co-Büchi
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state [156]. In [156], Schewe and Finkbeiner present a reduction of the k-UCT
emptiness problem to emptiness of deterministic safety tree automata. The exact
meaning of k is different in [120], but the general idea is the same. These bounded
approaches are well suited for symbolic implementations. Schewe and Finkbeiner
propose an encoding as an SMT formula, while Filiot, Jin, and Raskin [93] pro-
vide a symbolic algorithm for checking k-UCT emptiness using anti-chains. (see
also [82]). Bounded approaches can also be used as a semi-decision procedure for
distributed synthesis [156].

A bounded synthesis algorithm consists of the following steps:

1. Translate the LTL formula ϕ into a UCT A .
2. Transform A into a k-UCT Ak for a given parameter k.
3. Check emptiness of Ak (solving a Büchi or Safety game).
4. If Ak is non-empty, construct an FSM M , otherwise increase k and go to Step 2

or abort.

For realizable specifications the parameter k turns out to be small in practice
[93, 108], leading to an efficient LTL synthesis procedure if the specification is
realizable. In order to conclude that a specification is unrealizable, we must show
that Ak is empty for a very large k (doubly exponential in the size of the formula ϕ,
see Theorems 8 and 9). However, it follows from the remarks in Sect. 27.3.3 that in
case of unrealizability there is a Mealy machine for the environment that realizes¬φ
which can be found in much the same manner as the Moore machine for the system.
Again, in practice this machine can be quite small and is then found quickly.

Step 1: LTL to UCT

Given an LTL formula and a partitioning of the atomic propositions, we can con-
struct a universal co-Büchi tree automaton that accepts all state machines that realize
the formula. Intuitively, we construct an NBW for the negated formula (see Step 1 in
Sect. 27.3.4). We then dualize the acceptance condition and the branching condition
and transform the automaton into a tree automaton as described above.

Theorem 8 ([120], Theorem 5.1) The realizability problem for an LTL formula
can be reduced to the non-emptiness problem for a UCT with exponentially many
states.

Example 9 (Arbiter Example (Cont.)) Recall the specification of the arbiter from
Example 5: ϕ =�(¬g1∨¬g2)∧�( r1 → ♦g1)∧�( r2 → ♦g2). We can construct
a UCT for ϕ by first constructing an NBW for the negation of the specification, i.e.,
¬ϕ = ♦(g1 ∧ g2) ∨ ♦( r1 ∧ �¬g1) ∨ ♦( r2 ∧ �¬g2). Note that ¬ϕ simplifies to
♦((g1 ∧ g2)∨ ( r1 ∧�¬g1)∨ ( r2 ∧�¬g2)) for which we show an NBW in Fig. 4.
The automaton accepts a word in one of the following cases. Each case corresponds
to violating the specification in a particular way: (i) Any word that includes simulta-
neous grants at some point will be accepted. In this case the automaton stays in state
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q0 until g1g2 occurs and then moves to state q3, which is accepting and can be re-
visited independently of the values of the grant and request signals. (ii) A word that
includes a request 1 but no subsequent grant 1 is accepting. In order to see this, note
that the automaton again can stay in state q0 until the unanswered request 1 arrives,
then it moves to state q2, where it can stay as long as it does not observe a grant 1
(i.e., as long as the request is unanswered). (iii) The situation for an outstanding
request 2 is analogous. In this case the automaton will move to state q1.

Given this NBW and a splitting of the atomic propositions into inputs r1, r2 and
output propositions g1, g2, we construct the UCT shown in Fig. 5. The alphabet
of the tree automaton is 2{g1,g2}; each tree has four directions corresponding to the
letters in 2{r1,r2}. The dualization of the branching mode means that nondeterministic
edges are now viewed as universal edges. Dualizing the Büchi condition results in a
co-Büchi acceptance condition.

Step 2: UCT to k-UCT

We will present the reduction from UCT emptiness to emptiness of deterministic
safety tree automata, which corresponds to finding the winning player in games with
safety objectives. The reduction to Büchi games can be found in [120], Theorem 3.3.
Note that in the reduction to Büchi games the parameter k is used in a different way
than in the reduction presented here.

The reduction from UCT emptiness to safety games is best explained in two
steps. In the first step, we reduce the UCT emptiness problem to the emptiness
problem of a tree automaton with a simpler universal k-co-Büchi acceptance condi-
tion, which asks that every path of an accepting run visits a co-Büchi state at most
k times [156]. In the second step, we show how to check whether the language of a
universal k-co-Büchi tree automaton is empty by constructing an equivalent safety
game and solving it.

Given a UCT A , we write Ak to denote the tree automaton with the same struc-
ture as A and the universal k-co-Büchi acceptance condition. For any UCT A and
any parameter k, LT (Ak)⊆LT (A ) holds, so if the language of Ak is non-empty,
then so is the language of A .

For the other direction, we will use the following two lemmas. The first one
shows that if the language of the UCT A is non-empty, then there exists a finite-
state machine of bounded size that is accepted by A . The second states that a given
finite-state machine is accepted by automaton A if and only if it is accepted by the
automaton Ak , where k = |M | · |A |.

Lemma 1 ([120], Theorem 4.3) Given a UCT A with n states, if the language of
A is not empty, i.e., LT (A ) �= ∅, there exists a (non-empty) finite-state machine
M with at most nn+1 + 1 states such that LT (M ) ⊆LT (A ) (meaning that the
tree generated by M is accepted by A ).
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Lemma 2 ([156]) Given a finite-state machine M and a UCT A , then A accepts
M if and only if the k-UCT Ak with k = |M | · |A | accepts M , i.e., LT (M ) ⊆
LT (A ) iff LT (M )⊆LT (A|M |·|A |) holds.

From Lemmas 1 and 2, it follows that if the language of a UCT A of size n is
non-empty, then so is the language of the k-UCT Ak with k = (nn+1+ 1) ·n and we
can obtain the following theorem.

Theorem 9 ([156]) For any UCT A of size n, there exists a k-UCT Ak with k =
(nn+1 + 1) · n such that LT (A )= ∅ iff LT (Ak)= ∅.

Note that a UCT and a k-UCT differ only in the interpretation of the acceptance
condition. A UCT accepts all trees that allow a run on which none of the paths visits
rejecting states infinitely often. A k-UCT is more restricted; it allows at most k visits
to the rejecting states. So, Fig. 5 can be seen as a UCT or as a k-UCT.

Step 3: k-UCT Emptiness Check

Given a k-UCT, we can construct a safety game with labels (i.e., a deterministic
safety tree automaton) such that the safety game is winning if and only if the lan-
guage of the k-UCT is not empty.

Lemma 3 ([156]) Given a k-UCT A with n states, there exists a deterministic
safety tree automaton B with (k + 2)n states such that LT (A )=LT (B).

This lemma can be proven as follows. Intuitively, B is constructed from A by
applying an extended subset construction that keeps track of how many rejecting
states (i.e., states in F ) have been visited so far along all the paths ending in a state
of A . To do that, B has a counter for every state in A that counts from −1 up to
k+1. A state of B is an evaluation of all the counters. Counter value−1 of a state q
means that state q is not reached in the current step of the subset construction. For-
mally, let A = 〈2I ,2O ,Q,q0, δ,F 〉, then B = 〈2I ,2O , S, s0, δB,FB〉 is given
by

S = Q→{−1,0, . . . , k + 1}
s0(q) =

{
0 if q = q0

−1 otherwise.
δB(s, o) =

∧
i∈2I (i, s

′), where

s′(q) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

k + 1 if ∃p : (i, q) ∈ δ(p, o)∧ s(p)= k + 1,

maxp∈Q:(i,q)∈δ(p,o){s(p)+1} if ∃p : (i, q) ∈ δ(p, o)∧−1<s(p)<k+ 1∧
q ∈ F,

maxp∈Q:(i,q)∈δ(p,o){s(p)} if ∃p : (i, q) ∈ δ(p, o)∧−1<s(p)<k+ 1∧
q /∈ F,

−1 otherwise (∀p : (i, q) /∈ δ(p, o)∨ s(p)=−1).
FB = {s ∈ S | ∀q ∈Q : s(q) < k + 1}
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Fig. 10 Safety game (with
labels) for the UCT shown in
Fig. 5, with k = 1. The bold
arrows represent a winning
strategy from all winning
states for player circle

Note that for each label o ∈ 2O , the automaton B has exactly one successor for each
direction i ∈ 2I .

Example 10 (Arbiter Example (Cont.)) Recall the UCT from Fig. 5. Assume we fix
k = 1, i.e., for every path we allow at most one visit to a rejecting state. In each
player-1 state of the safety game we store two pieces of information: (i) the set of
active states (of the UCT) in the current run and (ii) the number of rejecting states we
have seen along the way. As shown after Lemma 3 we can represent this information
by a function mapping from the UCT states to a number between −1 and k, i.e., the
state (q0 → 0, q1 → 2, q2 →−1, q3 →−1) indicates that the run is currently in
state q0 and q1 and that on the path to q1 we have seen two rejecting states (see the
third level of the run on the right of Fig. 6). Figure 10 shows the safety game for
the UCT shown in Fig. 5 with k = 1. In order to save space we omit UCT-states that
are assigned to −1 in the description of the player-1 states. For simplicity, we label
player-2 states with transitions of the UCT. In order to keep the game graph small,
we also omit “unsafe” states, which are states in which a UCT-state is mapped to a
number higher than k. This leads to several player-2 states without outgoing edges,
called dead-end states. In all these states, player 2 wins because he could move to an
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unsafe state. So, the (safety) winning condition for player 1 in this game is to avoid
these dead-end states.

The game starts in state (q0 → 0). The system (player 1) has four options corre-
sponding to the four output letters. If she chooses the letter ḡ1g2 the play continues
in state t2, from which player 2 can choose one of the four directions. If he chooses
a direction that includes a request to Client 1 (r1), then the play moves to state
(q0 → 0, q2 → 1). Note that on the path to state q2, we have seen one rejecting state
(namely q2 itself), therefore q2 is mapped to 1. Intuitively, q2 indicates that there is
an outstanding request from Client 1, so staying in q2 forever violates the specifica-
tion. Since we have chosen k = 1, we are only allowed to visit q2 for one step (which
corresponds to delaying the grant by one step). So, from state (q0 → 0, q2 → 1) the
automaton has to choose g1ḡ2 in order to avoid one of the losing dead-end states.
If we solve this game, we conclude that only the following five states are winning:
(q0 → 0), (t1), (t2), (q0 → 0, q2 → 1), and (q0 → 0, q1 → 1). The bold arrows in
Fig. 10 show a winning strategy, which corresponds to the system shown in Fig. 9.
The system sends by default a grant to Client 2. If it receives a request from Client 1,
it responds to it in the next step. If it receives a request from Client 2 while sending
a grant to Client 1, it will respond to it in the next step. If no request is outstanding
it moves back to the default behavior (i.e., sending a grant to Client 2).

Step 4: System Construction

Once a winning strategy is found, we can construct the desired system following
Step 5 of the classical approach.

27.3.5.2 Approaches for Fragments of LTL

We will now consider another approach to making synthesis more efficient by con-
sidering specification with restricted expressiveness.

The four simplest LTL fragments are (i) invariants (�p), (ii) reachability prop-
erties (♦p), (iii) recurrence properties (�♦p), and (iv) persistence properties
(♦�p). These fragments can be translated directly into the corresponding synthesis
games: invariants translate into safety games, reachability properties into reachabil-
ity games, recurrence properties into Büchi games, and persistence properties into
co-Büchi games. Each of these fragments by itself is not expressive enough to spec-
ify a complete system. However, they are very useful in the context of controller
synthesis [147, 148]. For example, given a system with deadlocks, we can ask for a
controlled system that is deadlock-free.

Alur and La Torre [10] provide a comprehensive study of generators for deter-
ministic automata and complexity analysis of various LTL fragments. Here, we will
focus on a recent approach by Piterman, Pnueli, and Sa’ar [140] for LTL formulas
in the Generalized Reactivity-1 (GR(1)) fragment, because this fragment lends itself
to an efficient symbolic implementation.
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Specifications in GR-(1) are of the form

env1 ∧ · · · ∧ envn→ sys1 ∧ · · · ∧ sysm,

where every sub-formula envi and sysi can be represented by a deterministic Büchi
automaton.3 The intuition is that env1, . . . ,envn are formulas describing assump-
tions on the environment and sys1, . . . , sysm specify the desired behavior of the
system if all the environment assumptions are satisfied.

The approach proceeds as follows: first, every sub-formula envi (sysi ) is trans-
lated into a deterministic Büchi automaton. Each automaton is represented symbol-
ically by (i) an initial predicate, (ii) a transition predicate, and (iii) a predicate de-
scribing the Büchi states. The initial and Büchi predicate refer to the atomic proposi-
tions and the set of state variables. As usual, the transition predicate may refer to the
current and next values of the atomic propositions and the state variables. Then, the
initial and transition predicates obtained from the different sub-formulas are con-
joined to make a single initial predicate and a single transition system. On this tran-
sition system, we define the following acceptance condition using the set of Büchi
predicates φe1, . . . , φ

e
n obtained from environment assumptions and the predicates

φs1, . . . , φ
s
m obtained from the system guarantees. A path ρ through the transition

system is accepting iff all system predicates φsi are true infinitely often along the
path or if some environment predicate φei is true only finitely often along the path.
This is a generalized Streett condition with a single Streett pair (see Sect. 27.2.4).
Finally, this transition system is transformed into a game by splitting the transition
predicate into two parts: one part that modifies the input variables and one part that
modifies the output variables. In this way, we obtain a symbolic representation of a
generalized Streett-1 game, which can be solved symbolically using a triply nested
fix-point (see [140] and Sect. 27.2.4).

There are several further approaches whose strength is based on a decompo-
sition of the specification (according to the top-level Boolean structure, for in-
stance) together with appropriate handling of the parts. Notable examples are
[82, 117, 132, 160]. The GR(1) synthesis algorithm was extended to specifications
in the intersection of LTL and ACTL by Ehlers [81].

3One way to syntactically characterize such sub-formulas is to require them to be in the set
LTLdet [122], which is the set of formulas defined as follows:

ϕ ::= p | ϕ ∧ ϕ | ©ϕ | (p ∧ ϕ)∨ (¬p ∧ ϕ) | (p ∧ ϕ)U(¬p ∧ ϕ) | (p ∧ ϕ)W(¬p ∧ ϕ),

where p is an arbitrary atomic proposition. Note that this set includes invariants (�p) and the
formula¬pUp, which is equivalent to ♦p. In [140], the authors provide a different set of syntactic
restrictions.
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27.4 Related Topics

In this chapter we have considered perfect-information turn-based zero-sum games
for synthesis from linear-time logical specifications. Perfect-information zero-sum
games are used in several applications other than temporal logic synthesis.

In controller synthesis, we are given a nondeterministic system and we aim to re-
strict (control) the nondeterministic choices such that the controlled system satisfies
the given specification. Synthesis from logical specifications and controller synthe-
sis focus on different aspects of the synthesis problem. Research in the area of syn-
thesis from logical specifications initially concentrated on developing new synthesis
algorithms for more expressive logics, while controller synthesis focused on how to
efficiently compute restrictions for a system composed of several sub-components.
For an introduction to control theory of discrete-event systems we refer the reader
to [31]. Discrete-event control theory has been used, for instance, to automatically
avoid deadlocks in multi-threaded programs [179] or for synthesis of fault-tolerant
systems [100].

Several approaches use controller synthesis to combine synthesis with imperative
programming, thus avoiding the need to fully specify the system. Such approaches
include program sketching [162, 163], program repair [11, 109], and synthesis of
concurrent data structures [161] and synchronizations [172, 173]. It should be noted
that some of these approaches use very different theory from what is presented in
this chapter and that automatic programming has a much richer background than
can be covered in this chapter [113, 114, 116]. See [21] for an overview of recent
program synthesis techniques.

Other classes of games are also relevant in synthesis. While standard LTL synthe-
sis reduces to perfect-information games, synthesis in the distributed setting reduces
to multi-player partial-information games and distributed games [94, 118, 121, 144].
Distributed synthesis is undecidable in general but semi-decision procedures exist
[156]. For the related case of parameterized systems, see [107].

The extension of synthesis to an assume-guarantee setting requires solving non-
zero-sum games (namely secure equilibria) [55, 59]; and has been applied to pro-
tocol synthesis [69, 70]. Synthesis problems for resource constraints [32, 33], for
performance guarantees [19], and for synthesis of robust systems [20] entail non-
Boolean properties and reduce to games with quantitative objectives. Synthesis
problems in probabilistic environments [12, 58, 152] or for synthesizing environ-
ment assumptions for synthesis reduce to stochastic games [57].

The games we have discussed are generalizations of finite automata. It is also
possible to generalize other automata models, for instance to pushdown games [168,
177] or timed games. Timed games and controller synthesis for timed automata are
discussed in Chap. 29 in this Handbook [23]. Finally, the close connection between
games and verification is the subject of Chap. 26 in this Handbook [24].
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Chapter 28
Model Checking Probabilistic Systems

Christel Baier, Luca de Alfaro, Vojtěch Forejt, and Marta Kwiatkowska

Abstract The model-checking approach was originally formulated for verifying
qualitative properties of systems, for example safety and liveness (see Chap. 2), and
subsequently extended to also handle quantitative features, such as real time (see
Chap. 29), continuous flows (see Chap. 30), as well as stochastic phenomena, where
system evolution is governed by a given probability distribution. Probabilistic model
checking aims to establish the correctness of probabilistic system models against
quantitative probabilistic specifications, such as those capable of expressing, for ex-
ample, the probability of an unsafe event occurring, expected time to termination,
or expected power consumption in the start-up phase. In this chapter, we present the
foundations of probabilistic model checking, focusing on finite-state Markov deci-
sion processes as models and quantitative properties expressed in probabilistic tem-
poral logic. Markov decision processes can be thought of as a probabilistic variant
of labelled transition systems in the following sense: transitions are labelled with ac-
tions, which can be chosen nondeterministically, and successor states for the chosen
action are specified by means of discrete probabilistic distributions, thus specifying
the probability of transiting to each successor state. To reason about expectations,
we additionally annotate Markov decision processes with quantitative costs, which
are incurred upon taking the selected action from a given state. Quantitative prop-
erties are expressed as formulas of the probabilistic computation tree logic (PCTL)
or using linear temporal logic (LTL). We summarise the main model-checking al-
gorithms for both PCTL and LTL, and illustrate their working through examples.
The chapter ends with a brief overview of extensions to more expressive models
and temporal logics, existing probabilistic model-checking tool support, and main
application domains.
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28.1 Introduction

Markovian stochastic models, i.e., state-transition graphs annotated with probabili-
ties to model and reason about stochastic phenomena, are central to many applica-
tions. Traditionally, purely stochastic models such as Markov chains [96] have been
applied in, for example, queueing theory, performance evaluation, and the mod-
elling of telecommunication systems and networks [13, 21, 61], but they are also
widely used in other contexts. Dependability properties such as reliability and avail-
ability are expressed probabilistically. In systems biology, for example, stochas-
tic models can be used to reason about biological populations and the evolution
of concentrations of molecules in biological signalling networks [62]. Probabilis-
tic models with nondeterminism, for example Markov decision processes (abbre-
viated as MDPs) [99], which are the main focus of this chapter, are central to the
modelling of distributed coordination protocols that use randomization for medium
access control for wireless networks [85], breaking the symmetry in leader elec-
tion algorithms [68], or modelling security, anonymity and privacy protocols [90],
among many examples. MDPs are also widely used in operations research, eco-
nomics, robotics, and related disciplines that crucially rely on the concept of de-
cision making so as to choose the next action to optimize a certain goal function.
Another application of MDPs is modelling distributed systems that operate with un-
reliable components. For instance, for systems with communication channels that
might corrupt or lose messages, or interact with sensors that deliver wrong values
in certain cases, probability distributions can be used to specify the frequency of
faulty behaviour. Considering stochastic models more generally, further examples
are—ranking algorithms in search engines for the Internet, the analysis of soccer or
baseball matches, reasoning about the stochastic growth of waves of influenza or the
population dynamics of other pathogenic germs, speech recognition, and signature
recognition via biometric identification features. We give a brief overview of related
models at the end of this chapter.

28.1.1 Temporal Logics for Specifying Probabilistic Properties

Probabilistic temporal logics arise as generalisations of established temporal logics
such as computation tree logic (CTL) and linear temporal logic (LTL). Probabilistic
computation tree logic (PCTL) [15, 17, 59] is a probabilistic variant of CTL that
replaces the usual path quantifiers, with which one can reason about all or some
paths satisfying a certain condition, with operators instead imposing quantitative
constraints on the proportion of paths that satisfy this condition. More specifically,
PCTL provides a probabilistic operator whose role is to specify lower or upper prob-
ability bounds for reachability properties, in the sense of requiring that the proba-
bility of reaching a given set of states is above or below a given threshold value.
The reachability properties can be constrained using the CTL path modality “un-
til” U or its step-bounded variant U≤k . For instance, using the probabilistic operator
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one might formally establish the guarantee that a system failure will occur within
the next 100 steps with probability 10−8 or less, or that a leader will eventually be
elected almost surely, that is, with probability 1. Besides the probability operator,
expected cost operators can also be defined, which allow for reasoning, for example,
about the average cost to reach a certain set of target states, or the accumulated cost
within the next k steps. The cost operators can, for instance, be used to assert that the
expected energy consumption within the next 100 steps is less than a given thresh-
old. For Markov decision processes decorated with costs, model checking reduces to
the computation of the minimum or maximum probability/expectation values, over
the possible resolutions of nondeterminism.

While PCTL is a branching-time logic and its formulas express properties that
a state of a probabilistic model might or might not have, probabilistic systems can
also be analysed using purely linear-time (path-based) formalisms such as LTL or
automata over infinite words [11, 40, 97, 105, 106]. We will restrict our attention to
the logic LTL in this chapter. Unlike PCTL, it does not admit path quantifiers, but
it allows us to express more elaborate properties, because it is possible to combine
temporal operators. One can then, for example, express a path property “whenever
button 1 is pressed, the system will be operational until button 2 is pressed”. Such
a property would not be expressible in PCTL. Since the underlying model is prob-
abilistic, after fixing an LTL formula we are interested in quantitatively reasoning
about the proportion of the paths satisfying the specification, analogously to PCTL.
For this purpose we introduce LTL state properties, which are given by an LTL for-
mula and a probability bound, and are true in a state if the maximum probability of
the formula being satisfied is lower than the bound given. The solution methods we
present in this chapter also allow us to ask “quantitative” questions, i.e., to directly
compute the maximum probability that a given LTL formula is satisfied.

The two ways of reasoning about properties of MDPs which we study in this
chapter, i.e., PCTL and LTL state properties, offer different expressive power. Es-
sentially, the properties one can capture are in the same spirit as those in the non-
probabilistic variants, and hence we refer the reader to Chap. 2 for a comprehensive
overview. As in the non-probabilistic case, the properties expressed using LTL are
perhaps easier to obtain from requirements expressed in natural language than PCTL
formulas, but PCTL admits better complexity of model-checking algorithms, which
are also easier to implement. We note that the two logics, PCTL and LTL, can be
combined into a logic PCTL∗.

In this chapter we will present the model-checking approach for Markov deci-
sion processes (MDPs) [4, 87, 99], which for the purposes of the model-checking
algorithms discussed here are equivalent to probabilistic automata due to Segala
[101, 102]. MDPs are of fundamental importance in probabilistic verification, since
they not only serve as a natural representation of many real-world applications, for
example distributed network protocols, but are also key to formulating abstractions
for more complex models which incorporate dense real time and probability, such
as continuous-time Markovian models and probabilistic variants of timed automata.
Both PCTL and LTL can be used for reasoning about qualitative and quantitative
properties of MDPs. Several variants of PCTL and LTL have been proposed for the
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analysis of probabilistic models that rely on a dense time domain. These will be
briefly addressed in Sect. 28.9.

28.1.2 Model-Checking Algorithms for Probabilistic Systems

For finite-state Markov decision processes, the quantitative analysis against PCTL or
LTL specifications mainly relies on a combination of graph algorithms, automata-
based constructions, and (numerical) algorithms for computing the minimum and
maximum probabilities and expectation values. Compared to the non-probabilistic
case, there is the additional difficulty of solving linear programs, and also the re-
quired graph algorithms are more complex. This makes the state space explosion
problem even more serious than in the non-probabilistic case, and the feasibility of
algorithms for quantitative analysis crucially depends on good heuristics to increase
efficiency. Hence, model-checking tools usually implement advanced versions of
algorithms we present in this chapter, and use intricate data structures to tackle the
state space explosion problem, such as multi-terminal binary decision diagrams [54]
and sparse matrices. We give a more detailed overview of the implementation ap-
proaches in Sect. 28.7.1.

28.1.3 Outline

The remaining sections of this chapter are organized as follows. Section 28.2
presents the definition of Markov decision processes and explains the main concepts
that are relevant for PCTL and LTL model checking. The syntax and semantics of
PCTL will be provided in Sect. 28.3. Section 28.4 summarizes the main steps of
the PCTL model-checking algorithm for MDPs. Section 28.5 introduces the syntax
and semantics of LTL and Sect. 28.6 describes the model-checking algorithm. Sec-
tion 28.7 gives a brief overview of available tools and interesting case studies; it also
mentions outstanding challenges of modelling and verification of probabilistic sys-
tems. Section 28.8 summarises related models and logics, and Sect. 28.9 concludes
the chapter.

28.2 Modelling Probabilistic Concurrent Systems

Markov decision processes [4, 87, 99], which are similar to probabilistic automata
[101, 102], are a convenient representation for distributed or concurrent systems
in which the system evolution is described by discrete probabilities. Intuitively,
a Markov decision process can be understood as a probabilistic variant of a labelled
transition system with transitions and states labelled with action labels and atomic
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propositions, respectively. For each state s and action α that is enabled in state s,
a discrete probability distribution specifies the probabilities for the α-labelled tran-
sitions emanating from s. This corresponds to the so-called reactive model in the
classification of [55]. In addition, a real-valued cost can be associated with each
state s and action α, representing the price one has to pay whenever executing ac-
tion α in state s. Dually, the cost assigned to (s,α) can also be viewed as a reward
that is earned when firing action α in s. To keep the presentation simple, in this chap-
ter we restrict ourselves to cost functions whose range is the non-negative integers.
Furthermore, we assume that all transition probabilities in the MDP are rational.

28.2.1 Preliminaries

Let X be a countable set. A (probability) distribution on X denotes a function D :
X→[0,1] such that

∑

x∈X
D(x)= 1.

The set Supp(D)
def= {x ∈ X : D(x) �= 0} is called the support of D. A distribution

D is Dirac if its support is a singleton. We write Distr(X) to denote the set of all
distributions on X.

As usual, N denotes the set of natural numbers 0,1,2, . . . and Q the set of rational
numbers.

28.2.2 Markov Decision Processes

A Markov decision process is a tuple M = (S,Act,P, sinit,AP,L,C) where

• S is a countable non-empty set of states,
• Act is a finite non-empty set of actions,
• P : S × Act× S→[0,1] ∩Q is the transition probability function such that

∑

s′∈S
P
(
s,α, s′

) ∈ {0,1} for all states s ∈ S and actions α ∈ Act,

• sinit ∈ S is the initial state,
• AP is a finite set of atomic propositions,
• L : S→ 2AP is a labelling function that labels a state s with those atomic propo-

sitions in AP that are supposed to hold in s,
• C : S × Act→N is a cost function.
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M is called finite if the state space S and the set of actions Act are finite. In this
chapter we assume that all MDPs are finite, unless specified otherwise. If s ∈ S then
Act(s) denotes the set of actions that are enabled in state s, i.e.

Act(s)
def= {

α ∈ Act : P(s,α, s′)> 0 for some s′ ∈ S}.
For technical reasons, we suppose that there are no terminal states, i.e., for each
state s ∈ S the set Act(s) is non-empty. Furthermore, we require that C(s,α)= 0 if
α is an action that is not enabled in s, i.e., if α /∈ Act(s).

The intuitive operational behaviour of an MDP can be described as follows. The
MDP starts its computation in the initial state sinit. If after n steps the current state
is sn then, first, an enabled action αn+1 ∈ Act(sn) is chosen nondeterministically.
Firing αn+1 in state sn incurs the cost C(sn,αn+1). The effect of taking action
αn+1 in state sn is given by the distribution P(sn,αn+1, ·). The next state sn+1 be-
longs to the support of P(sn,αn+1, ·) and is chosen probabilistically. The result-
ing infinite sequence of states and actions π = s0 α1 s1 α2 s2 α3 . . . ∈ (S × Act)ω

is called an (infinite) path of M . More generally, any alternating sequence π =
s0 α1 s1 α2 s2 α3 . . . ∈ (S × Act)ω , with P(sn,αn+1, sn+1) > 0 for all n≥ 0, is called
a path of state s0, and will be written in the form

π = s0 α1−→ s1
α2−→ s2

α3−→ . . .

PathsM (s), or for short Paths(s), denotes the set of all paths of M starting in
state s, and PathsM , or Paths, denotes the set of all paths. If π is as above then π↑n
denotes the infinite suffix of π that starts in the (n+1)-th state sn, i.e. for the above
π we have

π↑n def= sn
αn+1−−→ sn+1

αn+2−−→ sn+2
αn+3−−→ . . .

Similarly, π↓n denotes the finite prefix that ends in sn, i.e.,

π↓n def= s0
α1−→ s1

α2−→ s2
α3−→ . . .

αn−→ sn.

We refer to the finite prefixes of (infinite) paths as finite paths and denote the set
of finite paths starting in state s by FinPathsM (s), or for short FinPaths(s), and we
denote the set of all finite paths by FinPathsM or FinPaths. The length of a finite
path ς is given by the number of transitions taken in ς and denoted by |ς |; the
length of an infinite path is ω. We use the notation last(ς) for the last state of a
finite path ς . Similarly, first(·) is used to refer to the first state of a finite or infinite
path. The (n+1)-th state of a path is denoted by π[n]. Thus, if π is as above then
π[0] = first(π) = s0, |π↓n | = n and π[n] = first(π↑n) = last(π↓n) = sn for all
n ∈N.

Given a finite path ς = s0 α1−→ s1
α2−→ . . .

αn−→ sn, the total or cumulated cost of ς
is defined by

cost(ς)
def=

n∑

i=1

C(si−1, αi).
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Fig. 1 A running example of
a Markov decision process
annotated with costs

In addition to the cost function C(s,α) that assigns values to the pairs consisting
of a state and an enabled action, one can also define cost functions just for the
states Cst : S→ N, with the intuitive meaning that each visit to state s incurs the
cost Cst(s). Such cost functions are supported, for example, by the tool PRISM (see
Sect. 28.7), but are omitted here since they can be encoded in the variant of MDPs
presented in this chapter. If a cost function Cst for the states, rather than for pairs of
states and actions, is given, then we might switch from Cst to C : S × Act→ N as
follows

C(s,α)
def=

{
Cst(s) if α ∈ Act(s)
0 otherwise

to meet the syntax of the MDP definition. Given an MDP as defined in Sect. 28.2.2
and an additional cost function Cst : S→ N that specifies the cost incurred upon
visiting state s, the effect of C and Cst can be mimicked by using the single cost
function C′ : S × Act→N given by

C′(s,α) def= Cst(s)+C(s,α).

Example 1 (Running Example) Consider the MDP M = (S,Act,P, s0,AP,L,C)
from Fig. 1. The MDP models a simple system in which, after some initial step,
two kinds of decisions can be taken. One results in success with relatively high
probability, but can fail completely, and another gives a smaller probability of
immediate success, but cannot result in a non-recoverable failure. Formally, S =
{s0, s1, s2, s3}, Act = {αgo, αwait, αsafe, αrisk, αloop}, and P is as given by the num-
bers on arrows originating from the dots, e.g., P(s1, αsafe, s0)= 0.7. Atomic propo-
sitions are {init, succ, fail}, where the labels of states are as shown in the picture,
e.g., L(s0)= {init}. Costs of the actions are shown in the picture as underlined num-
bers, e.g., C(s1, αwait)= 0.1.

Observe that there is a non-trivial choice of an action only in the state s1, where
one can choose between αwait, αsafe and αrisk. Consider the path

π = s0 αgo−−→ s1
αsafe−−→ s0

αgo−−→ s1
αrisk−−→ s2

αloop−−→ s2
αloop−−→ · · · .

We have π↑2= s0 αgo−−→ s1
αrisk−−→ s2

αloop−−→ s2
αloop−−→ · · · and π↓2= s0 αgo−−→ s1

αsafe−−→ s0.
For the finite path π↓2 we have that the total or cumulated cost cost(π↓2) =
C(s0, αgo)+C(s1, αsafe)= 2. �
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28.2.3 Markov Chains

Markov chains can be viewed as special instances of Markov decision processes,
where in each state exactly one action is enabled. Thus, there are no nondeterminis-
tic choices in a Markov chain and the operational behaviour is purely probabilistic.
Since, in the above definition of an MDP, the actions are used just to name the non-
deterministic alternatives and group together probabilistic transitions that belong to
the same alternative, the concept of actions is irrelevant for Markov chains. Thus,
the transition probabilities of a Markov chain C can be specified by a function
PC : S × S→[0,1]. Paths are then just sequences s0 s1 s2 . . . of states such that

PC (si , si+1) > 0 for all i ≥ 0.

Using standard concepts of measure and probability theory, any Markov chain nat-
urally induces a probability space, i.e., a triple consisting of the set of outcomes Ω ,
the set of events F ⊆ 2Ω which contains ∅ and is closed under complements and
countable unions, and a probability measure Pr : F → [0,1] which is countably
additive and satisfies Pr(Ω)= 1. More concretely, in the induced probability space
the outcomes are the (infinite) paths and the events can be understood as linear-time
properties, i.e., conditions that an infinite path might satisfy or not (indeed, all LTL
formulas, PCTL path formulas, and even all ω-regular languages over sets of atomic
propositions specify measurable sets of paths [40, 105]). For details we refer to text-
books on Markov chains and probability theory, see, for example, [50, 75, 77], and
just sketch the main ideas. The underlying σ -algebra is the smallest σ -algebra that
contains the cylinder sets, namely, the sets containing all paths that have a common
prefix, i.e., the sets

Cyl(ς)
def= {

π ∈ PathsC : ς is a prefix of π
}

for all finite paths ς in C . Using Carathéodory’s measure extension theorem [7], the
probability measure PrC is the unique probability measure on the σ -algebra such
that for each finite path ς = s0 s1 s2 . . . sn starting in C ’s initial state s0 = sinit we
have:

PrC
(
Cyl(ς)

)= PC (s0, s1) · PC (s1, s2) · . . . · PC (sn−1, sn).

If ς is a finite path that does not start in the initial state then PrC (Cyl(ς))= 0.

28.2.4 Schedulers

Reasoning about probabilities in an MDP relies on a decision-making approach that
resolves the nondeterministic choices—answering the question which action will be
performed in the current state—and turns an MDP into an infinite tree-like Markov
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chain. We give here just a brief summary of the main concepts. Details can be found
in any textbook on Markov decision processes, e.g., [99].

The decision-making approach can be formalized with the help of the mathemat-
ical notion of a scheduler, often called policy or adversary. Intuitively, a scheduler
takes as input the “history” of a computation—namely, a finite path ς—and chooses
the next action according to some distribution. Formally, a history-dependent ran-
domized scheduler, for short called a scheduler, is a function

U : FinPathsM → Distr(Act)

such that Supp(U (ς))⊆ Act(last(ς)) for all finite paths ς . A (finite or infinite) path

π = s0 α1−→ s1
α2−→ s2 . . . is said to be a U -path, if

U (s0
α1−→ . . .

αi−→ si)(αi+1) > 0 for all 0≤ i < |π |.
A scheduler U is called deterministic if U (ς) is a Dirac distribution for all finite
paths ς , i.e., for each finite path ς there is some action α with U (ς)(α) = 1, and
U (ς)(β)= 0 for all actions β ∈ Act \ {α}. Scheduler U is called memoryless if

U (ς)=U
(
ς ′
)

for all finite paths ς,ς ′ such that last(ς)= last
(
ς ′
)
.

Deterministic schedulers are given as functions U : FinPathsM → Act. Memory-
less randomized schedulers can be viewed as functions U : S→ Distr(Act). Memo-
ryless deterministic schedulers, also called simple schedulers, are specified as func-
tions U : S→ Act. We write Sched to denote the set of all schedulers.

28.2.5 Probability Measures in MDPs

Given an MDP M and a scheduler U , the behaviour of M under U can be for-
malized by an infinite-state tree-like Markov chain C =M |U . The states of that
Markov chain represent the finite U -paths. The successor states of

ς = s0 α1−→ s1
α2−→ . . .

αn−→ sn

have the form ς ′ = ς β−→ s and the transition probability for moving from ς to ς ′ is
given by

U (ς)(β) · P(sn,β, s).
We write PrM ,U , or for short PrU , to denote the standard probability measure PrC

on that Markov chain. Thus, the probability measure PrU for a given scheduler U
is the unique probability measure on the σ -algebra generated by the finite U -paths
such that

PrU
(
Cyl(ς)

)=
n∏

i=1

U (ς↓i−1)(αi) · P(si−1, αi, si)

if ς = s0 α1−→ s1
α2−→ . . .

αn−→ sn is a U -path starting in s0 = sinit.
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Fig. 2 A Markov chain for the running example and the scheduler from Example 2

Given a state s of M , we denote by PrUs the probability measure that is obtained
by U viewed as a scheduler for the MDP Ms that agrees with M , except that
s is the unique initial state of Ms . That is, if M = (S,Act,P, sinit,AP,L,C) then
Ms = (S,Act,P, s,AP,L,C). Note that if U is a deterministic scheduler then

PrUs
(
Cyl(ς)

)=
n∏

i=1

P(si−1, αi, si)

if ς = s0 α1−→ s1
α2−→ . . .

αn−→ sn is a U -path with first(ς)= s0 = s. Given an MDP M ,
a scheduler U and a measurable path property E, then

PrUs (E)
def= PrUs

{
π ∈ PathsM

∣
∣ π satisfies E

}

denotes the probability that the path property E holds in M when starting in s and
using scheduler U to resolve the nondeterministic choices.

Example 2 Consider again the MDP M from Fig. 1, together with the scheduler
U that for every path ending in s1 picks the action αsafe or αrisk, both with proba-
bility 0.5. This scheduler is memoryless, but not deterministic, and gives rise to the
Markov chain M |U whose initial fragment is drawn in Fig. 2. For the finite path

π = s0 αgo−−→ s1
αsafe−−→ s0 we have

PrU
(
Cyl(π)

) = U (s0)(αgo) · P(s0, αgo, s1) ·U (s0
αgo−−→ s1)(αsafe) · P(s1, αsafe, s0)

= 1 · 1 · 0.5 · 0.7= 0.35,

and for the set of paths R which never reach s2 or s3 we have PrU (R)= 0. �

28.2.6 Maximal and Minimal Probabilities for Path Events

A typical task for the quantitative analysis of an MDP is to compute minimal or
maximal probabilities for some given property E when ranging over all schedulers.
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If s is a state in M then we define

Prmax
s (E)

def= sup
U ∈Sched

PrUs (E) and Prmin
s (E)

def= inf
U ∈Sched

PrUs (E).

This corresponds to the worst- or best-case analysis of an MDP. If, for example,
E stands for the undesired behaviours then E is guaranteed not to hold with prob-
ability at least 1 − Prmax

s (E) under all schedulers, that is, even for the worst-case
resolution of the nondeterministic choices. For instance, many relevant properties
fall under the class of reachability probabilities where one has to establish a lower
bound for the minimal probability to reach a certain set F of “good” target states,
possibly with some side-constraints on the cumulated cost until an F -state has been
reached.

28.2.7 Maximal and Minimal Expected Cost

Another typical task for analysing an MDP against cost-based properties is to com-
pute the minimal or maximal expected cumulated cost with respect to certain objec-
tives. For reachability objectives, we consider a set F of target states. Given a path

π = s0 α1−→ s1
α2−→ s2

α3−→ . . ., we write π |= ♦F if and only if π eventually visits F ,
i.e., there is an i such that si ∈ F . The cumulated cost of π to reach F is defined as
follows. If π |= ♦F then

cost[♦F ](π)= cost(π↓n)=
n∑

i=1

C(si−1, αi)

where sn ∈ F and {si : 0 ≤ i < n} ∩ F = ∅. If π never visits a state in F then
cost[♦F ](π) is defined as ∞, irrespective of whether only finitely many actions in
π have nonzero cost (in which case the total cost of π would be finite). Given a
scheduler U for M and a state s in M , the expected cumulated cost for reaching
F from s, denoted ExU

s (cost[♦F ]), is the expected value of the random variable
π �→ cost[♦F ](π) in the stochastic process (i.e., the Markov chain) induced by U .

• If PrUs ({π ∈ Paths | π |= ♦F })= 1 then

ExU
s

(
cost[♦F ])=

∑

ς

PrUs
(
Cyl(ς)

) · cost(ς)

where the sum is taken over all finite U -paths ς with first(ς)= s and last(ς) ∈ F ,
while all other states of ς are in S \ F .

• If PrUs ({π ∈ Paths | π |= ♦F }) < 1 then with positive probability U schedules
paths that never visit F . Since the total cost of such paths is infinite, we have
ExU
s (cost[♦F ])=∞.
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The extremal expected cumulated cost for reaching F is then obtained by

Exmax
s

(
cost[♦F ]) def= sup

U ∈Sched
ExU
s

(
cost[♦F ])

Exmin
s

(
cost[♦F ]) def= inf

U ∈Sched
ExU
s

(
cost[♦F ]).

Note that Exmax
s (cost[♦F ]) = ∞ if Prmin

s ({π ∈ Paths | π |= ♦F }) < 1; the other
direction also holds, i.e., Prmin

s ({π ∈ Paths | π |= ♦F }) = 1 implies that
Exmax
s (cost[♦F ]) is finite, although the proof is not as obvious.
Similarly, minimal and maximal expected cost for other objectives can be de-

fined. If an MDP is used as a discrete-time model then one might be interested in the
average cost within certain time intervals. This, for instance, permits us to establish
lower or upper bounds on the expected power consumption over one time unit. For
the cost cumulated up to time point k we use the random variable π �→ cost[≤k](π)
that assigns to each path the total cost for the first k steps, i.e., if π = s0 α1−→ s1

α2−→ . . .

then

cost[≤k](π) def=
k∑

i=1

C(si−1, αi).

Let ExU
s (cost[≤k]) denote the expected value of the random variable cost[≤k] un-

der scheduler U in the MDP Ms , i.e.,

ExU
s

(
cost[≤k])=

∑

ς

PrUs
(
Cyl(ς)

) · cost(ς)

where the sum is taken over all finite U -paths ς of length k starting in state s.
The supremum and infimum over all schedulers yields the extremal cumulated costs
within the first k steps

Exmax
s

(
cost[≤k]) def= sup

U ∈Sched
ExU
s

(
cost[≤k])

Exmin
s

(
cost[≤k]) def= inf

U ∈Sched
ExU
s

(
cost[≤k]).

When we specify costs for the states by the function Cst : S→ N, then it is also
possible to reason about instantaneous costs in the k-th step. This can be defined
with the random variable π �→ cost[=k](π) that assigns to each path π the cost
associated with the k-th action of π . If ExU

s (cost[=k]) denotes the expected value
of random variable cost[=k] under scheduler U then

Exmax
s

(
cost[=k]) = sup

U ∈Sched
ExU
s

(
cost[=k])

Exmin
s

(
cost[=k]) = inf

U ∈Sched
ExU
s

(
cost[=k])



28 Model Checking Probabilistic Systems 975

stand for the extremal average instantaneous costs incurred at the k-th step. These
values can be of interest, for example, when reasoning about the minimal or maxi-
mal expected queue size at some time point k. For this purpose, we work with the
cost function C(t, α) = Cst(t) for all actions α that are enabled in state t , where
Cst(t) denotes the current queue size in state t .

Example 3 Let us return to our running example from Fig. 1, and for clarity of
notation write just s instead of the singleton set {s}. We have that the maximal prob-
ability of reaching s3, i.e., Prmax

s0
({π ∈ Paths | π |= ♦s3}), is equal to 0.5. A (deter-

ministic) scheduler that always chooses αrisk in paths ending with s1 witnesses that
Prmax
s0
({π ∈ Paths | π |= ♦s3}) ≥ 0.5; to see that this probability cannot be higher,

observe that upon taking αrisk half of the paths transition to s2, and both s2 and s3
have self-loops. On the other hand, Prmin

s0
({π ∈ Paths | π |= ♦s3})= 0, as witnessed

by the scheduler that never chooses αrisk with nonzero probability.
For maximal expected cost, let us consider a single target state s2. We have

Exmax
s0
(cost[♦s2]) =∞, because there exists a scheduler that with nonzero proba-

bility does not reach s2. For minimal expected cost Exmin
s0
(cost[♦s2]), we obtain the

value equal to 20
3 , as witnessed by the scheduler that always chooses αsafe; to see

that no scheduler can yield a better value is a simple exercise.
As an example of instantaneous cost, let us analyse the value Exmax

s0
(cost[=3]).

It is equal to 4, which can be seen by considering a scheduler that picks αwait in

s0
αgo−−→ s1, and αrisk in s0

αgo−−→ s1
αwait−−→ s1. This is also the maximal value, because

there is in fact no higher cost in the MDP.

28.3 Probabilistic Computation Tree Logic

In this section we present the syntax and semantics of Probabilistic Computation
Tree Logic (PCTL), which is a probabilistic counterpart of the well-known logic
CTL, introduced in Chap. 2. Formulas of this logic aim to express quantitative
probabilistic properties such as “with probability at least 0.99, if we reach a bad
state, we can recover with nonzero probability”. PCTL is a widely used specifica-
tion language in many contexts, including verification of purely probabilistic sys-
tems or systems with probability as well as nondeterminism, and for both finite- and
infinite-state probabilistic systems [15, 22, 81]. Our presentation will focus on the
logic PCTL interpreted over finite-state Markov decision processes.

28.3.1 Syntax of PCTL

As in CTL, the syntax of PCTL has two levels: one for the state formulas (denoted
by uppercase Greek letters Φ,Ψ ) and one for the path formulas (denoted by lower-
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case Greek letters ϕ,ψ ). The abstract syntax of state and path formulas is as follows

Φ ::= tt | a | Φ1 ∧Φ2 | ¬Φ | P∼p(ϕ) | E∼c(♦Φ) | E∼c(≤k) | E∼c(=k)
ϕ ::=©Φ | Φ1UΦ2 | Φ1U∼cΦ2

where tt stands for the constant truth value “true” and a is a state predicate, i.e., an
atomic proposition in AP. The other symbols are explained below.

The operators P∼p(·) and E∼c(·) are called the probability and expectation oper-
ators. The subscripts ∼ p and ∼ c specify strict or non-strict lower or upper bounds
for probabilities or costs, respectively. Formally,∼ is a comparison operator≤,<,≥
or >, p ∈ [0,1] ∩Q a rational threshold for probabilities, and c ∈N a non-negative
integer that serves as a lower or upper bound for cumulated or instantaneous cost.

The PCTL state formula P∼p(ϕ) asserts that, under all schedulers, the proba-
bility for the event expressed by the path formula ϕ meets the bound specified by
∼ p. Thus, the probability operator imposes a condition on the probability mea-
sures PrUs for all schedulers U . The probability bounds “∼ p” can be understood as
quantitative counterparts to the CTL path quantifiers ∃ and ∀. Intuitively, the lower
probability bounds ≥ p (with p > 0) or > p (with p ≥ 0) can be understood as the
quantitative counterpart to existential path quantification. (See also Remark 1.)

As in CTL, path formulas are built from one of the temporal modalities© (next)
or U (until), where the arguments of the modalities are state formulas. No Boolean
connectors or nesting of temporal modalities are allowed in the syntax of path for-
mulas. In addition to the standard until-operator, the above syntax for path formulas
includes a cost-bounded version of until.1 The intuitive meaning of the path formula
Φ1U∼cΦ2 is that a Φ2-state (i.e., some state where Φ2 holds) will be reached from
the current state along a finite path ς that yields a witness of minimal length for
the path formula Φ1UΦ2 (i.e., ς ends in a Φ2-state and all other states satisfy the
formula Φ1 ∧¬Φ2) and where the total cost of ς meets the constraint ∼ c.

The expectation operator E∼c(·) enables the specification of lower or up-
per bounds for the expected cumulated or instantaneous cost. The state formula
E∼c(♦Φ) holds if the expected cumulated cost until a Φ-state is reached meets
the requirement given by “∼ c” under all schedulers. Similarly, the state formulas
E∼c(≤k) and E∼c(=k) assert that the cost accumulated in the first k steps and the
instantaneous cost at the k-th step, respectively, belong to the interval specified by
“∼ c”.

28.3.2 Semantics of PCTL

Given an MDP, the satisfaction relation |= for state and path formulas is formally
defined below, in accordance with the above intuitive semantics. Let M be an MDP

1We did not introduce the step-bounded version of the until operator. This, however, can be de-
rived using the cost-bounded until operator and changing the MDP to the one with unit cost, i.e.,
C(s,α)= 1 for all states s and actions α ∈ Act(s).
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as in Sect. 28.2.2 and s a state in M .

s |= tt

s |= a iff a ∈ L(s)

s |=Φ1 ∧Φ2 iff s |=Φ1 and s |=Φ2

s |= ¬Φ iff s �|=Φ
s |= P∼p(ϕ) iff PrUs (ϕ)∼ p for all schedulers U

where PrUs (ϕ)
def= PrUs {π ∈ Paths | π |= ϕ}

s |= E∼c(♦Φ) iff ExU
s (cost[♦Sat(Φ)])∼ c for all schedulers U

where Sat(Φ)
def= {s ∈ S | s |=Φ}

s |= E∼c(≤k) iff ExU
s (cost[≤k])∼ c for all schedulers U

s |= E∼c(=k) iff ExU
s (cost[=k])∼ c for all schedulers U

MDP M is said to satisfy a PCTL state formula Φ , denoted M |=Φ , if sinit |=Φ .

The semantics of the next- and until-operators is exactly as in CTL. If π = s0 α1−→
s1

α2−→ s2
α3−→ . . . is an infinite path in M then

π |=©Φ iff s1 |=Φ
π |=Φ1UΦ2 iff there exists k ∈N with sk |=Φ2 and si |=Φ1 for all 0≤ i < k.

The semantics of the cost-bounded until-operator is as for the standard until-
operator, except that we require that the shortest prefix of π that ends in a Φ2-state
meets the cost-bound. Formally,

π |=Φ1U∼cΦ2 iff there exists k ∈N such that
(1) sk |=Φ2
(2) si |=Φ1 ∧¬Φ2 for all 0≤ i < k
(3) cost(π↓k)∼ c.

We now justify the above definitions. First, using [40, 105] we get that the set
consisting of all paths where a PCTL path formula holds is indeed measurable.
Second, we observe that

s |= P≤p(ϕ) iff Prmax
s {π ∈ Paths | π |= ϕ} ≤ p

s |= P<p(ϕ) iff Prmax
s {π ∈ Paths | π |= ϕ}<p.

The first statement is obvious. The second statement follows from the fact that,
for the events that can be specified by some PCTL path formula ϕ, there exists
a scheduler that maximizes the probability for ϕ, and so the supremum defining
Prmax
s can in fact be replaced with the maximum (see, e.g., [99]). For the next- and

unbounded until-operators such a scheduler can in fact be assumed to be simple.
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An analogous statement holds for strict or non-strict lower probability bounds
and Prmin

s rather than Prmax
s . Similarly, we have

s |= E≤c(C) iff Exmax
s (C)≤ c

s |= E<c(C) iff Exmax
s (C) < c

and the analogous statement for lower cost bounds, where C stands for one of the
three options ♦Φ , ≤k, or =k. Here, again, minimal or maximal expected cost for
the random variable associated with C can be achieved by some scheduler, and in
the case of ♦Φ simple schedulers suffice.

Although the above semantics of the probabilistic and expectation operators re-
lies on universal quantification over all schedulers, the existence of at least one
scheduler satisfying a certain condition can be expressed using negation in front of
the operator. For instance, ¬P≤p(ϕ) asserts the existence of a scheduler U where
ϕ holds with probability >p.

Since probabilities are always values in the interval [0,1], there are some trivial
combinations of ∼ and p. For instance, P≥0(ϕ) and P≤1(ϕ) are tautologies, while
P<0(ϕ) and P>1(ϕ) are not satisfiable. In what follows, we write P=1(ϕ) for P≥1(ϕ)

and P=0(ϕ) for P≤0(ϕ). Similarly, as the cost function assigns non-negative cost to
all transitions, the total cost can never be negative. Hence, formulas of the form
E<0(·) are not satisfiable.

28.3.3 Derived Operators

Other Boolean operators can be derived from negation and conjunction as usual,
e.g.,

ff
def= ¬tt and Φ1 ∨Φ2

def= ¬(¬Φ1 ∧¬Φ2).

The eventually operator ♦, a modality for path formulas, can be obtained as in CTL
or LTL by

♦Φ def= tt UΦ,

and an analogous definition can be derived for the cost-bounded variant

♦∼cΦ def= tt U∼cΦ.

The always operator � and its cost-bounded variant �∼c can be derived using the
duality of lower and upper probability bounds. For instance, P≤p(�Φ) can be de-
fined as P≥1−p(♦¬Φ), and P>p(�∼cΦ) as P<1−p(♦∼c¬Φ).
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Example 4 (PCTL Formulas for the Running Example) First, we give examples of
properties expressible in PCTL. The property “with probability at least 0.99, when-
ever we reach a bad state, we can recover with nonzero probability” from the be-
ginning of this section can be stated as the formula P≥0.99(�(bad→ P>0♦¬bad)).
Another property is “the expected energy consumption in the first 100 steps is at
most 20 units”, which is expressed by E≤20(≤100), assuming that the relevant
cost function quantifies the energy consumed at every step. Further, the formula
P≤0.1(¬initialised U request) states that the probability of a request being made be-
fore the system initialisation phase completes is at most 0.1.

Now, let us return to the MDP from Example 1 to analyse some PCTL formulas
more thoroughly. Consider the formula Φ ≡ P≤0.6(¬succU≤5fail). First, observe
that the formula ¬succ holds in the states s0, s1 and s3, whereas the formula fail
holds only in the state s3. Paths that satisfy ¬succU≤5fail are exactly the paths
that reach s3 and whose cost is at most 5. It is easy to see that the probability of
these paths is maximal under any scheduler that always chooses αrisk determinis-
tically, in which case these paths have probability 0.5. Thus, for any U , we have
PrUs0 (¬succU≤5fail)≤ 0.6 and the formula Φ is satisfied.

On the other hand, the formula E≤5(≤ 4) is not satisfied. Consider, for example,

the scheduler that chooses αsafe in the path s0
αgo−−→ s1 and αrisk in the path s0

αgo−−→
s1

αsafe−−→ s0
αgo−−→ s1. Under this scheduler, the expected cost cumulated in 4 steps is

5.5, whereas the required upper bound is 5.

Remark 1 (Qualitative Properties) The conditions imposed by PCTL formulas of
the form P>0(ϕ) or P=1(ϕ) are often called qualitative properties. Their meaning
is quite close to CTL formulas ∃ϕ and ∀ϕ which are defined to be true if and only
if for every scheduler U there is a U -path satisfying ϕ (resp. all U -paths satisfy ϕ
in the case of ∀ϕ).

Indeed, if ϕ is a CTL path formula of the form ©a, aUb or aU∼cb where a, b
are atomic propositions, then the PCTL formula P>0(ϕ) is equivalent to the CTL
formula ∃ϕ (interpreted as described above). This is a consequence of the observa-
tion that the set of paths where ϕ holds can be written as a disjoint union of cylinder
sets, and hence the requirement to have at least one path π with π |= ϕ is equivalent
to the requirement that the probability measure of the paths that satisfy ϕ is positive.
Similarly, the PCTL formula P=1(�a) and the CTL formula ∀�a are equivalent: if

there is a path π = s0 α1−→ s1
α2−→ s2

α3−→ . . . where some si does not satisfy a, then no

path starting with s0
α1−→ s1

α2−→ s2
α3−→ . . . si satisfies �a, and so the probability of

paths satisfying �a is strictly lower than 1. The same equality holds for P=1(©a)
and ∀© a.

However, there is a mild difference between the meaning of the PCTL formula
P=1(♦a) and the CTL formula ∀♦a, because the quantification over “all paths”
is more restrictive than that over “almost all paths” in the case of reachability.
Observe that state s satisfies the CTL formula ∀♦a if and only if all paths starting
from s will eventually enter an a-state (i.e., a state s′ with s′ |= a). Satisfaction of
the PCTL formula P=1(♦a) in state s means that almost all paths will eventually
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visit an a-state, in the sense that the probability measure of the paths π starting in s
and satisfying ϕ equals 1; this includes paths that never enter an a-state, as long as
their total probability measure is zero. �

28.4 Model-Checking Algorithms for MDPs and PCTL

We now present an algorithm that, given a PCTL state formula and a Markov deci-
sion process, decides whether the formula holds in the MDP or not. The algorithm,
similarly to the algorithm for CTL model checking from Chap. 2, consists of sepa-
rate subprocedures for each (temporal or Boolean) connective. Instead of computing
the validity of a formula in the initial state directly, for each subformula we use the
appropriate subprocedure and compute the set of all states in which the subformula
holds. We start with the smallest subformulas and then proceed to the larger ones,
using the sets of states already computed. Let us now describe the algorithm more
formally, including the aforementioned subprocedures.

The main procedure to check whether a given PCTL state formula Φ0 holds for
an MDP relies on the same concepts as for CTL. An iterative approach is used to
compute the satisfaction sets Sat(Φ)= {s ∈ S | s |=Φ} of all subformulas Φ of Φ0.
The treatment of the propositional logic fragment of PCTL follows directly from
the definition of the semantics. We will concentrate here on explaining how to deal
with probabilistic features. The algorithms we give run in polynomial time if the
cost bounds and cost functions are given in unary. Hence, checking whether a given
formula holds can be done in polynomial time under these assumptions.

In the sequel, let M = (S,Act,P, sinit,AP,L,C) be an MDP as in Sect. 28.2.2.

28.4.1 Probability Operator

Suppose that Φ = P∼p(ϕ). We consider here the case of upper probability bounds,
i.e., ∼∈ {≤,<}, so the task is to compute maximal probabilities of satisfying ϕ for
every state. The set Sat(Φ) can then be identified easily, as we have

Sat(Φ)= {
s ∈ S ∣

∣ Prmax
s (ϕ)∼ p}.

Lower probability bounds (i.e., the case when ∼∈ {≥,>}) can be treated similarly,
but using minimum probability instead (see, e.g., [4, 99] for details). We distinguish
three possible cases for the outermost operator of the path formula ϕ. For the proper
state subformulas of ϕ, we can assume that the satisfaction sets Sat(ϕ) have already
been computed. This allows us to treat them as atomic propositions.

First, we consider the next-operator. If ϕ =©Ψ then the maximal probabilities
for ϕ are obtained by

Prmax
s (ϕ)= max

α∈Act(s)
P
(
s,α,Sat(Ψ )

)
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where P(s,α,Sat(Ψ ))=∑
t∈Sat(Ψ ) P(s,α, t). An optimal simple scheduler simply

assigns an action α to the state s that maximizes the value P(s,α,Sat(Ψ )).
We now address the until-operator and suppose that ϕ =Φ1UΦ2. We first apply

graph algorithms to compute the sets

S0 =
{
s ∈ S ∣

∣ Prmax
s (Φ1UΦ2)= 0

}

S1 =
{
s ∈ S ∣

∣ Prmax
s (Φ1UΦ2)= 1

}
.

Note that S0 is equal to the set {s ∈ S | ∀π ∈ Paths(s) | π �|= Φ1UΦ2} which can
be obtained using standard algorithms for non-probabilistic model checking (see
Chap. 2). The set S1 can be computed by iterating the following steps (1) and (2),
where we start with the set of all states and keep pruning all actions and states that
might lead to not satisfying the formula. Step (1) removes all states t from which
no path satisfying Φ1UΦ2 starts. Step (2) considers all the remaining states s and
removes all actions α from Act(s) such that P(s,α, t) > 0 for some state t that has
been removed in step (1). The set of states that are not removed after repeating steps
(1) and (2) constitutes the set S1.

Let S? = S \ (S0 ∪ S1) and xs = Prmax
s (Φ1UΦ2) for s ∈ S. Clearly, xs = 0 if

s ∈ S0, xs = 1 if s ∈ S1 and2 0 < xs = Prmax
s (Φ1US1) < 1 if s ∈ S?. The values xs

for s ∈ S? are obtained as the unique solution of the linear program [72] given by
the inequalities

xs ≥
∑

t∈S?

P(s,α, t) · xt + P(s,α,S1) for all α ∈ Act(s)

where
∑
s∈S?

xs is minimal and where P(s,α,S1)=∑
u∈S1

P(s,α,u).
Intuitively, the inequalities of the above form capture the idea that the probability

in state s must be at least the weighted sum of probabilities of the one-step succes-
sors, for any action α. Notice that every state is considered at most once in the sum,
since S? ∩ S1 = ∅.

A simple scheduler U with PrUs (Φ1UΦ2)= xs = Prmax
s (Φ1UΦ2) is obtained by

carefully choosing, for each state s ∈ S1, an action α with P(s,α,S1) = 1 and, for
each state s ∈ S?, an action α that maximizes the value

∑

t∈S?

P(s,α, t) · xt + P(s,α,S1).
3

Some care is needed to ensure that the chosen action indeed makes some “progress”
towards reaching aΦ2-state. More formally, it is necessary to ensure that the actions
taken will not avoid a Φ2 state forever (the condition which captures this can be
found in [4]). To illustrate the possible problem, consider the MDP from Fig. 3.

2The notationΦ1US1 is a shorthand forΦ1Ua where a is an atomic proposition satisfying a ∈ L(s)
if and only if s ∈ S1.
3For the states s ∈ S0 an arbitrary action can be chosen.
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Fig. 3 An MDP showing that care needs to be taken when computing a scheduler U with
PrUs (Φ1UΦ2)= Prmax

s (Φ1UΦ2)

Here, a simple scheduler that maximizes the probability for tt Ub must not take
the action β for s, although P(s, β,S1)= 1 since S1 = {s, t}.

Recall that all coefficients (transition probabilities in the MDP and the probabil-
ity bound p) are rational, and hence the linear program above can be constructed
in time polynomial in the size of M . Because the linear program can be solved in
polynomial time [72], the complexity of the problem to check whether an MDP sat-
isfies a PCTL formula of the form P≤p(Φ1UΦ2) or P<p(Φ1UΦ2) is also polynomial
in the size of M , assuming that the satisfaction sets for Φ1 and Φ2 are given.

Besides using well-known linear programming techniques to compute the vector
Hx = (xs)s∈S? , one can use iterative approximation techniques. Most prominent are
value and policy iteration, see, e.g., [99, 100].

In the value iteration approach, one starts with x(0)s = 1 for all s ∈ S1 and x(0)s = 0
for all s ∈ S? ∪ S0, and then successively computes

x(n+1)
s

def= max
α∈Act(s)

∑

t∈S?

P(s,α, t) · x(n)t + P(s,α,S1) for all s ∈ S?

until maxs∈S? |x(n+1)
s − x(n)s |< ε for some predefined tolerance ε > 0.

The idea of policy iteration is as follows. In each iteration, we select a simple
scheduler U and compute the probabilities PrUs (Φ1US1) for s ∈ S? in the induced
Markov chain (this can be done by solving a linear equation system). The method
then “improves” the current simple scheduler U by searching for some state s ∈ S?
such that

PrUs (Φ1US1) < max
α∈Act(s)

∑

t∈S?

P(s,α, t) · PrUs (Φ1US1)+ P(s,α,S1).

It then replaces U with V where U and V agree, except that V (s)= α for some
action α ∈ Act(s) that maximizes

∑
t∈S?

P(s,α, t) · PrUs (Φ1US1)+ P(s,α,S1). The
next iteration is then performed with scheduler V . If no improvement is possible,
i.e., if

PrUs (Φ1US1)= max
α∈Act(s)

∑

t∈S?

P(s,α, t) · PrUs (Φ1US1)+ P(s,α,S1)

for all s ∈ S?, then U maximizes the probability of Φ1UΦ2.
In practice, both value iteration and policy iteration outperform the linear-

programming method, which does not scale to large models. The relative perfor-
mance of value iteration and policy iteration varies by model, but the space and
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time efficiency of value iteration can be easily improved so that it outperforms pol-
icy iteration. Interested readers are referred to [52] for a brief comparison.

It remains to explain the treatment of the cost-bounded until-operator. We con-
sider here just the case of non-strict upper cost bounds. The task is to compute
Prmax
s (ϕ) for all states s ∈ S, where ϕ =Φ1U≤cΦ2 and c ∈ N. For s ∈ S and d ∈ N

we define

xs(d)
def= Prmax

s

(
Φ1U≤dΦ2

)
.

Then, we have xs(d) = 1 for each state s ∈ Sat(Φ2) and each cost bound d ∈ N.
Similarly, xs(d)= 0 for each d ∈N and state s satisfying Prmax

s (Φ1UΦ2)= 0. Sup-
pose now that Prmax

s (Φ1UΦ2) > 0 and s �|=Φ2. Thus, the recursive equations

xs(d)=max

{∑

t∈S
P(s,α, t) · xt

(
d−C(s,α)

) ∣∣
∣ α ∈ Act(s),C(s,α)≤ d

}

hold true, where the maximum over the empty set is defined to be 0. That is,
xs(d) = 0 if C(s,α) > d for all actions α ∈ Act(s). Assuming that C(s,α) > 0 for
all states s and enabled actions α, the above formulas for xs(d) can be computed by
an iterative procedure, e.g., by employing a dynamic programming approach using
the above equations. This yields the desired values Prmax

s (ϕ)= xs(c). If C(s,α)= 0
for some states s and some actions α ∈ Act(s) then the solution can be obtained as a
solution to the linear program Lc which minimises

∑
s∈S

∑
0≤d≤c xs(d), subject to

xs(d)= 0 for d < 0

xs(d)= 1 for d ≥ 0 and s ∈ Sat(Φ2)

xs(d)≥
∑

t∈S
P (s,α, t) · xt

(
d − C(s,α)

)
for d ≥ 0, s /∈ Sat(Φ2) and α ∈ Act(s)

whereLc contains variables xs(d) for−M ≤ d ≤ c whereM is the maximal number
assigned by C. This approach can be optimised to consecutively solving d+1 linear
programs L′0, . . . ,L′c, where L′0 = L0 and for 1 ≤ i ≤ c the linear program L′i is
obtained from Li by turning the variables xs(j) for j < i into constants whose
values were already computed earlier.

28.4.2 Expectation Operator

Suppose now that the task is to compute the satisfaction set Sat(E∼c(C)), whereC is
the random variable cost[·] associated with the reachability condition ♦Ψ , the total
cost within the first k steps (i.e., C is “≤k”), or the instantaneous cost incurred by
the k-th step (i.e., C is “=k”). Again, we just consider the case of maximal expected
cost where the goal is to compute Exmax

s (C) for all states s. The set Sat(E∼c(C)) is
then obtained by collecting all states s where Exmax

s (C)∼ c.
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Let us first address the case of cumulated cost within k steps. We can rely on
the iterative computation scheme

Exmax
s

(
cost[≤n])= max

α∈Act(s)

(

C(s,α)+
∑

t∈S
P(s,α, t) · Exmax

t

(
cost[≤n−1])

)

for 1≤ n≤ k and Exmax
s (cost[≤0])= 0.

In the case of instantaneous cost at time step k, the equations have the form

Exmax
s

(
cost[=1]) = max

α∈Act(s)
C(s,α)

Exmax
s

(
cost[=n]) = max

α∈Act(s)

∑

t∈S
P(s,α, t) · Exmax

t

(
cost[=n−1])

for 1< n≤ k.
We now sketch the main steps for the computation of the maximal expected

cost for the reachability objective ♦Ψ . We first apply techniques for the standard
until-operator (see Sect. 28.3) to compute Prmin

s (♦Ψ ) for all states s in M .
If t is a state in M with Prmin

t (♦Ψ ) < 1 then there exists a scheduler U such
that PrUt (♦Ψ ) < 1. But then ExU

t (cost[♦Ψ ]) is infinite, and therefore

Exmax
t

(
cost[♦Ψ ])=∞.

The remaining task is to compute Exmax
s (cost[♦Ψ ]) for all states s ∈ S′ where

S′ = {
s ∈ S ∣

∣ Prmin
s (♦Ψ )= 1

}
.

Note that, if s ∈ S′ \ Sat(Ψ ), then for all actions α ∈ Act(s) and all states u with
P(s,α,u) > 0 we have u ∈ S′. The enabled actions of the states s ∈ Sat(Ψ ) are
irrelevant. We may suppose that for these s, Act(s) is a singleton set {α} with
P(s,α, s)= 1. Clearly, for s ∈ Sat(Ψ ) we have Exmax

s (cost[♦Ψ ])= 0. For all other
states s ∈ S′ \ Sat(Ψ ), we have

Exmax
s

(
cost[♦Ψ ])= max

α∈Act(s)

(

C(s,α)+
∑

u∈S′
P(s,α,u) · Exmax

u

(
cost[♦Ψ ])

)

.

These values can again be computed using linear programming techniques or the
value or policy iteration schemes.

Example 5 Consider the MDP from Example 1 and the formula E≤5(≤4). For all
0≤ i ≤ 4, let xi denote the tuple

(
Exmax
s0

(
cost[≤i]),Exmax

s1

(
cost[≤i]),Exmax

s2

(
cost[≤i]),Exmax

s3

(
cost[≤i])).
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We iteratively compute the following tuples by applying value iteration

x1 = ( 1, 4, 0, 0 )
x2 = ( 5, 4, 0, 0 )
x3 = ( 5, 4.5, 0, 0 )
x4 = ( 5.5, 4.5, 0, 0 )

and we conclude that the formula E≤5(≤4) is not satisfied, because the maximal
cumulated cost in s0 is 5.5.

Next, consider again the same MDP, but this time together with the formula
P≤0.5(¬init U succ), and suppose we want to know precisely the states in which
the formula holds. We start by parsing the formula from the smallest subformu-
las. The subformula init is satisfied in s0, and succ in s2. Further, the subformula
¬init is satisfied in the states s1, s2, and s3. A more demanding task is to compute
Prmax
s (¬init U succ). We compute the sets S0 and S1, which are

S0 = {s0, s3} and S1 = {s2}.
This leaves us with the set S? = {s1}. We construct the following simple linear pro-
gram

minimize xs1 subject to
xs1 ≥ xs1
xs1 ≥ 0.3.

The solution to the above program is xs1 = 0.3, and hence we can conclude that the
formula P≤0.5(¬init U succ) holds in states s0, s1 and s3.

28.5 Linear Temporal Logic

We continue this chapter with a brief overview of model checking Markov decision
processes against properties expressed in linear temporal logic (LTL). In this sec-
tion we define the logic and in the next section we show how the model-checking
algorithm works. The logic LTL that we will use is standard, as defined in Chap. 2,
except that we use only a subset of LTL which does not allow us to reason about
the past, and whose predicates are actions of an MDP. Having predicates over ac-
tions and not over states is only a matter of convention; all the constructions and
algorithms we present here can be easily modified to work with state predicates.

28.5.1 Syntax of LTL

For the purposes of this chapter, the syntax of LTL is as follows,

ϕ ::= tt | α | ϕ1 ∧ ϕ2 | ¬ϕ | © ϕ | ϕ1Uϕ2
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where tt stands for the constant truth value “true”, and α is an action, i.e., an element
of the set of actions Act. We write U to denote the until-operator, instead of U used
in Chap. 2.

28.5.2 Semantics of LTL

The semantics of our logic LTL is defined on traces of paths of an MDP. A trace

for an infinite path π = s0 α1−→ s1
α2−→ s2

α3−→ . . . is the infinite word trace(π) =
α1α2α3 . . . of actions. Let w = α0α1 . . . be an infinite word over the alphabet of
actions Act, and let w↑n denote the suffix of w starting with αn. Then,

w |= tt
w |= α iff α = α0
w |= ¬φ iff w �|= φ
w |= ϕ1 ∧ ϕ2 iff w |= ϕ1 and w |= ϕ2

w |=©ϕ iff w↑1|= ϕ
w |= ϕ1Uϕ2 iff there exists k ∈N with w↑k|= ϕ2 and w↑i |= ϕ1 for 0≤ i < k.
As in the case of PCTL, it can be shown that the set of all infinite paths that satisfy
a given LTL formula is always measurable.

28.5.3 Derived Operators

Similarly to PCTL, we can define Boolean operators such as ff, ∨ and → from
negation and conjunction, for example

ϕ1 ∨ ϕ2
def= ¬(¬ϕ1 ∧¬ϕ2) and ϕ1 → ϕ2

def= (¬ϕ1)∨ ϕ2.

The eventually-operator ♦ and the always-operator � are obtained by

♦ϕ def= tt Uϕ and �ϕ def= ¬♦¬ϕ.
For simplicity, we did not introduce a cost-bounded version of the until-operator

U∼c , but in principle there is nothing preventing us from doing so. We point out
that the notation would become cumbersome; in particular, the definition of the
Rabin automaton below would then need to take costs of state-action pairs into
consideration.

28.5.4 LTL Model-Checking Problem

Let M = (S,Act,P, sinit,AP,L,C) be an MDP and P∼p(ϕ) an LTL state property,
where ∼ is a comparison operator ≤ or <, p ∈ [0,1] ∩Q and ϕ is an LTL formula.
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The LTL model-checking problem is to decide whether

Prmax
sinit

{
π ∈ Paths

∣
∣ trace(π) |= ϕ}∼ p.

We can define the model-checking problem similarly for the comparison operators
≥ or >; in that case we ask whether

Prmin
sinit

{
π ∈ Paths

∣
∣ trace(π) |= ϕ}∼ p.

Because the LTL formulas are closed under negation, we have

Prmin
sinit

({
π ∈ Paths

∣
∣ trace(π) |= ϕ})

= 1− Prmax
sinit

({
π ∈ Paths

∣
∣ trace(π) �|= ϕ})

= 1− Prmax
sinit

({
π ∈ Paths

∣
∣ trace(π) |= ¬ϕ})

and so without loss of generality we can restrict our interest to the case of computing
maximal probabilities.

28.6 Model-Checking Algorithms for MDPs and LTL

In this section we describe a model-checking algorithm for MDPs and LTL. Before
going into formal definitions, let us describe it informally. We solve the LTL model-
checking problem using ω-regular automata. Every LTL formula can be transformed
into an automaton which accepts exactly the words on which the formula holds. We
then build the product of the MDP and the automaton, and show that the problem
of computing the optimal probability with which the automaton accepts traces of
the MDP is equal to the problem of computing the optimal probability of reaching
certain states in the product. The latter can be computed using algorithms from pre-
vious sections. The reader may observe that the outline of the algorithm is similar
to the (non-probabilistic) LTL model-checking algorithm from Chap. 2. The major
difference is that, instead of looking for one path in the product (called synchronous
composition in Chap. 2), we need to determine the probability of certain paths. It
turns out that, for this purpose, the definition of a just discrete system is not suffi-
cient. The solution we present here uses Rabin automata, whose crucial property is
that it has no nondeterminism.

The algorithm runs in time polynomial in the size of the MDP and doubly-
exponential in the size of the LTL formula. From the complexity-theoretic point
of view, the complexity bound is optimal since the model-checking problem for
Markov decision processes and LTL state properties is known to be complete for
the complexity class 2EXPTIME, even for qualitative LTL state properties [40].

Let us now describe the algorithm formally. We begin by introducing the notion
of deterministic Rabin automata and stating that, for every LTL formula ϕ, there is
a deterministic Rabin automaton that accepts exactly the set of words satisfying ϕ.



988 C. Baier et al.

Definition 1 (Deterministic Rabin Automaton (DRA)) A deterministic Rabin au-
tomaton is a tuple A = (Q,Act, δ, qinit,Acc), where Q is a finite set of states,
qinit ∈ Q is an initial state, Act is a finite input alphabet, δ : Q×Act→Q is a
transition function, and Acc={(L1,K1), (L2,K2), . . . , (Lk,Kk)}, for k ∈ N and
Li,Ki ⊆Q, 1≤i≤k, is a set of accepting tuples of states.

We do not study Rabin automata in detail here and only mention their properties
directly relevant to LTL model checking. We refer the reader to Chap. 4 or to [56]
for additional details.

Let A = (Q,Act, δ, qinit,Acc) be a DRA. For every infinite wordw = α0α1α2 . . .

over the input alphabet Act there is a unique sequence q0α0q1α1q2α2 · · · where
q0 = qinit, and δ(qi, αi)= qi+1 for all i ≥ 0. The word w is accepted by A if there
is (L,K) ∈ Acc such that qi ∈ L for only finitely many i, and qj ∈K for infinitely
many j . The set of all infinite words over Act that A accepts is called the language
of A and is denoted L (A).

As mentioned above, for every LTL formula ϕ we can construct a DRA Aϕ with
the input alphabet Act such that for all w = α1α2 . . . we have

w |= ϕ ⇐⇒ w ∈L (Aϕ).

The construction of Aϕ is non-trivial and we do not present it in this chapter, refer-
ring the reader to [14, 41, 107]. Note that, in general, the size of Aϕ can be up to
doubly exponential in the size of ϕ. In practice, however, this is often not a serious
problem since LTL formulas expressing useful properties tend to be small compared
to the size of the MDP.

Having defined the DRA Aϕ , we reduce the problem of computing the maximal
probability of paths satisfying ϕ in M to the problem of reaching a certain set of
states in a product MDP. The product MDP is defined so that its behaviour mimics
that of the original MDP, but in addition it remembers the state of the automaton in
which it ends after reading the sequence of actions performed so far.

Definition 2 (Product of an MDP and a DRA) Let M = (S,Act,P, sinit,AP,L,C)
be an MDP and A = (Q,Act, δ, qinit,Acc) a DRA. Their product M⊗A is the
MDP (S×Q,Act,P′, (sinit, qinit),AP,L′,C′) where for any (s, q) ∈ S×Q and α ∈
Act we define

P′
(
(s, q),α,

(
s′, q ′

))=
{

P(s,α, s′) if δ(q,α)= q ′
0 otherwise.

The elements L′ and C′ are defined arbitrarily.

A path (s0, q0)
α1−→ (s1, q1)

α2−→ (s2, q2)
α3−→ . . . in a product MDP is accepting

if there is (L,K) ∈ Acc such that qi ∈ L for only finitely many i and qj ∈ K for
infinitely many j .
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It can be proved that, for every state s and scheduler U in M , there is a scheduler
V in M⊗A such that

PrM ,U ({
π ∈ PathsM (s)

∣
∣ trace(π) ∈L (A )

})

= PrM⊗A ,V ({
π ∈ PathsM⊗A (

(s, qinit)
) ∣
∣ π is an accepting path

})
.

This is essentially because the product only extends the original by keeping track of
a computation of a DRA, and does not alter the power of schedulers.

So far, we have reduced the problem of LTL model checking to the problem
of determining the maximal probability of accepting paths in a product MDP. To
determine this probability, we introduce the notion of accepting end components,
which identify the states for which there is a scheduler ensuring that almost all
paths starting in these states are accepting. An accepting end component (EC) of
M⊗A is a pair (S̄, P̄) comprising a subset S̄ ⊆ S×Q of states and partial transition
probability function P̄ : S̄×Act×S̄→[0,1]∩Q satisfying the following conditions:

1. (S̄, P̄) determines a sub-MDP of M⊗A , i.e., for all s′ ∈ S̄ and α ∈ Act we
have

∑
s′′∈S̄ P̄(s′, α, s′′) = 1, and, if P̄(s′, α, s′′) is defined, then P̄(s′, α, s′′) =

P′(s′, α, s′′);
2. the underlying graph of (S̄, P̄) is strongly connected;
3. there is (L,K) ∈ Acc such that:

a. all (s, q) ∈ S̄ satisfy q /∈ L;
b. there is (s, q) ∈ S̄ satisfying q ∈K .

Using the above condition for an accepting path, together with the property that,
once an end component is entered, all its states can be visited infinitely often almost
surely [4], we can further show the following. Let T ⊆ S ×Q such that (s′, q ′) ∈ T
if and only if (s′, q ′) appears in some accepting end component of M⊗A , then we
have

Prmax
s

{
π ∈ PathsM (s)

∣
∣ trace(π) ∈L (A )

}

= Prmax
(s,qinit)

({
π ∈ PathsM⊗A (

(s, qinit)
) ∣
∣ π contains a state from T

})
.

Thus, we have reduced model checking of LTL properties to (i) the computation
of accepting end components in M⊗Aϕ , and (ii) the computation of maximum
probabilities of reaching these end components. The second step is a special case of
the problems studied in Sect. 28.4. The first step can be done efficiently using the
results of [4, 14]; an approach which is simpler to comprehend, but less efficient,
is to use PCTL model checking to identify all the states that lie in an accepting
component and satisfy the condition 3b. above. These are exactly the states (s, q) for
which there is (L,K) ∈ Acc such that q ∈K and it is possible to return to (s, q)with
probability 1, passing only through states (s′, q ′) with q ′ /∈ L. A state (s, q) satisfies
this condition if and only if it satisfies a formula ¬P<1(©¬P<1p¬LUp(s,q)) for
some (L,K) ∈ Acc with q ∈ K , where p(s,q) holds only in (s, q) and p¬L holds
in all states (s′, q ′) with q ′ /∈ L. In step (ii) it is then sufficient to maximise the
probability of reaching such states.



990 C. Baier et al.

Fig. 4 A DRA for the
formula ♦(αwait ∧©αrisk)

Fig. 5 The product MDP
M⊗A for Example 6

Example 6 Consider the MDP from Example 1 together with the formula Φ =
♦(αwait ∧©αrisk), and assume we want to compute the maximal probability of sat-
isfying this formula. We follow the procedure described above and first convertΦ to
an equivalent DRA A = (Q,Act, δ, qinit,Acc). Using one of the cited methods, we
might, for example, obtain the automaton shown in Fig. 4. Here, Q= {q0, q1, q2},
qinit = q0, δ(q,α)= q ′ whenever there is an arrow from q to q ′ labelled with a set
containing α, and Acc= {(∅, {q2})}.

Next, we construct the product of M and A , yielding the MDP M⊗A from
Fig. 5 (note that only the states reachable from the initial state (s0, q0) are drawn).
The MDP M⊗A contains two accepting end components, one containing the state
(s2, q2) and a self-loop, and the other containing the state (s3, q2) and a self-loop.

It is now easy to apply the algorithms from Sect. 28.4 and calculate that the
maximal probability of reaching one of these end components from the initial state
is equal to 1.

28.7 Tools, Applications and Model Construction

28.7.1 Tool Support

There are several software tools which implement probabilistic model checking for
Markov decision processes. One of the most widely used is PRISM [81], an open-
source tool available from [98] which supports both PCTL and LTL model checking
as described here, including the probabilistic and expectation operators. PRISM uses
a probabilistic variant of reactive modules as a modelling notation, and additionally
supports model checking for discrete- and continuous-time Markov chains and prob-
abilistic timed automata. The tools LIQUOR [38] and ProbDiVinE [16] implement
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LTL model checking for MDPs: LIQUOR uses Probmela, which is a variant of the
SPIN Promela modelling language, whereas ProbDiVinE provides a parallel imple-
mentation. RAPTURE [70] and PASS [58] apply abstraction-refinement techniques.

A key challenge when implementing the algorithms is the state-explosion prob-
lem, well known from other fields of model checking, and also discussed in Chap. 8
of this book. Different tools take a different approach to overcome this problem. The
tool PRISM, for example, mainly uses a symbolic approach (see [6, 9] or Chap. 31)
and instead of storing the state space explicitly it stores it using a variant of bi-
nary decision diagrams [54]. ProbDiVinE makes use of distributed model check-
ing, while LIQUOR applies partial-order reduction techniques (see Chap. 6) to re-
duce the state space. Several other methods to tackle the state-explosion problem
have been proposed for probabilistic model checking, including symmetry reduc-
tion [44, 78], game-based quantitative abstraction refinement [74, 80], composi-
tional probabilistic verification [42, 51, 82, 83], or algorithms for simulation and
bisimulation relations [31, 110]. Techniques to improve efficiency of probabilistic
model checking include approximate probabilistic model-checking [88], statistical
model checking [19, 25, 89, 108, 109] and incremental verification [86].

28.7.2 Applications

Probability is pervasive, and Markov decision processes underpin modelling and
analysis of a wide range of applications [99]. Probabilistic model checking, and
PRISM in particular, has been successfully applied to analyse and in some cases de-
tect flaws in a variety of application domains, including analysis of communication,
security, privacy and anonymity protocols, efficiency of power management proto-
cols, correctness of randomised coordination algorithms, performance of computer
systems and nanotechnology designs, in silico exploration of biological signalling,
detecting design flaws in DNA circuits, analysis of spread of diseases, scheduling,
planning, and controller synthesis (see, e.g., [45, 62, 79, 94]). More case studies are
available at the PRISM tool website [98].

28.7.3 Construction of Probabilistic Models

The usefulness and precision of the results obtained by the probabilistic model-
checking techniques presented here crucially depend on the adequacy of the model,
and in particular on the probability values. Several methods have been proposed
in the literature that support the stepwise and compositional design of probabilis-
tic models for systems with many components, ranging from approaches that use
stochastic process algebras (see, e.g., [3, 71]), probabilistic variants of Petri nets
(see, e.g., [2]), or bespoke models (see, e.g., [5]) to high-level modelling languages
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with guarded commands, probabilistic choice, and imperative programming lan-
guage concepts [8, 20, 60, 66, 73]. Such approaches can indeed be very helpful
when constructing reasonable models that reflect the architectural structure of the
system to be analysed, the control flow of its components, the interaction mech-
anism, and dependencies between components where the probabilities are known
or given, as is the case in randomised protocols. However, such formal modelling
approaches do not support the choice of the probability values. Estimating probabil-
ity distributions is one of the core problems studied in statistics. Indeed, for many
application areas, well-engineered statistical methods are available to derive good
estimates for the probability values in the models used for the quantitative analy-
sis. But even without the application of advanced statistical methods, probabilistic
model-checking techniques can yield useful information on the quantitative system
behavior. Repeated application of probabilistic model-checking techniques on mod-
els that only differ in the probability values might give insights into the significance
or irrelevance of certain probabilistic parameters. The model of Markov decision
processes also permits the representation of incomplete information on the proba-
bility values by nondeterministic choices between several probabilistic distributions.
The results obtained by probabilistic model checking are lower or upper bounds for
all models that result by resolving the nondeterministic choices using any convex
combination of the chosen distributions. Alternatively, there are also methods that
deal with probability intervals rather than specific probability values, and methods
that operate with parametrized probabilistic models, see, e.g., [37, 43, 57, 103].

28.8 Extensions of the Model and Specification Notations

There are various models that extend Markov decision processes, such as stochas-
tic games [33, 34, 36], in which there are two kinds of nondeterminism (some-
times called “angelic” and “demonic” nondeterminism), or probabilistic timed au-
tomata [84, 95], which extend timed automata as defined in Chap. 29 and allow
for reasoning about time by adding real-time constraints on actions. Another class
of related models are continuous-time Markov Chains and continuous-time Markov
decision processes [99] in which we add a notion of time into the system and as-
sume that the steps from one state to another are taken with delays governed by an
exponential probability distribution. Continuous-time Markov Chains find applica-
tions, for example, in biochemistry (see, e.g., [29, 30, 39, 63, 92]). Note that MDPs
as defined in this chapter are sometimes called discrete-time MDPs to reflect the
intuition that each of their steps takes exactly 1 time unit. Also note that adding an
exponential distribution on time makes it more difficult to define parallel composi-
tion of two systems, leading to an alternative model of interactive Markov chains
(see, e.g., [28, 64]).

Probabilistic models with infinite state space have also been studied, where ex-
amples include models generated by pushdown systems (see, e.g., [22, 26, 49]) or
lossy channel systems [1, 10, 69].
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Recently [32], alternatives to deterministic Rabin automata, such as generalized
Rabin automata [47, 76], have been shown suitable for probabilistic model checking.
These automata can be smaller by orders of magnitude and thus induce a smaller
product to be analyzed. See [18] for an overview of available tools for conversion
of LTL to different types of Rabin automata and their performance.

The logics LTL and PCTL can be naturally combined into the logic PCTL∗ [17],
which is itself a probabilistic variant of the logic CTL∗ [46]. There are also nu-
merous reward-based properties not included in our definition of PCTL, for ex-
ample a discounted reward or long-run average reward [4, 99]. There also exist
different logics that allow us to reason about probabilities, one example being the
works [67, 91, 93] which study a probabilistic variant of μ-calculus (see Chap. 26).
A new direction started recently concerns studying multi-objective model-checking
problems for Markov decision processes [23, 35, 48, 53].

A related problem is that of controller synthesis, where the question is whether
there exists a satisfying scheduler (as opposed to the model-checking problem,
where we ask whether all schedulers satisfy the formula). For the unrestricted
controller-synthesis problem, an alternative semantics of PCTL has been stud-
ied [12, 24, 27], yielding undecidability results.

28.9 Conclusion

In this chapter, we have given an overview of probabilistic model checking, fo-
cusing on Markov decision processes as an operational model for nondeterministic-
probabilistic systems against specifications given in temporal logics PCTL and LTL.
The PCTL model-checking algorithm is similar to that for the logic CTL, where the
parse tree of the formula is traversed bottom up and each subformula is treated sep-
arately. Model checking for the probabilistic and expectation operator reduces to a
linear programming problem, which can be solved using a variety of methods.

In the case of LTL, we first translate the LTL formula into an equivalent determin-
istic Rabin automaton, and then reduce the model-checking problem to the problem
of calculating the probability of reaching accepting end components in a product of
the MDP and the automaton. The construction of a deterministic Rabin automaton
for a given LTL formula can cause a doubly exponential blowup.

We have also presented a brief summary of tools that implement and extend the
algorithms presented in this chapter, and listed various related formalisms that exist
in the area of probabilistic model checking.
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Chapter 29
Model Checking Real-Time Systems

Patricia Bouyer, Uli Fahrenberg, Kim Guldstrand Larsen, Nicolas Markey,
Joël Ouaknine, and James Worrell

Abstract This chapter surveys timed automata as a formalism for model checking
real-time systems. We begin with introducing the model, as an extension of finite-
state automata with real-valued variables for measuring time. We then present the
main model-checking results in this framework, and give a hint about some recent
extensions (namely weighted timed automata and timed games).

29.1 Introduction

Timed automata were introduced by Rajeev Alur and David Dill in the early
1990s [13] as finite-state automata equipped with real-valued variables for mea-
suring time between transitions in the automaton. These variables all evolve at the
same rate; they can be reset along some transitions, and used as guards along other
transitions or invariants to be preserved while letting time elapse in locations of the
automaton.

Timed automata have proven very convenient for modeling and reasoning about
real-time systems: they combine a powerful formalism with advanced expressive-
ness and efficient algorithmic and tool support, and have become a model of choice
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Fig. 1 A timed automaton

in the framework of verification of embedded systems. The timed-automata formal-
ism is now routinely applied to the analysis of real-time control programs [85, 127]
and timing analysis of software and asynchronous circuits [60, 146, 150]. Simi-
larly, numerous real-time communication protocols have been analysed using timed
automata technology, often with inconsistencies being revealed [95, 144]. During
the last few years, timed-automata-based schedulability and response-time anal-
ysis of multitasking applications running under real-time operating systems have
received substantial research effort [61, 78, 80, 109, 156]. Also, for optimal plan-
ning and scheduling, (priced) timed automata technology has been shown to pro-
vide competitive and complementary performances with respect to classical ap-
proaches [1, 2, 32, 86, 97, 108, 119]. Finally, controller synthesis from timed games
has been applied to a number of industrial case studies [6, 71, 110].

The handiness of this formalism is exemplified in Fig. 1, modeling a (simplified)
computer mouse: this automaton receives press events, corresponding to an action
of the user on the button of the mouse. When two such events are close enough (less
than 300 milliseconds apart), this is translated into a double_click event.

Because clock variables are real-valued, timed automata are in fact infinite-state
models, where a configuration is given by a location of the automaton and a valua-
tion of the clocks. Timed automata have two kinds of transitions: action transitions
correspond to firing a transition of the automaton, and delay transitions correspond
to letting time elapse in the current location of the automaton. Section 29.2 pro-
vides the definitions of this framework. The main technical ingredient for dealing
with this infinity of states is the region abstraction, as we explain in Sect. 29.3.
Roughly, two clock valuations are called region equivalent whenever they satisfy
the exact same set of constraints of the form x− y -. c, where the difference of two
clocks x and y is compared to some integer c (no greater than some constant M).
This abstraction can be used to develop various algorithms, in particular for decid-
ing bisimilarity (Sect. 29.4) or model checking some quantitative extensions of the
classical temporal logics CTL and LTL (Sect. 29.6). We also show that some prob-
lems are undecidable, most notably language containment (Sect. 29.5) and model
checking the full quantitative extension of LTL. On the practical side, regions are in
some sense too fine-grained, and another abstraction, called zones, is preferred for
implementation purposes. Roughly, zones provide a way of grouping many regions
together, which is often relevant in practical situations. We explain in Sect. 29.7 how
properties of timed automata can be verified in practice.

Finally, we conclude this chapter with two powerful extensions of timed au-
tomata: first, weighted timed automata allow for modeling quantitative constraints
beyond time; since resource (e.g., energy) consumption is usually tightly bound to
time elapsing, timed automata provide a convenient framework for modeling such
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quantitative aspects of systems. Unlike hybrid systems (see Chap. 30), weighted
timed automata still enjoy some nice decidability properties (in restricted settings
though), as we explain in Sect. 29.8. Then in Sect. 29.9 we present timed games,
which are very powerful and convenient for dealing with the controller synthesis
problem (see Chap. 27) in a timed framework. Timed games also provide an inter-
esting way of modeling uncertainty in real-time systems, assuming worst-case reso-
lution of the uncertainty while still trying to benefit from non-worst-case situations.

29.2 Timed Automata

In this chapter, we consider as time domain the set R≥0 of non-negative reals. While
discrete time might look reasonable for representing digital systems, it assumes syn-
chronous interactions between the systems. We refer to [17, 27, 67, 102] for more
discussions on this point.

Let Σ be a finite set of actions. A time sequence is a finite or infinite non-
decreasing sequence of non-negative reals. A timed word is a finite or infinite se-
quence of pairs (a1, t1) . . . (ap, tp) . . . such that ai ∈Σ for every i, and (ti)i≥1 is a
time sequence. An infinite timed word is converging if its time sequence is bounded
above (or, equivalently, converges).

We consider a finite set C of variables, called clocks. A (clock) valuation over C
is a mapping v : C→ R≥0 which assigns to each clock a real value. The set of all
clock valuations over C is denoted R

C
≥0, and 0C denotes the valuation assigning 0

to every clock x ∈ C.
Let v ∈ R

C
≥0 be a valuation and t ∈ R≥0; the valuation v + t is defined by

(v + t)(x) = v(x) + t for every x ∈ C. For a subset r of C, we denote by v[r]
the valuation obtained from v by resetting clocks in r ; formally, for every x ∈ r ,
v[r](x)= 0 and for every x ∈ C \ r , v[r](x)= v(x).

The set Φ(C) of clock constraints over C is defined by the grammar

Φ(C) I ϕ ::= x -. k | ϕ1 ∧ ϕ2
(
x ∈ C, k ∈ Z and -. ∈ {<,≤,=,≥,>}).

We will sometimes make use of diagonal clock constraints, which additionally allow
constraints of the form x − y -. k. We write Φd(C) for the extension of Φ(C)
with diagonal constraints. If v ∈ R

C
≥0 is a clock valuation, we write v |= ϕ when v

satisfies the clock constraint ϕ, and we say that v satisfies x -. k whenever v(x) -. k
(similarly, v satisfies x − y -. k when v(x)− v(y) -. k). If ϕ is a clock constraint,
we write [[ϕ]]C for the set of clock valuations {v ∈R

C
≥0 | v |= ϕ}.

Definition 1 ([13]) A timed automaton is a tuple (L, �0,C,Σ, I,E) consisting of
a finite set L of locations with initial location �0 ∈ L, a finite set C of clocks, an
invariant1 mapping I : L→Φ(C), a finite alphabet Σ and a set E ⊆ L×Φ(C)×
Σ × 2C × L of edges. We shall write �

ϕ,a,r−−−→ �′ for an edge (�,ϕ, a, r, �′) ∈ E;

1The original definition of timed automata [13] did not contain invariants in locations, but had
Büchi conditions to enforce liveness. Invariants were added by [103]. Several other convenient
extensions have been introduced since then, which we discuss in Sect. 29.3.2.



1004 P. Bouyer et al.

Fig. 2 Model of a process that acquires and releases two resources. Here and in the rest of this
chapter, transitions are decorated with their associated guards (e.g., xj > 0), letters of the alphabet
(e.g., release!), and resets (written e.g., as xj := 0); invariants (if any) are written in brackets
below their corresponding locations

formula ϕ is the guard of the transition (and has to be satisfied when the transition
is taken), and r is the set of clocks that are set to zero after taking that transition.

Later for defining languages accepted by timed automata we may add final or
repeated (Büchi) locations, and for defining logical satisfaction relations we may
add atomic proposition labeling to timed automata. However for readability reasons
we omit them here.

Example 1 Figure 2 shows timed automata models for processes and resources.
Processes can use resources, but mutual exclusion is expected. The model for pro-
cess Pi is given in the upper part of the figure, whereas the model for resource Rj
is given in the lower part of the figure. Starting in the idle location, the process
should start within one to two time units requesting a resource. After two time units
it must abort its request, unless before two time units it acquires the resource and
goes to the working location. The resource is released when the process is done
working with it.

Our model for a resource has two locations, and when the resource is available,
it can be acquired and should be released within one time unit.

The operational semantics of a timed automaton A = (L, �0,C,Σ, I,E) is the
(infinite-state) timed transition system [[A]] = (S, s0,R≥0×Σ,T ) given as follows:

S = {
(�, v) ∈ L×R

C
≥0

∣
∣ v |= I (�)} s0 = (�0,0C)

T = {
(�, v)

d,a−−→ (
�′, v′

) ∣
∣ ∀d ′ ∈ [0, d] : v + d ′ |= I (�),

and ∃� ϕ,a,r−−−→ �′ ∈E : v+ d |= ϕ, and v′ = (v + d)[r]}
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In words, one can jump from one state (�, v) to another one (�′, v′) by selecting
a delay to be elapsed in � (provided that the invariant of location � is fulfilled in the
meantime) and an edge of the automaton, which is taken after the delay, provided
that its guard is satisfied at that time. In this semantics, a transition combines both
a delay and (followed by) the application of an edge of the automaton. A slightly
different semantics is sometimes used, which distinguishes pure-delay transitions

(denoted
d−→, for d ∈R≥0) and pure-action transitions (denoted

a−→ with a ∈Σ ).
A (finite or infinite) run of a timed automaton A is a (finite or infinite) path

ρ = (�0, v0)
d1,a1−−−→ (�1, v1)

d2,a2−−−→ · · · in the transition system [[A]], which starts with

v0 = 0C . Given a run ρ = (�0, v0)
d1,a1−−−→ (�1, v1)

d2,a2−−−→ (�2, v2) . . . , we say that it
reads the timed word w = (a1, t1)(a2, t2) . . . where for every i, ti =∑

j≤i dj . A run
is time-divergent if its time sequence (ti)i diverges. A timed automaton is non-Zeno
if any finite run can be extended into a time-divergent run.

Example 2 The process R1 given in Fig. 2 has a single clock x1, and has as set of
states S = {available1} ×R≥0 ∪ {in_use1} × [0,1] where we identify valua-
tions (for the single clock x1) with the value of x1. We give below a possible run for
the resource R1:

(available1,0)
5.4,acquire?−−−−−−−−→ (in_use1,0)

0.8,release!−−−−−−−−→ (available1,0.8)

1.4,acquire?−−−−−−−−→ (in_use1,0)→ ·· ·
In location in_use, the invariant is satisfied in this run because the value of x1
never exceeds 0.8 (hence satisfies the constraint x1 ≤ 1).

We now define the parallel composition of timed automata, which allows us to
define systems in a compositional way [23, 107]. Let (Ai)1≤i≤n be n timed au-
tomata, where Ai = (Li, �i0,Ci,Σi, Ii,Ei). Assume that all Σi ’s are disjoint, and
all Ci ’s are disjoint. If Σ is a new alphabet, given a (partial) synchronization func-
tion f : ∏n

i=1(Σi ∪ {−})→Σ , the synchronized product (or parallel composition)
(A1 ‖ A2 ‖ · · · ‖ An)f is the timed automaton A = (L, �0,C,Σ, I,E) where L =
L1× · · ·×Ln, �0 = (�1

0, . . . , �
n
0), C = C1 ∪ · · · ∪Cn, I ((�1, . . . , �n))=∧n

i=1 Ii(�i)

for every (�1, . . . , �n) ∈ L1× · · · ×Ln, and the set E is composed of the transitions

(�1, . . . , �n)
ϕ,a,r−−−→ (�′1, . . . , �′n) whenever

1. there exists (α1, . . . , αn) ∈∏n
i=1(Σi ∪ {−}) such that f (α1, . . . , αn)= a;

2. if αi =−, then �′i = �i ;
3. if αi �= −, then there is a transition �i

ϕi ,αi ,ri−−−−→ �′i in Ei
4. ϕ =∧{ϕi | αi �= −} and r =⋃{ri | αi �= −}

Example 3 We build on the system given in Fig. 2. The process and the resources
are not expected to run independently, but they are part of a global system where
the process should synchronize with the resources. Hence for this system we have a
natural synchronization function f defined by Table 1.
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Table 1 The synchronization function f

P1 P2 R1

start! – – → start1

– start! – → start2

abort! – – → abort1

– abort! – → abort2

acquire! – acquire? → acquire1

– acquire! acquire? → acquire2

release? – release! → release1

– release? release! → release2

Fig. 3 The global system (P1 ‖ P2 ‖ R1)f , where “ij ” (resp. “aj ”, “wj ”) stands for location
“idlej ” (resp. “attemptingj ”, “workingj ”) in Pj , and “a1” (resp. “u1”) stands for location
“available1” (resp. “in_use1”) in R1

The global system (P1 ‖ P2 ‖ R1)f (more precisely the part which is reachable
from the initial state) is depicted in Fig. 3. This automaton is rather complex, and the
component-based definition as (P1 ‖ P2 ‖ R1)f is much easier to understand. Fur-
thermore this allows addition of other processes and other resources to the system
without any effort.
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29.3 Checking Reachability

In this section we are interested in the most basic problem regarding timed automata,
namely reachability. This problem asks, given a timed automaton A, whether a dis-
tinguished set of locations F of A is reachable or not.

29.3.1 Region Equivalence

For the rest of this section we fix a timed automaton A= (L, �0,C,Σ, I,E) and a
set of target locations F . For every clock x ∈ C we let Mx be the maximal constant
clock x is compared to in A.

Two valuations v, v′ : C→ R≥0 are said to be region equivalent w.r.t. maximal
constants M = (Mx)x∈C , denoted v ∼=M v′, if 2

• for all x ∈ C, /v(x)0 = /v′(x)0 or v(x), v′(x) >Mx , and
• for all x ∈ C with v(x)≤Mx , 〈v(x)〉 = 0 iff 〈v′(x)〉 = 0, and
• for all x, y ∈ C with v(x) ≤Mx and v(y) ≤My , 〈v(x)〉 ≤ 〈v(y)〉 iff 〈v′(x)〉 ≤
〈v′(y)〉.
The equivalence classes of valuations with respect to∼=M are called regions (with

maximal constants M). The number of regions is finite and is bounded above by
n! · 2n ·∏x∈C(2Mx + 2). Region equivalence of valuations is extended to states
of A by declaring that (�, v) ∼=M (�′, v′) whenever � = �′ and v ∼=M v′. We write
[�, v]∼=M for the equivalence class of (�, v).

Region equivalence enjoys nice properties, the most important of which is that it
is a time-abstracted bisimulation in the following sense:

Definition 2 A relation R on the states of A is a time-abstracted bisimulation if
(�1, v1)R(�2, v2) and (�1, v1)

d1,a−−→ (�′1, v′1) for some d1 ∈ R≥0 and a ∈ Σ imply

(�2, v2)
d2,a−−→ (�′2, v′2) for some d2 ∈R≥0, with (�′1, v′1)R(�′2, v′2) and vice versa.

In other words, from two equivalent states, the automaton can take the same tran-
sitions, except that the values of the delays might have to be changed. This funda-
mental property has important consequences, like the construction of an interesting
finite abstraction for A.

Definition 3 The region automaton R∼=M (A)= (S, s0,Σ,T ) associated with A has
as set of states the quotient S = (L×R

C
≥0)/∼=M , as initial state s0 = [�0,0C]∼=M , and

as transitions all the [�, v]∼=M a−→ [�′, v′]∼=M for which (�, v)
d,a−−→ (�′, v′) for some

d ∈R≥0. The target set of R∼=M (A) is defined as SF = {[�, v]∼=M | � ∈ F }.

2For d ∈R≥0 we write /d0 and 〈d〉 for the integral and fractional parts of d , i.e., d = /d0 + 〈d〉.
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Fig. 4 Clock regions for the
system (P1 ‖R1)f1

The region automaton R∼=M (A) is a finite automaton whose size is exponential
compared with the size of A. It can be used to check, e.g., reachability properties
(or equivalently language emptiness):

Proposition 1 The set of locations F is reachable in A from �0 iff SF is reachable
in R∼=M (A) from s0.

The region automaton has exponentially larger size, but checking a reachability
property can be done on the fly, hence this can be done in polynomial space. One
of the most fundamental theorems in the model checking of timed automata can be
stated as follows.

Theorem 1 ([13]) The reachability problem in timed automata is PSPACE-
complete.

Example 4 Restricting our running example to process P1 and resource R1 (we as-
sume f1 is the synchronization function f restricted to those two processes), the
global system has two clocks, x1 and y1. The set of regions is then depicted in Fig. 4.
There are 28 regions. The (reachable part of the) corresponding region automaton
is depicted in Fig. 5. In this drawing we omit indices over names of locations since
they should all be 1; also, the thick “release” transition at the top corresponds to a
set of transitions from all the states on the right to all the states on the left.

29.3.2 Some Extensions of Timed Automata

Timed automata are the most basic model for representing systems with (quantita-
tive) real-time constraints. It is natural to extend the model with features that help
in modeling real systems. However decidability of the reachability problem remains
the fundamental property one wants to preserve. In this subsection we mention sev-
eral variants and extensions of timed automata that have been proposed in the liter-
ature.

Timed automata as defined in this chapter are the so-called diagonal-free timed
automata since only constraints of the form x -. k are used. Timed automata with
diagonal constraints (of the form x − y -. k) were also originally defined in the
seminal paper [13]. They can be analyzed using a slight refinement of the region
automaton, but with no extra complexity. Furthermore, diagonal constraints can be
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Fig. 5 Region automaton for (P1 ‖R1)f1

removed from the model, at the expense of a (possibly exponential) blowup in the
number of locations of the model [40].

Another useful extension of timed automata is obtained by allowing edges to set
clocks to arbitrary positive integers (x := k) instead of only 0, or even to synchronize
clock values (x := y). In [53] it is shown that any such updatable timed automaton
can be converted to a usual one, hence this class is no more expressive than timed
automata. If one also considers other updates however, like x := x + 1 or x :> k
(which non-deterministically sets x to some value larger than k), the situation is
much more complex [53] and decidability of reachability is no longer preserved.

One can also extend the timed-automata formalism by allowing richer clock con-
straints, such as, e.g., x + y ≤ 5 or 2x − 3y > 1. Most such attempted extensions
however lead to undecidability of the reachability problem, see for instance [41].

One can extend timed automata with urgency requirements [46]. For instance,
some locations might be labelled as urgent, which indicates that no time can be spent
in this location, it has to be left immediately when entered: an urgent location � can
easily be converted into a usual one by introducing an extra clock x which is reset
in any edge to � and has invariant x = 0 in �, hence location-urgency does not add
expressiveness to the class of timed automata. Some synchronization could be also
labelled as urgent: in that case, the corresponding action should be done as soon as
it is enabled. In our modeling of Example 1 the synchronization “acquire!/acquire?”
could be made urgent since it is natural that a process acquires the resource as soon
as it is available.
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Another extension of timed automata we should mention is the stopwatch au-
tomata of [100]. Here timed automata are extended by allowing clocks to be stopped
during a delay. Even though reachability is also undecidable for this extension and
it has been shown to have the same expressive power as hybrid automata [72], stop-
watch automata have found some applications, e.g., in scheduling [3, 141] and per-
mit efficient over-approximate analysis [72]. Further extensions of the dynamics of
timed automata lead to rectangular automata [100] and eventually to general hybrid
automata [12, 98].

Finally, another interesting direction in which timed automata have been ex-
tended consists in adding parameters. Parameters can be used in lieu of numeri-
cal constants in the timed automaton, with the aim of deciding the existence of
(and computing) values for the parameters for which a given property holds true.
The use of parameters simplifies the modeling phase, but unfortunately the ex-
istence of valid parameters turns out to be undecidable in general [19]. Several
decidable classes have been identified, including one-clock parametric timed au-
tomata [19, 129] and L/U automata, where each parameter can be used either in
lower-bound constraints or in upper-bound constraints [106].

29.4 (Bi)simulation Checking

29.4.1 (Bi)simulations for Timed Automata

As detailed in Sect. 29.2, the operational semantics of timed automata is given in
terms of timed transition systems, which in fact can be viewed as standard labelled
transition systems, with labels (d, a) comprising a delay and a letter. Hence any
behavioral equivalence and preorder defined on labelled transition systems may be
interpreted over timed automata. In particular the classical notions of simulation and
bisimulation [130, 138] give rise to the following notion of timed (bi)simulation:

Definition 4 Let A = (L, �0,C,Σ, I,E) be a timed automaton. A relation R ⊆
L×R

C
≥0 × L×R

C
≥0 is a timed simulation provided that for all (�1, v1) R (�2, v2),

for all (�1, v1)
d,a−−→ (�′1, v′1) with d ∈R≥0 and a ∈Σ , there exists some (�′2, v′2) such

that (�′1, v′1) R (�′2, v′2) and (�2, v2)
d,a−−→ (�′2, v′2).

A timed bisimulation is a timed simulation which is also symmetric, and two
states (�1, v1), (�2, v2) ∈ [[A]] are said to be timed bisimilar, written (�1, v1) ∼
(�2, v2), if there exists a timed bisimulation R for which (�1, v1) R (�2, v2).

Note that ∼ is itself a timed bisimulation on A (indeed the greatest such), which
is easily shown to be an equivalence relation and hence transitive, reflexive, and
symmetric. Also—as usual—timed bisimilarity may be lifted to an equivalence be-
tween two timed automata A and B by relating their initial states.
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Fig. 6 Four timed automata A, X, U and D

Consider the four automata A, X, U and D in Fig. 6 (identifying the automata
with the names of their initial locations). Here (U, v) and (D,v) are timed bisimilar

as any transition (U, v)
d,a−−→ (V , v′) may be matched by either (D,v)

a−→ (G,v′) or
(D,v)

a−→ (E,v′) depending on whether v(y) > 2 or not after delay d . In fact, it may
easily be seen that U and D are the only locations of Fig. 6 that are timed bisimilar
(when coupled with the same valuation of y). E.g., A and X are not timed bisimilar

since the transition (X,0)
1.5,a−−−→ (Y,1.5) cannot be matched by (A,0) by a transition

with exactly the same duration. Instead A and X are related by the weaker notion
of time-abstracted bisimulation, which does not require equality of the delays (see
Definition 2). It may be seen that A and X are both time-abstracted simulated by
U and D but not time-abstracted bisimilar to U and D. Also, U and D are time-
abstracted bisimilar, which follows from the following easy fact:

Theorem 2 Any two automata being timed bisimilar are also time-abstracted
bisimilar.

29.4.2 Checking (Bi)simulations

As we now explain, timed and time-abstracted (bi)similarity are decidable for timed
automata.

Theorem 3 Time-abstracted similarity and bisimilarity are decidable for timed au-
tomata.

For proving this result, one only needs to see that time-abstracted (bi)simulation
in the timed automaton is the same as ordinary (bi)simulation in the associated re-
gion automaton; indeed, any state in [[A]] is untimed bisimilar to its image in [[A]]∼=.
The result follows by finiteness of the region automaton.
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For timed bisimilarity, decidability—as we shall see in Sect. 29.9—is obtained by
playing a game on a product construction, yielding an exponential-time algorithm
for checking timed bisimilarity.

Theorem 4 ([73]) Timed similarity and bisimilarity are decidable for timed au-
tomata.

29.5 Language-Theoretic Properties

29.5.1 Language of a Timed Automaton

This section introduces the notion of (timed) language associated with timed au-
tomata, and focusses on basic decision problems such as language emptiness and
inclusion, as well as standard Boolean operations on languages.

Properties of languages associated with various computational models are a clas-
sical object of study in computer science; moreover, many model-checking, refine-
ment, and verification problems can often be stated in terms of languages, notably
by translating them into language emptiness or language inclusion problems.

In this section we consider timed automata augmented with sets of accepting
locations. Given a timed automaton A= (L, �0,C,Σ, I,E,F ), where F ⊆ L is the
set of accepting locations, a finite run

ρ = (�0, v0)
d1,a1−→(�1, v1)

d2,a2−→ . . .
dn,an−→(�n, vn)

of A is accepting if �n ∈ F . The language L(A) of A consists of all finite timed
words over alphabet Σ∗ generated by accepting runs of A.

The language of infinite words accepted by a timed automaton is defined anal-
ogously; the relevant acceptance condition is that the underlying infinite run visits
locations in F infinitely often. We write Lω(A) to denote the set of infinite timed
words accepted by A.

29.5.2 Timed Automata with ε-Transitions

Silent transitions are transitions of the form (q, g, ε, r, q ′), where ε is the empty
word. In other terms, they are transitions carrying no letter. Silent transitions offer
a convenient way of modeling, e.g., internal actions. In the setting of finite-state
automata, it is well known that such transitions can be removed, by merging them
with the possible subsequent actions.

The question whether the above result extends to the timed setting was settled
in [42], with a negative answer: to see this, simply consider the automaton in Fig. 7;
its language L(A) contains precisely those timed words in which all timestamps
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Fig. 7 A timed automaton
with ε-transitions

Fig. 8 Automaton accepting
words with finitely many a’s
or finitely many b’s

are even integer numbers. Towards a contradiction, assume that there exists a timed
automaton B , without ε-transitions, such that L(A)= L(B); write m for the max-
imal integer constant appearing in the timing constraints of B . Then the one-letter
word (σ,2m) is accepted by B , since it is accepted by A. Since B has no silent
transition, it must have a σ -transition from an initial state to an accepting one. The
guard on this transition can only involve constants less than or equal to m, so that B
must accept (σ, k) for all k >m, which is a contradiction.

Theorem 5 ([42]) Silent transitions strictly increase the expressive power of timed
automata.

It can be proved that in the case when ε-transitions do not reset any clock, they
do not add expressiveness. Finally, let us mention that the question whether a timed
automaton with silent transitions is equivalent (i.e., accepts the same language) to
some timed automaton without such transitions is undecidable [56].

In the sequel, we consider timed automata without ε-transitions.

29.5.3 Clock Constraints as Acceptance Conditions

Clock constraints can be used to enable or disable certain conditions along the runs
of a timed automaton. As such, they can be used to define acceptance conditions,
when added on top of a finite-state automaton.

In this setting, we consider the untimed language of timed automata: given a
timed automaton A, its untimed language (of infinite words) is the set Lu con-
taining exactly those words (ai)i∈N for which there is a diverging real-valued se-
quence (di)i∈N such that the timed word (ai, di)i∈N ∈ Lω(A). Notice that thanks to
the time-abstracted bisimulation between a timed automaton and its region automa-
ton, the untimed language of a timed automaton is easily seen to be ω-regular.

Conversely, any ω-regular language is the untimed language of a timed automa-
ton: as an example, consider the language of infinite words over {a, b, c} that have
finitely many a’s or finitely many b’s. The untimed language of the automaton
depicted in Fig. 8 precisely corresponds to that language: indeed, the a- and b-
transitions on the left can only be taken finitely many times, since we require time
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Fig. 9 A non-comple-
mentable timed automaton

divergence. Hence one of the a- and the b-transitions at the bottom has to be taken.
But after this time, only the corresponding transition on the right is allowed (to-
gether with the ε-transition, which is always allowed). This construction can be
generalized, so that:

Theorem 6 ([101]) Given an ω-regular language L, there exists a (one-location)
timed automaton A such that Lu(A)= L.

The number of clocks and locations can be shown to define strict hierarchies of
(untimed) ω-regular languages.

More generally, given a finite-state automaton A and an ω-regular language L,
one can equip A with clocks and clock constraints in such a way that the untimed
language of the resulting timed automaton is the intersection of the language of A
with L [101].

29.5.4 Intersection, Union, and Complement

A (finite or infinite) language is said to be timed regular if it is accepted by some
timed automaton. Timed regular languages (both finite and infinite) are effectively
closed under intersection and union. They are however not closed under comple-
ment. We reproduce in Fig. 9 an example (taken from [13]) of a timed automaton A,
equipped with a single clock, that cannot be complemented: there does not exist
a timed automaton A′ such that Lω(A′) is the set of all timed words not accepted
by A. The complement of Lω(A) contains all timed traces in which no pair of a’s is
separated by exactly one time unit. Intuitively, since there is no bound on the num-
ber of a’s that can occur in any unit-duration time interval, any timed automaton
capturing the complement of Lω(A) would require an unbounded number of clocks
to keep track of the times of all the a’s within the past one time unit. A formal proof
that A cannot be complemented is given in [105].

Under some restrictions, timed automata can be made determinizable (hence
also complementable). Most notably, event-clock automata [16] enjoy this prop-
erty. In such timed automata, each letter a of the alphabet is associated with two
clocks xa and ya (and any clock is associated with some letter that way): clock xa
(called the event-recording clock of a) is used to measure the delay elapsed since
the last reset of event a (and is initially set to some special value +∞), while ya
(the event-predicting clock of a) is used to constrain the delay until the next oc-
currence of a. One can easily show that event-clock automata can be represented
as classical timed automata, though several clocks might be needed to encode each
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Fig. 10 An event-clock
automaton

event-recording clock. Figure 10 displays an example of an event-clock automaton
accepting those timed words containing two consecutive a’s separated by exactly
one time unit.

It must be remarked that, at any time during a run of an event-clock automaton on
some timed word w, the valuation of the clocks does not depend on the run, but only
on w. As a consequence, the classical subset construction for determinising finite-
state automata can be adapted to handle event-clock automata, which thus form an
(effectively) determinizable and complementable class of timed automata.

29.5.5 Language Emptiness, Inclusion

It follows immediately from Theorem 1 that the language-emptiness problem for
timed automata is PSPACE-complete [13]. Unfortunately the language-universality,
language-inclusion and language-equivalence problems for timed automata are all
undecidable. By contrast, recall from Theorem 4 that the related branching-time
counterparts to language inclusion and equivalence, namely similarity and bisimi-
larity, are both decidable on timed automata.

Theorem 7 ([13]) The language-inclusion problem for timed automata is undecid-
able, both over finite and infinite words.

The proof of Theorem 7 is by reduction from the Halting Problem for Turing
machines. This reduction involves encoding the valid halting computations of a
given Turing machine M as a timed language whose complement is recognized by
a timed automaton AM which can be effectively computed fromM . Intuitively, dis-
crete computation steps of M are simulated over unit-duration time intervals, with
timed events used to encode the tape’s contents. The integrity of the tape in a valid
encoding of a computation is maintained by requiring that any given timed event
be preceded and followed at a distance of exactly one time unit by the same timed
event, and vice-versa (unless the corresponding character is to be modified by M
in the computation step). Figure 11 illustrates this encoding. Note that the density
of time enables one to accommodate arbitrarily large tape contents. The key idea is
that while no timed automaton can in general accurately capture the encodings of
valid computations of a Turing machine, AM can be engineered to recognise pre-
cisely all the invalid computations of M ; indeed, a computation is invalid if it fails
one of finitely many rules, the most interesting of which is to adequately preserve
the tape’s contents. The latter is easily detected, either by a timed automaton wit-
nessing a timed event with no predecessor one time unit earlier (corresponding to an
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Fig. 11 Encoding computations of Turing machines as timed words

insertion error on the tape), or conversely by a timed automaton witnessing a timed
event with no successor one time unit later (corresponding to a deletion error on
the tape). Other rule failures can likewise be detected by small timed automata. Au-
tomaton AM is obtained as the disjunction of those finitely many timed automata.
The upshot is that M fails to have a valid halting computation iff AM accepts every
single timed trace. This shows that universality, and a fortiori language inclusion,
are indeed undecidable for timed automata.

Theorem 7 places a serious limitation on the algorithmic analysis of timed au-
tomata since many verification questions naturally reduce to checking language in-
clusion. In spite of this hindrance there has been a great deal of research on various
aspects of timed language inclusion, including [16, 102, 134] among many others.
Here we describe several approaches, involving syntactic and semantic restrictions
on timed automata, to obtaining positive decidability results for language inclusion.

Let us first notice that the classical approach to deciding language inclusion is
by testing emptiness of the intersection of the first language with the complement
of the second one. Thus whether Lω(A)⊆ Lω(B) is decidable as soon as B can be
complemented. For instance:

Theorem 8 ([15]) Given timed automata A and B , the language-inclusion problem
Lω(A)⊆ Lω(B) is decidable if B is an event-clock automaton.

Using more elaborate techniques (based on well-quasi-orderings and Higman’s
Lemma), we can prove:

Theorem 9 ([124, 134, 135]) Given timed automata A and B , the finite-word
language-inclusion problem L(A)⊆ L(B) is decidable and non-primitive recursive
provided B has at most one clock.

In the case of infinite words, the language-inclusion problem Lω(A) ⊆ Lω(B)
is undecidable even when B has only one clock. The proof of undecidability is by
reduction from the boundedness problem for lossy channel machines [4].

A natural semantic restriction on timed automata to recover decidability of
language inclusion involves adopting a discrete-time model. Given a timed lan-
guage L, let Z(L) denote the set of timed words (a1, t1) . . . (ap, tp) such that
each timestamp ti lies in Z. Given timed automata A and B , the discrete-time
language-inclusion problem is to decide whether Z(L(A)) ⊆ Z(L(B)). This prob-
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lem is EXPSPACE-complete: the exponential blow-up over the complexity of the
language-inclusion problem for classical non-deterministic finite automata arises
from the succinct binary representation of clock values in timed automata. Hard-
ness in EXPSPACE is proven in [28].

Using a technique called digitization [102] the discrete behaviors of timed au-
tomata can be used to infer conclusions about their dense-time behavior. For exam-
ple:

Theorem 10 ([102]) LetA be a closed timed automaton (i.e., having only non-strict
inequalities as clock constraints) and B an open timed automaton (i.e., having only
strict inequalities). Then L(A)⊆ L(B) if and only if Z(L(A))⊆ Z(L(B)).

To apply Theorem 10 one can imagine over-approximating a real-time model by
a closed timed automaton and under-approximating a specification by an open timed
automaton.

Rather than restricting the precision of the semantics we can instead consider
a time-bounded semantics in which we consider only finite timed words of total
duration at most N . Note that due to the density of time there is no bound on the
number of events that can be performed in a fixed time period. In this case, for the
whole class of timed automata, we have:

Theorem 11 ([133]) Over bounded time (i.e., considering only finite timed words
of total duration at most N , for some fixed time bound N ), the language-inclusion
problem is 2-EXPSPACE-complete.

Theorem 11 was proven as a corollary of the decidability of satisfiability of
monadic second-order logic over structures of the form (I,<,+1), with I a
bounded interval of reals and +1 denoting the plus-one relation: +1(x, y) iff
y = x + 1.

Notwithstanding the positive decidability results Theorem 9 and Theorem 11,
neither one-clock timed automata nor automata over bounded time are closed under
complement. (The counterexample in Sect. 29.5.4 can still be used in both cases.)
To remedy this deficiency, the strictly more powerful model of alternating timed au-
tomata has been introduced [124, 135]. Alternating timed automata are a common
generalization of timed automata and alternating finite automata; they are closed
under all Boolean operations, but language inclusion remains decidable for alter-
nating timed automata with one clock or over bounded time. Unlike in the un-
timed setting, alternating timed automata are strictly more expressive than purely
non-deterministic timed automata. This extra expressiveness is crucially utilised
in [135] where it is shown how to translate formulas of Metric Temporal Logic
(see Sect. 29.6) into equivalent one-clock alternating timed automata.
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29.6 Timed Temporal Logics

The whole theory of temporal-logic model checking has been extended to the setting
of timed automata, in order to express and check richer properties beyond emptiness/
reachability. We present the most significant results below.

29.6.1 Linear-Time Temporal Logics

The most natural way of extending LTL (see Chap. 2) with quantitative requirements
is by decorating modalities with timing constraints. We present the resulting logic,
called Metric Temporal Logic (MTL), below. Another extension consists in using
clocks in formulas, with a way of resetting them when some property is fulfilled
and checking their values at a later moment. The resulting logic is called Timed
Propositional Temporal Logic (TPTL). Due to lack of space, we don’t detail the
latter logic, and rather refer to [17, 18, 52] for more details about TPTL.

Given a set P of atomic propositions, the formulas of MTL are built from P

using Boolean connectives and time-constrained versions of the until operator U as
follows:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | ϕUI ϕ ,

where I ⊆ (0,∞) is an interval of reals with endpoints in N ∪ {∞}. We sometimes
abbreviate U(0,∞) to U, calling this the unconstrained until operator.

Further connectives can be defined following standard conventions. In addition to
propositions� (true) and⊥ (false) and disjunction∨, we have the constrained even-
tually operator ♦I ϕ ≡�UI ϕ, and the constrained always operator �I ϕ ≡¬♦I¬ϕ.

Sometimes MTL is presented with past connectives (e.g., constrained versions of
the “since” connective from LTL) as well as future connectives [17]. However we do
not consider past connectives in this chapter.

Next we describe two commonly adopted semantics for MTL.

Continuous Semantics

Given a set of propositions P , a signal is a function f : R≥0 → 2P mapping t ∈R≥0
to the set f (t) of propositions holding at time t . We say that f has finite variabil-
ity if its set of discontinuities has no accumulation points (in other words, on any
finite interval the value of f can only change a finite number of times). In this chap-
ter, we require that all signals be finitely variable. Given an MTL formula ϕ over
the set of propositional variables P , the satisfaction relation f |= ϕ is defined in-
ductively, with the classical rules for atomic propositions and Boolean operators,
and with the following rule for the “until” modality, where f t denotes the signal
f t (s)= f (t + s):
f |= ϕ1UI ϕ2 iff for some t ∈ I, f t |= ϕ2 and f u |= ϕ1 for all u ∈ (0, t).
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Pointwise Semantics

In the pointwise semantics MTL formulas are interpreted over timed words. Given
a (finite or infinite) timed word w = (a1, t1), . . . , (an, tn) over alphabet 2P and an
MTL formula ϕ, the satisfaction relation w, i |= ϕ (read “w satisfies ϕ at position i”)
is defined inductively, with the classical rules for Boolean operators, and with the
following rule for the “until” modality:

w, i |= ϕ1UI ϕ2 iff there exists j such that i < j < |w|,w, j |= ϕ2,

tj − ti ∈ I, and w,k |= ϕ1 for all k with i < k < j.

The pointwise semantics is less natural if one thinks of temporal logics as en-
coding fragments of monadic logic over the reals. On the other hand it seems more
suitable when considering MTL formulas as specifications on timed automata. In this
vein, when adopting the pointwise semantics it is natural to think of atomic propo-
sitions in MTL as referring to events (corresponding to location changes) rather than
to locations themselves.

Consider our example of Fig. 2. Using LTL, we can express the property that
Process Pi will try to get the resource infinitely many times, by writing �♦start!.
With MTL, we can be more precise and write �♦≤4start!, stating that whatever
the current state, within four time units Process P1 will start trying to acquire the
resource. MTL can also be used to express bounded-time response properties, such
as �(start!⇒ ♦≤10acquire!).

29.6.2 Verification of Linear-Time Temporal Logics

Model checking timed automata can be carried out under either pointwise or con-
tinuous semantics. For the latter, it is necessary to alter our definitions to associate a
language of signals with a timed automaton rather than a language of timed words.
In turn, this requires a notion of timed automata in which locations are labelled by
atomic propositions. A full development of this semantics can be found, e.g., in [14].

Theorem 12 ([13]) Model checking and satisfiability for LTL, over both the point-
wise and continuous semantics, are PSPACE-complete.

The PSPACE upper bound in Theorem 12 can be established in the same manner
as in the untimed case, by translating the negated formula to a Büchi automaton, and
performing an on-the-fly reachability check on the product of this automaton with
the region graph of the model.

Theorem 13 ([135–137]) Model checking and satisfiability for MTL in the point-
wise semantics over finite words are decidable but non-primitive recursive. Over
infinite words, both problems are undecidable.
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As explained in Sect. 29.5.5, the decidability results are essentially obtained by
translating MTL formulas into one-clock alternating timed automata, and rephrasing
the model-checking or satisfiability problems as instances of language emptiness in
one-clock alternating timed automata.

The undecidability result proceeds by reduction from the recurrent reachability
problem for channel machines with insertion errors: the infinite runs of such a ma-
chine can be encoded as timed words, which in turn are easily characterized by an
MTL formula [136].

Theorem 14 ([14]) Model checking and satisfiability for MTL in the continuous
semantics (over both finite and infinite signals) are undecidable.

The extra expressiveness of the continuous semantics enables a more direct proof
of undecidability than in Theorem 13. In this case, one can directly encode the
computations of a Turing machine as timed signals, which again can be captured by
an MTL formula, following a scheme similar to that of Theorem 7.

A key ingredient of the undecidability proof of Theorem 14, as well as the non-
primitive recursive complexity in Theorem 13, is the ability of MTL to express
punctuality, i.e., the requirement that two events be separated by an exact dura-
tion. A fragment of MTL that syntactically disallows punctuality, known as Metric
Interval Temporal Logic (MITL), was proposed by Alur et al. in [14]. In MITL, one
requires that all instances of the interval I appearing in uses of the constrained until
operator UI be non-singular. The main result of [14] is as follows:

Theorem 15 ([14]) For both the pointwise and continuous semantics, model check-
ing and satisfiability for MITL are EXPSPACE-complete, over both finite and infinite
behaviors.

This theorem was obtained by translating MITLformulas into equivalent timed au-
tomata of potentially exponential size. In contrast, it is easy to write an MTL formula
that has no equivalent timed automaton: for example, the formula ¬♦(a ∧ ♦=1a)

captures the complement of the language of automaton A in Fig. 9.
Another decidable fragment of MTL can be obtained by adapting the idea of

event clocks to temporal logics [140]: here, timing constraints can only refer to the
next (or previous) occurrence of an event. Hence ECTL (standing for Event-Clock
Temporal Logic) extends LTL with -I ϕ and .I ϕ. For instance, that there are two
consecutive a’s separated by one time unit is written in ECTL as ♦(a ∧ -=1a).

Theorem 16 ([140]) Satisfiability and model checking are PSPACE-complete for
ECTL, in either the pointwise or continuous semantics.

Not surprisingly, deciding ECTLis achieved by a translation to event-clock au-
tomata (see Sect. 29.5.4). However, event-clock automata are not powerful enough
to precisely capture ECTL, and require the use of timed Hintikka sequences. Intu-
itively, given a formula ϕ in ECTL, a timed Hintikka sequence is a timed word on
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sets of subformulas of ϕ, required to satisfy local consistency conditions. Compare
to a timed word, a timed Hintikka sequence contains more information about the
truth value of the subformulas of ϕ, which will help the event-clock automaton de-
cide whether the underlying timed word is to be accepted. We refer to [140] for
more details, and to [104] for an extension of event-clock automata that encom-
passes ECTL.

Rather than imposing syntactical restrictions, an alternative approach to recover-
ing decidability is to consider a time-bounded semantics, i.e., in which either timed
words or signals are observed over a fixed, bounded time interval:

Theorem 17 ([133]) Model checking and satisfiability for MTL over bounded time,
in either the pointwise or continuous semantics, are EXPSPACE-complete.

The main technique used in the proof of Theorem 17 is an exponential trans-
formation from MTL formulas, given a fixed time bound, into equisatisfiable LTL
formulas.

29.6.3 Branching-Time Temporal Logics

Given a set P of atomic propositions, TCTL* formulas are state-formulas obtained
as formulas ϕs from the following grammar:

ϕs ::= p | ¬ϕs | ϕs ∧ ϕs | Eϕp |Aϕp
ϕp ::= ϕs | ¬ϕp | ϕp ∧ ϕp | ϕpUI ϕp

Compared to CTL*, TCTL* has a time-constrained until, requiring as for MTL that
the right-hand side formula should be fulfilled within that time. The same shorthands
as for MTL can be defined, such as ♦I ϕ or �I ϕ.

As for the linear-time temporal logics, the semantics of TCTL* comes in (at least)
two flavours: continuous and pointwise. The continuous semantics is defined on
dense trees, which naturally extend classical discrete trees to the continuous set-
ting [7, 89] and represent the set of signals of timed automata; this semantics extends
the continuous-time semantics of MTL with path quantifiers.

The pointwise semantics is defined over discrete (but infinite-branching) trees,
which can be used to represent the timed words generated by timed automata. This
corresponds to evaluating TCTL* formulas over the operational semantics of timed
automata, as defined in Sect. 29.2.

Finally, as for the untimed case, the fragment of TCTL* where each temporal
modality is under the immediate scope of a path quantifier is of particular interest,
and will be called TCTL.

Before turning to the algorithmic part, let us show how TCTLcan be used to
express desirable properties of the timed system modeled in Fig. 2. Mutual exclusion
(in a setting with two processes P1 and P2 and one resource R1) is expressed as
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¬E♦(working1 ∧ working2): two processes will never be working (i.e., using the
resource) at the same time. We can also express timing requirements, such as the
fact that Process Pi will never be working continuously for more than one time unit:
A�(A♦≤1¬workingi ).

29.6.4 Verification of Branching-Time Temporal Logics

Since TCTL* embeds MTL, there is no hope that its model checking and satisfiability
will be decidable. On the lower side, CTL model checking is clearly decidable over
timed automata: CTL is invariant under bisimulation, so that any property to be
checked on a timed automaton can equivalently be checked on its corresponding
finite-state region automaton.

Concerning TCTL, model checking can be shown to be decidable. Actually, this
can easily be shown on the explicit-clock version of TCTL (using formula clocks),
which strictly subsumes TCTL. For this logic, the important property is that any two
region-equivalent states satisfy the same formulas: this can be proven by induction
on the structure of the formula. Consider for instance the formula ζ = EϕUIψ , as-
suming that ϕ and ψ are compatible with region (i.e., if they hold true in some state,
then they also hold true in any region-equivalent state). Given a timed automaton A,
consider the automaton At obtained by adding an extra clock t to A, which does not
modify its behavior. Then if (�, v) |= ζ in A, then (�, vt ) |= EϕU(ψ ∧ t ∈ I ) where
vt extends v by mapping clock t to zero and “t ∈ I” (which is not a TCTL formula
but whose meaning is rather clear) is also compatible with regions. In the end, the
set of states in At where formula EϕU(ψ ∧ t ∈ I ) is a union of regions, so that it is
also the case for the set of states of A where ζ holds.

Using this result, TCTL model checking can be achieved by labeling states of the
region automaton with the subformulas they satisfy. This applies for both semantics,
with slight differences. It should be noticed that this extends to the explicit-clock
version of TCTL, and even to the fragment of explicit-clock TCTL* where formula-
clocks are only reset at the level of path quantifiers [66].

While labeling the region automaton requires exponential space, the algorithm
can be implemented in a space-efficient manner so as to only use polynomial space.
Reachability being already PSPACE-hard, we get the following theorem:

Theorem 18 ([9]) TCTL model checking is PSPACE-complete.

TCTL (as well as CTL) suffers from not being able to express useful properties,
in particular fairness (see Chap. 2 on temporal logics). One way to solve this prob-
lem is by decorating path quantifiers with fairness requirements [7, 152]. One can
then apply classical algorithms for CTL with fairness [75] or adapt fixpoint charac-
terizations. Another approach is to consider TCTL defined with formula clocks as
sketched above, and to have it include CTL*. The resulting logic is very expressive
while still enjoying a PSPACE model-checking algorithm [66].
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These positive results about model checking do not extend to satisfiability:

Theorem 19 ([9]) TCTL satisfiability is undecidable.

The proof follows the same ideas as for undecidability of MTLsatisfiability, by
associating universal path-quantifiers with each temporal modality. As for the linear-
time case, it suffices to ban equality constraints to recover decidability [117, 118].
This can be proved by lifting tree-automata techniques to the timed setting.

29.7 Symbolic Algorithms, Data Structures, Tools

29.7.1 Zones and Operations

As shown in the previous sections, the regions introduced in Sect. 29.3 provide a
finite and elegant abstraction of the infinite state space of timed automata, enabling
us to prove decidability of a wide range of problems, including (timed and untimed)
bisimilarity, untimed language equivalence and language emptiness, as well as TCTL
model checking.

Unfortunately, the number of states obtained from the region partitioning is
extremely large. Indeed, it is exponential in the number of clocks as well as in
(the binary representation of) the maximal constants of the timed automaton [13].
Efforts have been made to develop more efficient representations of the state
space [34, 39, 103, 121], using the notion of zones introduced below as a coarser
and more compact representation of the state space.

For a finite set C of clocks, a subset Z ⊆ R
C
≥0 is called a zone if there exists

ϕ ∈ Φd(C) for which Z = [[ϕ]]C . For reachability analysis, we need the following
operations on zones: for a zone Z ⊆R

C
≥0 and r ⊆ C, let us denote

• the delay of Z by Z↑ = {v+ d | v ∈Z,d ∈R≥0} and
• the reset of Z under r by Z[r] = {v[r] | v ∈ Z}.

Lemma 1 ([103, 157]) Let Z, Z′ be zones over C and r ⊆ C. Then Z↑, Z[r], and
Z ∩Z′ are also zones over C.

Definition 5 The zone automaton associated with a timed automaton A = (L, �0,

C,Σ, I,E) is the transition system [[A]]Z = (S, s0,Σ ∪ {δ}, T ) given as follows:

S = {
(�,Z)

∣
∣ � ∈ L,Z ⊆R

C
≥0 is a zone

}
s0 =

(
�0, [[v0]]

)

T = {
(�,Z)

δ�
(
�,Z↑ ∩ [[

I (�)
]]
C

)}

∪ {
(�,Z)

a�
(
�′,

(
Z ∩ [[ϕ]]C

)[r] ∩ [[
I
(
�′
)]]
C

) ∣
∣ �

ϕ,a,r−−−→ �′ ∈E}

Analogously to Proposition 1, we have:
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Proposition 2 ([157]) A location � in a timed automaton A = (L, �0,F,C,Σ,

I,E) is reachable if and only if there is a zone Z ⊆ R
C
≥0 for which (�,Z) is reach-

able in [[A]]Z .

A priori, however, the zone automaton defined above is infinite, hence another,
finite, abstraction is needed. This is provided by normalization using region equiv-
alence ∼=M : for a maximal constant M , the normalization of a zone Z ⊆R

C
≥0 is the

set {v : C→R≥0 | ∃v′ ∈Z : v ∼=M v′}. The normalization of a zone is not in general
a zone, hence in practice other normalization operators are used (see Sect. 29.7.3).

The normalized zone automaton is defined analogously to the zone automaton
defined above, and in case the timed automaton to be verified does not contain di-
agonal clock constraints of the form x − y -. k, Proposition 2 also holds for the
normalized zone automaton. Hence we can obtain a reachability algorithm by ap-
plying any search strategy (depth-first, breadth-first, or another) on the normalized
zone automaton.

For timed automata that contain diagonal clock constraints x − y -. k, however,
it can be shown [38, 48] that normalization as defined above does not give rise
to a sound and complete characterization of forward reachability. Instead, one can
apply a refined normalization which depends on the difference constraints used in
the timed automaton, see [38].

29.7.2 Symbolic Datastructures

A zone, given by a conjunction of elementary clock constraints, may be represented
using a directed weighted graph, where the nodes correspond to the clocks in C

together with an extra “zero” clock x0, and an edge xi
k−→ xj corresponds to a con-

straint xi − xj ≤ k (if there is more than one upper bound on xi − xj , k is the
minimum of all these constraints’ right-hand sides). The extra clock x0 is fixed at
value 0, so that a constraint xi ≤ k can be represented as xi − x0 ≤ k. Lower bounds
on xi −xj are represented as (possibly negative) upper bounds on xj −xi , and strict
bounds xi − xj < k are represented by adding a flag to the corresponding edge.

The weighted graph in turn may be represented by its adjacency matrix, which
in this context is known as a difference-bound matrix or DBM. The above technique
was introduced in [87] (the main ideas were already present in [43]). Figure 12
gives an illustration of an extended clock constraint together with its representation
as a difference-bound matrix. Note that the clock constraint contains superfluous
information.

On zones represented using DBMs, efficient (in time cubic in the number of
clocks in C) algorithms are available for computing delays, resets and intersections.
For reachability checking, other necessary operations inclusion checking whether
Z ⊆ Z′, and emptiness checking, Z = ∅; these can also be computed efficiently us-
ing DBMs.
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Fig. 12 Graph representation
of extended clock constraint

For these computations, a canonical representation obtained as the shortest-path
closure of the DBM graph is used. Another useful canonical form is the shortest-
path reduction described in [120]. Whereas the shortest-path closure form gives all
derived constraints, the shortest-path reduced form provides a memory-efficient rep-
resentation, containing only a minimal set of constraints. Figure 13 shows the two
canonical forms of the DBM of Fig. 12. Given the shortest-path closure of the DBM
graph, the shortest-path reduced form is obtained by partitioning the set of clocks
according to zero cycles in the DBM graph; in the DBM of Fig. 13, {x1, x2, x3} con-
stitutes one such class, and {x0} is another one. The reduced form is now obtained
by maintaining a minimal set of constraints for each class, essentially a simple cycle
of the clocks of the class, and only keeping constraints between representatives of
different classes, here x1 and x0.

To combat state-space explosion in zone graphs, several optimizations are used.
One such approach is to detect whether a state (�,Z) reached through the algorithm
is contained in another state (�,Z′) which has already been explored. In this case,
exploration of (�,Z) will be unnecessary.

Another such optimization is to work with unions of zones. If states (�,Z) and
(�,Z′) are found to reachable during the analysis, then we know that altogether
the state (�,Z ∪ Z′) is reachable. Unfortunately, unions of zones are not generally
themselves zones, so cannot be efficiently represented using DBMs.

For representing unions of zones, or federations as they are called in this context,
a data structure inspired by decision diagrams called clock difference diagrams or
CDDs is used [121]. However, no efficient algorithms are known to compute delays

Fig. 13 Canonical representations
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or resets of federations using CDDs, so in practice reachability analysis using CDDs
is done by extracting the zones from the CDD and performing the operations on
them one by one.

Other promising data structures in this context are numerical decision dia-
grams [24], difference decision diagrams [132], clock-restriction diagrams [154],
max-plus polyhedra [5], constraint matrix diagrams [88], and time-darts [111]; gen-
erally, the design of efficient data structures for symbolic exploration of timed au-
tomata is a field of active research.

29.7.3 Practical Efficiency

Symbolic, zone-based exploration of the (reachable) state-space of timed automata
using the DBM data structure is key to their analysis. However, a number of addi-
tional algorithmic techniques have been developed for gaining efficiency in practice.
In the following we indicate a number of these.

As described in Sect. 29.7.1, normalization of zones with respect to the maxi-
mum constant M appearing in the given timed automata ensures finiteness of the
zone graph and hence termination of algorithms searching the zone graph. Here,
a practical problem is that the normalization of a zone is in general not a zone it-
self, but rather a finite union of such. However, given a representation of the zone
as a shortest-path-closed DBM, a syntactic extrapolation operation that removes
bounds that are larger than the maximum constant may be easily performed: any
upper bound constraint of the form xi − xj < k where k >M is removed, and any
lower bound of the form xi − xj > k where k <−M is replaced by xi − xj >−M .
Clearly, under extrapolation, only a finite number of DBMs will be encountered,
ensuring termination. Furthermore, the correctness is based on the fact that extrapo-
lation of a zone (based on its DBM representation) is included in its normalization,
as shown in [29, 48].

Coarser, yet complete, notions of extrapolation have been obtained by perform-
ing the operation with respect to clock- and location-dependent maximum con-
stants [29] and further differentiating the maximum constant used in upper or lower
bound comparisons [30, 31]. In fact, this last extrapolation yields performance com-
parable to that of the overapproximate convex hull abstraction [81].

Several of the algorithmic problems presented in this chapter—e.g., reachability,
model checking, and equivalence checking, as well as notions of optimal reacha-
bility and controllability, which will be described in later sections—have a fixed-
point characterization. Though easy to implement, this leads to backwards itera-
tive algorithms, requiring one to consider and classify states which are possibly
not even reachable. Thus, for most problems, so-called on-the-fly algorithms have
been devised, where the satisfaction of the given property by the initial state is at-
tempted to be concluded in as local a fashion as possible, only exploring the state
space when needed. For the analysis of timed-automata-based models, such on-the-
fly algorithms have been proposed for instance for reachability [120, 157], live-
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ness checking [147, 151], model checking with respect to TCTL [47], time-abstract
bisimulation checking [149], and controller synthesis for timed game automata [69].

Despite the above efforts in applying aggressive (yet complete) abstractions, the
analysis of timed-automata-based models suffers from the state-space explosion
problem. Thus, complementary techniques have been proposed and implemented
for reducing space consumption at the expense of time performance [35, 120].
Also, various AI-inspired techniques have been developed for efficient guidance
of the symbolic exploration of timed automata towards specified error states [114–
116]. Similarly, the technique of symmetry reduction has been developed and im-
plemented for networks of timed automata with several symmetric components,
potentially yielding an exponential gain in performance [96]. Moreover, so-called
time-convexity analysis provides significant performance improvement [153].

Finally, several attempts have been made to extend the technique of partial-
order reduction to networks of timed automata. In contrast to the proved effect in
the finite-state setting, early attempts [37, 131] did not show any improvement in
performance compared with regular symbolic exploration. In fact, being a strong
synchronizer in a timed-automata network, time reduces the number of indepen-
dent transitions, which are key for partial-order reduction to have effect. In later
work [36, 125, 126], it was found that the union of all zones reached by different in-
terleavings of the same set of transitions is convex, providing the basis of substantial
improvement.

Also, bounded model-checking techniques have been developed for timed au-
tomata using difference logics, though with a limited performance improvement [76,
77].

29.7.4 Tools and Applications

Timed automata and their extensions have been applied to the modeling, analysis
and optimization of numerous real-time applications. In this section we give a few
examples, not aiming at being exhaustive but rather to illustrate the wide range of
application domains.

A variety of mature tools are available which provide important computer-aided
support for applications. Well-known tools include UPPAAL [122], KRONOS [158],
RED [155] and HyTech [99]. A larger number of other tools related to the anal-
ysis of timed automata have emerged over the years including Else [159], Rab-
bit [44], Verics [84], and TAME [22] as well as tools for analyzing other timed
formalisms based on translation to timed automata including Times [21] (task au-
tomata), Moby [145] (PLC programs), SART [45] (Safety Critical Java), ART [93]
(task graphs), Romeo [91] and TAPALL [68] (Time and Timed-arc Petri Nets), and
VeSTA [112] (component integration checking).

The timed-automata formalism is now routinely applied to the modeling and
analysis of real-time control programs, including a wide class of Programmable
Logic Controller (PLC) control programs [85, 127] and timing analysis and code



1028 P. Bouyer et al.

generation of vehicle control software [150]. The timed-automata approach has also
demonstrated its viability in the timing analysis of certain classes of asynchronous
circuits [60].

Similarly, numerous real-time communication protocols have been analyzed us-
ing timed automata technology, often with inconsistencies being revealed: e.g., us-
ing real-time model checking, the cause of a ten-year-old bug in the IR-link protocol
used by Bang & Olufsen was identified and corrected [95]. Most recently, real-time
model checking has been applied to the clock synchronization algorithm currently
used in a wireless sensor network that has been developed by the Dutch company
CHESS [144]. Here it is shown that in certain cases a static, fully synchronized net-
work may eventually become unsynchronized if the current algorithm is used, even
in a setting with infinitesimal clock drifts.

During the last few years, timed automata modeling of multitasking applica-
tions running under real-time operating systems has received substantial research
effort. Here the goals are multiple: to obtain less-pessimistic worst-case response
time analysis compared with classical methods for single-processor systems [156];
to relax the constraints of period task arrival times of classical scheduling theory to
task arrival patterns that can be described using timed automata [90]; to allow for
schedulability analysis of tasks in terms of concurrent objects executing on multi-
processor or distributed platforms (e.g., MPSoC) [61, 80, 109].

Just as symbolic reachability checking of finite-state models has led to very effi-
cient planning and scheduling algorithms, reachability checking for (priced) timed
automata has demonstrated competitive and complementary performance with re-
spect to classical approaches such as MIPL on optimal scheduling problems in-
volving real-time constraints, e.g., job-shop and task-graph scheduling [1, 32] and
aircraft landing problems [119]. In fact a translation of the variant PDDL3 of
PDDL (Planning Domain Definition Language) into priced timed automata has
been made [86] allowing optimal planning questions to be answered by cost-optimal
reachability checking. Industrial applications include planning a wafer scanner from
the semiconductor industry [97] and computation of optimal paper paths for print-
ers [108].

Most recently, computation of winning strategies for timed games has been ap-
plied to controller synthesis for embedded systems, including synthesis of most gen-
eral non-preemptive online schedulers for real-time systems with sporadic tasks [6],
synthesis of climate control for pig shed provided by the company Skov [110], and
automatic synthesis of robust and near-optimal controllers for industrial hydraulic
pumps [71].

29.8 Weighted Timed Automata

Time is not the only quantity one may want to measure when checking an embedded
system: one may need to keep track of the battery charge or of the level of oil in a
tank. Hybrid automata [98, 100] extend timed automata with extra variables that can
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Fig. 14 Example of a weighted timed automaton

help measure such quantities. Unfortunately, reachability is undecidable for these
models, even with two-slope hybrid variables. Weighted timed automata [20, 33] is
an intermediary model, extending timed automata with hybrid observer variables:
these variables cannot appear in the guards of the automaton, but they can be used,
for example, for optimization purposes. The special case where the observer is a
stopwatch (computing the accumulated delay in some locations) was already intro-
duced and solved in [11].

Formally, a weighted timed automaton is a pair (A,w) where A is a timed au-
tomaton and w labels the locations and edges of A with an integer (or a vector of
integers for automata with multiple observer variables). For a transition t , w(t) is
the value by which the value of the observer variable is increased, while for a loca-
tion �, w(�) is the rate by which the variable increases w.r.t. time (in other words,
the observer variable p follows the differential equation dp/dt =w(�)).

The semantics of a weighted timed automaton (A,w) is that of the underlying
timed automaton A. Each run of A is decorated with the value of the observer vari-
able. Figure 14 shows an example of a weighted timed automaton,3 and a run of this
automaton. This run reaches the rightmost location within 3 time units, and with a
total weight of 19.7.

29.8.1 Cost-Optimal Schedules

Natural questions on this family of models include optimal reachability of a given
location, or optimal mean-cost of infinite runs. Formally, the associated decision
problems respectively ask whether the target location can be reached with total
weight less than a given threshold, and whether there is an infinite run along which
the average weight is less than the given bound.

3Notice that the labeling in the second location is a clock invariant (enforcing that no time will
elapse in that location). The rate of p is not given in that location as no time will elapse anyway.
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Fig. 15 Two different runs in the corner-point abstraction

These problems turn out to be decidable. The main technique used in the algo-
rithms is a refinement of the region equivalence of Sect. 29.3 called corner-point
equivalence [50]. Intuitively, for these two optimization problems, optimal sched-
ules will amount to staying as long as possible in interesting locations. Corner-
point regions extend classical regions with an extra corner of this region, i.e., an
integer valuation that belongs to the closure of the region. A corner-point (r, c) rep-
resents a clock valuation v that is close to the corner c but lies within the region r .
The corner-point automaton is the weighted automaton CAM = (S, s0,Σ,T ) where
S ⊆ L×R×{0, . . . ,M}C is the set of states (writing R for the set of regions), with
three kinds of transitions:

• action transitions: there is a transition from (�,R, c) to (�′,R′, c′) if there is a
transition t = (�,ϕ, a, r, �′) in A such that R ⊆ [[ϕ]]C , with R′ = R[r] and c′ =
c[r]. The weight of this transition is w(t).

• ε-delay transitions: these are transitions from (�,R, c) to (�,R′, c), where R′
is the immediate time-successor of R sharing corner c. Such a transition corre-
sponds to a very small delay, and its corresponding weight is set to zero.

• 1-delay transitions: these are transitions from (�,R, c) to (�,R, c′), where c′ =
c+1. This corresponds to spending (almost) one time unit in region (�,R). Notice
that such a transition is only available if c and c+ 1 are corners of R. The weight
of this transition is w(�).

Figure 15 displays two sequences of delay transitions in the corner-point automaton;
while both sequences depart from the same region and visit the same sequence of lo-
cations, the accumulated weight evolves very differently along the two sequences—
which explains why we have to refine regions.

The corner-point automaton enjoys the following properties: if there is a run
from some location � to some location �′ with total weight m in a given weighted
timed automaton, then there is a run from (�,0,0) to some (�′,R, c) with total
weight at most m in the corresponding corner-point automaton; in other words, run-
ning through corner-points is always better when trying to optimize the value of
the total weight. Conversely, for any positive ε, if there is a run from (�,0,0) to
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Fig. 16 Module for testing whether y = 2x

some (�′,R, c) with weight m in the corner-point automaton, then there is a run in
the original weighted timed automaton from � (with initial valuation 0) to �′, with
total weight at most m+ ε.

This statement can be extended in various ways, so as to handle optimization of
the ratio between two variables along finite or infinite runs. In the end:

Theorem 20 ([50]) The optimal-reachability and the optimal-ratio problems are
PSPACE-complete.

Other related problems have been considered in the literature, such as conditional
optimal reachability on multi-weighted timed automata [123]. The aim in this set-
ting is to minimize the value of one variable under some conditions on the other
variables. We refer to [123], where the problem is shown to be decidable.

29.8.2 Weighted Temporal Logics

Unfortunately, the encouraging results above do not extend to richer properties that
could be expressed in weighted extensions of classical temporal logics.4 While this
is not surprising for linear-time temporal logics (as these logics are already mostly
undecidable in the timed setting), this also holds for weighted extensions of CTL,
be it with modalities decorated with weight constraints (writing E♦≤10T to express
that T can be reached within total cost less than 10), or with explicit constraints as
atomic formulas (writing E♦(T ∧ c ≤ 10) to express the same property) [49, 63].
Undecidability can be proved by encoding the halting problem for a two-counter
machine, where each counter is encoded by a clock of the timed automaton. The
central trick in the reduction is the ability to multiply the value of a clock by some
constant (while preserving the value of the other clocks). This is achieved by the au-
tomaton depicted in Fig. 16, in which we enforce the condition that location T must
be reachable from S with total cost exactly 1: indeed, the total cost accumulated
from S to T is precisely 1+ 2x0 − y0, where x0 and y0 are the values of clocks x

4Even if we restrict to nonnegative weights, which is what we assume in this subsection on tempo-
ral logics.
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Fig. 17 A weighted timed automaton under energy constraints

and y in S. This provides us with a way of doubling the value of clock x, by letting
clock y play the role of x afterwards. Using this module, it is easy to build a com-
plete reduction involving four clocks, which can be further improved to only three
clocks.

Theorem 21 ([49, 63]) WCTL model checking is undecidable (on weighted timed
automata with at least three clocks).

Notice that the standard restriction to non-punctual constraints in the logic does
not help, as the above reduction can be carried out using only inequality constraints.
One way of recovering decidability is to restrict to one-clock weighted timed au-
tomata. These automata enjoy several special properties which allow us to prove
that refining regions to a small granularity (in O(C−h(ϕ)) where C is the maximal
rate in the automaton and h(ϕ) is the temporal height of the formula being checked)
provides a correct finite-state abstraction on which ϕ can be checked. It follows:

Theorem 22 ([57]) WCTL model checking is PSPACE-complete on one-clock
weighted timed automata.

29.8.3 Energy Constraints

Recently, weighted timed automata have been pushed one step closer to hybrid au-
tomata, with the introduction of energy constraints [55, 74]. These constraints aim
at modeling, for example, autonomous robots, which often must take care of their
battery charge level, and ensure that they never run out of energy. This is modeled
with weighted timed automata, with the constraint that the accumulated value of the
variable must never drop below 0 (or any lower bound). The same problem can of
course be considered with an additional upper-bound constraint. Notice that this is
a departure from the motto that the cost variable is an observer. Figure 17 displays
an example of a weighted timed automaton, together with the evolution of the vari-
able along one particular run. This corresponds to a feasible (prefix of a) run, as the
variable remains between the lower bound L and upper bound U .
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Fig. 18 A linear weighted
automaton

Only a few results have been obtained so far. Let us begin with the untimed
case [55]: for lower-bound constraints, the problem still amounts to optimizing the
accumulated cost, with the extra energy constraint. In that setting, the Bellman–
Ford algorithm can be used to compute the maximal accumulated cost that can be
achieved from the initial state, with the extra energy constraint. This provides a
polynomial-time algorithm for solving reachability under lower-bound constraints.
In case we also have an upper-bound constraint, the problem can be solved in expo-
nential time by augmenting the state space with the explicit value of the variable.

In the timed setting, the only known positive results concern one-clock weighted
timed automata under lower-bound constraints [54]. The central technique is the
computation of an optimal schedule through a finite linear automaton (i.e., visiting
all its locations with a fixed, linear order), such as the one depicted in Fig. 18.
Notice that along such runs, we allow lower-bound constraints (written ≥ bi ) on
each transition. Along such a path, one can prove that the optimal policy is to spend
no time in a location ri if

• either ri−1 > ri (in which case it is more profitable to spend time in location ri−1);
• or ri+1 ≥ ri and bi−1+pi−1 ≥ bi (in which case it is possible to directly jump to

the more profitable location ri+1).

If any of these conditions is fulfilled, location ri can be dropped, and replaced
by a transition from ri−1 to ri+1 with weight pi−1 + pi+1 and cost-constraint
≥max(bi−1, bi − pi−1). This provides us with a linear automaton along which the
rates are increasing. The optimal policy along such a path can be proved to be to
exit a location as soon as the cost constraint ≥ bi is fulfilled. This gives a way of
computing the optimal achievable energy level at the end of the path as a function of
the initial credit. This extends to one-clock automata by composing such functions.
In the end:

Theorem 23 ([54]) Optimal reachability is decidable in one-clock weighted timed
automata under lower-bound constraints.

Unfortunately, this algorithm does not extend to n-clock automata: indeed, one
can easily come up with a small module to increase or decrease the value of the
cost variable by the value of a clock (see Fig. 16), thus providing a way of checking
linear constraints between several clocks. As a consequence:

Theorem 24 ([58]) Optimal reachability is undecidable in four-clock weighted
timed automata under lower-bound constraints.

Weighted timed automata under energy constraints are a very recent and active
topic with many open problems. Several directions are currently being explored,
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such as the extension to exponential variables, where the variable follows the dif-
ferential equation dp/dt =w(�) ·p, or the inclusion of imprecisions in clock values
or variable growth.

29.9 Timed Games

Games provide a nice framework for modeling and reasoning about the interac-
tions between various agents (a reactive system and its environment, several com-
ponents, etc.). We refer to Chap. 27 for details about games and their use for syn-
thesizing correct models.

We consider two-player timed games, in which transitions are partitioned into
controllable and uncontrollable (i.e., under the control of an environment). The
problem is then to synthesize a strategy telling when to take which (enabled) con-
trollable transitions in order that a given objective is guaranteed regardless of the
behavior of the environment.

Definition 6 A timed game is a tuple G = (L, �0,C,Σc,Σu, I,E) with
Σc ∩Σu = ∅ for which the tuple AG = (L, �0,C,Σ = Σc ∪Σu, I,E) is a timed
automaton. We require this automaton to be deterministic (so that from any state, an
action in Σ corresponds to a unique transition). Edges with actions in Σc are said
to be controllable, those with actions in Σu are uncontrollable.

We shall again assume a set F of accepting locations to be given for the rest
of this section. A strategy in a timed game G provides instructions as to which
controllable edge to take, or whether to wait, in a given state. Hence it is a mapping σ
from finite runs of the underlying timed automaton AG to Σc ∪ {δ}, where δ /∈Σ ,
such that for any run ρ = (�0, v0)→ ·· ·→ (�k, vk),

• if σ(ρ)= δ, then (�, v)
d−→ (�, v+ d) is a transition in [[AG]] for some d > 0, and

• if σ(ρ)= a, then (�, v)
a−→ (�′, v′) is a transition in [[AG]].

An outcome of a strategy is any run which adheres to its instructions. Such an
outcome is said to be maximal if it stops in an accepting location, or if no control-
lable actions are available at its end. An underlying assumption is that uncontrollable
actions cannot be forced, hence a maximal outcome which does not end in a final
location may “get stuck” in a non-final location. The aim of reachability games is to
find strategies all of whose maximal outcomes end in an accepting location; the aim
of safety games is to find strategies all of whose (not necessarily maximal) outcomes
avoid accepting locations:

Definition 7 A strategy is said to be winning for the reachability game if any of its
maximal outcomes is an accepting run. It is said to be winning for the safety game
if none of its outcomes are accepting.
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Fig. 19 A timed game with one clock. Controllable edges (with actions from Σc) are solid, un-
controllable edges (with actions from Σu) are dashed

Example 5 Figure 19 provides a simple example of a timed game. Here, Σc =
{c1, c2, c3, c4} and Σ2 = {u1, u2, u3}, and the controllable edges are drawn with
solid lines, the uncontrollable ones with dashed lines. The following memoryless
strategy is winning for the reachability game:

σ(�1, v)=
{
δ if v(x) �= 1

c1 if v(x)= 1
σ(�2, v)=

{
δ if v(x) < 2

c2 if v(x)≥ 2

σ(�3, v)=
{
δ if v(x) < 1

c3 if v(x)≥ 1
σ(�4, v)=

{
δ if v(x) �= 1

c4 if v(x)= 1

Theorem 25 ([25, 26, 65, 128]) The (time-optimal) reachability and safety games
are decidable for timed games. They are EXPTIME-complete.

A key ingredient in the proof of the above theorem is the fact that for reachability
as well as safety games, it is sufficient to consider memoryless strategies, which
only observe the last configuration of a run. This is not the case for other, more
subtle, control objectives (e.g., counting properties modulo some N ) as well as for
the synthesis of winning strategies under partial observability. The other ingredient
is the region abstraction: if there is a winning strategy, then there is one that only
depends on the current region. This provides an exponential-time algorithm, which
can be proved to be optimal.

A problem with the above approach is that the safety game can be won by pre-
venting time from diverging. In order to rule out such behaviors, a solution was
proposed in [82]; it uses a more symmetric presentation of games, in which both
players have a strategy which proposes at the same time the amount of time this
player wants to delay, and the transition she wants to take afterwards. At each step,
the player with the shortest delay is chosen and her choice is performed. With this
definition, if time converges along an outcome, then the player(s) who have applied
their choices infinitely many times must have proposed converging sequences of de-
lays. By adding a fairness requirement to the winning condition, we can declare this
kind of behavior losing. Deciding the existence of winning strategies for reachability
and safety objectives remains EXPTIME-complete in this context.
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Fig. 20 Two states of a timed automaton

Fig. 21 Timed bisimilarity
as a timed game

The field of timed games is a very active research area. From the region-based
decidability results, efficient on-the-fly algorithms have been developed [69, 148]
and implemented in UPPAAL. In [70] these algorithms have been extended to timed
games under partial observability. Research has also been conducted towards the
synthesis of optimal winning strategies for reachability games on weighted timed
games. In [8, 51] computability of optimal strategies is shown under a certain con-
dition of strong cost non-Zenoness, requiring that the total weight diverges at a given
minimum rate per time. Later undecidability results [49, 64] show that for weighted
timed games with three or more clocks, this condition (or a similar one) is necessary.
It is proved in [59] that optimal reachability strategies are computable for one-clock
weighted timed games, though there is an unsettled (large) gap between the known
lower bound complexity and an upper bound of 3-EXPTIME, which was recently
lowered to EXPTIME [94, 142].

We conclude this section by illustrating how timed games can be used to decide
timed bisimilarity of two states of a timed automaton. This provides a simple proof
of Theorem 4, which we explain on a small example: consider the states of Fig. 20.
That two states (p, v) and (q,w) (where v and w are two valuations of the same set
of clocks C) are timed bisimilar means that any transition from either state can be
mimicked from the other one, ending up in states that are again bisimilar. We can see
this as a game on the product of two copies of the automaton (see Fig. 21): from the
joint state ((p, q), (v,w)), the first player chooses to apply one transition from one
of the states (p, v) and (q,w), and the second player has to respond (immediately)
with an appropriate move from the other state. The second player has a strategy to
always avoid the Bad state if, and only if, the starting states are timed bisimilar. This
provides an exponential-time algorithm for checking timed bisimilarity [10].
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29.10 Ongoing and Future Challenges

In this chapter, we have surveyed timed automata and the theoretical developments
that have led to their being widely accepted as a model for modeling and reason-
ing about real-time systems. Many developments are still ongoing: we briefly list
here some important topics which we think are among the important avenues to be
explored during the coming years:

• Robustness (in the timed setting) and implementability [83, 92, 139, 143] address
the problem of reconciling the semantics of timed automata (with real-valued
clocks) with the models they represent (which usually run at a finite frequency).

• Statistical model checking consists in checking several runs of the model against
a given property, and compute statistics to get an estimate of the correctness of the
model. The approach has recently been studied and implemented in the setting of
stochastic timed automata, where it provides interesting results, even for problems
that are otherwise undecidable [79].

• Games on timed automata have received a lot of attention over the last ten years,
as they are a convenient formalism for the automated synthesis of real-time sys-
tems. Recent extensions to non-zero-sum games [62, 113], where the players have
their own objectives, open a rich and promising area of research for synthesizing
complex systems.

Acknowledgements We thank the reviewers for their numerous comments, remarks and addi-
tional references, which greatly helped us improve this chapter.
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Chapter 30
Verification of Hybrid Systems

Laurent Doyen, Goran Frehse, George J. Pappas, and André Platzer

Abstract Hybrid systems are models which combine discrete and continuous be-
havior. They occur frequently in safety-critical applications in various domains such
as health care, transportation, and robotics, as a result of interactions between a dig-
ital controller and a physical environment. They also have relevance in other areas
such as systems biology, in which the discrete dynamics arises as an abstraction of
fast continuous processes. One of the prominent models is that of hybrid automata,
where differential equations are associated with each node, and jump constraints
such as guards and resets are associated with each edge.

In this chapter, we focus on the problem of model checking of hybrid automata
against reachability and invariance properties, enabling the verification of general
temporal logic specifications. We review the main decidability results for hybrid au-
tomata, and since model checking is in general undecidable, we present three com-
plementary analysis approaches based on symbolic representations, abstraction, and
logic. In particular, we illustrate polyhedron-based reachability analysis, finite quo-
tients, abstraction refinement techniques, and logic-based verification. We survey
important tools and application domains of successful hybrid system verification in
this vibrant area of research.
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30.1 Introduction

Information technology (IT) has dramatically changed our lives. The first revolution
in information technology led to the birth of the computer. The second informa-
tion technology revolution led to the creation of the Internet, connecting computing
around the world and resulting in the hyper-connected world that we live in. The
third revolution that is now taking place is connecting all the computational power to
the physical world. Computing powerhouses, such as Intel, are investing in wearable
computing and smart watches, Google has invested in self-driving cars and bought
Nest, the makers of a learning thermostat, thereby connecting Google to building
control and energy markets, and Amazon is investing in robotics and unmanned
aerial vehicles. Similarly the most significant innovation in automotive companies
recently came from software-intensive car technology, leading from adaptive cruise
control to driverless cars. There is a plethora of novel medical devices, either wear-
able or implantable, that sense patient vitals and use computer algorithms to diag-
nose medical conditions or even perform life-critical functions. The fundamental
aspect of this third revolution is the fusion of IT with physical devices that interact
with the physical world.

The marriage of IT with the physical world is known as embedded computing
as it consists of computing that is embedded and tightly interacts with the phys-
ical world. A major modeling challenge is how to formally capture the interac-
tion between computing and physics so that we can reason about the effect of
physics on computing and vice versa. This led to the development of hybrid systems
[8, 34, 35, 91, 132], where both discrete and continuous behaviors of the system are
important. Hybrid systems grew out of the necessity to enrich purely digital models
of computing with analog models of physics. As a result, hybrid systems contain
both digital models of computing (such as automata or programs) as well as ana-
log elements (such as differential equations) integrated in such a way that one can
model many embedded computing applications.

The need for formal models of hybrid systems arises from the fact that many
embedded computing problems are safety-critical. They arise in collision avoidance
protocols in air traffic control [31, 100, 113, 129, 149, 174–177], cruising controllers
for automotive vehicles [24, 46, 53, 62, 101, 114, 164, 168], obstacle avoidance al-
gorithms for autonomous ground robots [130, 182], and software-controlled medical
devices that actively regulate life-critical functions or help surgeons with surgical
robotic systems [104]. Therefore there is not only a need for formal models of em-
bedded computing, but also for rigorous verification approaches to guarantee that
the embedded computation, as modeled by a hybrid system, is formally safe. This
has resulted in the development of a new paradigm within the formal methods com-
munity, namely the formal verification of hybrid models of embedded computing.

There is a range of formal models for hybrid systems [8, 27, 29, 35, 52, 91, 118,
120, 131, 132, 134, 135, 143, 167, 179, 180], each with different advantages for
different purposes. This chapter focuses on hybrid automata [8, 91], because they
directly generalize the timed automata that have been considered in Chap. 29. The
basic idea in hybrid automata is to associate differential equations with the nodes of
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an automaton. The automaton structure defines how and under which conditions the
system switches between the various differential equations and what happens to the
state if they switch. Timed automata, which are discussed in Chap. 29, are a special
case of hybrid automata, where all differential equations are of the form ẋ = 1 such
that x is a clock variable measuring the progress of time and additional linearity
assumptions are met for the switching conditions. Timed automata are an interest-
ing subclass of hybrid automata, because reachability is decidable in this subclass.
For systems with more general continuous dynamics, e.g., moving, acceleration, or
curving, however, timed automata are not sufficient, and hybrid systems models are
needed instead.

In this chapter, we give a survey of model-checking techniques for hybrid sys-
tems with an emphasis on the handling of continuous dynamics. It has been proved
that continuous dynamics verification is the most fundamental question in hybrid
systems verification [135, 141], because discrete dynamics can be verified exactly
as well as continuous dynamics.

In this section, we survey a set of complementary verification techniques for
hybrid systems, including explicit-state reachability computations with termination
criteria like bounded-horizon (Sect. 30.4, which is related to Chap. 5), abstraction
techniques and abstraction refinement loops (Sect. 30.5, also see Chap. 13), and
logic-based verification approaches (Sect. 30.6, which is related to Chaps. 2, 26,
20, and 15). Other surveys of several aspects of hybrid systems can be found in
the literature [7, 12, 39, 80, 103, 143, 163, 171, 172]. A control-theoretic view on
hybrid systems verification has been reported in a book by Tabuada [165]. A logic
and proofs view on hybrid systems verification can be found in a book by one of the
authors [137]. Introductions to embedded systems from a cyber-physical systems
perspective have been reported in the literature [111, 122] and in university courses.

Hybrid systems has become a very active and successful area of research with
a vibrant community. Giving a complete overview of all relevant approaches is im-
possible in this chapter, instead we focus on giving an overview of some of the most
important representative classes of techniques. By their very nature, hybrid systems
tend to be mathematically demanding, but they can also be exceedingly beautiful.
The broad applicability and scope of the resulting hybrid systems analysis tech-
niques make hybrid systems a very rewarding area of science with the potential for
significant impact on practical applications.

30.2 Basic Definitions

Hybrid systems combine discrete evolutions (namely, mode changes and variable
updates) and continuous evolutions through variables whose dynamics is governed
by differential equations. Hybrid system models have been introduced to deal with
such systems in a uniform way [8, 27, 29, 35, 52, 91, 118, 120, 131, 132, 134–
136, 167, 179, 180]. The original definitions are very general. In this chapter, we
focus on subclasses of particular interest. Timed automata are an important class
of hybrid automata for which safety verification is decidable (see Chap. 29). When
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continuous variables are subject to rectangular flow constraints, that is constraints
of the form ẋ ∈ [a, b], hybrid automata are called rectangular. For that subclass of
hybrid automata, there exists a reasonably efficient algorithm to compute the image
of a (simple) set. Based on this algorithm, there exists an iterative method that com-
putes the exact set of reachable states when it terminates. This semi-algorithm can
be used to establish or refute safety properties. On the other hand, if the evolution
of the continuous variables is subject to more complicated flow constraints, for ex-
ample affine dynamics like ẋ = 3x− y, computing the flow successor is much more
difficult and only approximate methods are known.

30.2.1 Predicates

Let X = {x1, . . . , xn} be a finite set of variables. Given a valuation v : X→ R and
Y ⊆X, define v|Y : Y →R by v|Y (x)= v(x) for every x ∈ Y .

Definition 1 (Polynomial term) A polynomial term over a finite set of variables
X = {x1, . . . , xn} is an expression of the form y ≡∑

i∈Nn aix
i1
1 . . . x

in
n where ai ∈Q

(i = (i1, . . . , in) ∈ N
n) are rational constants and almost all ai are zero. Given a

valuation v over X, we write [[y]]v for the real number
∑
i∈Nn aiv(x1)

i1 . . . v(xn)
in

obtained by evaluating the polynomial term at v. We denote by PTerm(X) the set of
all polynomial terms over the variables X.

Definition 2 (Polynomial constraint) A polynomial constraint over X (also known
as a semi-algebraic constraint) is a finite formula ϕ defined by the following gram-
mar rule:

ϕ ::= θ -. 0 | ϕ ∧ ϕ | ϕ ∨ ϕ
where θ ∈ PTerm(X) and -.∈ {<,≤,=,>,≥}. We denote by PConstr(X) the class
of polynomial constraints over the set of variables X.

Definition 3 Given a valuation v : X → R and a polynomial constraint ϕ ∈
PConstr(X), we write v |= ϕ and say that v satisfies ϕ, which we define inductively
as:

• v |= θ -. 0 if [[θ ]]v -. 0,
• v |= ϕ1 ∧ ϕ2 if v |= ϕ1 and v |= ϕ2,
• v |= ϕ1 ∨ ϕ2 if v |= ϕ1 or v |= ϕ2.

We also write v ∈ [[ϕ]] when v |= ϕ. If v :X→R and w : Y →R are two valuations
for disjoint sets of variables X,Y (with X ∩ Y = ∅), we also write (v,w) ∈ [[ϕ]]
when u |= ϕ where u :X ∪ Y →R is defined such that u|X = v and u|Y =w.

Linear constraints are an Important special case of polynomial constraints. The
set of solutions of a linear constraint describes a set of polyhedra. This geometric
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interpretation is sometimes used for model checking since image computations of
polyhedra can be quite efficient.

Definition 4 (Linear constraint) A linear term is a polynomial term of the form
y ≡ a0 +∑

xi∈X aixi with ai ∈Q. We denote the set of all linear terms over X by
LTerm(X). A linear constraint is a polynomial constraint where all terms are lin-
ear. It is called conjunctive if it does not contain any disjunctions. We denote by
LConstr(X) the class of linear constraints over X and by LConstrc(X) the class of
conjunctivelinear constraints. The constraints true and false are defined as abbrevi-
ations in a standard way.

Definition 5 (Polyhedron) A set of valuations that can be defined by a conjunc-
tivelinear constraint is called a polyhedron, and a closed and bounded polyhedron is
called a polytope. We denote a polyhedron in its constraint representation as

P =
{

x

∣
∣
∣

m∧

i=0

aT
i x -.i bi

}

, with -.i∈ {<,≤,=,>,≥},1

where the ai ∈ Q
n are called facet normals and the bi ∈ Q

n constants. In vector-
matrix notation, this corresponds to

P = {x |Ax -. b}, with A=
⎛

⎜
⎝

aT
1
...

aT
m

⎞

⎟
⎠ , -.=

⎛

⎜
⎝

-.1
...

-.m

⎞

⎟
⎠ , b=

⎛

⎜
⎝

b1
...

bm

⎞

⎟
⎠ .

A closed polyhedron P ⊆ R
n can be represented by a pair (V ,R), called the

generators of P , where V ⊆Q
n is a finite set of vertices, and R ⊆Q

n is a finite set
of rays, with:

P =
{∑

vi∈V
λi · vi +

∑

rj∈R
μj · rj

∣
∣
∣ λi ≥ 0,μj ≥ 0,

∑

i

λi = 1

}

.

The representation can be extended with closure points to deal with non-closed
polyhedra [22].

There are algorithms for transforming one representation into the other, namely
the Fourier–Motzkin procedure (or quantifier elimination) for computing the sys-
tem of inequalities from the generators [55, 63], and Chernikova’s algorithm for
computing the generators from a set of predicates [44].

1xTy = ∑n
i=1 xiyi is the scalar product of n-dimensional vectors x = (x1, . . . , xn) and y =

(y1, . . . , yn).
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30.2.2 Hybrid Automata

We define hybrid automata with polynomial dynamics [6, 96].

Definition 6 (Hybrid automaton with polynomial dynamics) A hybrid automaton
H with polynomial dynamics is a tuple

〈Loc,Lab,Edg,X, Init, Inv,Flow, Jump,Final〉
where:

• Loc= {�1, . . . , �m} is a finite set of locations;
• Lab is a finite set of labels, including the silent label τ ;
• Edg⊆ Loc× Lab× Loc is a finite set of edges;
• X = {x1, . . . , xn} is a finite set of variables;
• Init : Loc→ PConstr(X) gives the initial condition Init(�) of location �. The au-

tomaton can start in � with an initial valuation v lying in [[Init(�)]];
• Inv : Loc→ PConstr(X) gives the evolution domain restriction Inv(�) (also called

the invariant) of location �. The automaton can stay in � as long as the values of
its variables lie in [[Inv(�)]];

• Flow : Loc→ PConstr(X ∪ Ẋ) is the flow constraint, which constrains the evo-
lution of the variables in each location. In a location �, if the valuation of the
variables is v0 at time t = 0, then at time t ≥ 0, the value of the variables is φ(t)
where φ :R→R

X is such that the flow relation Flow(�)(φ(t), φ̇(t)) holds for the
flow φ(t) and its time-derivative φ̇(t), and φ(0)= v0.2

• Jump : Edg→ PConstr(X ∪ X+) with X+ = {x+1 , . . . , x+n } gives the jump con-
dition Jump(e) of edge e. The variables in X+ refer to the updated values of the
variables after the edge has been traversed. Jump conditions are often conjunc-
tions of a guard and a reset constraint. There, the constraints purely on variables
in X are called guards, and the constraints that describe variables in X+ in terms
of variables in X are called updates or resets.

• Final : Loc → PConstr(X) gives the final condition Final(�) of location �. De-
pending on the analysis question at hand, final conditions can either specify the
unsafe states of the system or the desired states of the system.

The labels on edges can be used to synchronize hybrid automata in a composi-
tional design. In the rest of this chapter, we assume that a single automaton is to be
analyzed.

Example Figure 1 represents an affine automaton modeling a single gas-burner that
is shared for heating alternatively two water tanks. It has three locations �0, �1, �2
and two variables x1 and x2, the temperature in the two tanks. The gas-burner can

2Note that the semantics of flow constraints requires some attention, see differential-algebraic con-
straints [136].
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Fig. 1 A shared gas-burner

Fig. 2 The evolution of the continuous variables of the shared gas burner example, starting from
location �1 with initial values x1 = 0 and x2 = 50

be either switched off (in �0) or turned on heating one of the two tanks (in �1 or �2).
The dynamics in each location is given by a combination of the predicates ONi and
OFFi (i = 1,2) where the constants ai model the heat exchange rate of the tank
i with the room in which the tanks are located, bi model the heat exchange rate
between the two tanks and hi depends on the power of the gas-burner. On every
edge of the automaton, we have omitted the condition x+1 = x1 ∧ x+2 = x2 also
written as stable(x1, x2) that asks that the values of the variables are maintained
when the edge is traversed. In the sequel, we fix the constants h1 = h2 = 2, a1 =
a2 = 0.01 and b1 = b2 = 0.005. The evolution of the continuous variables over time
is shown in Fig. 2. Starting in location �1, the burner heats up tank 1 until it reaches
a temperature of 100 degrees. Since the temperature of tank 2 is below 80 degrees,
the automaton takes edge toggle to location �2. Note that edge turnoff 1 cannot be
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taken since the evolution I (80,100) domain of the target location is not satisfied
by x2. In location �2, the burner heats up tank 2 until it reaches 100 degrees. Since
x1 is still above 80 degrees, the automaton takes edge turnoff 2 to location �0, where
the burner is off. It briefly remains here until x1 falls to 80 degrees, at which point it
takes edge turnon1 to location �1, where the burner heats up tank 1. The automaton
converges towards a limit cycle of heating tank 1, heating tank 2, and briefly turning
off the burner.

The definitions above define what a hybrid automaton consists of (flows, jumps,
initial regions, . . . ) but they do not specify the behavior of a hybrid automaton or
how its state evolves over time. This is the purpose of defining a semantics for hybrid
automata by providing a transition system for each hybrid automaton.

Definition 7 (Semantics of hybrid automata) The semantics of a hybrid au-
tomaton H = 〈Loc,Lab,Edg,X, Init, Inv,Flow, Jump,Final〉 is the transition system
[[H ]] = 〈S,S0, Sf ,Σ,→〉 where S = {(�, v) ∈ Loc×R

X | v ∈ [[Inv(�)]]} is the state
space, S0 = {(�, v) ∈ S | v ∈ [[Init(�)]]} is the initial space, Sf = {(�, v) ∈ S | v ∈
[[Final(�)]]} is the final space, the actions are Σ = Lab ∪ {time} (we assume that
time /∈ Lab) and the transition relation → contains all the tuples ((�, v), σ, (k,w))
such that:

• (discrete transition) either there exists e = (�, σ, k) ∈ Edg such that (v,w) ∈
[[Jump(e)]], or

• (continuous transition) �= k, σ = time and there exists an r ∈R
≥0 and a contin-

uously differentiable function ξ : [0, r] → R
X such that ξ(0)= v, ξ(r)= w and

(ξ(t), ξ̇ (t)) ∈ [[Flow(�)]] for all t ∈ [0, r] and ξ(t) ∈ [[Inv(�)]] for all t ∈ [0, r].
We call ξ a trajectory from v to w. We also write (�, v)

r−→ (k,w) to emphasize
that the continuous transition is of duration r . Usually Flow(�) is a differential
equation, in which case ξ is a solution of that differential equation.

We write (�, v)
σ−→ (k,w) if→ contains the tuple ((�, v), σ, (k,w)).

A state q = (�, v) ∈ S is reachable if there exists a finite path q0σ0q1σ1 . . . σn−1qn
where q0 ∈ S0, q = qn, and (qi, σi, qi+1) ∈→ for all 0 ≤ i < n. This path gener-
ates the word σ̄ = σ0σ1 . . . σn−1 ∈ Σ∗. If q ∈ Sf is final, we say that the word σ̄
is accepted by H . The set of words that are accepted by H is the language of H ,
denoted L(H). The set of reachable states of [[H ]] is denoted by Reach([[H ]]). The
transition system [[H ]] is safe if Reach([[H ]])∩ Sf = ∅.

Safety Verification Problem. Many verification problems for hybrid systems re-
duce to the safety problem for hybrid automata.

Definition 8 (Safety verification problem for hybrid automata) Given a hybrid au-
tomaton H , the safety verification problem for hybrid automata asks whether [[H ]]
is safe.

A parameter in a hybrid automaton is a variable which has first derivative 0 in
every location and is never modified by discrete transitions. The parametric safety
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verification problem for hybrid automata asks, given a hybrid automaton H and a
parameter p in H , whether there exists a value vp ∈ R such that [[Hp=vp ]] is safe,
where Hp=vp is obtained by replacing every constraint ϕ in H by ϕ ∧ (p = vp).

Remark There would be no loss of generality in assuming that there is a location
�bad such that Final(�bad)= true and Final(�)= false for all � �= �bad. Indeed, to re-
duce any hybrid automaton to this form, it suffices to add transitions e� = (�, σ, �bad)

with Jump(e�) = Final(�) for each � ∈ Loc, and to substitute Final(�) with false
for each � �= �bad.

30.3 Decidability and Undecidability Results

We review the most important results about the decidability of the safety verification
problem for subclasses of hybrid automata. Details and proofs can be found in the
given references.

Safety Verification Problem. The safety verification problem is decidable only for
restricted classes of hybrid automata. The main classes for which safety verification
is decidable are timed automata (see Chap. 29), initialized rectangular automata, and
o-minimal hybrid automata [108]. The safety verification problem is undecidable
already for the class of rectangular hybrid automata (and therefore also for linear,
and affine hybrid automata).

A rectangular predicate over X is an expression of the form a ≺ x ≺ b where
x ∈X, ≺∈ {≤,<}, and a ≤ b define a nonempty (possibly unbounded) interval with
endpoints a, b ∈Q ∪ {−∞,∞}. Rectangular hybrid automata are hybrid automata
where (i) the flow constraint in each location � is a conjunction of rectangular predi-
cates over Ẋ, (ii) the initial, final, and evolution domain conditions are conjunctions
of rectangular predicates over X, and (iii) the jump condition of every edge is a
conjunction of rectangular predicates over X+ and expressions of the form x+ = x
for x ∈ X. A hybrid automaton is initialized if for every edge e = (�, σ, k) and
for every variable x such that {v(ẋ) | v ∈ [[Flow(�)]]} �= {v(ẋ) | v ∈ [[Flow(k)]]}, it
holds that the set updatexe (v)= {w(x+) | (v,w) ∈ [[Jump(e)]]} does not depend on
the valuation v (i.e., updatexe (v) = updatexe (v

′) for all valuations v, v′). In words,
whenever the flow condition is changed for a variable x by a discrete transition e,
then this variable is (nondeterministically) reinitialized to a new value in updatexe
that is independent of the previous value.

The following decidability result is obtained by a translation of initialized rectan-
gular hybrid automata to timed automata, preserving safety (see also Sect. 30.5.1).

Theorem 1 ([96]) The safety verification problem is decidable for initialized rect-
angular hybrid automata (and therefore also for timed automata).

The safety verification problem remains decidable for various extensions of
timed automata. For instance, if diagonal constraints of the form x − y -. c for
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x, y ∈ X,-.∈ {<,≤,=,>,≥}, and c ∈Q are allowed in guards, or if assignments
of the form x+ = y are allowed in updates, then the safety verification problem
is still decidable [11, 33]. The decidability result for safety verification, useful for
model checking, can be extended to the controller synthesis problem, solved as a
game. We refer to Chap. 29 for games on timed automata, and mention the decid-
ability of discrete-time control for rectangular hybrid automata [95].

The safety verification problem becomes undecidable for automata with rectan-
gular flow constraints.

Theorem 2 ([96]) The safety verification problem is undecidable for rectangular
hybrid automata (and therefore also for linear, and affine hybrid automata).

Note that the class of initialized rectangular hybrid automata (for which safety
verification is decidable) have a finite language-equivalence quotient [94, 156]. The
special case of initialized rectangular hybrid automata with only two variables even
has a finite similarity quotient [94], and the class of timed automata has finite bisim-
ilarity quotient (see also Chap. 29).

The result of Theorem 2 has been refined in several directions [96]. The prob-
lem is undecidable even if there is a single variable x with two different slopes,
i.e., there exist k1, k2 ∈Q with k1 �= k2 such that in every location �, either Flow(�)
implies ẋ = k1, or Flow(�) implies ẋ = k2. The undecidability result holds for all
fixed rational constants k1 �= k2. The problem is also undecidable if diagonal con-
straints or assignments of the form x+ = y are allowed, and one variable has slope
k �= 1. There are extremely simple classes of hybrid systems, stopwatch automata,
i.e., timed automata with only differential equations of the form ẋ = 1 and ẋ = 0,
that are already undecidable [40] (see also Chap. 29). The variant of time-bounded
safety verification asks whether, given a time bound T , there exists a final state
reachable within a total duration of T time units. This problem is also undecid-
able for general rectangular hybrid automata, but it is decidable for a larger class
than plain safety verification, namely for rectangular hybrid automata with mono-
tone dynamics (the rate of every variable is either always non-negative, or always
non-positive [36]).

Note that while differential equations define single continuous executions, the
safety verification problem has been considered under various perturbed semantics
with finite precision where drifting executions or tubes of executions are considered.
It turns out that the undecidability result of Theorem 2 is mostly robust [97], but
some decidability results can be obtained [23, 57, 64, 155].

Systems between timed and hybrid automata may remain decidable, e.g., weigh-
ted timed automata [15, 25]. Even systems with piecewise constant derivatives
quickly become undecidable for dimension three [21]. On the other hand, if the
discrete and the continuous parts of a hybrid system are completely independent of
each other, the system falls apart into separate continuous systems, so that reacha-
bility becomes decidable for certain classes of linear differential equations [108].

Parametric Safety Verification Problem. If parameters are allowed only in the
jump conditions of the edges, then it can be shown that the parametric safety veri-
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fication problem is decidable for timed automata with one clock [14, 124], and un-
decidable for timed automata with one parameter and (i) three clocks (all of which
being possibly constrained by the parameter) [124], or (ii) four clocks, but only
one is compared with the parameter [124]. These undecidability results require the
use of equalities in jump conditions. An undecidability result is known for open
timed automata (in which all guards are open sets, thus forbidding equality con-
straints) with two parameters and five clocks (among which two are compared with
the parameters) [59]. If parameters are allowed in the flow constraints, then it can be
shown that the parametric safety verification problem is undecidable for rectangular
automata with three variables and one parameter [181].

Computability and Polynomial Constraints. A frequent misconception about
the definition of hybrid automata is that they should allow an arbitrary subset
Init(�) ⊆ R

n of the real numbers as initial region for each location �, an arbitrary
subset Inv(�) ⊆ R

n as evolution domain restriction, arbitrary relation Flow(�) ⊆
R
n×R

n as flow constraints, arbitrary relation Jump(e)⊆R
n×R

n jump conditions,
and an arbitrary subset Final(�)⊆R

n as final conditions. Generalizations like these
have been suggested in the literature numerous times. They are useful as mathemat-
ical models, but not for any computational or verification purpose. It is important to
understand why.

We can only obtain meaningful model-checking results for a hybrid automaton
if we can describe the hybrid automaton (e.g., as an input file in a computer for
the model checker). There is no way to describe arbitrary sets Init(�), Inv(�)⊆ R

n,
Jump(e)⊆ R

n ×R
n, etc. as inputs, because there are uncountably many such sets,

but model checkers accept only finite input files from a countable set of inputs.
Moreover, even for cases where there is some description of those sets, we still

need to equip the model checker with a way to decide membership in those sets.
Suppose some model-checking algorithm worked hard to find out that the hybrid
automaton will be unsafe when started in a particular state ν ∈R

n. Then, the model
checker still needs to find out whether the hybrid automaton allows ν as an initial
state or not. That is, we need to give the model checker a way of deciding whether
ν ∈ Init(�) for any location � ∈ Loc. Mathematically, this is a simple set inclusion and
looks trivial. But that does not mean there is a computer program that can decide
whether ν ∈ Init(�) or ν /∈ Init(�). For arbitrary sets Init(�) ⊆ R

n, this is impossi-
ble by classical results on the limits of computation due to Turing, Church, Gödel,
and others. The Mandelbrot set is an example of such a set Init(�) for which it is
impossible to decide membership even in a very strong model of real computation
[32].

Similar observations hold for all the other parts of hybrid automata. Conse-
quently, we have to assume more structure on Init(�) and all the parts of the def-
initions of hybrid automata. This is the reason why it is crucial that Definition 6
requires hybrid automata to be described in a definable way. Definition 6 requires
hybrid automata to be described by polynomial constraints with rational coefficients,
which are representable on a computer, unlike constraints with arbitrary real coef-
ficients. This also explains why it is critical to restrict polyhedra to rational coeffi-
cients in Definition 5.
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It should be noted that these observations about the requirements on hybrid au-
tomata are crucial for all model checkers, whether they try to decide fragments
or semidecide fragments or whether they just strive to approximately answer the
reachability problem. Fundamental limits of computation that represent the numer-
ical analogue of the halting problem otherwise cause strong undecidabilities even
for approximate answers [147], unless additional assumptions are imposed on the
hybrid automata [51, 147].

30.4 Set-Based Reachability Analysis

There are two kinds of events that can take place in a hybrid automaton: time can
pass with the state evolving according to the flow constraints, or a jump can take
the system instantaneously to a new state. Starting from the initial states, set-based
reachability analysis exhaustively computes the successor states for both time elapse
and jumps in alternation until this no longer produces any new states. Since this
process might not terminate (see decidability results in Sect. 30.3), an a priori limit
on the search depth is sometimes imposed. The search depth is usually counted in
the number of jumps and, in analogy to discrete automata, this is referred to as
bounded model checking.

Reachability computation can be seen as a generalization of numerical simu-
lation. In numerical simulation, one picks an initial state and tries to compute a
successor state that lies on one of the solutions of the corresponding flow constraint
and also satisfies one of the jump conditions (some intermediate points along the
trajectory are usually kept as well). Then one picks one of the successor states of
the jump and repeats the process. Like numerical simulation, reachability analy-
sis directly follows the transition semantics of hybrid automata (Definition 7), but
considers sets of states instead of single states.

Just like numerical simulation, reachability computation has to use approxima-
tions if the dynamics of the system are complex. Working with sets instead of points,
approximate reachability can be conservative in the sense that the computed sets are
sure to cover all solutions. Computation costs generally increase sharply in terms
of the number of continuous variables. Scalable approximations are available for
certain types of dynamics, as discussed later in this section, but this performance
comes at a price in accuracy. The trade-off between runtime and accuracy remains
a central problem in reachability analysis. Surveys of reachability techniques for
hybrid automata can be found, e.g., in [7, 117, 119, 165].

30.4.1 Reachability Algorithm

The standard method to compute the reachable states is to iterate the following
one-step successor operators for discrete and continuous transitions. Given a set
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of states S, let PostC(S) be the set of states reachable by letting time elapse from
any of the states in S,

PostC(S)=
{
(�,w)

∣
∣ ∃(�, v) ∈ S : (�, v) time−−→ (�,w)

}
.

Let PostD(S) be the set of states resulting from taking a discrete transition from any
of the states in S,

PostD(S)=
{
(k,w)

∣
∣ ∃(�, v) ∈ S,∃σ ∈ Lab : (�, v) σ−→ (k,w)

}
.

The reachable states are obtained by applying PostC(S) and PostD(S) repeatedly
and recording all states that are obtained. The basic algorithm for forward reacha-
bility computes the following sequence, starting from the initial states:

R0 =
{
(�, v)

∣
∣ v ∈ [[

Init(�)
]]}
,

Ri+1 = Ri ∪ PostC(Ri)∪ PostD(Ri) for i = 0,1,2, . . . .

The algorithm terminates when a fixed point is reached, i.e., when Ri+1 = Ri for
some i ≥ 0 (note that Ri ⊆ Ri+1 for all i ≥ 0). This simple algorithm does not nec-
essarily terminate, even for systems where reachability is decidable. For example,
a system with an (unbounded) counter would enter a new state at each iteration
such that the fixed point is never reached. Abstraction techniques such as widening
[22, 86] are used in program analysis to ensure termination, and while they have
been applied to hybrid systems with simple dynamics [92] it is difficult to obtain
finite-state abtractions for more general cases.

Reachability with Symbolic States. A semi-algorithm used frequently for reacha-
bility of hybrid automata is shown as Algorithm 1. The states of the hybrid automa-
ton H are represented by finite sets of symbolic states (�,P ), where � ∈ Loc and P
is a set of continuous states in a suitable set representation such as polyhedra. The
set of states corresponding to such a set R = {(�1,P1), (�2,P2), . . .} is

[[R]] = {
(�, v)

∣
∣ ∃(�,P ) ∈R : v ∈ P }

.

If H is safe, Algorithm 1 computes the reachable states by iterating one-step suc-
cessor computations on such a set R, without guarantee of termination. If H is not
safe, the procedure will eventually stop when a nonempty intersection of R with the
final states is found. A similar semi-algorithm implements the backward approach
by iterating a one-step predecessor operator. Other approaches are possible such as
mixed forward-backward, where the forward and backward algorithms are executed
in an interleaved fashion [92]. All these variations are semi-algorithms since the
problem is undecidable.

The one-step successors PostC(S) and PostD(S) are implemented for symbolic
states by enumerating over locations and transitions, respectively, using the follow-
ing operators. The continuous successors of a set of continuous states P in a location
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Algorithm 1: A reachability semi-algorithm using symbolic states
Input : A hybrid automatonH = 〈Loc,Lab,Edg,X,Init,Inv,Flow,Jump,Final〉.
Output: If H is safe then SAFE else UNSAFE.
begin

Bad←{(�, [[Final(�)]]) | � ∈ Loc} ;
R←{(�,post�([[Init(�)]])) | � ∈ Loc} ;
Rold←∅ ;
while [[R]]	 [[Rold ]] do

Rold←R ;
R←{(�,post�(postε(P ))) | (�,P ) ∈R ∧ ε = (�, σ, k) ∈ Edg} ;
if [[R]] ∩ [[Bad]] �= ∅ then return UNSAFE;

return SAFE ;
end

� is the set of continuous states

post�(P )=
{
x′

∣
∣ ∃x ∈ P : (�, x) time−−→ (

�, x′
)}
.

Similarly, the discrete successors of a set of continuous states P for an edge ε =
(�, σ, k) is the set of continuous states

postε(P )=
{
x′

∣
∣ ∃x ∈ P : (�, x) σ−→ (

k, x′
)}
.

Formally, the one-step successors of a set of symbolic states R are expressed using
the above operators as

PostC
([[R]]) = [[{(

�,post�(P )
) ∣
∣ ∃(�,P ) ∈R}]],

PostD
([[R]]) = [[{(

k,postε(P )
) ∣
∣ ∃(�,P ) ∈R,ε = (�, σ, k) ∈ Edg

}]]
.

In the following, we discuss the above successor operators post�(P ), postε(P )
for different classes of hybrid automata with increasingly complex continuous dy-
namics. We will focus mainly on computing time elapse successors, since this
operation usually dominates costs. Other operations of the reachability algorithm
may also become bottlenecks, e.g., computing the discrete successors, containment
checking, and clustering.

30.4.2 Piecewise Constant Dynamics

Hybrid automata with piecewise constant dynamics (PCDA) are a special case of
hybrid automata with polynomial dynamics (Definition 6), where all constraints are
conjunctivelinear and the flow constraints are linear predicates over dotted variables
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only. That is, the derivatives of the variables are independent of the current continu-
ous state. They are also called linear hybrid automata (LHA), where the term linear
refers to trajectories instead of dynamics (they do not allow the linear dynamics dis-
cussed in the next section). In order to avoid possible confusion resulting from this
terminology, we prefer the name PCDA.

Definition 9 (Hybrid automaton with piecewise constant dynamics) A hybrid au-
tomaton H = 〈Loc,Lab,Edg,X, Init, Inv,Flow, Jump,Final〉 with polynomial dy-
namics is called a hybrid automaton with piecewise constant dynamics iff:

• Init, Inv, Final are conjunctivelinear constraints over X,
• Flow are conjunctivelinear constraints over Ẋ, and
• Jump are conjunctivelinear constraints over X ∪X+.

PCDA are of particular interest in formal verification because the one-step suc-
cessors can be computed exactly, which is not the case for the more complex dy-
namics discussed in later sections.

Examples of flow constraints of a PCDA include differential inclusions such as
ẋ ∈ [1,2], and conservation laws such as ẋ+ ẏ = 0. The jump constraints of a PCDA
admit arbitrary linear updates of the variables, which can generate complex behav-
ior. For example, PCDA can model discrete-time affine systems, a widely used class
of control systems, by using jump constraints of the form x+ =Ax+ b. Chaotic be-
havior can arise in PCDA due to switching flows [42] or guarded jumps, with which
one can model piecewise affine maps such as the tent map [48].

Continuous Successors. In the following, we discuss computing the states reach-
able by time elapse in a given location � of a PCDA and write x as shorthand for
the state (�, x). By definition, a trajectory can be an arbitrarily curved function as
long as it is differentiable and satisfies both flow constraints and evolution domain
restrictions. For the purposes of reachability, it suffices to consider only straight-line
trajectories of PCDA, as formalized in the following lemma.

Lemma 1 ([13]) In any given location of a PCDA, there is a trajectory ξ(t) from
x = ξ(0) to x′ = ξ(r) for some r > 0 iff η(t)= x + qt with q = x′−x

r
is a trajectory

from x to x′.

Using this lemma, we now show that the states reachable by time elapse from
a polyhedral set of states P are given by the union of P with a polyhedron that is
readily computable [8, 28]. Consider polyhedra P andQ. The states on straight-line
trajectories starting in P with constant derivative ẋ = q for any q ∈Q are the time
successors

P↗Q= {
x′

∣
∣ x ∈ P,q ∈Q, t ∈R

≥0, x′ = x + qt}. (1)

We now transform the right-hand term of (1) into a linear constraint. Let P and Q
be polyhedra given in vector-matrix form as P = {x | Ax -. b}, Q= {q | Āq -̄. b̄}.
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Fig. 3 Given a polyhedron P and a polyhedral set of derivatives Q, the time successors P↗Q
can be a convex set that is not a single polyhedron but the union of P with another polyhedron

By separating the case t = 0 from t > 0 in (1) we have q = x′−x
t

. Eliminating q and
multiplying with t yields

P↗Q= P ∪ {
x′

∣
∣Ax -. b ∧ Ā(x′ − x) -̄. b̄ · t ∧ t > 0

}
. (2)

The right-hand term of the union in (2) is a polyhedron that can be computed by
quantifier elimination over X ∪ {t} using, e.g., Fourier–Motzkin elimination. If Q
is closed and bounded, the constraint t > 0 in (2) can be replaced by t ≥ 0, so the
right-hand term contains P and P↗Q becomes a single polyhedron. The following
example illustrates that P↗Q can be the union of two polyhedra.

Example 1 For P = {x1 = 0∧ x2 = 0}, and Q, Q′ given in Fig. 3, (2) yields

P↗Q = P ∪ {(
x′1, x′2

) ∣
∣ x1 = 0∧ x2 = 0∧ x′1 − x1 = t ∧ x′2 − x2 ≤ t ∧ t > 0

}

= P ∪ {(
x′1, x′2

) ∣
∣ x′1 = t ∧ x′2 ≤ t ∧ t > 0

}

= P ∪ {(
x′1, x′2

) ∣
∣ x′1 > 0∧ x′2 ≤ x′1

}
.

Here, the closed but unbounded set Q results in a convex set P↗Q that is not a
polyhedron but the union of two polyhedra. Similarly, the bounded but non-closed
setQ′ results in P↗Q′ = P ∪ {x′1 > 0∧−x′1 ≤ x′2 < x′1}, which is also convex and
not a polyhedron.

The time successor operation can also be carried out using geometrical operations
on the polyhedra P and Q as shown in Fig. 4 [86]. The positive cone of Q is the
polyhedral set pos(Q)= {q · t | q ∈Q, t > 0}. The time successors are given by the
Minkowski sum3 of P and the positive cone of Q,

P↗Q= P ∪ (
P ⊕ pos(Q)

)
. (3)

If P and Q are closed with generator representation (V ,R) and (V ′,R′), respec-
tively, then a generator representation of P↗Q is (V ,R ∪ V ′ ∪R′).

3The Minkowski sum is defined as P ⊕Q= {p+ q | p ∈ P,q ∈Q}.
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Fig. 4 The time successors
P↗Q using geometric
operations on polyhedra P
and Q

It remains to ensure that the time successors are reachable by trajectories that
satisfy Inv(�). Assuming that P ⊆ [[Inv(�)]], this restriction reduces to x′ ∈ [[Inv(�)]]
since [[Inv(�)]] is convex and only straight line trajectories need to be considered.
This leads us to the following discrete successor operator for PCDA.

Lemma 2 ([8]) The continuous successors of a polyhedron P in a location � of a
PCDA H is the set:

post�(P )=
(
P↗[[

Flow(�)
]])∩ [[

Inv(�)
]]
.

Discrete Successors. The discrete successors of a polyhedron P for an edge ε =
(�, σ, k) of a PCDA H is the set:

postε(P )=
{
x+

∣
∣ ∃x ∈ P : (x, x+) ∈ [[

Jump(ε)
]] ∧ x+ ∈ [[

Inv(k)
]]}
.

This set is defined using existential quantification, and computing it may require
costly quantifier elimination. Frequently occurring special cases can be computed
more efficiently. As an example, consider Jump(e) given by a guard x ∈ G and a
reset x+ = Cx + d , with a constant matrix C and a vector d of appropriate dimen-
sions. The discrete successors are

postε(P )=
(
C(P ∩G)⊕ {d})∩ [[

Inv(k)
]]
. (4)

If C is invertible and all sets are polyhedra in constraint representation, the com-
putation is straightforward since intersection corresponds to concatenation of con-
straints, and for any polyhedron Q= {x |Ax -. b},

CQ⊕ {d} = {
x
∣
∣AC−1x -. b+C−1d

}
.

Computational Cost. Computing the continuous successors using (3) involves the
cone, Minkowksi sum, and intersection operations, for details see [22, 86]. The cone
and Minkowski sum are efficient only in the generator representation of a polyhe-
dron (see Definition 5). The intersection operation is efficient only in constraint
representation. Translating the polyhedron from constraints to generators and vice
versa can produce a number of generators that is exponential in the number of vari-
ables. For example, consider that an n-dimensional cube has 2n constraints and 2n

vertices. Dually, an n-dimensional cross-polytope (hyperoctahedron) has 2n ver-
tices and 2n constraints. In total, the cost of computing the continuous successors is
exponential in the number of variables. Tools such as HyTech and PHAVer use the
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geometric version (3) of the time successor operator since in practice it is often more
efficient than quantifier elimination [87]. The operator is available in computational
geometry libraries such as the Parma Polyhedra Library (PPL) [22].

The cost of computing the discrete successors is exponential for polyhedra in
constraint representation since it involves quantifier elimination. For some fre-
quently occurring special cases the cost is polynomial, e.g., in the case of (4) with
invertible map.

The containment and emptiness tests in Algorithm 1 are carried out pairwise over
the elements of sets of symbolic states. The containment test P ⊆ Q is solvable
with linear programming (and thus in polynomial time) if P,Q are in constraint
representation.4 The emptiness test P = ∅ is solvable as a linear program if P is in
constraint representation and trivial if P is in generator representation.

Path Constraints. A path of a hybrid automaton is a sequence of adjacent edges
(usually from an initial to a final location). An interesting property of PCDA is that
the reachable states along a given path can be encoded by a conjunction of linear
constraints, the so-called path constraints. The reachability problem for a given path
can therefore be solved very efficiently using linear programming. This approach
has been implemented in the tool BACH [37]. The number of paths in a PCDA
can be infinite if there are cycles, so techniques such as CEGAR have been used to
reduce the number of paths to be checked and accelerate termination [162].

30.4.3 Piecewise Affine Dynamics

Hybrid automata with piecewise affine dynamics (PWA) are a special case of hybrid
automata with polynomial dynamics (Definition 6), where all constraints are linear
and the flow constraints are linear ordinary differential equations (ODEs). We divide
the continuous variables into state variables X = {x1, . . . , xn}, whose derivative is
explicitly defined, and input variables U = {u1, . . . , um}, whose derivative is un-
constrained. The input variables can be used to model nondeterminism such as open
inputs to the system, approximation errors, disturbances, etc.

In each location of a PWA, the continuous dynamics are affine, i.e., given by
differential equations of the form

ẋ =Ax +Bu, u ∈ U , (5)

whereA and B are matrices of appropriate dimension and the input set U is compact
and convex. Note that differential inclusions like ẋ ∈ U and Ax − b ≤ ẋ ≤ Ax + b
can be brought into this form by introducing auxiliary variables. Similarly, jump
constraints of an edge e define resets of the form

x+ = Cx +Du, (6)

4Checking P ⊆ Q is polynomial unless P is in constraint representation and Q is in generator
representation, in which case it is known to be NP-complete [71].
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where x+ denotes the value of x after the jump, u is defined as above and C and
D are matrices of appropriate dimension. The jump constraints also define a set G
called the guard of the edge, and a jump can only take place if x ∈ G. The formal
definition of PWA is as follows.

Definition 10 (Hybrid automaton with piecewise affine dynamics) A hybrid au-
tomaton with piecewise affine dynamics is a hybrid automaton H = 〈Loc,Lab,Edg,
X ∪U, Init, Inv,Flow, Jump,Final〉 where

• Init and Inv are conjunctivelinear constraints over X.
• Inv are conjunctivelinear constraints overX∪U , such that each linear term ranges

over variables exclusively from either X or U (no correlation between state and
input variables). The input set U of a location � is given by the terms of Inv(�)
that range over U and must be closed and bounded.

• Flow are constraints over Ẋ ∪X ∪U of the form ẋ =Ax +Bu.
• Jump are conjunctivelinear constraints overX+∪X∪U whose terms either range

over X or are of the form x+ = Cx +Du. The guard set G of an edge e is given
by the terms of Jump(e) that range over X.

The reachable states of a PWA can be computed using Algorithm 1 from
Sect. 30.4.1, with suitable operators post� for continuous and poste for discrete suc-
cessors that will be presented in the following section.

30.4.3.1 Successor Computations

The successor computations for affine dynamics can be approximated by sequences
of geometric set operations. We first present such a sequence for the continuous
successors, then give the equation for the discrete successors. Different set repre-
sentations can be used to implement these operations, and a selection are discussed
in the subsequent Sect. 30.4.3.2.

Continuous Successors. In the following, we discuss how to compute the states
reachable by time elapse in a given location �. Since � is clear from the context we
call x a (continuous) state. We will initially ignore any evolution domain restriction
on x and discuss it after the basic construction has been presented. The evolution
of the input variables is described by an input signal ζ : R≥0 → U that attributes
to each point in time a value of the input u. The input signal does not need to
be continuous. A trajectory ξ(t) from a state x0 is the solution of the differential
equation (5) for initial condition ξ(0) = x0 and a given input signal ζ . It has the
form

ξx0,ζ (t)= eAtx0 +
∫ t

0
eA(t−s)Bζ(s)ds. (7)

It consists of the superposition of the solution of the autonomous system, obtained
for ζ(t) = 0, and the input integral obtained for x0 = 0. In the following, this de-
composition of (7) will be exploited to obtain efficient and accurate approximations.
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Fig. 5 A sequence of sets
Ω0,Ω1, . . . that covers Xt
over a finite time horizon T .
The choice of set
representation for Ωk
(illustrated here by ellipsoids)
has a substantial impact on
accuracy and computational
complexity

A state x′ is reachable from some initial set of states X0 in time t if for some x0 ∈X0
and some ζ , x′ = ξx0,ζ (t). We now describe the reachable states as sets using (7).
Let Xt be the states reachable in time t from any state in X0 and let Yt be the states
reachable from X0 = {0}, then (7) can be written as

Xt = eAtX0 ⊕Yt . (8)

The goal is to conservatively approximate the reachable states over some finite
time horizon T , i.e., to compute a finite sequence of sets Ω0,Ω1, . . . such that

⋃

0≤t≤T
Xt ⊆Ω0 ∪Ω1 ∪ . . . . (9)

We present the construction of a sequence of Ωk for a fixed sampling time δ > 0
such that Ωk covers Xt for t ∈ [kδ, (k + 1)δ], as illustrated in Fig. 5. The so-called
semi-group property of reachability says that, starting from Xs , for any s ≥ 0, and
then waiting r time units leads to the same states as starting from X0 and waiting
r + s time units. Applying this to (8), we obtain that for any r, s ≥ 0,

Xr+s = eArXs ⊕Yr . (10)

Substituting r← δ, s← kδ, we obtain a recursive time discretization in the form of

X(k+1)δ = eAδXkδ ⊕Yδ.

It follows that if we have initial approximations Ω0 and Ψδ such that
⋃

0≤t≤δ
Xt ⊆Ω0, Yδ ⊆ Ψδ, (11)

then the sequence

Ωk+1 = eAδΩk ⊕Ψδ (12)

satisfies (9). Note that Ω0 covers the reachable set over an interval of time [0, δ],
while Ψδ covers the values of the input integral at a single time instant δ.

Computing Initial Approximations Ω0 and Ψδ . The set Ω0 needs to cover Xt
from t = 0 to t = δ. A good starting point for such a cover is the convex hull of
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Fig. 6 An approximation Ω0
that covers Xt for t ∈ [0, δ]
can be obtained from the
convex hull of X0 and Xδ by
enlarging it enough to
compensate for the curvature
of trajectories

X0 and Xδ . One approach, shown in Fig. 6(a), is to compute the convex hull in
constraint representation, and push the facets out far enough to be conservative [81].
The required values can be computed from a Taylor approximation of (7) [19], or
by solving an optimization problem [45]. Note that the cost of computing the exact
constraints of the convex hull can be exponential in the number of variables, which
limits the scalability of this approach.

A scalable way to obtain Ω0 is to bloat X0 and Xδ enough to compensate for
the curvature of trajectories [75], as illustrated in Fig. 6(b). We present the approach
from [75], which uses uniform bloating and whose approximation error is asymp-
totically linear in the time step δ as δ→ 0. This is asymptotically optimal for any
approximation containing the convex hull of X0 and Xδ [110]. The bloating can
be made non-uniform in space and time to obtain a more precise approximation
[68, 110]. The bloating factor is derived from a Taylor approximation of (7), whose
remainder is bounded using norms. To formalize the above statements, we use the
following notation. Let ‖·‖ be a vector norm and let ‖A‖ be its induced matrix
norm.5 Let μ(X ) = maxx∈X ‖x‖ and let B be the unit ball of the norm, i.e., the
largest set B such that μ(B)= 1. For a scalar c, let cX = {cx | x ∈X }. The approx-
imation error is measured using the Hausdorff distance between sets X ,Y ,

dH (X ,Y)=max
{

sup
x∈X

inf
y∈Y
‖x − y‖, sup

y∈Y
inf
x∈X

‖x − y‖
}
.

Lemma 3 ([75]) Given a set of initial states X0 and affine dynamics (5), let

αδ = μ(X0) ·
(
e‖A‖δ − 1− ‖A‖δ),

βδ = 1

‖A‖μ(BU) ·
(
e‖A‖δ − 1

)
,

Ω0 = chull
(
X0 ∪ eAδX0

)⊕ (αδ + βδ)B,
Ψδ = βδB.

5For example, the infinity norm ‖x‖∞ = max{|x1|, . . . , |xn|} induces the matrix norm ‖A‖ =
max1≤i≤n

∑m
j=1|aij |, where A is of dimension n×m. Its ball B∞ is a cube of side length 2.



1068 L. Doyen et al.

Then
⋃

0≤t≤δ Xt ⊆Ω0 and Yδ ⊆ Ψδ . Furthermore, if BU is a ball of the norm, i.e.,
BU = μ(BU)B, the approximation error is bounded by

dH

( ⋃

0≤t≤δ
Xt ,Ω0

)

≤ δe‖A‖δ(μ(BU)+ ( 1
2 + δ

)‖A‖μ(X0)
)
,

dH (Yδ,Ψδ)≤ δ2‖A‖e‖A‖δμ(BU).

Propagating the initial approximation Ω0 forward in time using (12) gives an ap-
proximation of Xt over a bounded horizon. The following theorem gives a bound
on the total approximation error.

Theorem 3 ([75]) Given Ω0 and Ψδ as defined in Lemma 3, let Ωk+1 =
eAδΩk ⊕ Ψδ for k = 1, . . . ,N − 1. Then

⋃
0≤t≤Nδ Xt ⊆

⋃
0≤k≤N−1Ωk . Further-

more, if BU is a ball of the norm, the approximation error is bounded by

dH

( ⋃

0≤t≤Nδ
Xt ,

⋃

0≤k≤N−1

Ωk

)

≤ δe‖A‖Nδ
(

2μ(BU)+
(

1

2
+ δ

)

‖A‖μ(X0)

)

.

Approximations and the Wrapping Effect. The sequence in (12) can be prob-
lematic to compute since the complexity of Ωk may increase sharply with k. We
illustrate this for the case where Ωk is a polytope in generator representation, and a
similar argument can be made for constraint representation. Let Nk be the number
of vertices of Ωk and let Ψδ haveM vertices. Since Ωk+1 is the sum of eAδΩk with
Ψδ it can have Nk+1 = Nk ·M vertices. Resolving the recursion, we get the tight
upper bound Nk ≤ N0 ·Mk . To avoid this increase in complexity, we approximate
each Ωk by a simplified set. Let Appr be an approximation function such that for
any set P , P ⊆Appr(P ). The sequence (12) then becomes

Ω̂k+1 =Appr
(
eAδΩ̂k ⊕Ψδ

)
. (13)

For example, if Appr computes the interval hull (bounding box) and Ω0 is a poly-
tope, then all Ω̂k are polytopes with 2n facets. However, the recursive application of
the approximation function can lead to an exponential increase in the approximation
error. This phenomenon is known in numerical analysis as the wrapping effect [105]
and is illustrated in Fig. 7.

For affine dynamics, the wrapping effect can be avoided by combining two tech-
niques [77]. First, the approximation operator is chosen such that it distributes over
Minkowski sum, i.e., Appr(P ⊕Q) = Appr(P )⊕ Appr(Q). This is the case, e.g.,
for the interval hull (bounding box). Second, the alternation of the map eAkδ with
the Minkowski sum in (12) is avoided by splitting it into two sequences

Ψ̂k+1 =Appr
(
eAkδΨδ

)⊕ Ψ̂k, with Ψ̂0 = {0},
Ω̂k =Appr

(
eAkδΩ0

)⊕ Ψ̂k.
(14)
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Fig. 7 The wrapping effect can lead to an exponential increase in the approximation error that
can be avoided for affine dynamics. This example shows the exact solution eAkδX0 (shaded) and
an interval hull approximation (thick), with eAδ performing a rotation of 45 degrees around the
origin. The wrapping effect occurs if the approximation is applied to the map of the previous
approximation (dashed). To illustrate the effect more clearly, X0 is used here instead of Ω0

For sequence (14) it holds that Ω̂k =Appr(Ωk), which means the resulting approx-
imation is free of the wrapping effect. The total approximation error consists of the
bounds of Theorem 3 plus the error introduced by the operator Appr (measured in
terms of the Hausdorff distance).

The approach is easily extended to variable time steps by adapting Ω0 and Ψδ to
the time step while computing the sequence [68].

Evolution Domain Restriction. So far we have neglected the evolution domain re-
striction (invariant) Inv(�) of the location. Let S = [[Inv(�)]]. A simple but efficient
heuristic tries to find, if it exists, the smallest K such that ΩK lies completely out-
side S . The search for such a K may be combined with finding a suitable time hori-
zon T and a suitable time step δ (this search obviously might not terminate). Then
one computes the sequence Ω0, . . . ,ΩK and obtains the sequence Ω̄k =Ωk ∩ S as
an approximation of the continuous successors over the time horizon T =Kδ.

In cases where the above solution is overly conservative, one can improve the ap-
proximation using the following approach from [83]. Let St be the states reachable
from S (neglecting the evolution domain restriction), and let ξ(τ ) be a trajectory in-
side S for all 0≤ τ ≤ t . Then the semi-group property implies that ξ(τ + s) ∈ Ss for
all 0≤ s ≤ t − τ , so that ξ(t) ∈⋂

0≤τ≤t Sτ . We may therefore improve the approx-
imation by intersecting Ωk with an approximation of the states reachable from S ,
which we obtain from the sequence in (14) with Ω0 ← S . This leads to the follow-
ing sequence Ω̄k that approximates the continuous successors, starting with k = 0
and Ψ0 = {0}:

Ψk+1 =Appr
(
eAkδΨδ

)⊕Ψk,
Ω̄k =

(
Appr

(
eAkδΩ0

)⊕Ψk
)∩

⋂

0≤i≤k

(
Appr

(
eAiδS

)⊕Ψi
)
.

(15)
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Fig. 8 A zonotope is a
special form of centrally
symmetric polytope, as
illustrated here with
generators v1, v2, v3, v4, and
center c= 0

Discrete Successors. Consider an edge ε = (�, σ, k) of a PWA, whose jump con-
straints define the reset map

x+ = Cx +Du
and the guard set G, which only lets states jump where x ∈ G. Recall that u ∈ U ,
where U is compact, convex, and given by constraints in Inv(�). Let S+ = [[Inv(k)]]
be the evolution domain restriction of the target location. The discrete successors of
a set P can be written using geometric operators as

postε(P )=
(
C(P ∩ G)⊕DU

)∩ S+.

We now turn to representing the individual sets in the sequences Ψk and Ωk , and
which approximation operator Appr to use.

30.4.3.2 Set Representations

Several set representations have been proposed in the literature for computing the
continuous successors under affine dynamics, using variations of the algorithm pre-
sented in the previous section. To be efficient, scalable implementations or approxi-
mations need to be available for the operators in the algorithm. Using the initial ap-
proximation from Lemma 3 and the recurrence equation (14), the operators are lin-
ear map, Minkowski sum, convex hull, and intersection. The following paragraphs
summarize the results for a selection of prominent representations.

Ellipsoids. The first scalable reachability algorithms for affine dynamics were ob-
tained for ellipsoids, see [107, 133] and references therein. An approximation of
the reachable states using ellipsoids is shown in Fig. 5. A nondegenerate ellipsoid
E(c,Q) ⊆ R

n is represented by a center c ∈ Q
n and a positive definite6 matrix

Q ∈Q
n×n,

E(c,Q)= {
x
∣
∣ (x − c)TQ−1(x − c)≤ 1

}

(this can be generalized to degenerate ellipsoids). Deterministic affine transforms
can be computed efficiently for ellipsoids. For a matrix A ∈ Q

n×n and vector

6A matrix Q is positive definite iff it is symmetric and xTQx > 0 for all x �= 0.
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Fig. 9 A reach set cover
Ω̂0, Ω̂1, . . ., computed with
zonotopes using the
implementation in [3] (solid)

b ∈Q
n,

AE(c,Q)+ b= E
(
Ac+ b,AQAT).

Ellipsoids are not closed under Minkowski sum, convex hull, or intersection. Using
ellipsoids one therefore generally suffers from the wrapping effect unless BU is a
singleton. Efficient approximations are available for Minkowski sum, convex hull,
and special cases of intersection, but the computation of discrete successors can be
problematic in terms of accuracy. For an implementation, see [106].

Zonotopes. Zonotopes are a compact representation for a special form of polytopes
that have been used successfully for reachability analysis due to their computation-
ally attractive features [3, 75]. A zonotope P ⊆R

n is defined by a center c ∈Q
n and

a finite number of generators v1, . . . , vk ∈Q
n that span the polytope as bounded lin-

ear combinations from the center:

P =
{

c+
k∑

i=1

αivi

∣
∣
∣ αi ∈ [−1,1]

}

.

A common denotation for this zonotope is P = (c, 〈v1, . . . , vk〉). A zonotope with
k generators is an affine transformation of a k-dimensional unit hypercube. Zono-
topes are central-symmetric convex polytopes, see Fig. 8 for an illustration. Affine
transformations can be computed efficiently for zonotopes. For a matrix A ∈Q

m×n,
the image of the linear transformation can simply be computed component-wise:

AP = (
Ac, 〈Av1, . . . ,Avk〉

)

The Minkowski sum can be computed efficiently for zonotopes P = (c, 〈v1, . . . , vk〉)
and Q= (d, 〈w1, . . . ,wm〉) by a single vector addition and a single list concatena-
tion:

P ⊕Q= (
c+ d, 〈v1, . . . , vk,w1, . . . ,wm〉

)
.

Since zonotopes are closed under Minkowski sum, it is straightforward to devise
an approximation operator Appr that distributes over Minkowski sum and use the
wrapping-free sequence (14). When the list of generators of a zonotope becomes
large, one can efficiently compute a smaller list that results in a cover of the original
zonotope [75].
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Fig. 10 Evaluating the support function in a set of directions gives a polyhedral outer approxima-
tion that can be computed very efficiently

Zonotopes are neither closed under convex hull, nor under intersection. Efficient
approximations exist, and the accuracy of approximating the convex hull in the
above reachability algorithm can be improved by taking smaller time steps. How-
ever, the lack of accuracy in intersections can make the computation of discrete
successors with zonotopes problematic. In special cases it can be advantageous to
use an approach called continuization to avoid the intersection operation, see [5].
Instead of intersecting a set of states with the guard set and then applying the dy-
namics of the successor location to the result, the states suspected to intersect with
the guard set (by some approximative measure) are subjected to nondeterministic
dynamics that overapproximate the dynamics both before and after the jump. The
dynamics of the successor location are used once enough time steps have been car-
ried out to be sure the set no longer intersects with the guard set.

Reachability with zonotopes is extremely scalable for affine dynamics [3, 77].
The approach has been extended to nonlinear differential algebraic equations [2].

Support Functions. A support function represents a closed, bounded, and convex
set exactly, somewhat like a characteristic function. Support functions lead to very
scalable algorithms since linear map, Minkowski sum, and convex hull correspond
to simple operations on vectors and scalars [74, 83, 116].

The support function 0P :Rn→R of a nonempty, closed, bounded, and convex
set P is

0P (d)=max
{
dTx

∣
∣ x ∈ P }

.

It attributes to every direction d ∈ R
n the position of the tangent halfspace in that

direction, see Fig. 10(a). The values of the support function over a set of directions
D ⊆R

n define an outer approximation

(P )D =
⋂

d∈D

{
dTx ≤ 0P (d)

}
.

If D =R
n orD is the ball of a norm, then (P )D = P , which shows that the support

function indeed represents the set exactly. If D is a finite set of directions, the outer
approximation is a polyhedron, as illustrated in Fig. 10(b) and applied to reachabil-
ity in Fig. 11. While for a given direction the numerical value of the support function
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Fig. 11 A reach set cover can be computed with support functions and initial approximations Ω0,
Ψδ from a variation of Lemma 3 where the bloating is non-uniform [68]. Evaluating the support
function in a given set of directions results in the shown outer approximation Ω̂0, Ω̂1, . . . (solid)

can often be computed very efficiently, one does not escape the curse of dimension-
ality if the goal is to compute an outer approximation of a given accuracy: To obtain
an outer approximation within a Hausdorff distance ε of P in n dimensions, one
needs to evaluate the support function in O( 1

εn−1 ) directions. Asymptotically op-
timal algorithms to construct ε-close approximations are described, e.g., in [116].
However, for some examples even a small number of directions can lead to reacha-
bility results with an acceptable approximation error [68].

Linear map, Minkowski sum, and convex hull are easily computed with support
functions:

0AP (d) = 0P
(
ATd

)
,

0P⊕Q(d) = 0P (d)+ 0Q(d),
0chull(P∪Q)(d) = max

{
0P (d), 0Q(d)

}
.

The intersection operation is more complex, and can be formulated as an optimiza-
tion problem [83].

Thanks to the above properties, support functions serve well as a lazy representa-
tion for sets that arise from the successor computations described in Sect. 30.4.3.1.
Computing the support function of the sequence (14) for a given direction can be
done very efficiently even without the approximation operator Appr [83].

Two issues need to be solved to use support functions efficiently in the reachabil-
ity Algorithm 1. First, the nesting of support functions should be of limited depth,
in particular because evaluating the support function of an intersection operation re-
quires multiple evaluations of its operands. Second, deciding containment is hard for
support functions. Both problems can be solved by switching the set representation
from a support function to its polyhedral outer approximation at appropriate points
in the algorithm [68]. Combining support functions and polyhedral computations for
a fixed set of directions D is closely related to reachability with template polyhedra
[160] and both require that a good set of directions D be chosen. The support func-
tion representation can be extended to represent the entire (non-convex) reachable
set by parameterizing it over time [69].



1074 L. Doyen et al.

Polyhedra. The class of polyhedra is closed under all required operations, i.e., lin-
ear map, Minkowski sum, convex hull, and intersection. However, not all of them
scale well. As mentioned in Sect. 30.4.2, there are no scalable algorithms for com-
puting convex hull and Minkowski sum on polyhedra in constraint representation.
For illustration, consider that using the convex hull of n line segments, each given
by 2n constraints in n dimensions, one can construct a cross-polytope, which has 2n

constraints. Taking the Minkowski sum can lead to a similar explosion in the number
of constraints. This is illustrated by the fact that the Minkowski sum can be com-
puted with a convex hull and an intersection operation in n+1 dimensions using the
Cayley Trick [173]. A polyhedral approximation for the non-scalable operations can
be efficiently computed by a priori fixing the facet normals of the result, e.g., using
the outer approximation of the support function. The accuracy of the approximation
can be increased by including additional directions, leading to a scalable approach
[20].

30.4.3.3 Clustering

The accuracy of the approximation in Lemma 3 depends on the size of the time step.
This property, common to all approaches cited in Sect. 30.4.3, points to a potential
bottleneck: To achieve a desired accuracy, one may end up with a large number of
sets to cover the required time horizon. In the next successor computation, each one
of these sets may become the initial set of yet another sequence, and so one may
easily end up with an exponential increase in the number of sets. If only very few of
these sets intersect with the guard sets, the discrete successor computation results in
few sets and therefore acts as a filter that might just keep the number of sets man-
ageable. But this is not the case in general; note that these sets necessarily overlap.
To prevent an explosion in the number of sets, a common approach is to cluster to-
gether all sets that intersect with the same guard [83]. The clustering operation, e.g.,
taking the convex hull, can itself be costly and adds to the approximation error in
a way that is not easy to quantify. An approach to obtain a suboptimal number of
clusters for a given error bound is presented in [69].

30.4.4 Nonlinear Dynamics

We give a very brief overview of techniques that deal with nonlinear dynamics

ẋ = f (x),
where f is usually assumed to be globally Lipschitz continuous.

Linearization. One way to deal with nonlinear dynamics is to approximate them
with affine dynamics ẋ = Ax + u,u ∈ U and then use reachability algorithms for
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affine dynamics. First, the states are confined to a bounded domain S . This can
be the evolution domain restriction in a location, or S can be derived iteratively
by growing suitable bounds around a given set of initial states. Then, a suitable
matrix A and vector b are chosen. For example, linearizing f (x) around a point
x0 ∈ S gives a matrixAwith elements aij = ∂fi

∂xj
|x=x0 and a vector b= f (x0)−Ax0.

Finally, one derives a set Uε that bounds the error such that for all x ∈ S ,

f (x)− (Ax + b) ∈ Uε.

Such bounds can be obtained using, e.g., interval arithmetic or optimization tech-
niques. The states reachable using the affine dynamics ẋ = Ax + u, u ∈ Uε ⊕ {b}
cover those of the original nonlinear dynamics. This approach constructs an abstrac-
tion of the system. Such abstractions are discussed more formally in Sect. 30.5.2.

The accuracy of the linearization depends on the size of the domain S . It can be
increased by partitioning S into smaller parts. Each part can then be associated with
smaller error bounds Uε and consequently gives a more accurate approximation of
the reachable set. The switching of the system from one element of the partition to
another is straightforward to model with a hybrid automaton. This process is known
as phase-portrait approximation, see also Sect. 30.5.2. It can be of use even when
dealing with purely continuous dynamical systems, in which case it is also referred
to as hybridization [18]. The abstract model can be simplified by projecting away
variables and adding a clock variable to preserve timing properties [17].

Polynomial Approximations. If the dynamics are polynomial, bringing them into
Bernstein form allows one to compute conservative approximations of successor
sets in polynomial form [54, 152]. Another approach is to use Taylor models, which
are polynomial approximations of a function that are derived from a higher-order
Taylor expansion and an interval bound on the remainder [30]. The resulting ODE
can be solved by iterative approximations using the Picard operator. The reachable
states are approximated by sets that are polyhedra [160] or polynomial images of
intervals [43]. A similar approach uses polynomial images of zonotopes, which are
themselves images of intervals [4]. Since polynomial images of intervals are gen-
erally not closed under intersection, the accuracy may be diminished when com-
puting discrete successors. It can also be shown that additional assumptions, such
as knowledge of a Lipschitz constant, are required in these approaches in order to
ensure computable error bounds [147].

30.5 Abstraction-Based Verification

Explicit-state reachability analysis is very easy to use. Its flat and direct representa-
tion of the system behavior can, however, cause it to run into scalability issues for
bigger systems. One technique that has been very successful for scaling up discrete
model checking is that of abstraction (see also Chap. 13).
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The basic idea is to replace the actual system by a simpler, abstract system, in
which model checking is easier to perform. The verification results about the ab-
stract system, of course, can only be related back to verification results about the
original concrete system under certain conditions on how the abstract and concrete
system are related and whether the particular property in question survives this ab-
straction process.

The options for directly constructing discrete abstractions by finite quotients and
for which subclasses they work have been examined by Henzinger [88, 93] and Laf-
ferriere et al. [108]. Because of the limited scope of discrete abstractions, more
general predicate abstractions [9, 10] and abstraction refinement techniques like
Counterexample-Guided Abstraction Refinement (CEGAR) have been developed
subsequently [9, 46]; see Chap. 13. These directions have again worked success-
fully in discrete and, to some extent, real-time systems.

30.5.1 Discrete Abstractions

We present a general notion of abstraction for transition systems based on simulation
relations [125] and we illustrate the principle of using abstractions in the verification
of hybrid systems for the class of initialized rectangular automata.

Definition 11 (Abstraction) A transition system T A = 〈SA,SA0 , SAf ,Σ,→A〉 is an
abstraction of a transition system (with the same alphabet) T = 〈S,S0, Sf ,Σ,→〉
(which is then called the concrete system) if there exists an abstraction mapping
α : S→ SA such that the following conditions hold:

1. α(s) ∈ SA0 for all initial states s ∈ S0;

2. for all σ ∈Σ , for all states s1, s2 ∈ S, if s1
σ−→ s2, then α(s1)

σ−→A α(s2);
3. α(s) ∈ SAf for all final states s ∈ Sf .

The abstraction mapping α is in fact a particular case of a (time-abstract) simula-
tion relation [126]. It may be convenient to allow the abstraction mapping to map a
state s ∈ S to several abstract states s1

A, s
2
A, . . . , s

k
A ∈ SA, that is to consider abstrac-

tion mappings α : S→ 2S
A

or equivalently to consider an abstraction relation over
S× SA, rather than a function. We take the simpler definition which is sufficient for
the purpose of describing the main principles of abstraction for hybrid automata.

The main property of abstractions which is useful for the safety verification
problem of hybrid automata is that they are conservative. Formally, {α(s) | s ∈
Reach(T )} ⊆ Reach(T A), which implies the following.

Lemma 4 Let T A be an abstraction of T . If T A is safe, then T is safe.

By Lemma 4, if we show (e.g., using algorithmic techniques) that the unsafe
states are not reachable in an abstraction of a hybrid system, then we can conclude
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that the concrete system is safe. Intuitively, this is because abstractions are over-
approximations of the original system, and therefore they exhibit (or simulate) all
executions of the concrete system, and possibly more. In particular, every path to
an unsafe state has a matching path in the abstraction, which is the main argument
for proving Lemma 4. The converse of this lemma does not hold simply because
abstractions may introduce spurious executions (which have no matching execution
in the concrete system) due to over-approximation.

The main purpose of abstraction for hybrid systems is to obtain finite-state tran-
sition systems which are amenable to model checking by automated tools, and give
useful conclusions about the original system. Remember that the transition systems
of hybrid automata have (uncountably) infinite state space, and (uncountably) infi-
nite branching. In the next subsections, we present ideas for practically constructing
such abstractions.

Initialized Rectangular Automata. We illustrate abstractions with an informal ar-
gument of why the safety verification problem is decidable for initialized rectangular
automata. The idea is that for such hybrid automata H , one can construct a timed
automaton A such that A is an abstraction of H , and H is an abstraction of A, thus
A is safe if and only if H is safe. Note that in this case the constructed abstrac-
tion (the timed automaton A) has infinite state space, but since we know that the
safety verification problem for timed automata is decidable, we obtain decidability
for initialized rectangular hybrid automata by Lemma 4.

We present the main steps behind this construction. In every location, a variable
x with flow constraint k1 ≤ ẋ ≤ k2 is replaced by two variables xl and xu with flow
constraint ẋl = k1 and ẋu = k2 which track the least and greatest possible value of
x respectively. An incoming edge with jump condition a ≤ x+ ≤ b (an update) is
replaced by x+l = a ∧ x+u = b. An edge with jump condition x ≤ b (a guard) that
occurs in conjunction with x+ = x is replaced by two copies of the edge, one with
the constraint (xl ≤ b ∧ xu ≥ b ∧ x+u = b) and the other with the constraint xu ≤ b.
More complicated jump conditions (strict inequalities, and conjunction of simple
jump conditions) are handled analogously, as well as the constraints in initial, final,
and evolution domain conditions (invariants).

After this step, the slope of every variable is a singleton in every location. The
next step is to scale the nonzero slope of the variables to 1. To do this, in each
location we replace flow constraints ẋ = k (when k �= 0) by ẋ = 1 and divide by k
the constants in the guards of outgoing edges, and in the updates of incoming edges.
This ensures that the value stored in variable x remains k times smaller than the
value of x in the original automaton (as long as the flow constraint ẋ = k holds). It
is therefore important that the rectangular automaton is initialized, as it guarantees
that if the constraint x+ = x occurs in the jump condition of an edge (�, σ, �′), then
the slope of variable x is the same in � and in �′. It remains to eliminate variables
with slope 0, which can be done easily by storing the lower and upper value of x in
the finite control structure of the automaton (these values can be changed only by
discrete jumps).
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The technical details of how to deal for instance with strict constraints in a jump
condition like (a < x < b), or unbounded flow constraints (like ẋ ≥ 1) can be found
in [96].

30.5.2 Phase-Portrait Approximation

Phase-portrait approximations are used as abstractions of hybrid automata with
complex flow constraints. We discuss the approach for affine flow constraints, but it
also applies to flow constraints that are much more general (e.g., given by ẋ = f (x)
for a continuous function f ). Details about the theory and practice of this approach
can be found, e.g., in [67, 93] and extensions on hybridization in [18] and other
abstractions in [60, 70, 169].

The objective of phase-portrait approximations is to replace complex dynamics
by simple rectangular (or sometimes linear) flow constraints on the dotted variables
only. For example, the flow constraint ẋ = f (x) where f (x)= x + 1 in a location
with evolution domain (invariant) 0≤ x ≤ 10 is replaced by 1≤ ẋ ≤ 11, which over-
approximates the exact dynamics. In general, bounds on the derivative can be de-
rived from bounds on the variables and computed as optimization problems, where
the lower bound should be less than of equal to infv∈[[Inv(�)]] f (v) and symmetri-
cally for the upper bound. Manual or numerical methods can be used as long as the
bounds can be proven to hold.

Formally, a phase-portrait approximation of a hybrid automaton H = 〈Loc,Lab,
Edg,X, Init, Inv,Flow, Jump,Final〉 is a hybrid automaton H ′ = 〈Loc,Lab,Edg,X,
Init, Inv,Flow′, Jump,Final〉 in which all components in H and H ′ are identical, ex-
cept the flow constraint which is such that [[Flow′(�)]] ⊇ [[Flow(�)]] for every loca-
tion � ∈ Loc.

Lemma 5 Let H ′ be a phase-portrait approximation of H . Then [[H ′]] is an ab-
straction of [[H ]], and if [[H ′]] is safe, then [[H ]] is safe.

The safety verification problem for phase-portrait approximations can be solved
using the algorithms and data structure presented in Sect. 30.4 for reachability anal-
ysis. Rectangular phase-portrait approximations are relatively simple to obtain be-
cause bounds are computed for each variable separately. However, the quality of the
approximation may be too coarse to establish safety. If the bad states are reachable
in the phase-portrait approximation, it may be due to lack of accuracy. More pre-
cise approximations are obtained by splitting the evolution domains. For example,
a location with evolution domain 0≤ x ≤ 10 can be replaced by two locations with
respective evolution domains 0≤ x ≤ 5 and 5≤ x ≤ 10, over which the approxima-
tion of ẋ = x + 1 is more precise, namely 1 ≤ ẋ ≤ 6 and 6 ≤ ẋ ≤ 11 respectively.
Figure 12 shows the states reachable from x = t = 0 (assuming ṫ = 1) in the rect-
angular phase-portrait approximation before splitting (light gray) and after splitting
(dark gray).
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Fig. 12 Tighter
approximations using
evolution domain (invariant)
splitting

In general, splitting consists of replacing a location � by k locations �1, . . . , �k
with the same flow constraint as in �, and with evolution domains that cover the
evolution domain of �, i.e., such that [[Inv(�)]] ⊆⋃k

i=1[[Inv(�i)]]. For each incoming
edge (�′, σ, �), new edges (�′, σ, �i) (i = 1, . . . , k) are created with the same jump
condition, and similarly for each outgoing edge. The split locations �1, . . . , �k are
connected by edges with jump condition stable(X)=∧

x∈X x′ = x. It can be shown
that location splitting results in hybrid automata that are mutually abstractions of
each other, implying that one is safe if and only if the other is safe. By splitting
locations, rectangular phase-portrait approximation can be made arbitrarily precise
in the following sense. Given a hybrid automatonH and ε > 0, an ε-relaxation ofH
is a hybrid automaton with the same locations and transition structure as in H , and
where all predicates φ in H are replaced by predicates φ′ such that [[φ]] ⊆ [[φ′]] ⊆
[[φ]]ε where [[φ]]ε := {v ∈ R

X | ∃u ∈ [[φ]] :maxx∈X|v(x)− u(x)| ≤ ε} is the set of
valuations at a distance at most ε from a valuation satisfying φ.

It can be shown that for every hybrid automaton H and ε > 0, there exists a
rectangular phase-portrait approximation Hε of a splitting of H such that Hε is an
abstraction of H , and there exists an ε-relaxation of H which is an abstraction of
Hε (see [93]). This ensures that if H robustly satisfies a safety property (i.e., both
H and some ε-relaxation satisfy the safety property), then it is possible to establish
the property using rectangular phase-portrait approximation and splitting.

In practice, it is often useful to split locations according to specific information
we may have about the given hybrid automaton. For example, a flow constraint
ẋ = 3 − x suggests the evolution domain should be split along lines parallel to
L≡ 3− x = 0. More generally, a common heuristic is to use linear approximations
of the flow constraints as support for cutting planes.

30.5.3 Predicate Abstractions

This part is a survey of [9, 10, 46]. We provide general ideas and guidelines about
predicate abstraction schemes for hybrid systems. Chapter 13 provides a detailed
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presentation of abstraction techniques for program verification (note that imperative
programs can be viewed as a subclass of hybrid systems).

Reachability analysis based on predicate abstraction consists of tracking the truth
value of a fixed finite set of predicates instead of computing the value of the con-
tinuous variables. The continuous part of the state space is replaced by the Boolean
truth values of the predicates.

Let H be a hybrid system, and letΠ = {π1, . . . , πk} be a finite set of linear pred-
icates πi of the form y -. 0 where y ∈ LTerm(X) and -.∈ {<,≤,=,>,≥}. A truth
value for Π is a vector b ∈ B

k where B= {0,1} that assigns a truth value bi to each
predicate πi ∈Π . Truth values induce a partition of the continuous state space into
finitely many abstract states. To obtain an abstraction we require that whenever there
exists a transition between two concrete states, then there is a transition between the
corresponding abstract states. Hence, the transition relation satisfies Definition 11
by construction.

We define an abstraction mapping αΠ as follows. For all states (�, v) of the hy-
brid automaton H , let αΠ(�, v) = (�, b) if b = (b1, . . . , bk) ∈ B

k is the vector of
truth values of the predicates in Π under valuation v, i.e., such that πi(v)= bi for
all 1 ≤ i ≤ k. We sometimes omit the location and write αΠ(v) = b. We denote
by γΠ the concretization function such that γΠ(b)= {v ∈ R

X | αΠ(v) = b} for all
b ∈ B

k .
The predicate abstraction of H induced byΠ is the finite-state transition system

HΠ = 〈SΠ,S0, Sf ,Σ,→Π 〉 where:

• S = {(�, b) ∈ Loc×B
k | ∃v ∈ [[Inv(�)]] : αΠ(�, v)= (�, b)}

• S0 = {(�, b0) ∈ SΠ | ∃v ∈ [[Init(�)]] : αΠ(�, v)= (�, b0)};
• Sf = {(�, bf ) ∈ SΠ | ∃v ∈ [[Final(�)]] : αΠ(�, v)= (�, bf )};
• Σ = Lab∪ {time} where Lab is the alphabet of H ;
• For each σ ∈ Lab, the transition relation→Π contains all tuples ((�, b), σ, (�′, b′))

such that ∃e= (�, σ, �′) ∈ Edg · ∃v ∈ γΠ(b) · ∃v′ ∈ γΠ(b′) : (�, v) σ−→ (�′, v′); and
the transition relation →Π contains the tuples ((�, b), time, (�′, b′)) such that
�′ = � and ∃r ≥ 0 · ∃v ∈ γΠ(b) · ∃v′ ∈ γΠ(b′) : (�, v) r−→ (�, v′).

While predicate abstractions are finite-state, their size can be of prohibitive com-
putational cost. The number of states in HΠ is at most exponential in the number of
predicates in Π . In practice though, many truth value vectors are not feasible (i.e.,
they have an empty concretization). For example, think of a set of 2k predicates over
two variables x and y, where k predicates define a partition of the values for x (e.g.,
x < 0, 0≤ x ≤ 1, and 1< x) and k predicates define a partition of the values for y.
Then the number of feasible abstract states is at most k2 rather than 22k . Note that
this example would still give a number of abstract states exponential in the number
of variables. The dimension of the space is a well-known source of computational
complexity. The choice of predicates is thus very important to obtain precise approx-
imations at the least cost. The initial set of predicates is usually chosen manually.
Natural candidates are the predicates occurring in the hybrid automaton itself, like
the evolution domains and jump conditions. Automatic construction and refinement
of predicate abstractions is discussed in Sect. 30.5.4.
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For reachability analysis, it is usually not necessary to construct the entire tran-
sition systems of the predicate abstractions, because many states may not be reach-
able. On-the-fly approaches are used to simultaneously construct and explore the
abstraction. Starting from the initial states in the abstraction, the transitions to other
abstract states are explored as and when they are computed. A classical strategy is
to explore the discrete successors first (because they are less expensive to compute),
and then the continuous successors for increasing amounts of time, as long as no
new discrete transition is enabled.

Computing Discrete Successors. Discrete successors can be computed as follows.
Given b ∈ B

k , let Π(b) = ∧
i|bi=1 πi ∧

∧
i|bi=0 πi be the constraint defining the

abstract state b. A transition e = (�, σ, �′) is enabled in a state (�, b) if EN(e) :=
[[∃X ·Π(b)∧ Inv(�)∧ Jump(e)]] ∩ [[Inv(�′)]] �= ∅. The successor states of (�, b) by
enabled transition e are the abstract states (�′, b′) such that Rk �= ∅ where R0 =
EN(e) and for all 1 ≤ i ≤ k, if b′i = 1 then Ri = Ri−1 ∩ [[πi]], and if b′i = 0 then
Ri = Ri−1 ∩ [[πi]]. A procedure for computing b′ can easily be derived from this
definition. Note that it may be that both Ri−1 ∩ [[πi]] �= ∅ and Ri−1 ∩ [[πi]] �= ∅
hold, which would lead b′i = 1 and b′i = 0 to be set successively, and both cases
to be explored. A simple optimization of this procedure is for each 1 ≤ i ≤ k to
set b′i = 1 beforehand if EN(e) ∩ [[πi]] = ∅, and set b′i = 0 if EN(e) ∩ [[πi]] = ∅. If
one of the two cases holds, then the corresponding predicate can be skipped in the
computation of Ri ’s.

Computing Continuous Successors. In general, the continuous successors are not
computed exactly, even according to the abstract transition relation. This is due to
the lack of exact algorithmic methods for solving differential equations. Note that
this is a difficult problem even if the differential equations in the flow constraints
have closed-form solutions, like in linear systems. Given R ⊆ R

X and location �,
we want to compute the set PostC({�} × R) of continuous successor states as de-
fined in Sect. 30.4.1, but over-approximations are sufficient for our purpose. This
is consistent with the framework of abstraction (in the sense of Definition 11), but
strictly speaking we are exploring in this way an over-approximation of the transi-
tion system HΠ defined above.

Optimizations. Various optimizations and heuristics have been defined and evalu-
ated on many examples in the literature, see, e.g., [9, 10, 46]. For example, when
we discover that a new abstract state s is reachable as a continuous successor un-
der some flow constraint, we do not need to explore the continuous successors of s
under the same flow constraint (unless s is also reachable by some discrete transi-
tion). This may significantly prune the search through the abstract state space. The
search can also be guided to discover unsafe reachable states as quickly as possi-
ble. Various exploration strategies have been defined, based on giving priority to
the most promising states, according to some greedy measures. For example, such
measures may estimate the distance from the current state to the unsafe state, such
as the Euclidean distance between the valuation of the variables in the abstract state



1082 L. Doyen et al.

and in the unsafe states, or a discrete distance as the smallest number of discrete
transitions necessary to reach an unsafe state, possibly taking into account the jump
condition on the edges. Combination thereof are also possible [10]. Finally, as in
program verification [90], it may be useful to maintain a set of predicates Π spe-
cific to each location, because certain predicates that are relevant in one location
may not be useful in other locations.

30.5.4 Abstraction Refinement

The abstraction schemes presented in Sect. 30.5.1 and Sect. 30.5.3 may not be suf-
ficient to establish the safety of a system. In particular, we know that safety of the
abstraction implies safety of the original system, but non-safety of the abstraction
is inconclusive. The process of refinement consists of constructing abstractions that
are tighter (or more detailed) than a given abstraction, in order to prove safety. If
the refinement process repeatedly fails in proving safety, then one can reasonably
conclude that even if the original system may indeed be safe, it should not be con-
sidered as acceptable because its correctness is not robust, a small deviation in the
implementation of the system being able to cause violation of the safety require-
ment [58, 155]. Such considerations are used to stop the refinement process when a
specified level of precision is reached [46, 64].

In general, if T A is an abstraction of T , then a refinement T B of T A is an ab-
straction of T which is such that T A is an abstraction of T B .

In the case of splitting and phase-portrait approximations, refinements can be ob-
tained by further splitting locations. For predicate abstractions, adding new predi-
cates gives a refinement. We present one of the most popular frameworks to discover
new predicates automatically, the counterexample-guided abstraction refinement
(CEGAR) [46, 47]. A general framework of abstraction refinement is presented in
Chap. 13.

Spurious Counterexamples. When a predicate abstraction fails to establish safety,
the analysis usually returns a witness path from an initial abstract state to a final

abstract state. Such a path ρ = q0
σ1−→ q1 . . .

σn−→ qn is a spurious counterexample if

there exists no path (�0, v0)
σ1−→ (�1, v1) . . .

σn−→ (�n, vn) in the original system such
that (�i, vi) ∈ γΠ(qi) for all 0≤ i ≤ n. Clearly, if a counterexample is not spurious,
then we can immediately conclude that the original system is not safe. We present a
standard approach to check whether a counterexample is spurious [9].

To simplify the presentation, we assume in this section that every edge has a
different label that identifies it uniquely. The successor operator is

Postσ (S)=
{(
�′, v′

) ∣
∣ ∃(�, v) ∈ S : (�, v) σ−→ (

�′, v′
)}
,
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where Posttime(·) = PostC(·) is the one-step continuous successor operator. Simi-
larly, the predecessor operator is

Preσ (S)=
{
(�, v)

∣
∣ ∃(�′, v′) ∈ S : (�, v) σ−→ (

�′, v′
)}
.

Let R0 = γΠ(q0) ∩ {(�, v) | v ∈ [[Inv(�)]]}, and Ri+1 = Postσi (Ri) ∩ γΠ(qi+1) ∩
{(�, v) | v ∈ [[Inv(�)]]} for all i ≥ 0. The counterexample ρ is spurious iff Ri = ∅ for
some 0≤ i ≤ n. Note that over-approximations of Postσi (·)may suffice to show that
a counterexample is spurious, but under-approximations are necessary to establish
with certainty that a counterexample exists in the original system.

Refinement. Assume that the counterexample is spurious, and let j ≥ 0 such that
Rj �= ∅ and Rj+1 = ∅. Then it is easy to prove that Rj ∩ Preσj+1(γΠ(qj+1)) = ∅.
New predicates should be added to the setΠ in order to rule out the counterexample.
Since Rj ∩Preσj+1(γΠ(qj+1))= ∅, we can search for a set of predicates which sep-

arates Rj and Preσj+1(γΠ(qj+1)). A set Π̂ of predicates separates two sets R and

Q if for every truth value b ∈ B
Π̂ , we have either γ

Π̂
(b)∩R = ∅ or γ

Π̂
(b)∩Q= ∅.

Note that to separate closed polyhedra, one simple linear constraint is always suf-
ficient, but since reachable states (and in particular states reachable by continuous
flow) are approximated by non-convex unions of polyhedra, several simple con-
straints may be necessary. Several methods have been developed to separate poly-
hedral sets, which are beyond the scope of this chapter. We refer to [9] for references
and discussion.

In some case, spuriousness can be established by analyzing fragments of the
counterexample [46], i.e., trying to show that a sub-sequence in the counterexample
is not feasible in the original system. Spurious fragments of length 2 are called

locally infeasible in [9] and defined as follows: qi−1
σi−→ qi

σi+1−−→ qi+1 is spurious
if Postσi (γΠ(qi−1))∩ γΠ(qi)∩ Preσi+1(γΠ(qi+1))= ∅. Refinement is computed as
above using separating predicates.

Various forms of robustness have been considered for hybrid systems, which ba-
sically work by not distinguishing between almost safe and almost unsafe hybrid
systems so that incorrect answers from the analysis procedure are accepted for such
borderline cases, but correct answers are required for clear-cut cases. Different no-
tions of robustness have been considered successfully [64, 157, 158].

30.5.5 Approximate Bisimulations

For discrete systems, the relationships between systems can be described by the no-
tions of language inclusion, simulation, and bisimulation. These concepts have been
transposed to continuous and hybrid systems [85], and extended to take advantage
of metrics over state spaces [78]. While traditional simulation and bisimulation re-
lations require the output traces of related states to be identical, it suffices for metric
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relations that they are sufficiently close. It is then possible to construct a discrete
bisimilar quotient by discretizing the state space. The quotient is then amenable to
verification and controller synthesis techniques for discrete systems [76].

We briefly sketch out the principle of approximate bisimulations in discrete time.
Two states x1, x2 are in ε-bisimulation relation if their output values are within dis-
tance ε and for every successor state x′1 of x1, x2 has a matching successor state
x′2 so that x′1 and x′2 are also in the relation. As a consequence, the output traces
of two states in the relation will never be more than ε apart. Note that the defini-
tion coincides with classical bisimulation for ε = 0. It is generally hard to compute
ε-bisimulation relations exactly, but (under some mild assumptions) one can define
a Lyapunov-like bisimulation function that maps pairs of states to a non-negative
value, and whose sub-level sets are in an approximate bisimulation relation. The ex-
istence of bisimulation relations can be tied to certain types of stability (the tendency
of the system to go to its equilibrium point). For example, a bisimulation function of
a linear continuous system with dynamics ẋ =Ax and output signal y = Cx can be
computed efficiently even for high-dimensional systems by solving a set of linear
matrix inequalities (LMI) of the form M ≥ CTC and ATM +MA ≤ 0. The LMI
always has a solution if the system is stable. Therefore, two stable linear systems
are always ε-bisimilar, and an upper bound on ε can be computed. Note that approx-
imate bisimulations can be used to relate continuous-time to discrete-time systems,
continuous-valued to discrete-valued systems, etc.

Verification by Simulation. Bisimulation relations can also be used to verify
bounded-horizon properties on bounded regions by computing a finite number of
trajectories, a technique called verification by simulation [61, 102]. Here, the prox-
imity measure of the bisimulation relation is combined with a robustness measure
on temporal logic formulas. Given an initial state x0 from which a trajectory satisfies
a temporal formula to some measure, a bisimulation metric allows one to identify
a neighborhood of initial states that all satisfy the same formula. This is possible
since the bisimulation metric guarantees that all trajectories from the neighborhood
(including all trajectories starting in x0) remain sufficiently close together to satisfy
the formula. Given a (dense) bounded region of initial states, it is, under suitable as-
sumptions, possible to identify a finite subset of initial states whose trajectories are
sufficient to show that the system satisfies a temporal logic formula [79]. A similar
approach has been developed for embedded control software [112]. Together with
the work on robustness mentioned in Sect. 30.5.4, these results demonstrate how
stability and robustness can be used to simplify verification tasks.

30.6 Logic-Based Verification

The working principle behind logic-based verification is to use logical formulas to
characterizing some parts of the hybrid systems verification problem and to solve
this verification problem or subproblem entirely by checking the corresponding log-
ical formulas for validity. There are even verification techniques for hybrid systems
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that are entirely based on logic and proof [137, 143], which are beyond the scope
of this chapter, however. In this section we survey the basic principles behind these
approaches and show what kind of reasoning can be used to verify safety properties
of hybrid systems or their parts by showing the validity of logical formulas.7

We survey a number of different approaches that represent the verification prob-
lem by various logical formulas or logical constraints:

1. Polynomial barrier certificates [154];
2. Equational certificates from templates [159, 161];
3. Differential invariants [136, 142, 144, 148].

These logic-based verification approaches further have in common that they ar-
gue by invariance and are based on variations of the work of Sophus Lie, of Jean
Gaston Darboux, or of Aleksandr Lyapunov. Differential invariants are based on So-
phus Lie’s 1867–1873 work on what are now called Lie derivatives and Lie groups.
Equational certificates are based on Darboux’s 1878 results [56] on a way to use
Sophus Lie’s approach. Barrier certificates are based on variations of Aleksandr
Lyapunov’s 1884–1892 work on a criterion for stability, which is used for safety
instead [154]. The logic-based verification techniques for hybrid systems are com-
plementary, so barrier certificates, equational templates, and differential invariants
can be used together and also combined as abstractions with reachability analysis
techniques.

Consider a location � of a hybrid automaton with polynomial dynamics defined
by polynomial differential equations. To emphasize that such a differential equation
is considered only once even if it occurs in multiple different locations, it is also
referred to as continuous mode. Let

ẋ1 = f1(x), . . . , ẋn = fn(x)

be the polynomial differential equation system of the mode, which we abbreviate
by the (vectorial) differential equation ẋ = f (x). The mode � has an invariant con-
dition Inv ∈ PConstr(X). What we want to understand in model checking of safety
properties is whether the system will always stay in a safe region when it follows
this continuous evolution mode starting from some initial region. We represent the
desired initial region by a constraint Init ∈ PConstr(X). Finally, we consider a con-
straint Safe ∈ PConstr(X) defining the safe states for which we want to show that
our system never leaves the set of states [[Safe]] satisfying Safe.

Definition 12 (Continuous mode safety problem) Let ẋ = f (x) be a (vectorial)
differential equation, i.e., a polynomial differential equation system

ẋ1 = f1(x), . . . , ẋn = fn(x)

7It should be noted that the other verification techniques surveyed in this chapter benefit from logic
as well, for example in their representation of big sets of states using simple logical formulas.
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for the system variables X = {x1, . . . , xn}. A continuous system (Init, ẋ = f (x), Inv)
consists of a constraint Inv ∈ PConstr(X) for the invariant condition (or evolution
domain restriction), and a constraint Init ∈ PConstr(X) for the initial condition. We
say that the continuous system (Init, ẋ = f (x), Inv) is safe with respect to con-
straint Safe ∈ PConstr(X) iff all δ ∈ R

≥0 and all continuously differentiable func-
tions ϕ : [0, δ] → R

X with ϕ(0) ∈ [[Init]] also satisfy ϕ(δ) ∈ [[Safe]] provided that
ϕ̇(t)= f (ϕ(t)) and f (t) ∈ [[Inv]] for all t ∈ [0, δ]. We also say that the continuous
system (Init, ẋ = f (x), Inv) respects Safe if (Init, ẋ = f (x), Inv) is safe with respect
to property Safe.

Logic-based verification techniques provide easily checkable witnesses to verify
that a continuous system (Init, ẋ = f (x), Inv) respects Safe. The immediate sig-
nificance for model checking is that they induce abstractions that can be used to
terminate a reachability computation.

Lemma 6 (Logical abstraction) Let (Init, ẋ = f (x), Inv) be a continuous system of
a mode � ∈ Loc of a hybrid automaton. If (Init, ẋ = f (x), Inv) respects Safe, then

post�
([[Init]])⊆ [[Safe]].

If the continuous system (Init, ẋ = f (x), Inv) of a mode � ∈ Loc of a hybrid automa-
ton respects the desired safety property Safe, (continuous) reachability computation
can be terminated for all states in any subset P ⊆ [[Init]], because, by monotonicity,
Lemma 6 then implies

post�(P )⊆ [[Safe]].
In particular, notice that it is useful for fast reachability computation if we can iden-
tify big sets Init that make (Init, ẋ = f (x), Inv) respect Safe. These sets Init are often
much bigger than the original initial sets from Definition 6.

The logic-based verification techniques mentioned above have in common that
they provide easily checkable witnesses for the verification. They further enjoy the
benefit that they can be used for highly nonlinear dynamics. The primary challenge
in all cases is the need to first find the witnesses or their shape, which corresponds
to the challenge of finding the right directions for support functions.

An interesting special case of the continuous safety problem from Definition 12
is the case where Init and Safe are the same formula F . If the continuous system
(F, ẋ = f (x), Inv) is safe with respect to F , then F is called a (safety) invariant. In
that case, Lemma 6 implies

post�
([[F ]])⊆ [[F ]].

That is, the continuous system will never be able to leave F . Thus, without reach-
ability computation, one can conclude that reachable sets that are within [[F ]] will
stay there forever.

Observe that, despite the similar name, there is a crucial difference between an
invariant condition Inv of a continuous system (or a mode in a hybrid system) and
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a safety invariant F . The difference is that we need to verify whether F is a safety
invariant, while we just assume that the system obeys the invariant condition Inv.
That is why Inv is also called an evolution domain restriction, because it restricts the
admissible evolution domain of the continuous system. So, Inv is part of the system
model, yet F is part of a safety property that we verify for the system model.

One of many possible approaches to logic-based verification is the one that fo-
cuses on showing that a formula F is a global invariant of a hybrid automaton by
showing that it is an invariant for each discrete transition and an invariant for each
continuous transition of the automaton. The best case is if F is the safety property
and turns out to be a global invariant of the system in this manner. This is generally
somewhat overly simplistic, because the verification does not necessarily have to
work with the same invariant F in all places so that multiple invariants need to be
used instead. Nevertheless, having this simple example of a single global invariant
in mind is a useful guiding principle for logic-based verification approaches.

Related arguments have also been used for invariant generation techniques for
abstract interpretation [169]. Based on decidability results for o-minimal hybrid au-
tomata [109], this includes invariant generation techniques for linear systems based
on Gröbner basis computations [169] rather than based on quantifier elimination
[109]. The case of (hyper-rectangle) box invariants has been discussed in more de-
tail elsewhere [170].

30.6.1 Polynomial Barrier Certificates

The basic idea behind barrier certificates is to find a barrier separating good and
bad states that we can easily show to be impenetrable by the continuous system
dynamics. Barrier certificates were proposed for safety verification in [154].

Theorem 4 (Weak barrier certificate [154]) Let (Init, ẋ = f (x), Inv) be a contin-
uous system with safety constraint Safe. If B is a (weak) barrier certificate for a
continuous safety problem, i.e., a polynomial satisfying

B(x)≤ 0 for all initial states x ∈ [[Init]],
B(x) > 0 for all unsafe states x /∈ [[Safe]], and

∂B

∂x
(x)f (x)≤ 0 for all states x ∈ [[Inv]],

then the continuous system (Init, ẋ = f (x), Inv) respects Safe.

Barrier certificates themselves can be defined for more general non-polynomial
cases, but the conditions are generally not computable when fi(x) and B are not
polynomials or Inv, Init, and Safe are not polynomial constraints. The purpose of
a barrier certificate is to separate safe from unsafe states in such a way that initial
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states are safe, and the differential equations can easily be seen to never cross the
barrier between safe and unsafe states.

The importance of barrier certificates comes from the fact that they reduce a
reachability question (can we ever reach an unsafe state) to a simple check on the
directional derivative ∂B

∂x
(x)f (x) along ODE of the Barrier certificate.

It had originally been proposed [153] that barrier certificates only need to be
checked on the boundary of the barrier and that it would be sufficient to check the
third condition in Theorem 4 for all x ∈ [[Inv]] with B(x)= 0:

∂B

∂x
(x)f (x)≤ 0 for all states x ∈ [[Inv]] with B(x)= 0. (16)

This condition is generally not strong enough and can lead to soundness issues, as
the following example shows.

Example 2 When using condition (16), it looks as if the differential equation ẋ = 1
always stays in the region Safe≡ x2 ≤ 0 because condition (16) succeeds as fol-
lows:

∂x2

∂x
1= 2x ≤ 0 for all states x with x2 = 0

This, however, is counterfactual, because the system ẋ = 1 will, of course, leave
region x2 ≤ 0. Thus, the condition (16) is unsound. The same issue occurs for a
suggestion on how to extend this approach to Boolean combinations of inequalities
[84]. A discussion of the assumptions under which the conditions can be restricted
to such subsets without losing soundness can be found in the literature [136, 142,
144, 154].

Checking on the boundary is sound, however, if the condition (16) is modified to
a strict inequality, instead of a weak inequality:

Theorem 5 (Strict barrier certificate [154]) Let (Init, ẋ = f (x), Inv) be a contin-
uous system with safety constraint Safe. If B is a (strict) barrier certificate for a
continuous safety problem, i.e., a polynomial satisfying

B(x)≤ 0 for all initial states x ∈ [[Init]],
B(x) > 0 for all unsafe states x /∈ [[Safe]], and

∂B

∂x
(x)f (x) < 0 for all states x ∈ [[Inv]] with B(x)= 0,

then the continuous system (Init, ẋ = f (x), Inv) respects Safe.

Search procedures for barrier certificates include approaches that choose a
degree-bound for the barrier certificate B(x) and then turn the conditions from The-
orem 4 into a convex optimization problem, which can be solved efficiently [154].



30 Verification of Hybrid Systems 1089

A similar approach has been proposed for Theorem 5, but the optimization problem
is then non-convex [154], so optimizers can get stuck in local optima.

Barrier certificates can be extended to systems with disturbances and to switching
diffusion systems [154]. We refer to the literature for a discussion of these general-
izations and examples [154].

30.6.2 Equational Certificates

Equational certificates [159, 161] serve a purpose that has quite some similarity to
barrier certificates. They were introduced [161] at the same time as barrier certifi-
cates [154], and later rephrased and generalized [159] similarly to a matrix refor-
mulation of that idea [123]. Equational certificates have been investigated earlier by
Darboux in 1878 [56] for continuous systems not in the context of hybrid systems.
Like barrier certificates, the conditions of equational certificates make a reachabil-
ity analysis superfluous, because they give a simple certificate showing a property
of the system. One major difference of equational certificates compared to barrier
certificates is that an equational certificate consists of a single polynomial equa-
tion p(x) = 0, while a barrier certificate consists of a single polynomial inequal-
ity B(x) ≤ 0. The other major difference is the condition itself. It is an equational
criterion, not using inequalities. Another minor difference is that an equational cer-
tificate p(x) = 0 shows invariance of the property p(x) = 0 instead of separating
initial states from bad states. That is a minor difference, though, because Safe is an
invariance property that can be read off from a barrier certificate that separates Init
from ¬Safe.

Theorem 6 (Equational certificates [161]) Let p(x) be a polynomial and let
(p(x) = 0, ẋ = f (x), Inv) be a continuous system. If there is a polynomial g(x)
such that

∂p

∂x
(x)f (x)= g(x)p(x)

for all x ∈ [[Inv]], then (p(x) = 0, ẋ = f (x), Inv) respects p(x) = 0. In particular,
p(x)= 0 is an invariant of (p(x)= 0, ẋ = f (x), Inv).

The equational template approach for equational certificates [161] works as fol-
lows. The user chooses a template for the polynomial equation p(x) = 0 and the
system then uses linear equation solving and/or Gröbner basis computations [38] to
check whether the equational certificate condition from Theorem 6 holds. In gen-
eral, the approach may use the decision procedures of quantifier elimination in real
closed fields [49] to handle the nonlinear real arithmetic.

Common special cases of equational certificates include those where only num-
bers or only 0 is chosen for the polynomial g(x). It had originally been proposed
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informally [161] that it should also be sufficient in Theorem 6 to check

∂p

∂x
(x)f (x)= 0 for all x ∈ [[Inv]] with p(x)= 0. (17)

This variation is generally not strong enough and can lead to soundness issues.

Example 3 When using condition (17), it may seem as if x2 = 0 were an invariant
of the differential equation ẋ = 1, because condition (17) succeeds as follows:

∂x2

∂x
1= 2x = 0 for all x with x2 = 0

This, however, is counterfactual, because the system ẋ = 1 will, of course, falsify the
safety condition x2 = 0 right away. Thus, the condition (17) is an unsound variation
of Theorem 6. We refer to the literature [136, 142] for a discussion of the conditions
under which stronger assumptions can be assumed without losing soundness.

There are additional conditions on the system dynamics and p, however, under
which the restriction (17) remains correct [142]. That line of research also identifies
under which conditions equational templates and equational differential invariants
are complete for verifying equational safety properties [142].

30.6.3 Differential Invariants and Logical Certificates

Differential invariants are a generalized form of logic-based witness techniques for
hybrid systems and generalize equational certificates [161] and barrier certificates
[153, 154]. Like equational certificates [161], a differential invariant can be an equa-
tion p(x) = 0. Like barrier certificates [153, 154], differential invariants can be
inequalities like p(x) ≤ 0. Differential invariants can be general logical formulas
with propositional combinations of mixed equations, strict inequalities, and weak
inequalities, and can be extended to contain quantifiers for distributed hybrid sys-
tems [138]. Differential invariants have been introduced in 2008 [136] and later
refined to an automatic verification procedure that searches for differential invari-
ants [148]. Further results about the theory of differential invariants can be found in
the literature [142, 144].

Given a continuous system (Init, ẋ = f (x), Inv), we want to check whether it re-
spects Safe. As a short notation, we say that the formula Init→[ẋ = f (x)&Inv]Safe
is valid if the continuous system (Init, ẋ = f (x), Inv) respects the safety condition
Safe. That is, if that continuous system always stays in the region Safe when it fol-
lows differential equation ẋ = f (x) restricted to the evolution domain region Inv and
when started in any initial state satisfying Init. Even though more complex represen-
tations can be used, we assume Init,Safe, and Inv to be (semi-algebraic) polynomial
constraints. A simple form corresponds to the case where Init and Safe are the same
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formula F . If F →[ẋ = f (x)&Inv]F is valid, then F is called a continuous invari-
ant of the dynamics ẋ = f (x)&Inv. That is, if the continuous system starts in F ,
then it will always stay in F .

In fact, the notation Init→[ẋ = f (x)&Inv]Safe can be understood as a log-
ical formula. The logical formula [ẋ = f (x)&Inv]Safe uses the modal operator
[ẋ = f (x)&Inv] to say that formula Safe holds in all states that are reachable along
the differential equation ẋ = f (x) within evolution domain Inv. The implication
Init→ in Init→[ẋ = f (x)&Inv]Safe restricts this to only the set of initial states
that satisfy Init. The same principle extends to a logic for hybrid systems [135–
137, 141, 143] and to a logic for distributed hybrid systems [140]; see [143] for an
overview. Both of these logics are relatively complete (similarly to relative com-
pleteness of Hoare calculus). That is, they can prove every valid formula about hy-
brid systems or (distributed) hybrid systems from elementary properties of differen-
tial equations. These results also give a precise construction lifting all verification
techniques for continuous systems to hybrid systems [141].

Differential invariants can be equational formulas like equational certificates,
they can include inequalities like barrier certificates, but they also include mixed
cases, Boolean combinations, and cases with more complicated logical formulas.

Definition 13 (Continuous invariant) Let (Init, ẋ = f (x), Inv) be a continuous
system with safety constraint Safe. Constraint F is a continuous invariant of
Init→[ẋ = f (x)&Inv]Safe iff the following formulas are valid (true in all states):

1. Init∧ Inv→ F (induction start), and
2. F →[ẋ = f (x)&Inv]F (induction step).

A continuous invariant F is sufficiently strong for Init→[ẋ = f (x)&Inv]Safe if, in
addition, F → Safe is valid, because Init→[ẋ = f (x)&Inv]Safe is then valid.

It is easy to see that the existence of a sufficiently strong continuous invariant for
Init→[ẋ = f (x)&Inv]Safe implies that the property Init→[ẋ = f (x)&Inv]Safe is
valid.

Continuous invariants are useful notions, but they are not computational per se,
because we still need to find a way to check the induction step. The induction start
is reasonable, because it is just a constraint, which is a logical formula of first-
order real arithmetic and thus decidable by quantifier elimination in real closed
fields [49, 50, 166]. But we need to find a checkable representation of the induction
step. A checkable condition is made formally precise using the notion of differential
invariants.

Definition 14 (Differential invariant) Let (Init, ẋ = f (x), Inv) be a continuous sys-
tem with safety constraint Safe. A polynomial constraint F is a differential invariant
of Init→[ẋ = f (x)&Inv]Safe iff the following formulas are valid:

1. Init∧ Inv→ F (induction start), and
2. Inv→∇ẋ=f (x)F (induction step),
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Fig. 13 Differential
invariant F

where ∇ẋ=f (x)F is the conjunction of all directional derivatives of atomic formulas
in F in the direction of the vector field of ẋ = f (x) (the partial derivative of b by xi
is ∂b
∂xi

):

∇ẋ=f (x)F ≡
∧

(b∼c)∈F

(
n∑

i=1

∂b

∂xi
fi(x)

)

∼
(

n∑

i=1

∂c

∂xi
fi(x)

)

where ∼∈ {=,≥,>,≤,<}.
A differential invariant F is sufficiently strong for Init→[ẋ = f (x)&Inv]Safe if, in
addition, F → Safe is valid (because Init→[ẋ = f (x)&Inv]Safe is then valid by
Corollary 2 below).

The respective partial derivatives of terms are well defined in the Euclidean space
spanned by the variables and can be computed symbolically [136, 137]. Differential
invariants capture the condition showing that the formula F is only becoming more
true when following the dynamics, not less true, see Fig. 13.

The central property of differential invariants for verification purposes is that
they replace infeasible or impossible reachability analysis with feasible symbolic
computation.

Theorem 7 (Principle of differential induction [136]) All differential invariants are
continuous invariants.

Corollary 1 If F is a differential invariant for Init→[ẋ = f (x)&Inv]Safe, then
Init→[ẋ = f (x)&Inv]F is valid.

Corollary 2 If F is a differential invariant for Init→[ẋ = f (x)&Inv]Safe that is
sufficiently strong, then F is a continuous invariant that is sufficiently strong for
Init→[ẋ = f (x)&Inv]Safe. In particular, Init→[ẋ = f (x)&Inv]Safe is valid.

Example 4 Consider the dynamics ẋ = x4, ẏ =−2. We are interested in seeing
whether 2x ≥ 5y is an invariant of this dynamics. With differential invariants it is
easy to show that this is an invariant for the dynamics without using any state-based
reachability verification. We just compute symbolically:

∇ẋ=x4,ẏ=−2(2x ≥ 5y)≡ ∂2x

∂x
x4 + ∂2x

∂y
(−2)≥ ∂5y

∂x
x4 + ∂5y

∂y
(−2)≡ 2x4 ≥−10.
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Fig. 14 Example of a
differential invariant indicated
by the thick boundary

Since the latter formula is easily found to be valid, 2x ≥ 5y is proven to be a dif-
ferential invariant and thus stays true whenever it holds for the initial state of the
dynamics.

Consider the case where ẋ = x4, ẏ =−2 is the dynamics of one location of a
hybrid automaton. Then we know that 2x ≥ 5y is true after staying in this location
arbitrarily long, if only we know that 2x ≥ 5y is also true initially when entering the
location. This is a prototypical scenario where local verification results also need to
be combined together in order to verify the whole hybrid automaton.

Example 5 Consider the dynamics

ẋ1 = 2x4
1x2 + 4x2

1x
3
2 − 6x2

1x2, ẋ2 =−4x3
1x

2
2 − 2x1x

4
2 + 6x1x

2
2 .

Using differential invariants it is easy to show that x4
1x

2
2 + x2

1x
4
2 − 3x2

1x
2
2 + 1≤ c is

an invariant of this dynamics, as illustrated in Fig. 14. The justification again follows
by simple symbolic computation as in Example 4:

∇ẋ1=2x4
1x2+4x2

1x
3
2−6x2

1x2,ẋ2=−4x3
1x

2
2−2x1x

4
2+6x1x

2
2

(
x4

1x
2
2 + x2

1x
4
2 − 3x2

1x
2
2 + 1≤ c)

≡ ∂
(
x4

1x
2
2 + x2

1x
4
2 − 3x2

1x
2
2 + 1

)

∂x1

(
2x4

1x2 + 4x2
1x

3
2 − 6x2

1x2
)

+ ∂
(
x4

1x
2
2 + x2

1x
4
2 − 3x2

1x
2
2 + 1

)

∂x2

(−4x3
1x

2
2 − 2x1x

4
2 + 6x1x

2
2

)≤ 0

which simplifies to true.

Differential invariants work somewhat like loop invariants but for differential
equations instead of loops. When checking a loop invariant F , we can assume it
holds before the loop in the induction step. It thus looks as if we should be able to
assume F when proving the induction step Case 2 of Definition 14 and prove

Inv∧ F →∇ẋ=f (x)F (18)
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instead. Or, better, yet, only check the condition on the boundary of the domain like
for barrier certificates. Neither of those would be sound, however, according to the
following counterexamples from [136, 148]:

Example 6 When using condition (18), it looks as if x2 ≤ 0 were an invariant of
the differential equation ẋ = 1, because condition (18) succeeds as follows:

(
x2 ≤ 0→∇ẋ=1x

2 ≤ 0
)≡

(

x2 ≤ 0→ ∂x2

∂x
1≤ 0

)

≡ (
x2 ≤ 0→ 2x ≤ 0

)

This, however, is counterfactual, because the system ẋ = 1 will, of course, leave
region x2 ≤ 0. Thus, the condition (18) is unsound. The same example shows that
checking on the boundary of F is unsound in general. We refer to the original work
[136] for a discussion of the conditions under which stronger assumptions can be
made without losing soundness.

A further elaboration of these phenomena as well as an identification of the con-
ditions under which such extra assumptions would be sound can be found in the
literature [142, 144].

It turns out that some properties cannot be verified using differential invariants
alone but that additional verification techniques are needed [144]. Differential sat-
uration (repeated application of differential cuts [136, 144]) has been introduced
together with differential invariants in 2008 [136] as a sound alternative that can be
used to add conditions iteratively without compromising soundness.

Theorem 8 (Differential saturation [136, 144]) Assume that F is a continuous in-
variant (e.g., a differential invariant) of Init→[ẋ = f (x)&Inv]Safe, then

Init→[ẋ = f (x)&Inv]Safe iff Init→[ẋ = f (x)&Inv∧ F ]Safe.

An evolution domain constraint Inv (also confusingly referred to as the invari-
ant of a location) is an entirely different entity than an invariant property F of a
system. An automaton model assumes or prescribes that the system dynamics can
only be followed along traces that do not leave Inv, because the system will stop
all executions that leave Inv. In contrast, a differential invariant proves that the sys-
tem will never leave F whether it wants to or not. Nevertheless, Theorem 8 gives
a sound way of translating a proved differential invariant into a prescriptive evolu-
tion domain constraint. Theorem 8 can be used to strengthen the evolution domain
constraints to subregions, which then become available for subsequent verification
in a sound way. The differential cut principle underlying Theorem 8 is particularly
powerful when used repeatedly until saturation [136, 148]. That is, verification with
differential invariants often proceeds in stages, where a number of formulas F are
verified to be invariants and then used to constrain the evolution of the system using
the right-hand side of Theorem 8. This process repeats until all unsafe states have
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been verified to be removable from the state space and so verification becomes triv-
ial. Repeating this process in a fixed-point loop has been shown to work successfully
in practice [148].

Differential invariants are computationally attractive concepts, because their in-
duction start and induction step are just polynomial constraints, which are formulas
of first-order real arithmetic, and are thus decidable by quantifier elimination in real
closed fields [49, 50, 166]. Also the check whether a differential invariant F is suf-
ficiently strong to imply a polynomial safety constraint Safe is decidable. The steps
needed to compute the induction step of a differential invariant are simple algebraic
computations that can be automated easily.

Differential invariants are always sound. That is, every property that can be ver-
ified using a differential invariant is correct. The converse question is that of com-
pleteness, whether all relevant properties can be verified. It turns out that differential
invariants alone are not complete.

Example 7 x > 0→[ẋ =−x&true]x > 0 is valid, but x > 0 is not a differential
invariant of ẋ =−x, not a barrier certificate, and does not qualify as an equational
template either.

More generally, it can be shown that there are properties like Example 7 that are
true but cannot be verified [144], except when using an additional verification tech-
nique known as differential auxiliaries (alias differential ghosts) that adds additional
variables and additional dynamics for verification purposes [144]. Thus, differential
auxiliaries are a fundamental extension that is required for verification.

Search procedures for differential invariants include degree-bounded enumera-
tion and fixed-point loops [148]. For completeness guarantees and numerous prov-
ability relationships on classes of differential invariants, see [141, 144]. The case
of equational differential invariants is elaborated in [142], in which case differential
invariants are a necessary and sufficient criterion for invariant functions according
to a corresponding result by Lie.

Theorem 9 (Invariant function characterization) A (polynomial) function p is an
invariant function of ẋ = f (x), i.e., the value of p along all solutions is constant,
iff p = 0 is a differential invariant of ẋ = f (x).

A corresponding necessary and sufficient characterization of all algebraic invari-
ant equations of algebraic differential equations is possible with a higher-order gen-
eralization of equational differential invariants called differential radical invariants
[73].

For hybrid systems, differential invariants are used by allowing separate invari-
ants for the respective locations of the hybrid automaton. Consider the hybrid au-
tomaton in Fig. 15 and, for the moment, suppose that there are no discrete jumps,
i.e., the reset relations are the identity relation. Then, we need to show that start-
ing in F1 for dynamics ẋ = θ1 will always stay in the region F2. In addition, we
need to show that, when starting in F2 the dynamics ẋ = θ2 will always stay in
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Fig. 15 Example of a
verification loop for a hybrid
automaton

the region F3, and so on. That is, in general we need to show that, when starting
in Fi , the dynamics ẋ = θi will always stay in the region F(i+1)%5. In the presence
of non-trivial discrete jump relations, we also need to show that these jump rela-
tions preserve the respective invariant. That means, we need to show that the jump
relation (including its guard) will always transform every state within the invariant
region Fi of its source into the invariant region F(i+1)%5 of its target. Finally, we
only know that the reachable states of the hybrid automaton are contained in the
respective invariant regions Fi if the automaton also starts in the required invariant
region F0 of the initial location. That is, we need to check that the initial state is
contained in F0.

To make this principle concrete, consider a flyable roundabout maneuver for air
traffic control [149], which is a variation of roundabouts that have been proposed
a decade before [175]. Flyable roundabouts follow a hybrid automaton similar to
Fig. 15, but with locations that correspond to the various phases of the roundabout
as depicted schematically in Fig. 16. The aircraft are initially in free flight (free),
then, when a conflict arises, agree on a compatible roundabout collision avoidance
maneuver (agree), approach the roundabout with an entry procedure (entry), follow
the roundabout (circ), and then leave the roundabout (exit), until they are far enough
away to enter free flight again. Such roundabout collision avoidance maneuvers for
aircraft can be verified using differential invariants, see elsewhere [149] for details.

For an investigation of the theory of differential invariants, we refer to [73, 136,
142–144]. That line of research studies the theoretical and provability properties
of differential invariants. It identifies a dozen relations either equating or separat-

Fig. 16 Phases of flyable roundabout maneuver and protocol cycle
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Fig. 17 Differential invariance chart: identifies how classes of differential invariants relate to each
other, where the operators in the differential invariants are restricted as indicated in subscript Ω

ing the verification power of various classes of differential invariants (Fig. 17 in-
dicates strict inclusion, equivalence, and incomparability of verification power, re-
spectively). These relations further imply that the inclusion of Boolean operators
that differential invariants support makes it possible to verify more systems com-
pared to the single polynomial inequalities of barrier certificates or the single poly-
nomial equations of equational templates [144]. The subclass of systems that have
equational systems as invariants, however, already have a single equational invari-
ant [144]. Differential cuts, differential saturation, and differential auxiliaries have
been identified as fundamental extensions [136, 144]. The surprisingly close rela-
tionship of differential invariants to classical discrete invariants has been explored in
the literature [141]. The relationship of differential invariants to Lie’s seminal work,
a differential operator view, and partial differential equations has been investigated
along with a technique called the inverse characteristic method for generating dif-
ferential invariants [142]. The generalization of differential radical invariants can be
generated efficiently using symbolic linear algebra [73].

For a generalization of differential invariants to systems with disturbances and
differential-algebraic equations, we refer to the literature [136, 137]. Differential
invariants can be generalized to the case of quantified first-order formulas and to
distributed hybrid systems [138]. The approach extends to a relatively complete
logic for hybrid systems [135–137, 141, 143] and to a relatively complete logic for
distributed hybrid systems [140]. Generalizations to reachability and progress con-
ditions can be found elsewhere [136]. Generalizations to stochastic hybrid systems
with stochastic differential equations have been proposed [139].

30.7 Verification Tools

Despite the undecidability of the general case, the safety verification problem has
been attacked algorithmically: many of the classical tools (among others D/DT [19],
CheckMate [45], HYTECH [89]) and many of the more recent tools (PHAVER [67])
use a symbolic analysis of the hybrid automaton with a forward and/or backward ap-
proach: starting from the initial (resp. unsafe) states, iterate the Post operator (resp.
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Pre) until a fixed point is reached and then check emptiness of the intersection with
the unsafe (resp. initial) states. By Theorem 2, these procedures are not guaranteed
to terminate in general. As discussed in Sect. 30.4, a major issue is scalability, as
the computational cost increases sharply with the number of continuous variables.
Performance is achieved by overapproximating the Post operator, and overapprox-
imation can also be used to force termination of the fixed-point procedure. The
challenge is to find methods that scale and are still accurate enough to show safety.

We discuss a selection of hybrid systems verification tools representing differ-
ent classes of approaches that we survey here. A complete overview of all tools is
beyond the scope of this chapter. We focus on a subset of the verification tools for
which a dedicated tool paper and at least some documentation is available. A more
complete collection of tools can be found on the Web.8

HSolver: Interval Constraint Propagation

HSolver9 [158] is an open-source software package for the formal verification of
safety properties of continuous-time hybrid systems. It allows hybrid systems with
nonlinear ordinary differential equations and nonlinear jumps assuming a global
compact domain restriction on all variables. Even though HSolver is based on
fast machine-precision floating point arithmetic, it uses sound rounding, and hence
the correctness of its results cannot be hampered by round-off errors. HSolver not
only verifies (unbounded horizon) reachability properties of hybrid systems, but—
in addition—it also computes abstractions of the input system. So, even for input
systems that are unsafe, or for which exhaustive formal verification is too difficult,
it will compute abstractions that can be used by other tools. For example, the ab-
stractions could be used for guiding search for error trajectories of unsafe systems.

HSolver is not optimized for special classes of hybrid systems (e.g., systems such
as linear hybrid automata that have very simple continuous dynamics). Moreover it
does not yet provide mature support for finding counterexamples for unsafe input
systems. The method used by HSolver is abstraction refinement based on interval
constraint propagation [158], which incrementally refines an abstraction of the in-
put system. Special care is taken to reflect as much information as possible in the
abstraction without increasing its size.

HyTech: The HYbrid TECHnology Tool

HyTech10 [89] was the first tool for reachability analysis of PCDA (Linear Hy-
brid Automata). The system is specified as a product of automata that synchronize

8http://wiki.grasp.upenn.edu/.
9http://hsolver.sourceforge.net/.
10http://embedded.eecs.berkeley.edu/research/hytech/.

http://wiki.grasp.upenn.edu/
http://hsolver.sourceforge.net/
http://embedded.eecs.berkeley.edu/research/hytech/
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on transitions that share the same label. The tool has a simple command language
similar to a basic imperative language, allowing the user to program his own explo-
ration algorithms. The basic data type represents a union of polyhedra associated
with each location of the product automaton. Operations such as Boolean opera-
tions, existential quantification, emptiness test, and reachability computation (using
the Post operation) are provided. Error traces (counterexamples) can be produced in
combination with reachability analysis.

HyTech uses polyhedra with the double description method, which combines
constraint and generator representations. The post operators are those described in
Sect. 30.4.2 and implemented with exact arithmetic. HyTech can be used for para-
metric analysis by viewing parameters as variables with first derivative equal to zero.
For instance, existential quantification on the reachable states can be used to extract
a constraint on the parameters such that a given region is reachable. HyTech has
been used to model check an audio control protocol [99] and a steam boiler [98].
A main limitation of HyTech lies in its use of standard integer data types, which
quickly leads to integer overflow.

KeYmaera: Logic and Differential Invariants for Compositional Verification

KeYmaera11 [135–137, 141, 150] is a hybrid verification tool for hybrid systems
that combines deductive, real algebraic, and computer algebraic prover technolo-
gies. It is an automated and interactive theorem prover for a natural specification
and verification logic for hybrid systems. With this, the verification principle behind
KeYmaera is fundamentally different and complementary to tools like HyTech [89],
PHAVer [67], and SpaceEx [68]. KeYmaera supports differential dynamic logic (dL)
[135, 137, 141], which is a real-valued first-order dynamic logic for hybrid pro-
grams [135, 137, 141], a program notation for hybrid systems. KeYmaera also sup-
ports hybrid systems with nonlinear discrete jumps, nonlinear differential equations,
differential-algebraic equations, differential inequalities, and systems with nonde-
terministic discrete or continuous input.

For automation, KeYmaera implements a number of automated proof strategies
that decompose the hybrid system symbolically and prove properties of the full sys-
tem by proving properties of its parts [137]. This compositional verification prin-
ciple helps scale up verification, because KeYmaera verifies large systems by ver-
ifying properties of subsystems (also see assume-guarantee reasoning, Chap. 12).
KeYmaera implements fixed-point procedures [148] that compute differential in-
variants and invariants in fixed-point loops, somewhat like the way classical model
checkers compute reachable sets in fixed-point loops. KeYmaera is typically more
suitable for verifying parametric hybrid systems than systems with a single numer-
ical state, where simulation is more appropriate. KeYmaera has been used success-
fully for verifying case studies in train control [151], car control [114, 115], air

11http://symbolaris.com/info/KeYmaera.html.
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traffic management [149], mobile robotics [130] and surgical robotics [104]. The
KeYmaera approach is described in a book about Logical Analysis of Hybrid Sys-
tems [137].

A comprehensive introduction is provided in a textbook on the logical founda-
tions of cyber-physical systems [146]. This textbook also explains how the successor
tool KeYmaera12 [72] can achieve the same from a minimal soundness-critical core
[145].

PHAVer: Polyhedral Hybrid Automaton Verifyer

PHAVer13 [67] follows the same basic principles as HyTech. PHAVer is a formal
verification tool for computing reachability and simulation relations of PCDA (Lin-
ear Hybrid Automata) from Sect. 30.4.2.

PHAVer uses standard operations on polyhedra for reachability computations
over an infinite time horizon (similar to those used in HyTech), and the algorithm
for computing simulation relations is a straightforward extension of these. Using
unbounded integer arithmetic, the computations are exact and formally sound. In
addition to PCDA reachability, PHAVer can overapproximate piecewise affine dy-
namics on the fly, computing an overapproximation of the reachable states that is in-
variant (all trajectories that start within the set stay within the set). While PCDA are
undecidable, PHAVer provides formally sound and precise overapproximation and
widening operators that can force termination at the cost of reduced precision. These
operators also simplify the computed continuous sets and dynamics of the system,
and may result in a considerable speed-up without much loss in precision. The
checking of abstraction and equivalence with simulation relations can be applied
compositionally, and a sound non-circular assume-guarantee rule is implemented
[66]. However, since the required exact computations on polyhedra do not scale
well, this approach is limited to very small systems.

With its exact computations and controllable overapproximations, PHAVer is
suited to verifying formally stringent properties on small systems with simple dy-
namics, such as communication protocols with drifting clocks or buffer networks.
PHAVer’s disadvantage is that the employed polyhedra computations are gener-
ally exponential in the number of variables, so that scalability is limited. PHAVer
has been used to verify oscillation properties of a voltage-controlled oscillator cir-
cuit with three state variables [70], and various academic benchmarks with simple
dynamics and up to 14 continuous variables. Since 2011, PHAVer is part of the
SpaceEx tool platform [68].

12http://keymaeraX.org/.
13http://www-verimag.imag.fr/~frehse/phaver_web/index.html.
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SpaceEx: State Space Explorer

SpaceEx14 [68] is a tool platform for verifying hybrid systems. It can handle hybrid
automata whose continuous and jump dynamics are piecewise affine with nonde-
terministic inputs, i.e., PWA from Sect. 30.4.3. Nondeterministic inputs are par-
ticularly useful for modeling the approximation error when nonlinear systems are
brought into piecewise affine form. SpaceEx comes with a compositional model-
ing language. It allows one to specify complex systems in a modular fashion as a
network of interacting hybrid automata with templates and nesting. In the SpaceEx
model editor, components are connected in block diagrams known from control the-
ory, and the evolution of continuous variables is specified by hybrid automata with
differential algebraic equations and inequalities.

Several different algorithms are implemented on the SpaceEx platform, including
an exact algorithm for PCDA and a simulator that can handle nonlinear dynamics.
The main verification algorithms, called LGG [68] and STC [69], combine explicit
set representations (polyhedra), implicit set representations (support functions), and
linear programming to achieve high scalability while maintaining high accuracy.
The reachable states are overapproximated in the form of template polyhedra, which
are polyhedra whose facets are oriented according to a user-provided set of template
directions. The algorithms use adaptive time steps to ensure that the approximation
error in each template direction remains below a given value. Empirical measure-
ments indicate that the complexity of the image computations is linear in the number
of variables, quadratic in the number of template directions, and linear in the number
of time-discretization steps.

The accuracy of the overapproximation can be increased arbitrarily by choosing
smaller time steps and adding more template directions. To attain a given approx-
imation error (in the Hausdorff sense), the number of template directions is worst-
case exponential. In case studies, the developers of SpaceEx observe that a linear
number of user-specified directions, possibly augmented by a small set of critical
directions, often suffices. The LGG and STC algorithms use floating-point compu-
tations that do not formally guarantee soundness. SpaceEx has been used to verify
continuous and hybrid systems with more than 100 continuous variables.

ToolboxLS: Level Set Methods

Level set methods are a class of algorithms designed for approximating the solu-
tion of the Hamilton–Jacobi partial differential equation (PDE) [127], which arises
in many fields including optimal control, differential games, and dynamic implicit
surfaces. In particular, dynamic implicit surfaces can be used to compute backward
reachable sets and tubes for nonlinear, nondeterministic, continuous dynamic sys-
tems with control and/or disturbance inputs; in other words, inputs and parameters to

14http://spaceex.imag.fr/.
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the model can be treated in a worst case and/or best case fashion. The strengths and
weaknesses of the Hamilton–Jacobi PDE formulation of reachability are very sim-
ilar to those of viability theory: it can treat very general dynamics with adversarial
inputs and can represent very general sets, but the known computational algorithms
require resources that grow exponentially with the number of dimensions (number
of variables); for example, in ToolboxLS15 the level set algorithms run on a Carte-
sian grid of the state space. The ToolboxLS algorithms also do not guarantee the
sign of computational errors, but they deliver higher accuracy for a given resolution
than that available from typical sound alternatives.

Because ToolboxLS [128] is designed for dynamic implicit surfaces rather than
specifically for reachability, it does not include a specialized verification interface;
however, it has a 140-page user manual documenting the software and over twenty
complete examples including three reachable-set computations. It has been used pri-
marily for reachability of systems with two to four continuous dimensions, including
collision avoidance, quadrotor flips, aerial refueling, automated landing, and glide-
path recapture.
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Chapter 31
Symbolic Model Checking in Non-Boolean
Domains

Rupak Majumdar and Jean-François Raskin

Abstract We consider symbolic model checking as a general procedure to compute
fixed points on general lattices. We show that this view provides a unified approach
for formal reasoning about systems that is applicable to many different classes of
systems and properties. Our unified view is based on the notion of region algebras
together with appropriate generalizations of the modal μ-calculus. We show appli-
cations of our general approach to problems in infinite-state verification, reactive
synthesis, and the analysis of probabilistic systems.

31.1 Introduction

Symbolic model checking is an algorithmic technique for exploring properties of
dynamical systems. In this technique, the state space of the system is encoded
by a finite data structure and system behaviors are explored by manipulating the
data structure. This data structure, called a region, represents (encodings of) system
states, and a set of operations on regions, called a region algebra, provides the ingre-
dients necessary to manipulate regions in order to determine whether the behaviors
of the system satisfy some given properties.

For example, for invariant verification of transition systems, regions represent
sets of states of the transition system, and a region algebra can include Boolean oper-
ations on regions (such as union, intersection, and negation), a check for emptiness,
and a successor operator which, given a region, computes the region representing all
states reachable from the given region in one transition. This region algebra is then
sufficient to answer whether a given region is an invariant of a transition system, for
example, by checking that the initial region is included in the given region and that
the successor of the given region is again contained within the region.

A common representation of regions is as predicates in some constraint language,
e.g., over Booleans, reals, or integers, using logical operations in the constraint lan-
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guage to implement the region algebra. A formula in the constraint language rep-
resents a set of states in the system: those states that satisfy the formula. Boolean
operations on regions are implemented using Boolean operations on formulas. The
emptiness check is performed by checking satisfiability of the formula. Finally, the
successor operation, written Post(S), is performed by quantification: a state s′ sat-
isfies Post(S) for a target region S iff there is a state s ∈ S such that there is a tran-
sition from s to s′, i.e., if s′ satisfies the formula ∃s.S(s) ∧ T (s, s′), where T (s, s′)
is a constraint representation of the transition relation.

For example, in hardware verification, regions can be encoded as (quantifier-
free) Boolean formulas whose set of satisfying assignments corresponds to a set of
latched values, and the above operations are implemented as Boolean formula ma-
nipulations (by eliminating the existential quantifier, Post(S) is again a quantifier-
free Boolean formula). Using a data structure such as reduced ordered binary de-
cision diagrams (BDDs) [31], operations on regions can be performed efficiently
in practice. In fact, symbolic model checking for hardware circuits using BDD-
based representations constituted an early, and convincing, success of model check-
ing [33], so much so that “symbolic model checking” is sometimes synonymous
with “BDD-based model checking” (see Chaps. 7 and 8).

However, symbolic model checking transcends BDD-based model checking in
several directions: in the expressivity of regions (finite and infinite state spaces,
more general constraint languages), in the form of the underlying system being ver-
ified (transition systems, games), in the expressivity of formalisms (deterministic
vs. stochastic), and in the specification mechanism (Boolean vs. quantitative). In
this chapter, we bring together a number of results which can all be formalized and
studied under the umbrella of symbolic techniques.

The unifying theme in our treatment of symbolic techniques is the use of the
modal μ-calculus [71], a logic that adds inductive definitions to basic modal logic.
The inductive structure provides a simple iterative scheme to evaluate a μ-calculus
formula; thus, there is a direct connection from a property expressed in the μ-
calculus and its symbolic evaluation. The (Boolean) μ-calculus holds a central role
in the study of temporal logics, automata, and games (see Chap. 26). In this chapter,
we show generalizations of the μ-calculus in various domains, and how these gen-
eralizations capture symbolic reasoning about many different classes of systems in a
uniform way. In particular, we show how symbolic techniques originally devised for
verification can be uniformly extended to synthesis (by applying a game-based gen-
eralization of the μ-calculus) and to the analysis of stochastic systems (by applying
a quantitative generalization of the μ-calculus).

31.2 Transition Systems and Symbolic Verification

31.2.1 Systems: Transition Systems

A (labelled) transition system, LTS for short, S = (S,M, δ) consists of a set S of
states, a set M of moves, and a transition relation δ ⊆ S ×M × S. For s, s′ ∈ S and
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a ∈M , we write s
a−→ s′ if (s, a, s′) ∈ δ. In general, the sets S and M need not be

finite. A transition system is finite if S and M are both finite. For technical reasons,
we shall assume that the transition relation is serial: for each s ∈ S and m ∈M ,
there is some s′ ∈ S such that s

m−→ s′.
A run s0a0s1a1 . . . of a transition system is a finite or infinite sequence of alter-

nating states and moves such that for each i ≥ 0, we have si
ai−→ si+1. A finite or

infinite sequence s0s1 . . . of states is a trace of S if there exists a run s0a0s1a1 . . ..
For a state s ∈ S, a source-s trace is a trace s0s1 . . . such that s0 = s. For a finite run
π = s0a0 . . . sn, we define last(π)= sn.

31.2.2 Properties and Algorithms: The μ-Calculus

Let P be a set of atomic proposition symbols, V a set of variables, and F a set of
function symbols. The formulas of the μ-calculus are defined by the grammar

ϕ ::= p | ¬p | x | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 | f (ϕ) | μx.ϕ | νx.ϕ

for atomic proposition symbols p ∈ P , variables x ∈ V , and function symbols
f ∈ F . We assume that for each function f ∈ F , there is a dual dual(f ) ∈ F such
that dual(dual(f )) = f . A μ-calculus formula is closed if every variable is bound
by a μ or ν fixpoint operator.

The semantics of the μ-calculus is given relative to complete value lattices. A lat-
tice L= (E,3) consists of a set E of elements and a partial order 3⊆E×E, such
that for every pair of elements v1, v2 ∈ E, there is a unique greatest lower bound
v1 < v2 and a unique least upper bound v1 7 v2 in E. A lattice is complete if any
(not necessarily finite) set of elements from E has a greatest lower bound and a
least upper bound in E. A value lattice is a complete lattice together with a negation
operator ∼ such that for each v ∈ E, we have ∼∼ v = v and for each E′ ⊆ E, we
have

∼
�
E′ =

⊔{∼ v ∣∣ v ∈E′}.
A μ-calculus interpretation I = (L, [[·]]) consists of a value lattice L = (E,3)

and an interpretation [[·]] mapping each proposition p ∈ P to an interpreta-
tion [[p]] ∈ E and each function f ∈ F to a function [[f ]] : E → E such that
[[dual(f )]](v) = ∼[[f ]](∼ v) for each v ∈ E. A variable environment e : V → E

is a function mapping each variable in V to an element of the value lattice. We write
e[x �→ v] for the variable environment which maps the variable x ∈X to v and maps
every variable y ∈ V \ {x} to e(y).

Given a μ-calculus interpretation I = (L, [[·]]) and a variable environment e,
the semantics [[ϕ]]Ie ∈ E of a μ-calculus formula ϕ is defined inductively on the
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structure of formulas as follows:

[[p]]Ie = [[p]]
[[¬p]]Ie = ∼ [[p]]Ie
[[x]]Ie = e(x)
[[f (ϕ)]]Ie = [[f ]]([[ϕ]]Ie )
[[ϕ1∨ϕ2]] = [[ϕ1]]Ie 7[[ϕ2]]Ie
[[ϕ1∧ϕ2]] = [[ϕ1]]Ie <[[ϕ2]]Ie
[[μx.ϕ]]Ie = <{v ∈E | v = [[ϕ]]Ie[x �→v]}
[[νx.ϕ]]Ie = 7{v ∈E | v = [[ϕ]]Ie[x �→v]}.

For a closed μ-calculus formula ϕ, the semantics [[ϕ]]Ie is independent of the vari-
able environment e, and hence, we simply write [[ϕ]]I . We also omit the superscript
I when it is clear from the context.

Notice that we specify formulas in theμ-calculus in negation normal form, where
logical negations are only applied to propositions. This is not a restriction. Consider
the following rewrites which “push” negations inward:

¬¬ϕ = ϕ ¬(f (ϕ)) = dual(f )(¬ϕ)
¬(ϕ1∨ϕ2) = (¬ϕ1∧¬ϕ2) ¬(ϕ1∧ϕ2) = (¬ϕ1∨¬ϕ2)

¬(μx.ϕ) = νx.¬(ϕ[¬x/x]) ¬(νx.ϕ) = μx.¬(ϕ[¬x/x])
where ϕ[¬x/x] denotes the formula ϕ in which all occurrences of the variable x
have been replaced by ¬x. Using the rewrites, for every closed μ-calculus for-
mula ϕ, it is possible to construct a formula ϕ′ in negation normal form equivalent
to ϕ, that is, such that for every interpretation I and variable environment e, we
have [[ϕ]]Ie =∼ [[ϕ′]]Ie .

An important special case of the μ-calculus is the Boolean μ-calculus interpreted
over transition systems.

Fix a transition system S = (S,M, δ). Let LB = (2S,⊆) be the lattice defined by
the subsets of S ordered by set inclusion. For a set Q ⊆ S, let ∼Q = S \Q. We
define two lattice transformers Epre and Apre as follows:

Epre(Q)= {
s ∈ S ∣

∣ ∃s′ ∈Q.∃m ∈M.s m−→ s′
}

(1)

Apre(Q)= {
s ∈ S ∣

∣ ∀m ∈M.∀s′ ∈ S.s m−→ s′ ⇒ s′ ∈Q}
(2)

It can be seen that Epre(Q)=∼Apre(∼Q) in the lattice LB.
The Boolean μ-calculus is obtained by taking PB = 2S , i.e., there is one propo-

sition symbol per subset of states, and FB = {pre,dpre} in the definition of the
μ-calculus, where dual(pre) = dpre. The semantics of the Boolean μ-calculus on
S is given w.r.t. the lattice LB with the following interpretation. Each proposition
p ∈ 2S is mapped to itself, i.e., [[p]] = p (remember that a proposition is a set of
states). Each function in FB is defined as follows:

[[pre]]S(X)= Epre(X) and [[dpre]]S(X)=Apre(X)
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We note that the choice of the lattice L can have a profound influence on the
properties of the logic. For example, it is known that the fixpoint alternation hier-
archy of the Boolean μ-calculus is strict [29]. However, in interpretations of the
μ-calculus over discounted lattices [2], every formula is equivalent to a formula
without fixpoint alternations (see also [34]).

31.2.3 Symbolic Model Checking

The definition of the μ-calculus naturally suggests a model-checking algorithm,
where each fixpoint operation is computed using successive approximations [33,
54]. In order to extend it to infinite-state systems, we introduce symbolic region
algebras.

A symbolic region algebra for a transition system S and the Boolean μ-calculus
consists of a (possibly infinite) set Reg of regions and an extension function 	·
 :
Reg→ 2S mapping each region to a set of states such that the following conditions
are satisfied:

1. Reg contains regions True and False with extensions 	True
 = S and
	False
= ∅.

2. Reg is effectively closed under the Boolean operations: for each pair r, r ′ ∈ Reg,
there are regions And(r, r ′), Or(r, r ′), and Diff(r, r ′) such that 	And(r, r ′)
 =
	r
∩ 	r ′
, 	Or(r, r ′)
= 	r
∪ 	r ′
, and 	Diff(r, r ′)
= 	r
 \ 	r ′
.

3. Reg is effectively closed under the functions [[pre]], [[dpre]]: for each r ∈ Reg
and fun ∈ {pre,dpre}, there is a region r ′ ∈ Reg such that 	r ′
= [[fun]](	r
).

4. There is a computable function Member : S × Reg→ B such that Member(s, r)
iff s ∈ 	r
.

5. There is a computable function Empty : Reg→ B such that Empty(r) iff 	r
= ∅.

The tuple R= (Reg,And,Or,Diff,Empty,Member) is called the region algebra
of S . Conceptually, a region algebra separates the semantics of a transition system
(states, transitions) from the data structures required to represent the transition sys-
tem.

Using a region algebra, we can define the symbolic semi-algorithm SMC for μ-
calculus model checking shown in Algorithm 1. It takes as input a region algebra,
a μ-calculus formula, and a variable environment, and returns a region. The termi-
nation test T ⊆ T ′ is equivalent to checking that Empty(And(T ,Diff(True, T ′))). It
is easy to see the following.

Theorem 1 	SMC(R, ϕ, e)
= [[ϕ]]e .

The effectiveness assumption on region algebras implies that each step of the
algorithm is computable. The computation of fixpoints is guaranteed to terminate
for finite-state systems, but not for infinite state systems in general.
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Algorithm 1 Symbolic model-checking procedure SMC(R, ϕ, e)
Require: region algebra R= (Reg,	·
,And,Or,Diff,Empty,Member), μ-calculus

formula ϕ, variable environment e
1: match ϕ with
2: p→ return p
3: ¬p→ return Diff(True,p)
4: x→ return e(x)
5: ϕ1 ∨ ϕ2 → return Or(SMC(R, ϕ1, e),SMC(R, ϕ2, e))

6: ϕ1 ∧ ϕ2 → return And(SMC(R, ϕ1, e),SMC(R, ϕ2, e))

7: f (ϕ1)→ return [[f ]](SMC(R, ϕ1, e))

8: μx.ϕ1 →
9: T0 = False

10: for i = 0,1,2, . . . do
11: Ti+1 = SMC(R, ϕ1, e[x→ Ti])
12: until Ti+1 ⊆ Ti
13: return Ti
14: νx.ϕ1 →
15: T0 = True
16: for i = 0,1,2, . . . do
17: Ti+1 = SMC(R, ϕ1, e[x→ Ti])
18: until Ti ⊆ Ti+1
19: return Ti

31.2.4 Examples of Properties and Their Verification Algorithms

The Boolean μ-calculus is an expressive logic and subsumes many temporal logics
used for the specification of reactive systems [44]. Hence, a model-checking proce-
dure for the Boolean μ-calculus provides verification algorithms for these logics as
well.

In the following, we focus on linear-time properties, but the μ-calculus can be
used to check branching-time properties as well. A linear-time propertyΦ ⊆ Sω is a
set of infinite sequences over S. We are especially interested in ω-regular properties,
i.e., linear-time properties that are expressible using ω-automata [89]. Let us start
with some specific examples of linear-time properties. Let T ⊆ S, then:

• The safety property �T consists of all sequences π = s0s1 . . . such that for each
i ≥ 0, we have si ∈ T (i.e., all states along the trace belong to T ).

• The reachability property ♦T consists of all sequences π = s0s1 . . . such that
there exists an i ≥ 0 such that si ∈ T (i.e., some state along the trace belongs
to T ).

• The Büchi property �♦T consists of all sequences π = s0s1 . . . such that for each
i ≥ 0 there exists a j > i such that sj ∈ T (i.e., states from T occur infinitely
often along the trace).
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• The co-Büchi property ♦�T consists of all sequences π = s0s1 . . . such that there
exists an i ≥ 0 such that for all j > i we have sj ∈ T (i.e., states from T eventually
occur forever along the trace).

We can interpret these properties over transition systems in two ways. Let Φ be
a property. In the existential interpretation, written ∃BSΦ , we say that a state s ∈ S
satisfies the property if there exists a source-s trace that satisfies the property. In the
universal interpretation, written ∀BSΦ , we say that a state s ∈ S satisfies the property
if every source-s trace satisfies the property.

The μ-calculus, and the model-checking algorithm in Algorithm 1, provides a
symbolic technique to compute ∃BSΦ and ∀BSΦ . Consider the reachability property
♦T for a set of states T . We claim that the following holds:

∃BS♦T =
[[
μx.T ∨ pre(x)

]]
(3)

To see this, consider the computation of the least fixpoint: T0 = False, Ti+1 = T ∨
pre(Ti). By induction on i, one can show that Ti consists of all states from which
there is a path of at most i steps to some state in T . The fixpoint is obtained as the
limit of this sequence, and thus contains all states that have a path to T . Dually,

∀BS♦T =
[[
μx.T ∨ dpre(x)

]]
(4)

Similarly, consider the safety property �T for a set of states T . We claim

∃BS�T =
[[
νx.T ∧ pre(x)

]]
(5)

To see this, consider the computation of the greatest fixpoint: T0 = True, Ti+1 =
T ∧ pre(Ti). By induction on i, one can show that Ti consists of all states from
which there is a path of at least i steps that always stays within T . The fixpoint is
obtained as the limit of this sequence, and thus contains all states from which there
is a way to stay in T forever.

The μ-calculus formulas for Büchi and co-Büchi properties are somewhat more
complex, and require an alternation of fixpoint operators:

∃BS�♦T = [[
νy.μx.

(
pre(x)∨ (

T ∧ pre(y)
))]]

∃BS♦�T =
[[
μx.νy.

(
pre(x)∨ (

T ∧ pre(y)
))]]

∀BS�♦T = [[
νy.μx.

(
dpre(x)∨ (

T ∧ dpre(y)
))]]

∀BS♦�T =
[[
μx.νy.

(
dpre(x)∨ (

T ∧ dpre(y)
))]]

More generally, one can show that all formulas in linear temporal logic [83]
can be systematically translated to the μ-calculus [44]. Briefly, the construction
computes a Büchi automaton that accepts exactly the models of the formula [92],
and then checks that the set of traces of the system is included in the language
of the Büchi automaton or that the set of traces of the system does not intersect
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the language of the automaton. These properties can be checked by evaluating a
property of the form �♦T on the product of the system and the automaton.

The symbolic model-checking algorithms proposed here proceed by backward
traversal of the state space using the pre operator. While this approach is natural
when specifications use future modalities, one can consider a dual region algebra
that proceeds by forward traversal of the state space, using a post operator that
returns the region of states that can be reached from a region in one step. Indeed,
in some cases, a forward traversal of the state space may be more efficient because
it focuses on the reachable, and hence relevant, portions of the state space. A μ-
calculus based on post operations and corresponding symbolic forward algorithms
for linear temporal logic specifications are explored in [64].

31.2.5 Equivalence Relations and Termination

As we will see in Sect. 31.3, effective region algebras can be defined for a large
set of diverse classes of transition systems. Nevertheless, the existence of an effec-
tive region algebra for a class of transition systems is not sufficient to ensure the
termination of the symbolic procedure given in Algorithm 1. In general, the termi-
nation of this symbolic procedure cannot be ensured, as several problems that can
be easily expressed in the μ-calculus are undecidable on various classes of transi-
tion systems for which effective region algebras exist. Indeed, consider for example
counter machines. It is easy to see that given a Presburger definable set, the set of
predecessors is also Presburger definable. So, Presburger formulas (for which satis-
fiability is decidable and Boolean closure is trivial) form an effective region algebra
for counter machines [32]. It is well known that the halting problem for counter
machines with two counters is undecidable, and so the termination of our symbolic
algorithm cannot be ensured for this class.

In [66], several notions of pre-orders and associated equivalence relations are
used to prove the existence of finite quotients that ensure termination of the symbolic
procedure of Algorithm 1, or termination of symbolic procedures corresponding to
fragments of the μ-calculus. We concentrate here on labelled transition systems;
more general results about two-player game structures (that will be introduced later
in this chapter) can be found in [8].

Let S = (S,M, δ) be a labelled transition system, let P be a set of atomic propo-
sitions over the states of S , and R = (Reg,And,Or,Diff,Empty,Member) be an
effective region algebra for S compatible with P , i.e., for each proposition p ∈ P ,
there exists a region rp ∈ Reg such that [[p]] = 	rp
 (in the sequel we identify the
region rp with p and so we write p for rp). A binary relation 3⊆ S × S is a simu-
lation1 on S with set of propositions P if for all s1, s2 ∈ S, s1 3 s2 implies:

1Note that our notion of simulation does not constrain the choice of labels. This is not necessary
as we consider a version of the μ-calculus that does not allow constraints on those labels to be
expressed.
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• for each proposition p ∈P , we have that s1 ∈ 	p
 iff s2 ∈ 	p
;
• for each move m1 and state s′1 such that (s1,m1, s

′
1) ∈ δ, there exists a move m2

and state s′2 such that (s2,m2, s
′
2) ∈ δ, and s′1 3 s′2.

Two states s1, s2 ∈ S are bisimilar, denoted s1 ∼=S
1 s2, if there is a symmetric sim-

ulation 3 on S such that s1 3 s2. The state equivalence ∼=S
1 is called bisimilarity.

We say that S has a finite bisimilarity quotient if there exists a bisimilarity ∼=S
1 for

S with a finite number of equivalence classes.

Theorem 2 ([66]) For every (labelled) transition system S = (S,M, δ), set of
propositions P and effective region algebra R compatible with P such that S has
a finite bisimilarity quotient, the symbolic model-checking algorithm of Algorithm 1
terminates for all the formulas of the μ-calculus.

Weakenings of the notion of bisimilarity can be used to define coarser equiva-
lence relations on the state spaces of (labelled) transition systems. For example, two
states s1, s2 ∈ S are similar, noted s1 ∼=S

2 , if there exist two simulation relations 31
and 32 such that s1 31 s2 and s2 32 s1. It is easy to see that bisimilarity implies
similarity. We say that a transition system S = (S,M, δ) has a finite similarity quo-
tient if there exists a similarity relation over its state space with a finite number of
equivalence classes. Termination of the symbolic model-checking algorithm can be
ensured for a fragment of the μ-calculus over labelled transition systems with finite
similarity quotients: let L1(P) be the subset of the μ-calculus where negation is not
allowed and the only function considered is the pre function. For that fragment of
the μ-calculus, we can state the following termination result:

Theorem 3 ([66]) For every (labelled) transition system S = (S,M, δ), set of
propositions P , and effective region algebra R compatible with P such that S has
a finite similarity quotient, the symbolic model-checking procedure of Algorithm 1
terminates for the fragment L1(P) of the μ-calculus.

31.3 Examples of Symbolic Verification

31.3.1 Program Verification

Consider a simple guarded-command language [50], where a program consists of a
set of input variables I , a disjoint set of program variablesX, and a setG of guarded
commands of the form

g �→ ∧{x := ex | x ∈X},
where g is a predicate with free variables from I ∪ X and ∧{x := ex | x ∈X} is a
set of simultaneous assignments where each x := ex is an assignment of the ex-
pression ex (in an unspecified expression syntax) with variables from I ∪X to the
variable x.
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For a set X of variables, a valuation over X is a mapping from variables in X
to values in their respective domains. We denote by VX the set of all possible val-
uations of the variables in X. For a valuation v ∈ VX and a set X′ ⊆ X, we define
v[X′] as the restriction of v to X′. For valuations vX and vY over disjoint sets X and
Y respectively, define vX ⊕ vY as the valuation over X ∪ Y defined by extending
the function to the domain X ∪ Y in the natural way. A valuation is extended from
variables to expressions and predicates in the natural way; in particular, given an ex-
pression e, we denote by v(e) the value that this expression takes when its variables
are interpreted using the valuation v, and we write v |= g if the valuation v makes
the guard g true.

Labelled Transition System of a Program. A program defines a labelled transition
system S = (S,M, δ) in the following way. The set of states S is VX , i.e., the set
of all possible valuations of the variables in X. The set of moves M is G × VI ,
i.e., the set of all pairs (g, vI ) composed of a guarded command g ∈G and a val-
uation vI of the input variables I . Finally, the transition relation δ is defined as
follows: (vX, (g, vI ), v′X) ∈ δ with g �→ ∧{x := ex | x ∈X}, if vX ⊕ vI |= g and
v′X[X \ {x}] = vX[X \ {x}], and v′X(x)= vX(ex). Note that if I = ∅, this is the usual
notion of guarded command programs (e.g., [50]).

Region Algebra for Programs. A region algebra for guarded-command programs is
given by the set of formulas in first-order logic with free variables from V . (The
set of terms and atomic predicates in the logic depend on the syntax of expressions
and predicates in the language.) The constants True and False correspond to the
formulas true and false, and Boolean operations are defined by the corresponding
operations in first-order logic. Membership and emptiness reduce to the satisfiability
of formulas in the logic (effectiveness of these operations imply the satisfiability
problem is decidable). Finally, pre(R) can be represented as the formula:

∃I.∃V ′.
( ∨

(g→∧{v:=ex |x∈X})∈G

(
g(I,X)∧ x′ = ex(I,V )

)∧R(V ′)
)

,

where we write “∃I” as shorthand for “∃i1 . . .∃ik” for all the variables i1, . . . , ik
of I , and similarly for V ′.

In general, even if each symbolic operation is effective, the iterative computa-
tion of fixpoints may not terminate. Consequently, a lot of research has focused on
techniques to compute abstractions of the fixpoint—see Chaps. 13 and 15.

Finite-State Systems and BDDs. In case I and V range over Booleans, and both
predicates and expressions are Boolean expressions, one gets a symbolic region al-
gebra in propositional logic. That is, a region is a propositional formula over V ,
and the operations pre1 and dpre1 are, by quantifier elimination (using the identity
∃x.ϕ(x) ≡ ϕ(false) ∨ ϕ(true)), again propositional formulas over V . In practice,
working directly with Boolean formulas is not convenient, and model checkers use
data structures such as binary decision diagrams (see Chap. 7 or [31]) for represent-
ing Boolean formulas. Binary decision diagrams give a canonical representation for
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Boolean formulas, and efficient algorithms to perform Boolean operations on formu-
las. Moreover, because the underlying state space is finite, the iterative computation
of fixpoints is guaranteed to terminate.

Symbolic model checking of hardware circuits using binary decision diagrams
has been shown to scale to extremely large state spaces [33, 78], and is the basis for
many academic and industrial model checkers. We point the reader to Chap. 7 for
more examples and discussions.

A Remark About Worst Case Complexity. While symbolic algorithms are empiri-
cally successful, they are not necessarily optimal algorithms for a given problem in a
complexity-theoretic sense. For example, reachability in transition systems defined
by Boolean constraints is PSPACE-complete, but an implementation with BDDs
does not guarantee polynomial memory usage (in fact, a BDD-based model checker
works in exponential space in the worst case). So, for finite-state systems, symbolic
methods are attractive not because they improve on the worst-case complexity but
because they often behave well in practice (and do not exhibit their worst-case com-
plexity).

31.3.2 Antichain-Based Algorithms for Finite-State Automata

As a first application of non-BDD symbolic model checking for finite-state systems,
we consider a fundamental problem from automata theory: the universality problem
for nondeterministic finite-state automata.

A nondeterministic finite-state automaton B is a 5-tuple (Σ,Q,Q0,�,α) (NFA
for short), where Σ is a non-empty finite set called the alphabet, Q is a non-empty
finite set of states,Q0 ⊆Q is a non-empty set of initial states, � :Q×Σ→ 2Q \ ∅
is the nondeterministic transition function mapping a state and a letter to the set of
possible successor states, and α ⊆Q is the non-empty set of final states. A run of
B over a word w = w1w2 . . .wn ∈Σ∗ is a sequence of states ρ = q0q1 . . . qn such
that q0 ∈Q0, and qi ∈�(qi−1,wi) for all i s.t. 1≤ i ≤ n; ρ is accepting if qn ∈ α.
The language of B , denoted by L(B), is the set of words w ∈Σ∗ such that B has
an accepting run ρ on w.

The universality problem for NFA asks, given an automaton B , whether
L(B) = Σ∗. This problem is PSPACE-COMPLETE [88], and it is a special case
of the language inclusion problem. The classical algorithm to solve this problem is
to make the automaton deterministic, complement it, and test the complement for
emptiness. Alternatively, we can solve it using a symbolic algorithm.

Subset Construction as an LTS. Let B = (Σ,Q,Q0,�,α) be an NFA. We define
from B the following LTS Suniv

B = (S,M, δ) where:

• S = 2Q \ {∅},
• M =Σ ,
• and (s, σ, s′) ∈ δ if s′ =⋃

q∈s �(q,σ ).
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This labelled transition system resembles very much the classical subset construc-
tion that is used for determinization. However, in our symbolic algorithm we do not
explicitly construct this structure but we explore it symbolically.

Let AllNonFinal be a proposition such that [[AllNonFinal]] = {s ∈ S | s ⊆Q \ α}.
Clearly, B is not universal if and only if the set of states [[AllNonFinal]] is reachable
from s0 =Q0 in Suniv

B . This latter reachability problem can be solved by checking
whether s0 belongs to the states satisfying the μ-calculus formula:

μx.
(
AllNonFinal∨ pre(x)

)
(6)

To provide an efficient symbolic algorithm for the evaluation of this least fixpoint,
we need an adequate region algebra with efficient symbolic operations. As we only
need to evaluate a least fixpoint built from monotone operators only, we can rely
on a weaker notion of region algebra than the one introduced in Sect. 31.2.3. Let
S = (S,M, δ) be a labelled transition system. A pre-positive region algebra for S
is a region algebra that is closed for the pre operator (not necessarily for the other
operators), and for the positive Boolean operators And and Or (and not necessarily
for Diff). As such an algebra is not necessarily closed under Diff, we need also to
provide an effective procedure to decide inclusion between two regions.

Region Algebra and Symbolic Algorithm for Universality. We now define a pre-
positive region algebra for Suniv

B . The set Reg is the set of antichains (for set inclu-
sion) of non-empty sets of states in A, i.e.,

Reg= {
A⊆ S ∣

∣ ∀s, s′ ∈A.s ⊆ s′ → s = s′}.

The function 	·
 : Reg→ 2S maps each antichain A ∈ Reg to its ⊆-downward clo-
sure in S. Formally, for each A ∈ Reg, we define 	A
= {s ∈ S | ∃s′ ∈A.s ⊆ s′}.

The necessary operations on regions are defined as follows. Let Max⊆ : 2S→ 2S

be defined for each S′ ⊆ S as: Max⊆(S′)= {s ∈ S′ | ¬∃s′ ∈ S′.s ⊂ s′}; this function
returns the antichain of maximal elements for ⊆ in S′. Let A ∈ Reg,

pre1(A)=Max⊆
(∪s∈A

{{
s′

∣
∣ ∃σ ∈Σ.�(

s′, σ
)⊆ s}}). (7)

Let A1,A2 ∈ Reg. We define:

• Or(A1,A2)=Max⊆(A1 ∪A2),
• And(A1,A2)=Max⊆{s | ∃s1 ∈A1, s2 ∈A2.s = s1 ∩ s2},
• 	A1
⊆ 	A2
 holds iff ∀s1 ∈A1∃s2 ∈A2.s1 ⊆ s2.

Finally, observe that for all s ∈ S, A ∈ Reg, Member(s,A) iff s ∈ 	A
 iff ∃s′ ∈
A.s ⊆ s′, and [[AllNonFinal]] = 	{Q \ α}
. Note that all these operations have poly-
nomial time complexity in the size of the antichain A and the automaton B , while
the sets that are symbolically manipulated can be of exponential size. This symbolic
algorithm for solving universality of NFA has been proposed in [45].



31 Symbolic Model Checking in Non-Boolean Domains 1123

Fig. 1 A finite-state
automaton which is not
universal

Note that these regions are, by definition, only able to represent ⊆-downward
closed sets of sets of states. But this is sufficient in our case as:

• [[AllNonFinal]] is ⊆-downward closed,
• union (and conjunction) of ⊆-downward closed sets are ⊆-downward closed,
• and the pre function maintains ⊆-downward closure.

The intuition for the last point is as follows: if from s1 ⊆ Q there exists a let-
ter σ ∈ Σ such that s2 = δ(s1, σ ) then, clearly, for all s3 ⊆ s1, we have that
δ(s3, σ ) ⊆ s2. So, if s1 ∈ pre1(A) then, for all s3 ⊆ s1, s3 ∈ pre1(A). As a conse-
quence, all the sets computed during the evaluation of the fixpoint are ⊆-downward
closed.

Example 1 Let us consider the finite state automaton depicted in Fig. 1. To check
whether this automaton is universal, we evaluate the fixpoint of Eq. (6) that defines
the sets of states s ⊆Q such that there exists a word w for which all runs starting
from any state q in s lead to a non-accepting state.

In our example, AllNonFinal is symbolically represented by the antichain {{6,7}},
and the evaluation of the fixpoint produces the following sequence of antichains:

• x0 = {{6,7}},
• x1 = {{6,7}, {4,5}},
• x2 = {{6,7}, {4,5}, {2,3}},
• x3 = {{6,7}, {4,5}, {2,3}, {1}},
• x4 = x3.

Let us justify the computation of x1 from x0. Following Eq. (7), we compute the
maximal-⊆ sets of states s′ ⊆Q for which there exists a letter σ ∈Σ such that all
successors of s′ by σ are included in {6,7}. To compute those sets efficiently, we
consider each letter σ ∈ Σ and collect all states q of the automaton such that the
successors by σ are all in {6,7}. In our example, all the successors of 4 by letter 1
are incluced in {6,7} as well as all the 1-successors of 5. As a consequence {4,5}
(and any of its subsets) has a letter that leads to a subset of {6,7}. For letter 0, the
only successor of state 4 is 7. But as {4} is included in {4,5}, we do not need to
add {4} explicitly in x1. All other states have at least one 0-successor and one 1-
successor which is not included in {6,7}. So, x1 must represent the union of the
sets represented by {{6,7}} and {{4,5}} only, and so x1 is equal to the antichain
{{6,7}, {4,5}}. The computations for the other iterations are similar. The fixed point
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x3 allow us to conclude that the automaton of Fig. 1 is not universal as Q0 = {1} ∈
	x3
.

Comparison with BDDs. Note that as subsets of Q can be seen as Boolean func-
tions from Q to {0,1}, Suniv

B can be symbolically encoded by BDDs with |Q|-
Boolean variables for elements of 2Q \ {∅}, and 2|Q|-Boolean variables for the tran-
sition relation. However, it has been shown experimentally that antichain symbolic
algorithms often greatly outperform BDD-based symbolic explorations on transi-
tion systems defined by variants of the subset construction (which is the case for
Suniv
B ) [45, 46, 51]. This shows that even for finite systems, alternatives to BDD-

based symbolic algorithms may be more efficient.
Antichain solutions have been proposed for other computationally hard prob-

lems in automata theory: the language inclusion problem for NFA and the emptiness
problem for alternating finite automata on finite words are also solved in [45], the
language inclusion problem for nondeterministic Büchi automata and the emptiness
problem for alternating Büchi automata are solved in [51]. The universality and lan-
guage inclusion problems for bottom-up tree automata are solved using antichains
in [25].

31.3.3 Timed and Hybrid Systems

As we have seen in the previous section, even if the state space of a system is infinite,
symbolic computations can be shown to terminate under special circumstances. This
is true, for instance, for timed systems modeled as timed automata [11].

Timed Automata. A timed automaton consists of a finite-state automaton together
with a set of real-valued clock variables. While the control of the automaton stays
within a location, the values of the clocks increase at a constant rate (derivative 1).
Associated with each discrete transition between finite locations are a guard con-
dition over clock variables and a subset of clock variables called reset variables.
A discrete transition can be taken only when the values of the clock variables satisfy
the guard condition, and on executing the transition, each variable in the set of reset
variables is set to 0.

Let X be a set of clocks. The set of clock constraints over X, denoted by Φ(X),
is defined by

ϕ ::= x -. c | x1 − x2 -. c | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ¬ϕ
where c ranges over positive integer constants, x, x1, x2 over clock variables, and
-.∈ {≤,<,=,>,≥}. A simple clock constraint is of the form x -. c or x1− x2 -. c.
A convex clock constraint is a conjunction of simple clock constraints. A c-clock
constraint is a clock constraint which uses only integer constants smaller than or
equal to c. A valuation v :X→R≥0 assigns a positive real number to each variable
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in X; such a function can equivalently be seen as a vector in R
|X|
≥0 . When a valuation

v satisfies a clock constraint φ, we denote this by v |= φ. Given a valuation v and
t ∈ R≥0, we denote by v + t the valuation such that (v + t)(x) = v(x)+ t for all
x ∈X. Given a valuation v and R ⊆X, we denote by v[R := 0] the valuation such
that v[R := 0](x)= 0 if x ∈R, and v[R := 0](x)= v(x) otherwise.

Formally, a timed automaton A is a 5-tuple (L,X,Σ, Inv,E) where L is a non-
empty finite set of locations, X is a non-empty finite set of clocks, Σ is a finite non-
empty alphabet, Inv : L→Φ(X) is a function that assigns a convex clock constraint
to each location (this constraint is called the invariant of the location) and E ⊆
L×Φ(X)× 2X × L is a set of transitions of the form (�,φ,R, �′) where � is the
source location, �′ is the target location, φ is a guard, and R is the set of clocks to
be reset when the transition is taken.

LTS of a Timed Automaton. We associate with a timed automaton A = (L,Σ,X,
Inv,E) a labelled transition system SA = (S,M, δ) defined as follows:

• S = {(�, v) ∈ L×R
|X|
≥0 | v |= Inv(�)}, states are pairs (�, v) where v is a valuation

for the clocks in X that satisfies the invariant labeling �;
• M = E ∪ R≥0, moves are either discrete moves via transitions or continuous

moves via time elapsing;
• The transition relation is defined by the following two sub-cases:

(i) (discrete transitions) ((�, v), e, (�′, v[R := 0])) ∈ δ if there exists e =
(�,φ,R, �′) ∈E such that v |= φ and v[R := 0] |= Inv(�′);

(ii) (time elapsing transitions) ((�, v), t, (�, v + t)) ∈ δ if for all t ′ ∈ [0, t], we
have v+ t ′ |= Inv(�).

A Region Algebra for Timed Automata. The classical region algebra for timed au-
tomata is built on regions that are functions F : L→Φ(X). Such functions assign
clock constraints with free variables in X to locations. Given a region we define
	F
 = {(�, v) ∈ S | v |= F(�)}. As clock constraints are syntactically closed under
Boolean operations, effective operations And(·, ·), Or(·, ·), and Diff(·, ·) exist. Clock
constraints are also effectively closed under existential quantification [11], and un-
der universal quantification (as they are closed under complement).

Let F be a region. We construct the region pre(F ), for each � ∈ L, by eliminating
quantifiers in the formula ΨE� (X) ∨ Ψ t� (X), where the formula ΨE� (X) represents
all the predecessors of F by a discrete transition that leaves � and Ψ t� (X) represents
all the predecessors of F by a time-elapsing transition in �. ΨE� is constructed as
follows: for each e= (�,φ,R, �′) ∈E, ΨE� (X) contains the disjunct ψe� (X) defined
as:

∃X′.F (
�′
)(
X′

)∧ φ(X)∧ Inv(�,X)∧
∧

x∈X\R
x′ = x ∧

∧

x∈R
x′ = 0∧ Inv

(
�′,X′

)
.

Ψ t� is constructed as follows:

∃t ≥ 0∃X′.Inv(�)(X)∧
∧

x∈X
x′ = x + t ∧ F(�)(X′)∧ Inv(�)

(
X′

)
.
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It has also been shown in Chap. 29 that valuations which cannot be distinguished
by clock constraints with constants smaller than c are time-abstract bisimilar for
any timed automaton in which constraints are c-clock constraints. Furthermore, the
number of equivalence classes for c-clock constraints is finite. This guarantees the
existence of a finite quotient, known as the region automaton, which is time-abstract
bisimilar to the LTS SA. By Theorem 2, this ensures that the symbolic procedure of
Algorithm 1 always terminates for the class of timed automata. In Chap. 29, it is
shown that instead of using a region algebra based on clock regions, we can use
a more compact representation based on zones [74]. While replacing regions by
zones leads to a terminating algorithm for the entire μ-calculus, termination is more
difficult to obtain for forward symbolic algorithms using zones, see [28] for details.

Rectangular Hybrid Automata. Rectangular hybrid automata extend timed au-
tomata by allowing richer dynamics for the continuous variables. Instead of having
all the continuous variables evolve with derivative 1 (clocks), rectangular automata
allow the use of flow constraints of the form ẋ ∈ I where I belongs to the set of
closed intervals I = {[a, b] | a, b ∈ Q ∪ {−∞,+∞}}. Likewise, the set of guards
and updates of variables on transitions must be rectangular constraints. Formally,
a rectangular automaton is a 6-tuple A = (L,Σ,X, Inv,Flow,E) where L is a fi-
nite non-empty set of locations, Σ is a finite non-empty alphabet, X is a finite
non-empty set of continuous variables, Inv : L×X→ I assigns to each location �
and variable x an interval of values Inv(�, x) which is the invariant for the variable x
when the control is in location �, Flow : L×X→ I defines for each location � and
variable x a rectangular flow constraint, and E ⊆ L× (X→ I)× (X→ I ∪ Id)×L
is a set of transitions of the form (�,G,H,�′) where � is the source location, G as-
signs a rectangular guard to each variable, H specifies the interval of values that
can be used to update the variable (or Id if the variable is left unchanged by the tran-
sition) and �′ is the target location. We associate with each rectangular automaton
A= (L,Σ,X, Inv,Flow,E) a labelled transition system SA = (S,M, δ):
• S = {(�, v) ∈ L×R

|X|
≥0 | v |= Inv(�)},

• M = E ∪ (R≥0 × R
|X|), i.e., moves are either discrete moves via transitions or

continuous moves via time elapsing together with real-valued flows;
• The transition relation is defined by the two following sub-cases:

(i) (discrete transitions) ((�, v), e, (�′, v′))∈δ if there exists e=(�,G,H,�′)∈E
such that v(x) ∈G(x) for all x ∈ X, either v′(x) ∈ H(x) or v′(x) = v(x) if
H(x)= Id, for all x ∈X, and v′ |= Inv(�′),

(ii) (flow transitions) ((�, v), t, (�, v′)) ∈ δ if there exists (t, d) ∈R≥0×R
X such

that d(x) ∈ Flow(�, x), and for all t ′ ∈ [0, t], we have v + (t ′ · d) |= Inv(�),
and for all variables x ∈X, v′(x)= v(x)+ t ·d(x), i.e., the values of the con-
tinuous variables are evolving while respecting the flow constraints and the
location invariant. Here, we write t · d for the function (viewed, equivalently,
as a vector) that maps x to t · d(x).

Region Algebra for Rectangular Hybrid Automata. For rectangular hybrid automata,
clock constraints are not sufficient to build a region algebra, we need a richer lan-
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guage. The language that we use is the first-order logic of the reals (R,0,1,+,≤)
with the reals as domain of interpretation, the constants 0 and 1, the usual order ≤
and addition +. The satisfiability problem for this logic is decidable [16] and the
logic admits effective quantifier elimination. The regions of our algebra are func-
tions F from the set of locations L to quantifier-free formulas of (R,0,1,+,≤)
with free variables in X. As (R,0,1,+,≤) is closed under all Boolean operations,
our region algebra is trivially closed for And(·, ·), Or(·, ·) and Diff(·, ·), and by the
decidability of the logic we have effective procedures for Member(·, ·) and Empty(·).
As a consequence we concentrate on the pre operator. Let F be a region. We con-
struct the region pre(F ), for each � ∈ L, by eliminating quantifiers in the formula
ΨE� (X) ∨ Ψ t� (X), where the formula ΨE� (X) represents all the predecessors of F
by a discrete transition that leaves �, and Ψ t� (X) represents all the predecessors
of F by a flow transition in �. Formally, ΨE� is constructed as follows. For each
e= (�,G,H,�′) ∈E, ΨE� (X) contains the conjunct ψe� (X):

∃X′.

F (�′)(X′)
∧∧

x∈X x ∈G(x)∧∧
x∈X|H(x)=Id x = x′

∧∧
x∈X|H(x)�=Id x

′ ∈H(x)
∧ Inv(�)(X)
∧ Inv(�′)(X′).

(8)

Ψ t� is constructed as follows:

∃t ≥ 0.∃X′.
F (�)(X′)

∧∧
x∈X x + t ·min(Flow(�, x))≤ x′ ≤ x + t ·max(Flow(�, x))

∧ Inv(�)(X)
∧ Inv(�′)(X′).

(9)

In practice formulas in (R,0,1,+,≤) can be efficiently handled as finite unions
of convex polyhedra for which there exist efficient implementations, see [14] for
example. This has been implemented in tools like HYTECH [62] and PHAVER [59].
Unfortunately, termination of the symbolic model-checking algorithm is not ensured
anymore for the class of rectangular automata. As shown in Chap. 30, termination
of our symbolic algorithm is ensured only for the subclass of initialized rectangular
automata, see also [65] for the details.

Example 2 We illustrate the use of the logic of the reals as a region algebra for rect-
angular automata using the example depicted in Fig. 2. The rectangular automaton
has two locations �1 and �2 and two continuous variables x and y. If we instantiate
the formula of Eq. (9) to express the set of states that can reach, by letting time
elapse, a state from which the transition from �1 to �2 can be taken, we get the
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Fig. 2 A simple rectangular automaton and the time predecessors for the guard of the transition
from �1 to �2

following formula:

∃x′.∃y′.∃t ≥ 0.

x′ ∈ [4,7] ∧ y′ ∈ [2,5]
∧ x + t · 2≤ x′ ≤ x + t · 4∧ y + t ≤ y′ ≤ y + t
∧ x ≥ 0∧ y ≥ 0
∧ x′ ≥ 0∧ y′ ≥ 0.

By eliminating the existentially quantified variables, we obtain the following de-
scription of these states:

x ≤ 7∧ y ≤ 5∧ y ≤ x
4
+ 4∧ y ≥ x

2
− 3

2
.

31.3.4 Well-Structured Transition Systems

We now turn to a general class of infinite-state transition systems for which
a symbolic reachability algorithm terminates: the well-structured transition sys-
tems [1, 58], WSTS for short. Well-quasi-order is the basic concept that underlies
the definition of WSTS. A well-quasi-order, wqo for short, ≤⊆ S × S on a set S
is a pre-order (a reflexive and transitive relation) such that for all infinite sequences
s0s1 . . . sn · · · ∈ Sω, there always exist two positions i < j such that si ≤ sj . We call
such a pair (S,≤) a well-quasi-ordered set. A set U ⊆ S is ≤-upward closed if for
all s1, s2 ∈ S if s1 ≤ s2 and s1 ∈ U then s2 ∈ U . Well-quasi-ordered sets enjoy the
following properties:

Lemma 1 Let (S,≤) be a well-quasi-ordered set:

• any antichain of elements in S is finite,
• for all chains U0 ⊆ U1 ⊆ · · · ⊆ Un ⊆ . . . of ≤-upward closed subsets of S, there

exists i ≥ 0 such that for all j ≥ i, Ui =Uj .
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To ease the formalization, for the rest of this section we make the hypothesis that
the well-quasi-orders that we consider are asymmetric, i.e., they are partial orders,2

and we refer to these partially ordered sets as well-partially-ordered sets.
Let U be an ≤-upward closed set, and define Min≤(U) = {s ∈ U | ∀s′ ∈

U.s′ ≤ s → s = s′}. Clearly, if ≤ is a partial order, then Min≤(U) is an an-
tichain and so it is finite; furthermore it canonically represents U in the sense that
U = {s ∈ S | ∃s′ ∈Min(U).s′ ≤ s}. We are now ready to define the notion of well-
structured transition systems, and show how, using adequate region algebras, we can
obtain terminating symbolic algorithms for reachability problems.

A labelled transition system S = (S,M, δ) is a well-structured (labelled) transi-
tion system, WSTS for short, if there exists a relation ≤⊆ S × S such that:

• ≤ is a well-partial-order,
• for all s1, s2, s3 ∈ S for all m ∈M , if (s1,m, s2) ∈ δ and s1 ≤ s3 then there exist
s4 ∈ S and m′ ∈M such that (s3,m′, s4) ∈ δ and s2 ≤ s4.

For WSTS, we consider the coverability problem which, given S , s0, and an ≤-
upward closed set U ⊆ S, asks whether there exists a path in S from s0 to some
element in U . We can reduce the coverability problem to the problem of checking
whether s0 belongs to

[[
μx.rU ∨ pre1(x)

]]
(10)

which can be done symbolically if there exists a pre-positive region algebra for S
where rU is a region such that 	rU
=U . The termination of the fixpoint evaluation
for this formula is ensured by the fact that successive approximations of the fixpoint
form an ascending chain of ≤-upward closed sets and by the second property in
Lemma 1. We illustrate this on Petri nets [84] which are well known examples of
WSTS [1, 58].

Petri Nets as an Example of WSTS. A Petri net N is a 4-tuple (P,T , I,O) where
P is a finite set of places, T is a finite set of transitions, I : P × T → N and O :
T × P → N are the input and output functions. A marking for the Petri net N is a
function s : P → N, or equivalently a vector in N

|P |. A transition t is enabled in a
marking s if s(p)≥ I (p, t) for all p ∈ P . If a transition t is enabled in a marking s,
then from s, t leads to the marking s′ such that

s′(p)= s(p)− I (p, t)+O(t,p). (11)

According to this semantics, we map a Petri net N to a labelled transition system
SN = (S,M, δ) where

• S =N
|P |,

• M = T ,

2This is not a strong restriction, as every pre-ordered set can be transformed into a partially ordered
set by considering the induced partial order on the equivalence classes defined by the pre-order.
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Fig. 3 A Petri net modeling
a critical section (p3) for any
number of processes

• and (s, t, s′) ∈ δ if s(p) ≥ I (p, t) and s′(p) = s(p) − I (p, t) + O(t,p) for all
p ∈ P .

With SN , we associate the following pre-positive region algebra.

Region Algebra for Petri Nets. The set (N|P |,≤), where ≤ is the extension of the
ordering of natural number to tuples, is a well-partial-order [49]. The set of regions
Reg is the set of antichains of vectors in N

|P |. As a consequence, each A ∈ Reg is
a finite set of vectors in N

|P |. The function 	·
 : Reg→ 2S is defined as follows:
for each A ∈ Reg, 	A
= {s ∈ S | ∃s′ ∈A.s′ ≤ s}, i.e., each antichain A ∈ Reg rep-
resent its ≤-upward closure in S.

We now define the necessary operations on this set of regions. For this we
need the function Min≤ : 2S → 2S defined for each B ⊆ S as: Min≤(B) =
{s ∈ B | ¬∃s′ ∈ B.s′ < s} that returns the antichain of minimal elements for ≤ in B .
Let A1,A2 ∈ Reg:

• Or(A1,A2)=Min≤(A1 ∪A2), and
• And(A1,A2)=Min≤{s | ∃s1 ∈A1, s2 ∈A2∀p ∈ P.s(p)=max(s1(p), s2(p))}.
Let A ∈ Reg. pre(A) is defined as:

Min≤
[⋃

s∈A

⋃

t∈T

{
s′

∣
∣
∣ s′(p)=max≤

(
I (p, t), s(p)− (

O(t,p)− I (p, t)))
}]

(12)

It can be easily verified that 	pre(A)
 = pre(	A
), and that the pre operation
on regions is effective. Finally, observe that for all s ∈ S, A ∈ Reg, Member(s,A)
iff s ∈ 	A
 iff ∃s′ ∈ A.s′ ≤ s. This region algebra allows us to decide membership
in an upward closed set as s ∈ 	A
 by checking that ∃s′ ∈ A.s′ ≤ s, and inclusion
between two regions as 	A1
⊆ 	A2
 by checking that ∀s1 ∈A1∃s2 ∈A2.s2 ≤ s1.

Example 3 To illustrate the backward symbolic algorithm based on the antichain
representation of upward closed sets of tuples in N

k , let us consider the example
depicted in Fig. 3. This simple Petri net models a system where any number of pro-
cesses can be created (transition t1), they can enter the critical section (transition t2)
and leave it (transition t3). Let us now compute the set of markings that can reach
a marking where the mutual exclusion is violated for the critical section, that is the
set of markings that can reach a marking in U = {(x1, x2, x3) | x3 ≥ 2}. The set U
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is symbolically represented by its unique minimal element: rU = {(0,0,2)}, and the
evaluation of the least fixpoint is as follows:

• rU0 = rU = {(0,0,2)}
• rU1 = rU0 Or pre(rU0)= {(0,0,2), (1,1,1)}
• rU2 = rU1 Or pre(rU1)= {(0,0,2), (0,1,1), (2,2,0)}
• rU3 = rU2 Or pre(rU2)= {(0,0,2), (0,1,1), (1,2,0)}
• rU4 = rU3 Or pre(rU3)= {(0,0,2), (0,1,1), (0,2,0)}
• rU5 = rU4 Or pre(rU4)= {(0,0,2), (0,1,1), (0,2,0)} = rU4

The set 	rU4
 contains all the markings in which the mutual exclusion is already
violated, i.e., 	{{(0,0,2)}}
, the markings in which there is at least one process in
the critical section and at least one token in place p2 that will allow for another
process to enter the critical section, i.e., 	{{(0,1,1)}}
, and finally, the markings
where there are at least two tokens in p2 that can be used by two processes to be in
the critical section together, i.e., 	{{(0,2,0)}}
.

To illustrate how this sequence of regions is computed, we consider the com-
putation of rU1 from rU0 , which is done by applying Eq. (12). So first, we need to
compute for each transition t in {t1, t2, t3}, an antichain representation of the pre-
decessors of the set of markings in 	rU0
 by t . For t1, this set is represented by
{(0,0,2)}, for t2, it is represented by {(1,1,1)}, and for t3, it is represented by
{(0,0,3)}. Second, we extract the minimal elements from those three antichains
and we obtain {(0,0,2), (1,1,1)} as (0,0,3) is eliminated because it is subsumed
by (0,0,2).

31.4 Games and Symbolic Synthesis

We now shift the focus from verification to synthesis. In verification, one starts with
a given system and checks whether a property holds. In synthesis, one starts with
a partial description of the system and an environment, and a desired property, and
constructs a system that is guaranteed to satisfy the property no matter how the envi-
ronment behaves. One way to model synthesis problems is as two-person games be-
tween a system and its environment. We show that the framework of the μ-calculus,
and symbolic algorithms, carry over smoothly from verification to synthesis.

31.4.1 Deterministic Games

A deterministic game structure G = (S,M,Γ1,Γ2, δ) consists of a set S of states,
a setM of moves, two functions Γ1 : S→ 2M \ {∅} and Γ2 : S→ 2M \ {∅} mapping
states to non-empty subsets of moves, and a transition function δ : S×M×M→ S.

Intuitively, deterministic game structures naturally define two-player games on
graphs. At each state s, player 1 picks a move a1 ∈ Γ1(s), while simultaneously
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and independently player 2 picks a move a2 ∈ Γ2(s), and the state is updated to the
successor state given by δ(s, a1, a2).

A run

s0
a0

1 ,a
0
2−−−→ s1

a1
1 ,a

1
2−−−→ . . . (13)

is a finite or infinite sequence of alternating states and move-pairs such that for
each i ≥ 0, we have aij ∈ Γj (si) for j ∈ {1,2} and δ(si, ai1, a

i
2) = si+1. A trace

associated with the run (13) is the sequence s0s1 . . . of states in the run. For a finite
run π = s0 . . . sn, we define last(π)= sn.

A (deterministic) strategy ξi for player i ∈ {1,2} is a mapping ξi : S+ →M that
associates with each finite run π a move ξi(π) that is used by player i when the
history of the game has produced the trace π . We require that ξi(π) ∈ Γi(last(π)),
that is, the move suggested by the strategy is available to player i at the current state.
The set of all strategies of player i is denoted Ξi , for i ∈ {1,2}.

Let s ∈ S and let ξ1 ∈ Ξ1 and ξ2 ∈ Ξ2 be strategies of player 1 and player 2
respectively. Together, these define a unique run of the form (13), where s = s0,
and for each i ≥ 0 and j ∈ {1,2}, we have aij = ξj (s0 . . . si). The outcome
Outcome(s, ξ1, ξ2) ∈ Sω is the trace associated with this run.

We also consider special cases of deterministic game structures. A game structure
is turn-based if for each state s ∈ S, either |Γ1(s)| = 1 or |Γ2(s)| = 1, that is, at each
state, at most one player has a non-trivial choice of moves. A game structure is a
player i structure for i ∈ {1,2} if for each state, we have |Γ3−i (s)| = 1; that is, if
player i is the only player with a non-trivial choice of moves. Player i structures
coincide with labelled transition systems.

31.4.2 The Boolean μ-Calculus on Games

Fix a game structure G = (S,M,Γ1,Γ2, δ). In the definition of the μ-calculus,
let PB be a finite set of propositions and let FB = {pre1,dpre1,pre2,dpre2}, with
dual(pre1)= dpre1 and dual(pre2)= dpre2. Let LB = (2S,⊆) be the lattice defined
by subsets of S ordered according to set inclusion. For a set S′ ⊆ S, let∼ S′ = S \S′.

The semantics of the Boolean μ-calculus on G is given w.r.t. the lattice LB with
the following interpretation. Each proposition p ∈ PB is mapped to a subset of
states. Each function in FB is defined as follows:

[[pre1]]G(X)=
{
s ∈ S ∣

∣ ∃a1 ∈ Γ1(s)∀a2 ∈ Γ2(s).δ(s, a1, a2) ∈X
}

[[dpre1]]G(X)=
{
s ∈ S ∣

∣ ∀a1 ∈ Γ1(s)∃a2 ∈ Γ2(s).δ(s, a1, a2) /∈X
}

[[pre2]]G(X)=
{
s ∈ S ∣

∣ ∃a2 ∈ Γ2(s)∀a1 ∈ Γ1(s).δ(s, a1, a2) ∈X
}

[[dpre2]]G(X)=
{
s ∈ S ∣

∣ ∀a2 ∈ Γ2(s)∃a1 ∈ Γ1(s).δ(s, a1, a2) /∈X
}
.

With the preceding definition, we can extend symbolic region algebras from tran-
sition systems to games, by requiring that the set of regions is effectively closed
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under the functions [[pre1]], [[dpre1]], [[pre2]], [[dpre2]]: for each r ∈ Reg and fun ∈
{pre1,dpre1,pre2,dpre2}, there is a region r ′ ∈ Reg such that 	r ′
 = [[fun]](	r
).
Using this extension, we can use the symbolic semi-algorithm from Algorithm 1 to
symbolically check properties on games.

31.4.3 Linear-Time Properties

We focus again on linear-time properties, specifically, properties expressible in lin-
ear temporal logic. Unlike verification, solving games requires constructing deter-
ministic ω-automata, and therefore, it is not enough to consider Büchi automata.
(It is known that deterministic Büchi automata accept a strict subset of ω-regular
languages [89].)

Instead, we go through deterministic parity automata. The parity condition is
more complex than the Büchi accepting condition. Let T1, T2, . . ., Tk form a par-
tition of S into k subsets. For a trace π = s0s1 . . ., define Index(π;T1, . . . , Tk)

to be the largest i ∈ {1, . . . , k} such that sj ∈ Ti for infinitely many j . Then,
Parity(T1, . . . , Tk) is defined as the set of traces with even index, that is,
Parity(T1, . . . , Tk) = {π ∈ Sω | Index(π;T1, . . . , Tk) is even}. It is known that any
ω-regular property can be accepted by a deterministic automaton with a parity ac-
cepting condition [90].

Let G be a game structure and Φ a linear property. Define

〈1〉BGΦ =
{
s ∈ S ∣

∣ ∃ξ1 ∈Ξ1∀ξ2 ∈Ξ2.Outcome(s, ξ1, ξ2) ∈Φ
}

〈2〉BGΦ =
{
s ∈ S ∣

∣ ∃ξ2 ∈Ξ2∀ξ1 ∈Ξ1.Outcome(s, ξ1, ξ2) ∈Φ
} (14)

Intuitively, 〈1〉BGΦ consists of all states in S from which player 1 has a strategy to
force the outcome to be in Φ , no matter what player 2 does. We say player 1 can
control for the property Φ . The predicate 〈2〉BGΦ is defined analogously.

The connection between ω-regular properties and the Boolean μ-calculus is
given by the following result that provides a symbolic algorithm for checking parity
games.

Theorem 4 ([53]) For every game structure G, partition T1, . . . , Tk of the states
of G, and players i ∈ {1,2}, we have

〈1〉BGParity(T1, . . . , Tk)=
[[

λkxk . . . νx2μx1.

k∨

j=1

(
Ti ∧ prei (xj )

)
]]

(15)

where λk = ν is k if even and λk = μ if k is odd.

Theorem 4 suggests a direct symbolic implementation for synthesis against ω-
regular objectives: construct a deterministic parity automaton for the ω-regular ob-
jective, take the product of the automaton and the game, and then evaluate the μ-
calculus formula in (15). Notice that the fixpoint computation is exponential in k,



1134 R. Majumdar and J.-F. Raskin

the number of partitions. Whether there is a polynomial-time algorithm to solve
parity games is currently open, see Chaps. 26 and 27.

For specific classes of linear properties, it is possible to get polynomial-time
algorithms. For example, polynomial-time algorithms are easily obtained for reach-
ability, safety, Büchi, and co-Büchi objectives. For many practical applications of
reactive synthesis, one can write objectives in the form:

(�♦p1 ∧ · · · ∧�♦pm)⇒ (�♦q1 ∧ · · · ∧�♦qn)

where pi , qj are Boolean combinations of atomic propositions. This class is called
the generalized reactivity(1) class of formulas (GR(1)) [20]. For this class, [20]
showed a symbolic cubic-time algorithm, through the (equational) μ-calculus for-
mula:

Z1 =νμY.
m∨

i=1

νX.
(
q1 ∧ pre1(Z2)∨ pre1(Y )∨¬pi ∧ pre1(X)

)

Z2 =νμY.
m∨

i=1

νX.
(
q2 ∧ pre1(Z3)∨ pre1(Y )∨¬pi ∧ pre1(X)

)

. . .

Zn =νμY.
m∨

i=1

νX.
(
qn ∧ pre1(Z1)∨ pre1(Y )∨¬pi ∧ pre1(X)

)
.

Symbolic algorithms for synthesis for GR(1) objectives based on BDDs have been
implemented in several tools [67, 72], and used to synthesize hardware protocols or
robot plans.

One might expect a determinacy result for games, which states that 〈1〉BGΦ =
S \ 〈2〉BG(Sω \Φ), that is, from each state, either player 1 can control for the property
Φ or player 2 can control for the complement of Φ . For example, determinacy
would imply 〈1〉BG♦T = S \ 〈2〉BG�(S \ T ), that is, from each state, either player 1
can control for ♦T (eventually reach T ) or player 2 can control for �(S \T ) (remain
out of T forever). Unfortunately, determinacy does not hold for deterministic game
structures. It is not the case that S \ pre1(S

′) = pre2(S \ S′), that is, if player 1
cannot force the game into S′, it does not mean that player 2 can force the game
into the complement of S′. For example, consider the game of matching bits, in
which each player picks a bit in {0,1} simultaneously and independently. Player 1
wins if both players pick the same bit, and player 2 wins if they pick different bits.
This game is not determined. For every strategy (“0” or “1”) of player 1, there is a
spoiling strategy (“1” and “0”, respectively) of player 2. Similarly, for every strategy
of player 2, player 1 has a spoiling strategy that matches the bit chosen by player 2.
We shall return to this point in Sect. 31.5.

For turn-based game structures, though, determinacy holds [61].
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Theorem 5 For any turn-based game G and for any ω-regular property Φ , we have

〈1〉BGΦ = S \ 〈2〉BG
(
Sω \Φ)

In fact, the theorem holds for any Borel-definable linear property Φ [76]. How-
ever, assuming the axiom of choice, one can construct games that are not determined
[69].

31.4.4 From Verification to Synthesis

For player 1 or player 2 game structures, the predicates 〈i〉BGΦ reduce to the usual

verification problems. For a player 1 game structure G, we write ∃BGΦ for the set
of states from which player 1 has a strategy to ensure that the outcome is in Φ .
This is the usual (existential) verification question: does there exist a trace starting
from s satisfying Φ? Dually, we write ∀BGΦ for the set of states from which every
player 1 strategy enforces that the outcome is in Φ . This is the usual (universal)
verification question: does every trace starting from s satisfy Φ? The relation (15)
gives a symbolic algorithm to solve both the existential and the universal verifica-
tion problems for parity objectives. Since any linear-time ω-regular property (such
as those expressed in LTL) can be reduced to a parity objective, this gives an algo-
rithm for the verification of such properties. However, for verification problems, the
reduction to parity automata is not necessary. Instead, for each ω-regular property,
one can construct a nondeterministic Büchi automaton, and symbolically evaluate
the Büchi property �♦T on the product of a game with the automaton [44, 54]. For
a player 1 game structure G, define

Epre(X)= {
s ∈ S ∣

∣ ∃a ∈ Γ1(s).δ(s, a, ·) ∈X
}

Apre(X)= {
s ∈ S ∣

∣ ∀a ∈ Γ1(s).δ(s, a, ·) ∈X
}
.

(In the expression, we have omitted the trivial move of player 2 in the transition
function.) Using these operators, we can write μ-calculus expressions for the exis-
tential and universal verification problems. For example,

∃BG♦T =
[[
μx.T ∨ Epre(x)

]]
and ∀BG♦T =

[[
μx.T ∨Apre(x)

]]
.

Clearly, a generic way to get verification algorithms is to convert to parity objectives
and then use (15), noting that Epre and Apre are special cases for games where only
player 1 or player 2 has nontrivial choice of moves.

Conversely, can one take a μ-calculus formula with Epre or Apre, systematically
replace each Epre (or Apre) by pre1, and solve the corresponding game problem? In
general, this is not possible. Consider the co-Büchi property ♦�T . The following is
known:

∃B♦�T = μx.(Epre(x)∨ (
νy.T ∧ Epre(y)

))

= μx.(Epre(x)∨ (
T ∧ Epre

(
νy.

(
T ∧ Epre(y)

))))
.
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The first formula can be obtained following the construction in [54], the second
from the translation in [18, 44]. However, consider the following game G. The set
of states is {s0, s1, s2} and the target T = {s0, s2}. At s0, player 2 has a choice of
two moves and player 1 has no choice: player 2 can either keep the game in s0 or
move to s1. At s1, player 1 has a choice of two moves and player 2 has no choice:
player 1 can either stay in s1 or move to s2. State s2 is a sink state: once reached, the
game stays there forever no matter what the players choose to do. It is easy to see
that 〈1〉BG♦�T = {s0, s1, s2}. Intuitively, either player 2 keeps the game forever in
s0 (in which case �T holds, and hence ♦�T holds), or at some point moves to s1.
However, once the game is in s1, player 1 can force a move to s2 and again ensures
that eventually ♦�T holds. However, a straightforward calculation shows that both
the μ-calculus formulas above compute the set {s1, s2} when Epre is replaced with
pre1.

A Boolean μ-calculus formula is called a player 1 formula if it only uses the pre1
operator from F . The relation between verification and control algorithms is given
by the extremal model theorem [7], which states that a player 1 Boolean μ-calculus
solves the game with an ω-regular objectiveΦ if and only if the formula obtained by
replacing all occurrences of pre1 with Epre solves the existential verification prob-
lem, and the formula obtained by replacing all occurrences of pre1 with Apre solves
the universal verification problem. The two verification problems are “extremal”, or
one-sided, versions of games in which one or the other player has no choices. The
theorem states that a formula that works for all extremal cases of games also works
for all games.

Theorem 6 ([7]) For all linear ω-regular properties Φ and player 1 Boolean μ-
calculus formulas ϕ, the following are equivalent:

• 〈1〉BGΦ = [[ϕ(pre1)]]G
• ∃BGΦ = [[ϕ(Epre)]]G and ∀BGΦ = [[ϕ(Apre)]]G .

For the co-Büchi property ♦�T , we have that

〈1〉BG♦�T = μx.νy.
(
pre1(x)∨

(
T ∧ pre1(y)

))

and as expected,

∃BG♦�T = μx.νy.
(
Epre(x)∨ (

T ∧ Epre(y)
))

∀BG♦�T = μx.νy.
(
Apre(x)∨ (

T ∧Apre(y)
))
.

31.4.5 Examples of Synthesis

For each class of examples considered in Sect. 31.3, one can study the corresponding
symbolic synthesis question. We briefly outline a few instances.
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Program Synthesis. In program synthesis, the user provides a specification and a
partial implementation, and the synthesis engine provides a full implementation sat-
isfying the specification. We can generalize the guarded command language from
Sect. 31.3 to additionally include a set C of control variables whose values are de-
termined as a function of the input variables I and the program variables X. Now,
the semantics of a program is given by a game structure where one player deter-
mines the program inputs I and the other player determines the control variables C.
Logical constraints still provide a region algebra, but notice that the formulas may
now have quantifier alternations.

In recent years, there have been several novel applications of program synthesis.
For example, in the synthesis of digital filters [85, 86], the programmer provides a
skeleton implementation with some “holes” and asks whether there is a way to fill
in the holes with constants or expressions so that the input-output behavior satisfies
a given specification. The corresponding synthesis question reduces to finding satis-
fying assignments to an exists-forall formula. This idea, commonly called program
sketching, has seen many interesting applications and continues to be an active area
of research [21, 60, 87]. A second and related application of synthesis is in program
repair, where the user synthesizes additional code that, when combined with a given
program, ensures that the combination satisfies a given specification [36, 68, 70].

Antichain Algorithms for Synthesis. Antichain algorithms have been extended to
alternating automata [51, 52]. The resulting symbolic algorithms provide the basis
for symbolic synthesis procedures for LTL objectives [56, 57], where they often
outperform synthesis procedures based on binary decision diagrams. The Acacia
tool implements synthesis procedures based on region algebras over antichains [22].

Timed and Hybrid Games. Timed and hybrid automata were generalized to timed
and hybrid games [13, 75, 94] as models for controller synthesis for timed and hy-
brid systems. Synthesis for linear objectives remains decidable for timed games,
and region-based strategies (i.e., in which the player plays the same action from all
states in a region) are sufficient for timed games. Symbolic algorithms for verifi-
cation generalize to games. For hybrid systems in general, the symbolic algorithms
need not converge (the verification problem is already undecidable), but the algo-
rithms do converge for initialized rectangular games [63]. Symbolic algorithms can
explicitly account for Zeno strategies, which enable a player to win by preventing
the progression of time [3]. Efficient implementations of symbolic synthesis algo-
rithms for timed games have been developed, e.g., in the Uppaal-Tiga tool [17, 35],
and applied to significant industrial case studies.

31.5 Probabilistic Systems

We give a final example of symbolic techniques for non-Boolean domains: proba-
bilistic games. In a probabilistic game, the transition relation is probabilistic, and, in



1138 R. Majumdar and J.-F. Raskin

addition, players are allowed to play randomized strategies. A randomized strategy
prescribes to every history of a game a probability distribution over moves (rather
than a single move).

Even for games where the transition relation is deterministic, adding random-
ization to strategies can be helpful. Consider again the matching bits game from
Sect. 31.4. Suppose we add randomization to strategies, that is, allow the players to
choose a bit in {0,1} by sampling from a probability distribution. If player 1 picks
a bit uniformly at random, then with probability 1

2 the bits match (no matter what
strategy player 2 chooses). If the game of matching bits is played repeatedly, then
the probability that player 1 matches bits in some round is 1, that is, player 1 can
almost surely ensure that eventually the bits match.

31.5.1 Probabilistic Games and Objectives

For a finite set A, a probability distribution on A is a function p : A→ [0,1] such
that

∑
a∈A p(a)= 1. We denote the set of probability distributions on A by D(A).

A (two-player) probabilistic game structure G = (S,M,Γ1,Γ2, δ) consists of a
finite set S of states, a finite set M of moves, and move assignments Γ1,Γ2 : S→
2M \∅ as for deterministic games, and a probabilistic transition function δ that gives
the probability δ(t | s,m1,m2) of a transition from s to t when moves m1 and m2
are chosen, for all s, t ∈ S and all moves m1 ∈ Γ1(s) and m2 ∈ Γ2(s).

At every state s ∈ S, player 1 chooses a move m1 ∈ Γ1(s), and simultaneously
and independently player 2 chooses a move m2 ∈ Γ2(s). The game then proceeds to
the successor state t with probability δ(t | s,m1,m2), for all t ∈ S. As with deter-
ministic games, we assume that the players act non-cooperatively, i.e., each player
chooses her strategy independently and secretly from the other player, and is only
interested in maximizing her own reward.

Note that deterministic game structures are a special case, where for each s, m1,
and m2, there is some t ∈ S such that δ(t | s,m1,m2) = 1. A probabilistic game
structure is turn-based if at any state at most one player has a non-trivial choice of
moves, that is, if for each s ∈ S either |Γ1(s)| = 1 or |Γ2(s)| = 1.

A strategy for player i ∈ {1,2} is a mapping ξi : S+ �→ D(M) that associates
with every nonempty finite sequence π ∈ S+ of states, representing the past history
of the game, a probability distribution ξ1(π) used to select the next move. Thus,
the choice of the next move can be history-dependent and randomized. The strategy
ξi can prescribe only moves that are available to player i; that is, for all sequences
π ∈ S∗ and states s ∈ S, we require that ξi(πs)(m) > 0 only ifm ∈ Γi(s). We denote
by Ξi the set of all strategies for player i ∈ {1,2}.

We get deterministic strategies as a special case: a strategy ξ is deterministic if
for all π ∈ S+ there is an m ∈M such that ξ(π)(m)= 1.

Once the starting state s and the strategies ξ1 and ξ2 for the two players have been
chosen, the game is reduced to an ordinary stochastic process. Hence, the probabil-
ities of events are uniquely defined, where an event is a measurable set of paths
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sharing the same initial state. For an event A whose paths all start at s, we denote
by Prξ1,ξ2s (A) the probability that a path belongs to A when the game starts from
s and the players use the strategies ξ1 and ξ2. Similarly, for a measurable function
f that associates a number in R ∪ {∞} with each path, we denote by Eξ1,ξ2s {f } the
expected value of f when the game starts from s and the strategies ξ1 and ξ2 are
used.

For example, let Φ be a linear ω-regular property. By abuse of notation we omit
the starting state when writing an event, and also denote byΦ the set of paths π ∈Ω
that satisfy Φ; this set is measurable for any choice of strategies for the two players
[91]. Hence, the probability that a path satisfies Φ starting from state s ∈ S under
strategies ξ1, ξ2 for the two players is Prξ1,ξ2s (Φ).

We denote by Θi the random variable representing the i-th state of a path, that
is, Θi is a variable that assumes value si on the path s0s1s2 . . ..

We again consider winning objectives given by linear ω-regular properties, and
aim to calculate the maximal probability with which player i ∈ {1,2} can ensure
that the property Φ holds from a state s. We call this probability the value of the
game Φ at s for player i ∈ {1,2}. This value for player 1 is given by the function
〈1〉Φ : S �→ [0,1], defined for all s ∈ S by

〈1〉Φ(s)= sup
ξ1∈Ξ1

inf
ξ2∈Ξ2

Prξ1,ξ2s (Φ).

Winning for player 2 is defined analogously by exchanging the roles of player 1 and
player 2.

Concurrent games with ω-regular winning conditions satisfy a quantitative ver-
sion of determinacy [77], stating that for all linear ω-regular properties Φ and all
s ∈ S, we have

〈1〉Φ(s)= 1− 〈2〉¬Φ(s).
In fact, this result holds for any Borel property Φ as well [77].

31.5.2 The Quantitative μ-calculus

Let LR = ([0,1]S,≤) be the lattice of functions from S to the real interval [0,1],
ordered by pointwise ordering, i.e., f ≤ g if for all s ∈ S we have f (s)≤ g(s). The
join and merge operations are defined in the natural way:

(f ∨ g)(s)=max
{
f (s), g(s)

}

(f ∧ g)(s)=min
{
f (s), g(s)

}

for all s ∈ S. We denote by 0 and 1 the constant functions that map all states into 0
and 1, respectively. We define the negation operation ∼ as (∼ f )(s)= 1− f (s) for
all s ∈ S.
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Given a subset Q ⊆ S of states, by abuse of notation we denote also by Q the
characteristic function ofQ, defined byQ(s)= 1 if s ∈Q andQ(s)= 0 otherwise.

Let G be a probabilistic game structure and let P be a set of propositions ranging
over subsets of states of G. We define a quantitative μ-calculus with two operators,
Ppre1 and Ppre2, which are duals, and give its semantics over the lattice LR.

The quantitative predecessor operators Ppre1,Ppre2 : F �→ F are defined for
every f ∈F by

Pprei (f )(s)= sup
ξi∈Ξi

inf
ξ3−i∈Ξ3−i

Eξi ,ξ3−is

{
f (Θ1)

}
.

Intuitively, the value Pprei (f )(s) is the maximum expectation for the next value
of f that player i ∈ {1,2} can achieve. Given f ∈ F and i ∈ {1,2}, the function
Pprei (f ) can be computed by solving the following matrix game at each s ∈ S:

Ppre1(f )(s)= v1

[∑

t∈S
f (t)δ(t | s, a1, a2)

]

a1∈Γ1(s),a2∈Γ2(s)

,

where v1A denotes the value obtained by player 1 in the matrix game A. The exis-
tence of solutions to the above matrix games, and the existence of optimal random-
ized strategies for players 1 and 2, is guaranteed by the minmax theorem [81]. The
matrix games may be solved using traditional linear programming algorithms (see,
e.g., [82]). From properties of matrix games, we get that

Ppre1(f )= 1− Ppre2(1− f )
for all f : S→[0,1]. That is, the operators Ppre1 and Ppre2 are dual.

The following result generalizes Theorem 4 to probabilistic games. Intuitively, it
states that the value of a probabilistic parity game can be characterized as a nested
fixpoint formula evaluated over LR.

Theorem 7 ([9]) For every probabilistic game structure G, partition T1, . . . , Tk of
the states of G, and players i ∈ {1,2}, we have

〈1〉BGParity(T1, . . . , Tk)=
[[

λkxk . . . νx2μx1.

k∨

j=1

(
Ti ∧ prei (xj )

)
]]

(16)

where λk = ν if k is even and λk = μ if k is odd.

Note that even though the game structure has finitely many states, the above
characterization does not give a terminating algorithm for parity games. Instead, the
best known algorithms go through a careful analysis of formulas in the theory of
reals [9, 73]. A better NP ∩ co-NP complexity bound is known for the special case
of turn-based games in which players alternate in selecting moves, that is, when
Γ1(s) or Γ2(s) is a singleton for each state s [37, 41]. Curiously, the best known
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complexity lower bound of this very general class of games is the same as that of
alternating reachability (P-hard).

While we focussed on a quantitative interpretation, probabilistic games can also
be studied relative to a qualitative interpretation. Intuitively, qualitative winning
objectives state that a player wins on all or almost all (in the sense of measure
theory) paths, while quantitative winning objectives measure the exact probability of
winning. Qualitative notions of winning also admit fixpoint characterizations using
an appropriately defined μ-calculus, with somewhat complex pre operations [5, 6,
38, 41].

31.6 Conclusion

In this chapter we have taken a general view of symbolic model checking as com-
puting fixpoints over lattices, which gives a unified approach applicable to many
different classes of systems and properties. The basis for this unification is the no-
tion of region algebras together with appropriate generalizations of the μ-calculus.
Region algebras provide a nice abstraction that allows us to separate the semantics
of a transition structure from the data structure that is used to algorithmically ma-
nipulate this transition structure. The μ-calculus is a powerful formalism for speci-
fying properties of sets of states of a transition system that are fixpoints of monotone
functions. We have applied this general framework to a variety of problems both in
verification and synthesis.

First, we have considered the verification of properties of labelled transition sys-
tems that are not necessarily finite and shown how classical linear-time properties
can be expressed in the μ-calculus. When a data structure provides effectiveness
properties to the region algebra, iterated approximations provide natural semi-
algorithms to evaluate μ-calculus expressions. While transfinite number of approx-
imations are in general necessary to obtain the exact value of expressions, we have
provided conditions, in the form of equivalence relations on the underlying state
space of the transition system, that ensure that a finite number of approximations is
sufficient. We have shown that this framework is rich enough to explain decidability
results and symbolic verification techniques for infinite-state systems such as timed
automata, hybrid rectangular automata, or Petri nets. We have also shown that this
framework can be applied to obtain new efficient algorithms for solving problems
whose underlying transition system is finite: as an illustration, we have shown how
to solve the universality problem for nondeterministic finite automata using fixpoint
computations paired with antichains of sets of states that are used to represent the
underlying state space. For this problem, this data structure performs better than bi-
nary decision diagrams. This shows that even in the finite state case, it is sometimes
useful to look for alternatives to BDDs for performing symbolic verification.

Second, we have shown that the region algebra and μ-calculus framework can be
applied to several extensions to the notion of transition systems. We have considered
deterministic game structures that can be used to formalize synthesis problems as
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two-player zero-sum ω-regular games and probabilistic game structures that gener-
alize classical models like Markov chains and Markov decision processes. To cover
these rich classes of transition systems, we have shown how to extend the μ-calculus
in an appropriate way.

In this chapter, it was not possible to cover all the research directions that are ex-
plored in the area of symbolic verification techniques. We list a few other directions
where symbolic techniques have played, or continue to play, a central role:

• Regular model checking. While, as we have shown in this chapter, linear con-
straints are well-studied data structures for representing numerical state spaces,
other techniques have been proposed: finite automata have also been explored
to manipulate Presburger definable sets [93], see also [24] for richer numerical
domains. More generally, automata have been used as a data structure for the
algorithmic manipulation of infinite-state systems in the framework of regular
model checking [26].

• Acceleration techniques. As we have seen, the termination of fixpoint computa-
tions that use successive approximations can only be ensured for subclasses of
infinite-state systems. To obtain termination in practice, even for classes of sys-
tems where termination cannot be ensured in all cases, acceleration techniques
have been proposed. These techniques try, for example, to compute the repeated
application of linear transformations [15, 23] or the repeated application of trans-
ducers in the context of regular model checking [27].

• Approximation techniques. In the vocabulary of abstract interpretation [42], re-
gion algebras represent the collecting semantics of the transition systems that
they represent. Abstract interpretation provides a general framework for abstract-
ing such semantics into simpler ones, called abstract semantics, in order to define
approximate analysis algorithms. Abstract interpretation is also concerned with
the definition of data structures for efficient representation of abstract domains,
such as octagons [80] for the approximation of more general numerical domains,
and with acceleration techniques, known there as widenings [43], for extrapolat-
ing the limits of fixpoint computation.

• Quantitative verification. A recent direction generalizes logics for specification to
quantitative logics, whose semantics gives a numerical value to a property, rather
than a Boolean [2, 4, 19, 39, 55]. While a theory of quantitative specifications is
still under active development and refinement, symbolic techniques have played
a central role in the analysis.

• Equivalences and metrics. While we focused on symbolic techniques for verifi-
cation and synthesis, they also play a role in defining and computing behavioral
equivalences and their generalizations to metrics on systems. For example, clas-
sical behavioral equivalences such as bisimilarity and similarity [79] and their
game analogues [12] are captured by fixpoint formulas. More recently, similar
fixpoint characterizations have been given for metrics on (stochastic) systems
[10, 30, 47, 48].

Finally, we point out other surveys that present results related to symbolic model
checking for the Boolean case and beyond [2, 40]. These surveys contain several
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results that are complementary to those presented here as well as a list of relevant
pointers to the literature.
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Chapter 32
Process Algebra and Model Checking

Rance Cleaveland, A.W. Roscoe, and Scott A. Smolka

Abstract Process algebras such as CCS, CSP and ACP are abstract notations for
describing concurrent systems that interact via (usually) handshake-based commu-
nication. They lead to natural concepts of process state and are therefore natural
candidates for model checking. We survey the area of process algebra and model
checking, focusing on these three process algebras. We first introduce the syntax and
semantics of these process algebras, before looking at the algorithmic basis for their
model checking, which includes ideas such as bisimulation and refinement as well
as the logics used to describe system-correctness properties. Finally, we introduce
the process-alebra-based model-checking tools FDR, CWB and XMC, illustrating
their utility by a number of case studies.

32.1 Introduction

Process algebra [10] refers to a class of algebraic formalisms for modeling and
reasoning about concurrent systems of processes. The hallmarks of process algebra
include a collection of operators for composing systems out of subsystems, and an
equivalence or refinement relation for determining respectively when two systems
exhibit the same behavior or when one system’s behavior is more constrained than
another’s. The field draws its inspiration, and name, from the mathematical study
of so-called universal algebra, and was first studied intensively in the late 1970s
and early 1980s. The Calculus of Communicating Systems (CCS), the theoretical
version of Communicating Sequential Processes (CSP), and the Algebra of Com-
municating Processes (ACP) were among the earliest, and most heavily studied,
process algebras.
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Unlike model-checking approaches to verification, in which systems are checked
against formulae given in temporal logic, process algebra emphasizes the use of
(higher-level) system descriptions as specifications for (more detailed) system spec-
ifications. Despite this apparently fundamental difference, researchers have identi-
fied aspects of synergy and similarity between the frameworks. At the mathematical
level, for example, relationships between various temporal logics and behavioral
equivalences and refinement orderings have been established. These so-called logi-
cal characterization results typically show that equivalent systems are guaranteed to
satisfy exactly the same temporal formulae, and vice versa. Such results can be used
to improve the performance of model checkers, since a (smaller, easier-to-analyze)
equivalent system may be substituted for another (larger, more complex) one when
checking the truth of a temporal formula.

In addition, the equivalence and refinement relations used in process algebras
are compositional, meaning that related subsystems may be replaced by one an-
other inside a larger system, with the relationship between the subsystems “carrying
over” to the larger system. This also has significant practical implications for model
checking.

Other work has established converse results: for some temporal logics, one may
check that a system satisfies formulae in the logic by embedding the system in a
larger system and checking for equivalence with an appropriate specification. Still
other work has shown how composite theories combining both logical and process
operators may be constructed and refinement relations defined that seamlessly com-
bine logical notions of satisfaction with algebraic ones of behavioral elaboration.
At an algorithmic level, the computational and algorithmic foundations of model
checking that allow one to efficiently check whether or not a system satisfies a for-
mula while mitigating state explosion have also found widespread application in
equivalence and refinement checking. These include compositional methods such
as state-space minimization, as discussed later in the present chapter, data indepen-
dence [25, 50], and symmetry and partial-order reductions [52].

This chapter begins by examining the theoretical foundations of process alge-
bra, including the seminal CCS, CSP, and ACP algebras and their corresponding
behavioral equivalences and refinement orderings (Sect. 32.2). It then considers the
algorithms and methodologies used to decide these relationships, including com-
positional verification (Sect. 32.3). Next, the process-algebra-based tool sets FDR,
CWB (the Concurrency Workbench), XMC, and mCRL2 are presented (Sect. 32.4),
along with applications to several noteworthy case studies (Sect. 32.5). Finally, our
concluding remarks are given (Sect. 32.6).

32.2 Foundations

This section reviews the classical foundations of process algebra. Early in the devel-
opment of the field, three schools of thought emerged on the subject, roughly based
around the three approaches to programming-language semantics: operational, de-
notational, and axiomatic. That is, while all three frameworks for process algebra
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emphasized system modeling via composition operators, and the use of equivalences
and preorders (refinement orderings) for relating system descriptions on the basis of
their observable behavior, the methods by which the operators and behavioral re-
lations were given precise mathematical definitions differed significantly. CCS, for
example, favors operational accounts of process operators, with an equivalence then
defined after the fact. CSP, on the other hand, focuses on a denotational approach:
a mathematical notion of process is defined, with an implicit ordering relation given
on these mathematical objects inherited from the definition; then operators are de-
fined as constructors over these semantic objects. ACP, finally, follows the axiomatic
approach; operators are specified and equational axioms given capturing the behav-
ioral relationships that emerge from using these operators. The legitimacy of these
axioms is then demonstrated via the construction of mathematical models for which
the axioms constitute a sound and complete equational proof system.

32.2.1 CCS: Process Algebra via Operational Semantics

This section introduces the syntax of CCS and its operational semantics. The lat-
ter is given in the Structural Operational Semantics (SOS) style formalized by
Plotkin [67]; inference rules are given that in effect precisely determine what the
initial execution steps are of a CCS term. It then defines a notion of semantic equiv-
alence, based on this operational definition. A logical characterization of this equiv-
alence is given using a simple modal logic, Hennessy–Milner Logic, and derived
equivalences then presented that abstract from internal computation.

32.2.1.1 Syntax of CCS

CCS [58, 59] introduces a small set of operators for constructing system descriptions
from definitions of subsystems. The basic building blocks of these descriptions, and
indeed of system definitions in all existing process algebras, are actions. Intuitively,
actions represent atomic, uninterruptible activities that systems may perform, with
some actions denoting internal execution and others representing potential interac-
tions with its environment that the system may engage in.

Actions in CCS

A binary, synchronous model of process communication underlies CCS, and the
structure of the set of actions reflects this design decision. Actions represent either
inputs/outputs on ports or internal computation steps. Actions on ports are some-
times called external, as they require interaction with the environment in order to
take place.

To formalize these intuitions, let Λ represent a countably infinite set of labels, or
ports, not containing the distinguished symbol τ . Then an action in CCS has one of
the following three forms.
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• α, where α ∈Λ, represents the act of receiving a signal on port α.
• α, where α ∈Λ, represents the act of emitting a signal on port α.
• τ represents an internal computation step.

In what follows, we use ACCS to stand for the set of all CCS actions; that is,

ACCS =Λ∪ {α | α ∈Λ } ∪ {τ }.
We also abuse notation by defining α = α; note that τ is not a valid action. We refer
to the actions α and α, where α ∈Λ, as complementary, as they represent an input
and output action on the same channel. The set ACCS − {τ } then contains the set of
external, or visible, actions; the only internal action is τ .

CCS Operators

Having defined the set ACCS of CCS actions we now introduce the operators the
process algebra provides for building systems. In what follows, we assume that p,
p1 and p2 denote CCS system descriptions that have previously been constructed,
and we also assume a countably infinite set C of process variables. CCS provides
the following constructors.

• nil represent the terminated process that has finished execution.
• Given a ∈ ACCS , the prefixing operator a. allows an action to be “prepended”

onto an existing system description. Intuitively, a.p is capable first of an a and
then behaves like p.

• + represents a choice construct. The system p1 + p2 offers the potential of be-
having like either p1 or p2, depending on the interactions enabled by the environ-
ment.

• | denotes parallel composition. The system p1|p2 interleaves the execution of p1
and p2 while also permitting complementary actions of p1 and p2 to synchronize;
in this case, the resulting composite action is a τ .

• If L⊆ACCS−{τ } then the restriction operator \L permits actions to be localized
within a system. Intuitively, p\L behaves like p except that it is disallowed from
interacting with its environment using actions mentioned in L. Note that τ can
never be restricted.

• The operator [f ] allows actions in a process to be renamed. Here f is a function
from ACCS to ACCS that is required to satisfy the following two restrictions.

– f (τ)= τ
– f (a)= f (a).
When this is the case, f is called a renaming. The system p[f ] behaves exactly
like p except that f is applied to each action that p may engage in.

• If C ∈ C , then C represents a valid system provided that a defining equation of

the form C
�= p has been given. Intuitively, C represents an “invocation” that

behaves like p. This construct allows systems to be defined recursively.
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In process-algebraic parlance, system descriptions built using the above operators
are often referred to as terms or processes. We use PCCS to represent the set of all
CCS processes.

32.2.1.2 The Operational Semantics of CCS

In the account so far, we have relied on the reader’s intuition to understand the
meaning of the CCS operators. To make these meanings precise, CCS is equipped
with an operational semantics that is intended precisely to define the execution steps
that processes may engage in. This semantics is usually specified in the form of a
ternary relation, −→; intuitively, p

a−→ p′ holds if system p is capable of engaging
in action a and then behaving like p′. Process algebras such as CCS typically define
−→ inductively using a collection of inference rules for each operator. These rules
have the following form.

premises
conclusion

(side condition)

A rule states that, if one has established the premises, and the side condition holds,
then one may infer the conclusion. This presentation style for operational seman-
tics is often called SOS, for Structural Operational Semantics, and was devised by
Plotkin [67].

The remainder of this section covers the SOS rules for CCS and shows how they
may be used rigorously to characterize the behavior of CCS system descriptions.
We group the rules on the basis of the CCS operators to which they apply.

nil. The CCS process nil has no rules and thus is incapable of any transitions.
Prefixing. The prefixing operator contains one rule.

a.p
a−→ p

This rule has no premises, and the conclusion states that processes of the form
a.p may engage in a and thereafter behave like p. Note that the side condition is
omitted; in such cases it is assumed to be “true”.

Choice. The choice operator has two symmetric rules.

p
a−→ p′

p+ q a−→ p′
q

a−→ q ′

p+ q a−→ q ′

These rules in essence state that a system of the form p+ q “inherits” the transi-
tions of its subsystems p and q .

Parallel Composition. The parallel composition operator has three rules, the first
two of which are symmetric.

p
a−→ p′

p|q a−→ p′|q
q

a−→ q ′

p|q a−→ p|q ′
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These rules indicate that | interleaves the transitions of its subsystems. The next
rule allows processes connected by | to interact.

p
a−→ p′, q a−→ q ′

p|q τ−→ p′|q ′
According to this rule, subsystems may synchronize on complementary actions
(i.e., inputs and outputs on the same port). Note that the action produced as the
result of the synchronization is a τ ; since τ is undefined, this ensures that syn-
chronizations involve only two partners.

Restriction. The restriction operator has one rule.

p
a−→ p′

p\L a−→ p′\L (a, a /∈ L)

This rule, which includes a side condition, only allows actions not mentioned in L
(or whose complements are not in L) to be performed by p\L. Restriction in ef-
fect “localizes” actions in L, since the operator forbids the system’s environment
from interacting with the system using them.

Relabeling. The relabeling operation has one rule.

p
a−→ p′

p[f ] f (a)−→ p′[f ]
As the intuitive account above suggests, p[f ] engages in the same transitions
as p, the difference being that the actions are relabeled via f .

Process Variables. The behavior of process variables is given by one rule.

p
a−→ p′

C
a−→ p′

(C
�= p)

This rule states that a system C behaves like the body, p, of its definition C
�= p.

32.2.1.3 CCS and Labeled Transition Systems

The definition of −→ just given allows CCS processes to be viewed as state ma-
chines of a certain type. To begin with, we show how CCS may be viewed as a
structure called a labeled transition system consisting of a collection of possible
system states and transitions.

Definition 1 A labeled transition system (LTS) is a triple 〈Q,A,−→〉, where Q is
a set of states, A is a set of actions, and −→⊆Q×A×Q is a transition relation.

Some definitions of LTS also designate a start state. We refer to labeled transition
systems of this form (i.e., quadruples of the form 〈Q,A,−→, qS〉 where qS ∈Q is
the start state) as rooted labeled transition systems.
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Perhaps surprisingly, the definitions in this chapter show that CCS may be
viewed as a single LTS. Recall that PCCS represents the (infinite) set of syntac-
tically valid CCS system definitions, and let −→CCS be the transition relation de-
fined in the previous subsection. Then, 〈PCCS,ACCS,−→CCS〉 satisfies the defi-
nition of an LTS. This observation has two consequences. The first is that certain
definitions, such as those for behavioral equivalences and refinement orderings,
may be given in a language-independent manner by defining them with respect
to LTSs. The second consequence is that individual system descriptions may be
converted into rooted LTSs. Mathematically, for any CCS system p, the quadru-
ple 〈PCCS,ACCS,−→CCS,p〉 constitutes a rooted LTS. As PCCS is infinite this
observation is only of theoretical interest until one observes that not every state in
PCCS is reachable from p via (sequences of) −→CCS transitions. Consequently,
we may instead define another LTS, Mp , consisting only of CCS terms reachable
from p in this fashion. If Mp contains only finitely many states, then it may be
analyzed using algorithms for manipulating finite-state machines, such as those pre-
sented later in this chapter.

32.2.1.4 Bisimulation

Process algebras rely on notions of behavioral (pre)congruence as a basis for system
analysis. A congruence for an algebra is an equivalence relation (i.e., a relation that
is reflexive, symmetric, and transitive) that also has the substitution property: equiv-
alent systems may be used interchangeably inside any larger system.1 Formally, we
define a context C[ ] to be a system description with a “hole”, [ ]; given a system
description p, then, C[p] represents the system obtained by filling the hole with p.
Then an equivalence ≈ is a congruence for a language if, whenever p ≈ q , then
C[p] ≈ C[q], for any context C[ ] built using operators in the language. It should
be noted that relations that are congruences for some languages are not congruences
for others.

In this section, we study congruences for CCS with a view toward defining a
relation that relates systems with respect to their observable behavior. In each case,
we first define an equivalence relation on states in an arbitrary LTS; since CCS
may be viewed as an LTS, these relations may then be used to relate CCS system
descriptions. We then consider the suitability of the equivalence from the standpoint
of the observable behavior to which it is sensitive and consider whether or not the
relation is a congruence for CCS. In the first part of the section, we make no special
allowance for the unobservability of the action τ , deferring its treatment until later.

When should two CCS processes be considered indistinguishable? The previous
subsection showed how CCS terms may be converted into rooted labeled transition

1A precongruence is a preorder, i.e., a reflexive and transitive relation, that also has the substitution
property.
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systems (i.e., labeled transition systems with start states). This suggests an obvi-
ous notion of equivalence:2 consider two CCS terms to be equivalent if they can
perform the same sequences of actions. This definition would thus equate terms
a.(b.nil+ c.nil) and a.b.nil+ a.c.nil, since the two systems can each perform (all
prefixes of) the sequences ab and ac. However, CCS is intended to model interactive
systems that execute by engaging with their environments; from this perspective,
these two systems can be seen as distinct. In particular, after an a action the system
a.(b.nil + c.nil) is in the state b.nil + c.nil: the choice of b or c is still available
to the environment. The term a.b.nil+ a.c.nil, on the other hand, has two possible
successors after a: b.nil and c.nil. In each case, one of the choices of b and c is no
longer available. So while a.(b.nil+ c.nil) and a.b.nil+ a.c.nil are equated by this
definition, the states they reach after an a-transition are not related by this definition.

This last observation suggests that an appropriate equivalence for CCS, and in-
deed for any language permitting the definition of nondeterministic systems, could
have a “recursive” flavor: execution sequences for equivalent systems ought to pass
through equivalent states. This intuition underlies the definition of bisimulation, or
strong equivalence. The name of the equivalence stems from the fact that it is de-
fined in terms of special relations called bisimulations.

Definition 2 Let 〈Q,A,−→〉 be an LTS. A relation R ⊆Q×Q is a bisimulation
if, whenever 〈p,q〉 ∈R, the following conditions hold for any a.

1. if p′ is such that p
a−→ p′ then q

a−→ q ′ for some q ′ such that 〈p′, q ′〉 ∈R.
2. if q ′ is such that q

a−→ q ′ then p
a−→ p′ for some p′ such that 〈p′, q ′〉 ∈R.

Intuitively, if two systems are related by a bisimulation, then it is possible for
each to simulate, or “track”, the other’s behavior: hence the term bisimulation. More
specifically, for a relation to be a bisimulation, related states must be able to match
each other’s transitions by moving to related states. Two states are then bisimulation
equivalent exactly when a bisimulation may be found relating them.

Definition 3 States p and q of some LTS are bisimulation equivalent (notation
p ∼ q), or bisimilar, if there exists a bisimulation R on that LTS containing 〈p,q〉.

Since CCS may be viewed as an LTS, one may use ∼ to relate CCS processes.
As examples, we have the following.

1. a.b.nil+ a.b.nil ∼ a.b.nil,
2. a.b.nil+ a.c.nil 
 a.(b.nil+ c.nil).

Bisimulation is also considered in the chapter of the Handbook on Abstraction
and Abstraction-Refinement (Chap. 13 [27]). There, bisimulation is defined over
Kripke structures (with state labels) rather than LTSs (with edge labels).

2This equivalence relation is often called trace equivalence.
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Bisimulation equivalence has a number of pleasing properties. Firstly, for any
labeled transition system it is indeed an equivalence; that is, the relation ∼ is reflex-
ive, symmetric, and transitive. Secondly, it can be shown in a precise sense that two
equivalent systems must have the same “deadlock potential”; this point is addressed
in more detail below. Thirdly, ∼ implies trace equivalence, and coincides with it if
the LTS is deterministic in the sense that every state has at most one outgoing tran-
sition per action. Finally, ∼ is a congruence for CCS; if p ∼ q then p and q may be
used interchangeably inside any larger system.

Bisimilarity does suffer from a flaw from the perspective of CCS and other pro-
cess algebras allowing asynchronous execution: it is too sensitive to internal com-
putation. In particular, the definition does not take account of the special status that
τ has vis-à-vis other actions.3 For example, the systems a.τ.b.nil and a.b.nil are not
bisimulation equivalent, even though an external observer cannot detect the differ-
ence between them. Nevertheless, ∼ has been studied extensively in the literature,
and for process algebras in which internal computation in one component can indeed
affect the behavior of other components, it is a reasonable basis for verification.

32.2.1.5 A Logical Characterization of Bisimilarity

The preceding discussion stated that ∼ relates systems on the basis of their relative
“deadlock potentials”. The remainder of this subsection makes this statement pre-
cise by defining a logic, called the Hennessy–Milner Logic (HML) [37], that permits
the formulation of simple system properties, including potentials for deadlock. The
logic also characterizes ∼ in the following sense: two systems are bisimilar if and
only if they satisfy exactly the same formulae in the logic.

Syntax of HML

The definition of HML is parameterized with respect to a set A of actions. Given
such a set, the syntax of HML formulae can be given via the following grammar.

φ ::= tt

| ff

| φ ∧ φ
| φ ∨ φ
| 〈a〉φ
| [a]φ

We use Φ for the set of all well-formed HML formulae.

3Exactly the same can be said of the notions of trace equivalence and deterministic transition sys-
tem given above: the former is usually, and the latter frequently, formulated differently to take
account of the special role of τ . The definitions given above are, however, appropriate when study-
ing this strong form of bisimilarity.
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The constructs in the logic may be understood as follows. First, it should be
noted that formulae are intended to be interpreted with respect to states in a labeled
transition system. Then tt and ff represent the constants “true” and “false” that hold
of any state and no state, respectively, while∧ and∨ denote conjunction (“and”) and
disjunction (“or”), respectively. The final two operators are referred to as modalities,
as they permit statements to be made about the transitions emanating from a state;
thus HML is a modal logic. A state satisfies 〈a〉φ if a target state of one of its a-
transitions satisfies φ, while [a]φ holds of a state if the target states of all of its
a-transitions satisfy φ.

Semantics of HML

In order to formalize the meaning of HML, we first fix a labeled transition system
L = 〈Q,A,−→〉 with the same action set as the logic. We then define a relation
|�L ⊆Q× Φ; intuitively, q |�L φ should hold if state q satisfies φ. The formal
definition is given inductively as follows.

• q |�L tt for any q ∈Q.
• q |�L ff for no q ∈Q.
• q |�L φ1 ∧ φ2 if and only if q |�L φ1 and q |�L φ2.
• q |�L φ1 ∨ φ2 if and only if q |�L φ1 or q |�L φ2.
• q |�L 〈a〉φ if and only if q

a−→ q ′ and q ′ |�L φ for some q ′ ∈Q.
• q |�L [a]φ if and only if for every q ′ such that q

a−→ q ′, q ′ |�L φ.

This definition includes some subtleties that deserve comment. To begin with,
formula [a]ff is satisfied by any state not having an a-transition; such states vac-
uously fulfil the requirement imposed by [a]. Indeed, a state with no a-transitions
satisfies [a]φ, for any φ. These facts also imply that a state incapable of any action
in the set {a1, . . . , an} will satisfy the formula [a1]ff ∧ · · · ∧ [an]ff. If such a state
occurs in an environment that requires one of these actions, then a deadlock results.
In a related vein, a state satisfies 〈b〉tt if and only if it has a b-transition; more gen-
erally, given a (non-empty) sequence of actions b1 . . . bm, a state includes b1 . . . bm
as one of its strong traces if and only if the state satisfies the formula 〈b1〉 · · · 〈bm〉tt.
Finally, consider a state satisfying a formula of the form

〈b1〉 · · · 〈bm〉
([a1]ff∧ · · · ∧ [an]ff

)
.

Such a state satisfies this formula if it can engage in the sequence b1 . . . bm and arrive
at a state that rejects offers for interaction involving any of a1, . . . , an. In an environ-
ment capable of exercising the sequence b1 . . . bm and then requiring an interaction
involving one of a1, . . . , an, the given state could deadlock. It is in this sense that
HML permits the formulation of properties expressing potentials for deadlock.

Bisimulation vis-à-vis HML

The relationship between HML and ∼ is captured by the following theorem, which
states that HML characterizes ∼ for labeled transition systems that are image-finite.
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An LTS is image-finite if every state in the LTS has at most finitely many transi-
tions sharing the same action label. In practice almost all labeled transition systems
satisfy this requirement; in particular, CCS does, provided the definitions of process
variables obey a syntactic restriction (“guardedness”).

Theorem 1 Let L = 〈Q,A,−→〉 be an image-finite LTS, and let p,q ∈Q. Then
p ∼ q if and only if for all HML formulae φ, either p |�L φ and q |�L φ, or
p �|�L φ and q �|�L φ.

On the one hand, this result and the previous discussion substantiate the claim
that bisimulation equivalence requires equivalent systems to have the same “dead-
lock potentials”. On the other hand, the theorem provides a useful mechanism for
explaining why two systems fail to be equivalent; one need only present a formula
satisfied by one system and not the other. For example, consider the system p given
by a.(b.nil+ c.nil) and the system q given by a.b.nil+ a.c.nil. Since p 
 q there
must be a formula satisfied by one and not the other. One such formula is [a]〈b〉tt,
which is satisfied by p but not by q .

32.2.1.6 Observational Equivalence and Congruence for CCS

This subsection presents a coarsening of bisimulation equivalence that is intended
to relax its sensitivity to internal computation. The definition of this relation relies
on the introduction of so-called weak transitions.

Definition 4 Let 〈Q,A,−→〉 be an LTS with τ ∈A, and let q ∈Q.

1. If s ∈ A∗ then ŝ ∈ (A − {τ })∗ is the action sequence obtained by deleting all
occurrences of τ from s.

2. Let s ∈ (A−{τ })∗. Then q
s�⇒ q ′ iff there exists s′ such that q

s′−→ q ′ and s = ŝ′.

Intuitively, ŝ returns the “visible content” (i.e., non-τ elements) of sequence s; in
particular, if a ∈A then â = ε if a = τ , while â = a if a �= τ . In addition, q

s�⇒ q ′
if q can perform a sequence of transitions with the same visible content as s and
evolve to q ′. In this case, note that the sequence of transitions that is performed is
the same as s except that it potentially includes an arbitrary number of τ -transitions
among the visible actions of s. In particular, q

ε�⇒ q ′ if a sequence of τ -transitions
leads from q to q ′, while for a single visible action a, q

a�⇒ q ′ if q can perform
an a, possibly preceded and followed by some internal computation, to arrive at q ′.

We may now define weak bisimulations as follows.

Definition 5 Let 〈Q,A,−→〉 be an LTS, with τ ∈ A. Then a relation R ⊆Q×Q
is a weak bisimulation if, whenever 〈p,q〉 ∈R, the following hold for all a ∈A and
p′, q ′ ∈Q.
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1. If p
a−→ p′ then q

â�⇒ q ′ for some q ′ such that 〈p′, q ′〉 ∈R.

2. If q
a−→ q ′ then p

â�⇒ p′ for some p′ such that 〈p′, q ′〉 ∈R.

States p and q are observationally equivalent, or weakly equivalent, or weakly
bisimilar, if there exists a weak bisimulation R containing 〈p,q〉. When this is the
case, we write p ≈ q .

A weak bisimulation closely resembles a regular bisimulation; the only differ-
ence lies in the fact that systems may use weak transitions to simulate normal tran-
sitions in the other system.

As CCS is a labeled transition system whose action set contains τ , the definition
of≈may be used to relate CCS system descriptions. Doing so leads to the following
observations.

• a.τ.b.nil≈ a.b.nil.
• For any p, τ.p ≈ p.

Even though it ignores internal computation, observational equivalence still en-
joys a similar degree of deadlock-sensitivity to bisimulation equivalence: a variant
of HML can be defined that characterizes ≈ in the same way that HML character-
izes ∼. (This logic replaces the 〈a〉 and [a] modalities of HML by two new oper-

ators, 〈〈a〉〉 and [[a]]; a state q |�L 〈〈a〉〉φ if there exists a q ′ such that q
â�⇒ q ′

and q ′ |�L φ, and similarly for [[a]].) Consequently, it would appear to be a viable
candidate for relating CCS system descriptions. Unfortunately, however, it is not a
congruence for CCS. To see why, consider the context C[ ] given by [ ] + b.nil. It
is easy to establish that p ≈ q , where p is given by τ.a.nil and q by a.nil. How-
ever, C[p] �≈ C[q]. To see this, note that C[p] τ−→ a.nil. This transition must be
matched by a weak ε-labeled transition from C[q]. The only such transition C[q]
has is C[q] ε�⇒ C[q]. However, a.nil �≈ C[q], since the latter can engage in a b-
labeled transition that cannot be matched by the former.

This defect of ≈ arises from the interplay between + and the initial internal
computation that a system might engage in; in particular, the only CCS operator
that breaks the congruence-hood of ≈ is +. Some researchers reasonably suggest
that this is an argument against including + in the language. Milner [58, 59] adopts
another point of view that we pursue in the remainder of this section, and that is
to focus on finding the largest CCS congruence ≈C that implies ≈. Such a largest
congruence is guaranteed to exist [37].

Definition 6 Let 〈Q,A,−→〉 be an LTS with τ ∈A, and let p,q ∈Q. Then p ≈C q
if the following hold for all a ∈A and p′, q ′ ∈Q.

1. If p
a−→ p′ then q

a�⇒ q ′ for some q ′ such that p′ ≈ q ′.
2. If q

a−→ q ′ then p
a�⇒ p′ for some p′ such that p′ ≈ q ′.

Some remarks about this relation are in order. Firstly, it should be noted that
for p ≈C q to hold, any τ -transition of p must be matched by a

τ�⇒-transition
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of q; in particular, this weak transition must consist of a non-empty sequence of
τ -transitions. Secondly, the definition is not recursive: the targets of initial match-
ing transitions need only be related by ≈. Finally, it indeed turns out that ≈C is
a congruence for CCS and that it is the largest CCS congruence entailing ≈. That
is, p ≈C q implies p ≈ q , and for any other congruence R such that pR q implies
p ≈ q , pR q also implies p ≈C q . As examples, we have the following.

1. a.τ.b.nil≈C a.b.nil.
2. τ.a.nil �≈C a.nil, since the

τ−→ transition of the former cannot be matched by a
τ�⇒ transition of the latter.

3. For any p,q , if p ≈ q then τ.p ≈C τ.q .

32.2.1.7 Axiomatizations of Bisimilarity and Observational Congruence

Process algebras often include (in)equational proof systems for checking whether
two terms are related by the behavioral congruences/precongruences defined for
them. The proof systems include a fixed set of proof rules, together with a number
of axioms specifying equality/ordering relationships involving the different opera-
tors in the algebra. This subsection gives the proof systems for bisimulation equiv-
alence and observational congruence for finite CCS, namely, CCS without process
constants.

Inference Rules for Equational Reasoning

The inference rules used in equational reasoning are given in Fig. 1. These rules are
intended to prove judgements of the form t1 = t2, where t1 and t2 are terms in a given
algebra. Each rule consists of three parts: a list of premises, given above the line in
the rule; a conclusion, given below the rule; and a name (only included for explana-
tory purposes). In the figure, Rule (R) (“reflexivity”) has no premises; it asserts that
every term is equal to itself. Rule (C) (“commutativity”) says that if a term is equal
to a second, then the second is equal to the first. Rule (T) (“transitivity”) captures
the well-known transitive property of equality. Finally, Rule (S) (“substitutivity”)
indicates that if two terms have been proven equal, then one may be substituted for
another inside any larger term, represented here as the surrounding context.

Stylistically, equational proofs are usually written in the following form:

t1 = t2
= t3
...

= tn.
This is a proof that term t1 = tn. The inference rules are applied implicitly, rather
than explicitly.
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Fig. 1 Rules of equational reasoning

Table 1 Equational axioms
for bisimulation equivalence

(A1) P +Q=Q+ P
(A2) P + (Q+R)= (P +Q)+R
(A3) P + nil= P
(A4) P + P = P

(Exp)

Let P ≡∑
i∈I ai .Pi ,Q≡

∑
j∈J bj .Qj . Then:

P |Q =∑
i∈I ai .(Pi |Q)

+∑
j∈J bj .(P |Qj)

+∑
〈i,j〉∈{ 〈i,j〉∈I×J |ai=bj } τ.(Pi |Qj)

(Res1) nil\L= nil

(Res2) (a.P )\L=
{

nil if a ∈ L or a ∈ L
a.(P \L) otherwise

(Res3) (P +Q)\L= (P \L)+ (Q\L)
(Rel1) nil[f ] = nil

(Rel2) (a.P )[f ] = f (a).(P [f ])
(Rel3) (P +Q)[f ] = (P [f ])+ (Q[f ])

Axiomatizing Bisimilarity

Given the equational reasoning rules given above, the remaining step in specifying
an equational proof system for a given algebra and congruence relation is to give
a set of non-logical (i.e., algebra-specific) axioms specifying the desired equalities
that hold among the operators. Table 1 gives these for finite CCS and bisimilarity.

The presentation of the equational axioms is by operator. Laws (A1)–(A4) in-
volve + and nil; they establish that the former is commutative (A1), associative
(A2) and idempotent (A4), and that nil is a unit for + (A3). The (Exp) axiom shows
how instances of | at the top level of a term may be pushed inside the term, pro-
vided the terms to which | is applied are in a certain normal form. Strictly speaking,
(Exp) is an axiom schema, rather than a single axiom; that is, it is shorthand for an
infinite number of axioms. The laws (Res1)–(Res3) and (Rel1)–(Rel3) describe the
interactions between restriction (respectively, relabeling), and a., nil, and +. One
observation about these laws is that any finite CCS term can be rewritten using them
into another term involving only a., nil, and +.

This proof system can be shown to be sound and complete for bisimulation equiv-
alence. That is, whenever one can prove p = q for specific finite-CCS terms, then
p ∼ q is guaranteed to hold (soundness). Conversely, if p,q are finite-CCS terms
such that p ∼ q , then one can prove that p = q (completeness). What follows is
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Table 2 The CCS τ laws a.τ.P = a.P (τ1)

P + τ.P = τ.P (τ2)

a.(P + τ.Q)= a.(P + τ.Q)+ a.Q (τ3)

an example equational proof; the names of the axioms are given in the rightmost
column. Here we write 0 for nil.

a.(b.0+ (c.0+ b.0))+ 0 = a.(b.0+ (c.0+ b.0)) (A3)
= a.(b.0+ (b.0+ c.0)) (A1)
= a.((b.0+ b.0)+ c.0) (A2)
= a.(b.0+ c.0). (A4)

Axiomatizing Observational Congruence

An axiomatization for ≈C can also be given for finite CCS. It should first be noted
that bisimilarity implies observational congruence; that is, if p ∼ q then p ≈C q .
This implies that all the non-logical axioms given in Table 1 are sound also for ≈C .
To those rules we can add the ones given in Table 2 in order to obtain a sound and
complete axiomatization for ≈C . (These new axioms are sometimes referred to as
the τ laws.)

It is tempting to replace the three τ laws by a single law, τ.P = P . However, this
law is not sound for ≈C , as the previous discussion showed: τ.a.nil �≈C a.nil.

Axiomatizing Full CCS

The previous equational axiomatizations treated only finite CCS, namely, CCS with-
out process definitions. One is led naturally to the question of axiomatizing full
CCS, including terms with process constants. Unfortunately, such a full axiomatiza-
tion cannot be given; both ∼ and ≈C are not recursively enumerable for full CCS,
and thus no proof system can be given that is both sound and complete. Researchers
have instead focused on giving sound and complete axiomatizations for fragments
of CCS that include process constants (cf. regular CCS), and on studying sound, but
not complete, approaches to reasoning about full CCS with process constants (cf.
the Unique Fixpoint Induction rule). The interested reader is encouraged to consult
the CCS-specific references for more information on these topics.

32.2.2 CSP: Process Algebra via Denotational Semantics

In the 1970s, Hoare developed the Communicating Sequential Processes (CSP) pro-
gramming model for concurrent, message-passing systems. Initially, this was an
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imperative programming language [40] combining primitives for sending and re-
ceiving messages in a handshaking (AKA synchronous) manner and top-level par-
allelism.

To understand the foundational semantic issues of this model of concurrency,
Hoare, assisted by his then students Brookes and Roscoe, developed the pro-
cess algebra version of CSP, sometimes called TCSP or Theoretical CSP, in the
late 1970s and early 1980s. The primary references for the latter development
are [12, 13, 41, 42]. Like CCS and ACP (see Sect. 32.2.3 below), CSP includes
a small number of basic constructs for assembling systems out of subsystems. The
operators differ in several respects from those of CCS. A more fundamental distinc-
tion, however, lies in the approach taken to define the semantics of CSP. Instead of
the operational style favored by CCS, (T)CSP was first equipped with denotational
semantics. Specifically, a mathematical set of semantic objects was developed, and
the CSP operators given formal specifications as functions over this set. The re-
finement ordering and equivalence on process terms are then inherited from the
underlying ordering of this set. The additional structure in the set (“model”) ensures
a coherent treatment of recursively defined processes, though this, like the abstract
operator definitions, has to be reconciled with operational intuition.

Later, the CSP process algebra was combined with a pure functional program-
ming language in the CSPM language [80] that is used in automated analysis, once
again making it an expressive programming language, this time declarative.

The rest of this subsection elaborates on the ideas above. The syntax of (a version
of) CSP is introduced, and the considerations underlying the design of the seman-
tic model considered, namely failures-divergences. Then, the semantics of CSP is
given, and the semantic refinement ordering discussed. Finally, connections with an
operational semantics of CSP are described.

32.2.2.1 CSP Syntax

In common with CCS, CSP builds process descriptions from atomic actions using a
set of operators, here slightly larger than that of CCS.

Actions in CSP

All actions that appear in the CSP language represent visible synchronizations that
require the agreement of the process and its environment to occur.

No particular structure is assumed of CSP’s events, though compound events are
frequently constructed using an infix dot, typically with a label followed by zero or
more data components as in output.2.3.true. CSPM mandates this form, where for
each label (generally called a channel when there are data components attached) the
number and types of the data components are declared and therefore fixed. The set
of all such events usable in the language is generally written Σ . Depending on the
class of processes being described, Σ might be finite or infinite.
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In CSP, there is no pairing of events as in the α, α of CCS. Instead processes
typically synchronize multiple (perhaps more than two) copies of the same event.

Apart from this main sort of action, there are two other events to consider. Firstly,
our intuition about the operational behavior of CSP processes includes the same τ
used in CCS, but τ plays no part in the language itself. Secondly, there is a special
visible event �, introduced only via the process SKIP , representing successful
termination; so, when it appears, it is always the last event a process performs. τ
and � are not members of Σ .

CSP Constructs

• STOP represents a process that can perform no action.
• Given a ∈Σ , the prefixing operator a→ allows an action to be prepended onto

an existing system description and corresponds precisely to prefixing in CCS.
CSP allows us to generalize prefixing beyond simple actions with choice forms
such as ?x :A→ and c?x→, which respectively allow the process to communi-
cate any event from the set A⊆Σ and any event on the channel c. In such cases,
the process term following the prefix can depend on the identifier x.

• < represents internal, nondeterministic choice. The system P1 <P2 has the choice
of behaving like P1 or P2 as it wishes: other processes and the environment have
no influence over this choice.
<S, for a nonempty set S of processes, is the nondeterministic choice over

them all. In general, S can be infinite, but this introduces infinite, or unbounded,
nondeterminism.

• � represents external choice. P1�P2 allows its environment all actions from Σ

initially offered by P1 or P2, and behaves like one of these processes does after
the chosen action. So if the chosen action a is only possible for P1, the process’s
subsequent behavior is that of P1 after a. If the chosen a is initially possible for
both P1 and P2, the subsequent behavior is nondeterministically (in the sense of
<) like that of P1 or P2 after a. Importantly (and unlike CCS), P1�P2 is not
resolved by either process performing an invisible τ .

• ‖ denotes parallel composition. This simply synchronizes events which are com-
mon between its arguments, letting them remain visible for further synchroniza-
tion. There are two variants on it: PA‖BQ (alphabetized parallel) allows P to
perform actions in A and Q in B , with events in A∩B being synchronized (i.e.,
such an action only occurs when both P and Q perform it). P ‖

A

Q (generalized

or interface parallel), allows each of P and Q to perform actions outside A inde-
pendently, even though there may be such events common to P and Q. Just the
events in A are synchronized.

Interleaving parallel P |||Q, is a synonym for P ‖
∅
Q, and allows P and Q to

communicate freely and independently.
• \ A denotes hiding. P \ A behaves like P except that all actions in A ⊆ Σ be-

come invisible τ s. Unlike CCS restriction, it does not prevent the actions in A,
but rather prevents the environment either seeing them or blocking them.
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• [[R]], for R a relation on Σ , is renaming. If P can perform the action a and a R b
then P [[R]] can perform b. Conventionally, R is total on the actions possible
for P , but is not restricted to be a function or injective.

For the purposes of this summary presentation, we will describe the semantics
of only core CSP built from the operators in the above list (using only simple pre-
fix, and only the interface form of parallel ‖

X

). Just about all presentations of CSP,

however, include the rest of the constructs above together with some or all of the
following constructs, each of which provides means for one process to hand control
over to a second one.

• SKIP represents a process that terminates successfully by performing the
event �. The counterpart to this is sequential composition P ;Q, which starts
Q when P terminates.

• P�Q is the interrupt operator, in which P runs but if Q performs an action, it
takes over from P ; so, (a→ P)�(b→Q)= (a→ (P�(b→Q)))�(b→Q).

• P Θa Q allows P to run, but as soon as P performs a, Q takes over. Thus
(b→ a→ P)Θa Q= b→ a→Q. This operator models the left-hand argument
throwing an exception, via a, and is therefore called the throw operator.

The extended set of operators can be important for practical applications, and is
important for a number of theoretical results about the classification of CSP models
and one we allude to later about the expressiveness of CSP.

Like CCS, CSP has an operational semantics over labeled transition systems.
Unlike CCS, this was not the primary intuition behind the language, but is now used
extensively in tools such as FDR, and provides a reference for checking the accuracy
of other semantics. For example, the SOS rules for � and ‖

X

are as follows (note how

they reflect the intuition above and contrast with the corresponding CCS clauses):

p
τ−→ p′

p�q τ−→ p′�q
q

τ−→ q ′

p�q τ−→ p�q ′

p
a−→ p′

p�q a−→ p′
a �= τ q

a−→ q ′

p�q a−→ q ′
a �= τ

p
x−→ p′

p ‖
X

q
x−→ p′ ‖

X

q
x /∈X

q
x−→ q ′

p ‖
X

q
x−→ p ‖

X

q ′ x /∈X

p
a−→ p′, q a−→ q ′

p ‖
X

q
a−→ p′ ‖

X

q ′ a ∈X

The rest of the clauses may be found in [75], where there is also a character-
ization of the CSP-like style of operational semantics that guarantees a language
has a semantics in CSP models. This might apply to any language where the oper-
ational semantics, like those of the notations in this chapter, are cast in visible and
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τ actions, and given in terms of structural operational semantics. In a sense made
precise there, a CSP-like operational semantics is one where there are no negative
premises to actions, no copying of a process in flight, and where τ actions of active
sub-processes are always enabled but have no effect on outer context.

It turns out that CCS is not CSP-like in this sense because of the way that τ
interacts with +, which breaches the last of these conditions. However, versions of
the π -calculus such as [79], where use of + is confined to a limited class of terms,
are CSP-like [74]. Any CSP-like language can (Chap. 9 of [75]) be translated in
a semantics-preserving sense (strong bisimilarity in the absence of the termination
event �) into the full (rather than core) CSP notation.

32.2.2.2 Models for CSP Processes

The development of the CSP process algebra was to some extent guided by the sort
of operational intuition seen above for CCS, but at least as much by the quest for
the right set of algebraic laws, as with ACP (see Sect. 32.2.3 below). However the
core semantic understanding of CSP during its development was in terms of mathe-
matical models based on observing the behavior of processes. Thus a process would
be identified with the set(s) of all behaviors of some type or types that it is capable
of performing. The touchstone of such models was that the semantics of CSP over
them would satisfy the desired laws and offer a denotational semantics for the lan-
guage at an appropriate level of abstraction. So such a model would necessarily be a
congruence for the language, namely, it is possible to compute the value in a model
of a process such as P�Q in which one or more processes are combined by CSP
operators, solely from the values of the components (here P and Q). It must also
offer a technique for computing the fixed point represented by any recursive term.
While CSP now has the SOS-style operational semantics described above, this was
developed several years later than the earliest of these behavioral models.

Quite a number of such models have been developed, as set out in [75], but here
we will concentrate on the core one originally set out in [13] as a development from
the one of [12]. This is the failures-divergences model, and is the one after which
FDR is named. In the presentation here, we will ignore the termination event �,
since that adds slight complications and is not required for our core CSP. The fol-
lowing types of behavior make up the model:

• A trace is a sequence of events in Σ that the process can be observed to perform
in order. In general, a trace can be finite or infinite, but in this model we only
consider finite traces: members of Σ∗.4

4Traces are written 〈a, b, c〉 (〈 〉 being the empty trace), with sˆt being concatenation, s �X forX ⊆
Σ being restriction—the subsequence of s consisting of members of X—and s \X = s � (Σ \X).
We write s ≤ t if s is a prefix of t , namely ∃s′.sˆs′ = t . A∗ is the set of all finite sequences whose
members are drawn from the set A.
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• A process diverges if it performs an infinite sequence of τ actions, thus never be-
coming stable. This might happen because of an infinite series of hidden actions,
but also might represent a process that must unwind a recursion infinitely without
ever reaching a visible action or even a state5 like STOP . Note that τ s are not
included in these traces.

• A process refuses X ⊆Σ just when it is in a stable (τ -free) state V that cannot
perform any member of X (i.e., �x ∈X ∪ {τ }.V x−→)

• A failure (s,X) is the coupling of a trace s with a set X that a process can refuse
after performing s.

A model is divergence-strict if it identifies all processes that can diverge before
performing any visible action. So for example, if div is a process that simply di-
verges, such as AS \ {a} for AS = a→AS, a divergence-strict model will identify
div, div�P , div <P , and divX‖YP for any P , X, and Y since they can all perform
an infinite unbroken sequence of τ actions from their initial states. However since
a→ div does not diverge until after a visible action, there such models need not
(and will not, except in the trivial model that identifies all processes) identify this
last process with div. The failures-divergences model, which is divergence-strict,
represents a process P as a pair of sets (F,D), where

• F is the set of failures it can perform, extended by all (sˆt,X) for diver-
gences s of P as defined below. This divergence-strict set of failures is denoted
f ailures⊥(P ).

• D is the set of all extensions of traces after which P can diverge; i.e., the set
of all sˆt such that P can perform the trace s and reach a divergent state. This
divergence-strict set of divergences is denoted divergences(P ).

The reason for the assumption of divergence-strictness here is to make the model
compositional. It can mainly be dispensed with, as shown in [73], but not without
introducing an extra component of infinite traces (so that the representation of a
process becomes (F �,D�, I �) where F� and D� are failures and divergences with-
out closure under divergence-strictness, and I � is the set of all the process’s infinite
traces plus all infinite traces that have an infinite number of prefixes in D�, a weak
variant on divergence-strictness.6 There is also significant extra complexity in the
calculation of the correct fixed point to denote the semantics of recursive terms.

The failures-divergences model itself, which we will write as N , consists of all
those pairs (F,D) satisfying the following healthiness conditions:
F1 T = {s | (s,X) ∈ F } is non-empty and prefix-closed.
F2 (s,X) ∈ F ∧ Y ⊆ X⇒ (s, Y ) ∈ F . When a process refuses X, it refuses any
subset of X.

5In discussing CSP, we generally identify a “process” with the corresponding element of the ab-
stract semantic model under consideration. A “state”, on the other hand, is a process term consid-
ered as part of the operational semantics.
6This inclusion of infinite traces where divergence can occur at infinitely many points is all that
remains of divergence-strictness. [73] demonstrates that there can be no satisfactory fixed-point
theory for recursion without it.
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F3 (s,X) ∈ F ∧Y ∩{x | sˆ〈x〉 ∈ T } = ∅⇒ (s,X∪Y) ∈ F . When a process refuses
X it also refuses all events that the process can never perform after the same trace.
D1 s ∈D ∧ t ∈Σ∗ ⇒ sˆt ∈D.
D2 s ∈D⇒ (s,X) ∈ F .

N is a complete partial order under the refinement order 8FD defined

(F,D)8FD (F ′,D′)≡ F ⊇ F ′ ∧D ⊇D′
whose bottom element is (Σ∗ ×P(Σ),Σ∗), the value that represents any process
that can diverge immediately. It has many maximal elements, representing deter-
ministic processes: ones that can never diverge, and can never have the choice of
accepting or refusing any event. If SKIP and sequential composition are added to
the language, the model becomes slightly more complex to define, because of the
role of � as a final signal event representing termination, and uses several extra
healthiness conditions.

The two best-known alternatives to N are the traces model, which records only
a process’s finite traces, and the stable failures model, which records both finite
traces and the failures not extended by divergence strictness. However there are
many others, and the reader is referred to Chaps. 10–12 of [75] for a classification of
those based on linear observations consisting of events, refusals, and their extension
acceptances or ready sets that allow the observer to see the exact set of actions
offered by a stable state. (Here, divergence can be viewed as the indefinite absence
of stability.)

Rather than use a separate logic to specify properties of processes, the most com-
mon approach is to use the idea of refinement: in any CSP model, one process refines
another if its recorded behavior is (component-wise where appropriate) as in the def-
inition of 8FD above. Thus, restricting the range of a process’s recorded behavior
makes it more refined.

As well as having the obvious role of deciding when one proposed implemen-
tation is more refined than another, refinement is very frequently used in the form
Spec8 Imp, where Spec is a process designed to represent a specification, Imp is
our proposed implementation, and the model used for 8 is chosen (in conjunction
with Spec) so that it captures all of the behavior required to capture the specification
in hand. Thus, a property that bans particular members of Σ , or one that says that
events never happen in the wrong order, would use trace refinement; to check dead-
lock freedom you would use (stable) failures refinement to check that the process
had no failure of the form (s,Σ) (i.e., reaching a state where no event is possible at
all); but to check that a process will definitely respond when offered a set of events
(i.e., can neither diverge nor deadlock when offered it) requires refinement over N .

A behavioral specification cast in such a model is one that states that every ob-
served behavior of the process P satisfies a given property. Thus, Hoare defined
that a process whose alphabet consists of {in.x, out.x | x ∈ T } is a partially correct
buffer if the sequence of outputs on out is always a prefix of the inputs on in. This
can be extended to a complete specification of a buffer over N : here we can insist
that the process never diverges, never refuses to output when non-empty and never
refuses to input when non-full. In [42], Hoare cast such specifications in predicate
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calculus, but it is always possible over any CSP model to find, for every behav-
ioral specification R, a (possibly infinitary) characteristic process SpecR that both
satisfies R and such that SpecR 8 P if and only if P satisfies R.

Each CSP model defines its own equivalence on processes. So, for example,
P and Q are failures-divergences equivalent if their representations in N are the
same. Every model in the class considered in [75] gives a coarser equivalence than
strong bisimulation, but all except the coarsest of them all (traces) is incompara-
ble with weak bisimulation. However [75] the equivalence induced by every CSP
model is coarser than the divergence-respecting weak bisimulation—the maximal
weak bisimulation that never identifies a divergent node and a non-divergent node.

32.2.2.3 A Denotational Semantics for CSP

Given a model M , any CSP term P represents a function from M -environments
(mappings from the free process identifiers to M ) to M . Such functions can be
calculated in terms of a denotational semantics for CSP over M , consisting of a
definition for each operator over M , and a mechanism for finding the semantics of
recursive terms.

This semantics for operators must coincide with operational intuition, and the
fixed-point theory that delivers the meaning of recursions has to give the opera-
tionally correct values. Given that we have the operational semantics, these two
statements can be tested mathematically by building congruence results, as dis-
cussed and demonstrated in the literature, for example [71, 72, 75].

As an example, we give here the semantics of the core language over N . This
is valid only for finitely nondeterministic CSP, namely without operators that can
introduce infinite branching on any single action: these are infinite nondeterministic
choice, hiding an infinite subset of Σ , and a renaming relation that maps infinitely
many actions onto a single result. To handle unbounded nondeterminism (which is
not relevant at present for model checking) one can add an extra model component
of the process’s divergence-closed infinite traces.7

The semantics below is that of [72] simplified by the removal of special cases
for �. Note that a number of the definitions require divergence-strictness to be
enforced by a special term, for example the last components of the unions in the
definitions of f ailures⊥(P�Q) and f ailures⊥(P ‖

X

Q) below.

f ailures⊥(STOP)= {(〈 〉,X) |X ⊆Σ},
divergences(STOP)= ∅.
f ailures⊥(a→ P)= {(〈 〉,X) | a /∈X} ∪ {(〈a〉ˆs,X) | (s,X) ∈ f ailures⊥(P )},
divergences(a→ P)= {〈a〉ˆs | s ∈ divergences(P )},
f ailures⊥(P <Q)= f ailures⊥(P )∪ f ailures⊥(Q),
divergences(P <Q)= divergences(P )∪ divergences(Q),

7This fully divergence-strict model with infinite traces is coarser than the one alluded to earlier
with only a weak form of divergence-strictness.
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f ailures⊥(P�Q)= {(〈 〉,X) | (〈 〉,X) ∈ f ailures⊥(P )∩ f ailures⊥(Q)}
∪ {(s,X) | (s,X) ∈ f ailures⊥(P )
∪ f ailures⊥(Q)∧ s �= 〈 〉}
∪ {(〈 〉,X) | 〈 〉 ∈ divergences(P )∪ divergences(Q)},

divergences(P�Q)= divergences(P )∪ divergences(Q),
f ailures⊥(P ‖

X

Q) = {(u,Y ∪Z) | Y \X = Z \X
∧ ∃s, t.(s, Y ) ∈ f ailures⊥(P )∧ (t,Z) ∈ f ailures⊥(Q)

∧ u ∈ s ‖
X

t}
∪{(u,Y ) | u ∈ divergences(P ‖

X

Q)},
divergences(P ‖

X

Q) = {uˆv | ∃s ∈ traces⊥(P ), t ∈ traces⊥(Q).
u ∈ s ‖

X

t ∧ (s ∈ divergences(P )
∨ t ∈ divergences(Q))}.

Here, s ‖
X

t is the set of traces (empty when s � X �= t � X) where there is a

labeling of all events outside X with 1 or 2 such that deleting all events labeled 1
gives t , and deleting all events labeled 2 gives s.
f ailures⊥(P \X) = {(s \X,Y) | (s, Y ∪X) ∈ f ailures⊥(P )}

∪ {(s, Y ) | s ∈ divergences(P \X)}.
This observes that a state of P \X is only stable when the corresponding state

of P is not only stable but also refuses X.
divergences(P \X) = {(s \X)ˆt | s ∈ divergences(P )}

∪ {(u \X)ˆt | u ∈ traces⊥(P )∧ (u \X) is finite}.
Here, X, for X ⊆Σ∗, is the set of all infinite traces all of whose finite prefixes

are in X. This definition relies on P being finitely nondeterministic, since this
brings König’s Lemma into play, allowing us to infer infinite traces from the set
of finite ones.
f ailures⊥(P [[R]]) = {(s′,X) | ∃s.s R s′ ∧ (s,R−1(X)) ∈ f ailures⊥(P )}

∪ {(s,X) | s ∈ divergences(P [[R]])}.
Here, R−1(X) = {a | ∃a′ ∈ X.(a, a′) ∈ X} is the set of all events that map to

X under R. Note that we also use R extended to traces.
divergences(P [[R]])= {s′ˆt | ∃s ∈ divergences(P )∩Σ∗.s R s′}.

Every CSP term represents a monotone8 operator over N with respect to8FD . It
follows by Tarski’s theorem that each CSP-defined operator F(P ) from N to itself
has a 8FD-least fixed point. This is the denotation of the recursive term μp.F (p).
This fixed point is the operationally correct one for N . Different fixed-point theo-
ries are required for other CSP models.

8Indeed, every finitely nondeterministic term represents a continuous operator, meaning that it
preserves the least upper bounds of linearly ordered sets under 8FD .
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32.2.2.4 Timed CSP

Though we do not go into detail here, we remark that a real-time version of CSP
called Timed CSP was introduced by Reed and Roscoe [70] and extensively devel-
oped in works such as [81]. This takes essentially the same operators as the untimed
CSP we have seen to date and gives them an exact real-time interpretation, usually
with the non-negative real numbers as the times at which events occur. The only ex-
tra operator that is necessary is the process WAIT (t), which waits for t time units
before terminating with �. (Other timing constructs such as time-out can be defined
in terms of this and the other CSP operators.)

The same basic philosophy of defining equivalence through behaviorally based
models was used for Timed CSP. However, despite the similarity of the languages,
the considerations of time mean that the models for Timed CSP look rather different
from those we have seen already. For example, divergence plays a much more minor
role, and in order to get a compositional model it is necessary to record what actions
a process refuses at every instant during a behavior.

The most usual fixed-point theory for the denotational semantics of recursion
in Timed CSP uses the contraction mapping theorem for complete metric spaces,
rather than Tarski’s theorem as above.

32.2.3 ACP: Process Algebra via Equational Semantics

In this section, we present the process algebra ACP [9] and its equational theory.
ACP also has an LTS-style semantic theory in the form of a graph model and corre-
sponding notion of bisimulation. We omit this from our discussion of ACP, in order
to focus on its equational theory, which is ACP’s hallmark.

As is the practice in ACP, we begin with the theory BPA (Basic Process Al-
gebra), which describes processes constructed from constants, plus, and sequential
composition. We will then add to BPA a notion of parallel composition (merge and
left-merge) to obtain PA (Process Algebra. Finally, the theory ACP is derived by
extending BPA with the constant δ (for deadlock), a combined notion of parallel
composition and communication, and a restriction operator.

32.2.3.1 BPA

The signature Σ(BPA(A)) consists of one sort P (for processes) and three types of
operators: constant processes a, for each atomic action a, the sequential composition
(or sequencing) operator ‘·’, and the alternative composition (or nondeterministic
choice) operator ‘+’. The set of all constants is denoted by A, and is considered a
parameter to the theory.

Σ(BPA(A))= {a : → P|a ∈A} ∪ {+ : P× P→ P} ∪ {· : P× P→ P}.
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The axiom system BPA(A) is given by:

x + y = y + x A1
(x + y)+ z= x + (y + z) A2
x + x = x A3
(x + y) · z= x · z+ y · z A4
(x · y) · z= x · (y · z) A5

Note the absence of the axiom x · (y + z)= x · y + x · z, which does not hold in
ACP’s bisimulation model.

In the setting of BPA(A), bisimulation, denoted ↔–– , is a congruence (see, e.g.,
[7]).

Proposition 1 If G1 ↔–– G2, then G+G1 ↔–– G+G2, G ·G1 ↔–– G ·G2, and
G1 ·G↔–– G2 ·G.

We have that A PG (A,N)/↔–– , the graph model, is indeed a model of the axiom
system BPA(A), and that BPA(A) constitutes a complete axiomatization of process
equivalence in A PG (A,N)/↔–– .

Theorem 2 ([7])

1. A PG (A,N)/↔–– |� BPA(A)
2. For all closed expressions p, q over Σ(BPA(A)):

A PG (A,N)/↔–– |� p = q �⇒ BPA(A) ? p = q.

32.2.3.2 PA

The signature Σ(PA(A)) is obtained from Σ(BPA(A)) by adding an interleaving
merge operator ‖ and a left-merge operator //.

Σ(PA(A))=Σ(BPA(A))∪ {‖: P× P→ P} ∪ {//: P× P→ P}
Intuitively, the process x ‖ y is obtained by interleaving (shuffling) the atomic

actions of x and y together. Left-merge is an auxiliary operator in that it permits ‖
to be specified in finitely many equations. The process x // y has the same meaning
as x ‖ y, but with the restriction that the first step must come from x.

The axiom system PA(A) is given by:

BPA(A)+
x ‖ y = x // y + y // x M1
a // x = a · x M2
(a · x) // y = a · (x ‖ y) M3
(x + y) // z= x // z+ y // z M4

Again one may notice that ↔–– is a congruence, A PG (A,N)/↔–– |� PA(A) and
(see [7]) PA(A) constitutes a complete axiomatization of process equivalence in
A PG (A,N)/↔–– .
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32.2.3.3 ACP

The equational system ACP treats the operators of BPA(A) as well as the new con-
stant δ representing deadlock; a communication merge operator | describing the
result of a communication between any two atomic actions; a merge operator ‖ and
left-merge operator // like those of PA(A) but which additionally admit the possi-
bility of communication; and a family of restriction operators ∂H , H ⊆ A. We will
also need an auxiliary operator I that defines the initial actions that a process can
perform.

Letting Aδ = A ∪ {δ}, the signature of ACP−I (A) extends that of PA(A) as fol-
lows:

Σ(ACP−I (A))=Σ(PA(A))∪ {δ :→ P} ∪ {| : P× P→ P}
∪ {∂H : P→ P |H ⊆A} ∪ {I : P→ 2Aδ }

It is convenient to define communication merge as the extension of a binary com-
mutative and associative function on atomic actions (i.e., | : Aδ × Aδ→ Aδ) with
δ acting as a multiplicative zero. This is accomplished with axioms C1–3 below.
We further require |, restricted to Aδ ×Aδ , to be total and this is expressed by the
following axiom:

∀a, b ∈ P. Aδ(a)∧Aδ(b) �⇒ Aδ(a|b) C0

Here, Aδ is the characteristic predicate of Aδ :

Aδ(x)=
∨

a∈Aδ
(x = a).

The axioms of ACP−I (A) are now given. In this system, a, b, c range over Aδ ,
Hδ =H ∪ {δ}, for H ⊆A, and ∩, ∪ are used on 2Aδ without further specification.

BPA(A)+
x + δ = x A6
δ · x = δ A7

+

C0+
a | b= b | a C1
(a | b) | c= a | (b | c) C2
δ | a = δ C3

+
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x ‖ y = x // y + y // x + x | y CM1
a // x = a · x CM2
(a · x) // y = a · (x ‖ y) CM3
(x + y) // z= (x // z)+ (y // z) CM4
a | (b · x)= (a | b) · x CM5
(a · x) | b= (a | b) · x CM6
(a · x) | (b · y)= (a | b) · (x ‖ y) CM7
(x + y) | z= x | z+ y | z CM8
x | (y + z)= x | y + x | z CM9

+
I (a)= {a} I1
I (x · y)= I (x) I2
I (x + y)= I (x)∪ I (y) I3

+
a ∈H �⇒ ∂H (a)= δ D1
a �∈H �⇒ ∂H (a)= a D2
∂H (x + y)= ∂H (x)+ ∂H (y) D3
∂H (x · y)= ∂H (x) · ∂H (y) D4

As noted on the Wikipedia page for ACP and as can be seen in our treatment
of ACP in this chapter, the development of ACP focused on the algebra of pro-
cesses (more so than CCS and CSP), and sought to create an abstract, generalized
axiomatic system for processes [57]. In fact, the term process algebra was coined
during the research that led to ACP.

32.3 Algorithms and Methodologies

32.3.1 Bisimulation and Simulation

In the case of finite-state CCS processes, that is, those whose underlying LTSs are
finite-state, we have the following main result. Let p and q be finite-state processes
whose underlying LTSs have a total of n states and m transitions. Then, as was
shown by Kanellakis and Smolka [47], whether or not p and q are bisimilar can
be decided in polynomial time, O(nm) time to be exact. This algorithm, which has
come to be known as Relational Coarsest Partitioning (RCP), was subsequently im-
proved upon by Paige and Tarjan who devised one that runs inO(m logn) time [63].
This is in stark contrast to the equivalence problem for regular expressions, which
was shown to be PSPACE-complete [45].

The Kanellakis–Smolka algorithm exploits the fact that an equivalence relation
on a set of states may be viewed as a partition, or set of pairwise-disjoint subsets
(called blocks) of the state set whose union is the state set. In this representation,
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function split(B,a,B ′)=
{{ s ∈ B | ∃s′ ∈ B ′. s a−→ s′ }, { s ∈ B | ¬∃s′ ∈ B ′. s a−→ s′ }} − {∅};

algorithm bisim(Q,ACCS,−→);
begin
P1 := {Q};
P2 := ∅;
while P1 �= P2 do begin
P2 := P1;
P1 := ∅;
foreach B ∈ P2 do P1 := P1 ∪ split(B,a,B ′);

end
end

Fig. 2 The Relational Coarsest Partitioning algorithm for bisimulation equivalence

blocks correspond to the equivalence classes—so two states are equivalent exactly
when they belong to the same block. Beginning with the partition containing one
block (representing the trivial equivalence relation consisting of one equivalence
class), the algorithm repeatedly refines this partition (by splitting blocks) until the
associated equivalence relation becomes a bisimulation.

In order to determine whether the partition needs further refining, the algorithm
looks at each block in turn. If a state in a block B has an a-derivative in a block
B ′ and another state in B does not, then the algorithm splits B into two blocks, one
containing the states having an a-derivative in B ′ and the other containing the states
that do not. When no more splitting is possible, the resulting equivalence relation
corresponds exactly to bisimulation equivalence on the given transition system.

The algorithm is given in Fig. 2. It takes as input the (finite-state) LTS
(Q,ACCS,−→), and computes as output the partition P1 of Q corresponding to
bisimulation equivalence. Function split is used to split one block with respect
to another; notice that split(B,a,B ′) = {B} (i.e., B is not split with respect to
a and B ′) if either all the states in B , or none of them, have an a-derivative in B ′.
It should also be pointed out that P1 = P2 exactly when no more splits in P1 are
possible. The worst-case complexity of bisim is O(|−→| ∗ |Q|).

Bisimulation was originally defined by Milner as the limit of a sequence of suc-
cessively finer equivalence relations, ∼k , where ∼1 is trace equivalence. Kanellakis
and Smolka also showed that, for each fixed k, deciding ∼k is PSPACE-complete,
a complexity that disappears in the limit; i.e., upon reaching ∼.

As for weak bisimilarity on finite-state processes, one can first pre-compute the
weak transition relation (which simply amounts to computing the transitive clo-
sure) and construct new regular processes where transitions are replaced with weak
transitions. On these new regular systems the algorithms for (strong) bisimilarity
checking can be used. Hence the problem for weak bisimilarity can also be decided
in polynomial time.

There are also algorithms for computing similarity relations of both finite-state
and infinite-state processes. In [38], an O(mn) algorithm is presented for comput-
ing the similarity relation of a finite-state process with n states and m transitions.
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For effectively presented infinite-state processes, they present a symbolic similarity-
checking procedure that terminates if a finite similarity relation exists.

32.3.2 Checking Refinement over Behavioral Models

A few years after the discovery of trace equivalence [41] and N , Kanellakis and
Smolka [47] showed that equivalence checking based on this type of model is po-
tentially very expensive: PSPACE-complete in the size of the state spaces of the pro-
cesses involved (itself frequently exponential in the number of their parallel compo-
nents). There was therefore a period of several years during which model checking
based on such models seemed unattractive compared with the polynomial (in state
space) algorithms which exist to check bisimulation-style equivalences. After all,
equivalence checking and refinement checking both reduce easily to one another,
when we note that P 8Q⇔ P ≡Q over such models. However, as we will see
shortly, things were not as bad as they seemed.

FDR (standing for Failures Divergences Refinement) is a refinement checker for
CSP that was first released in 1991 after its initial development as part of a hardware
verification project. It is presently maintained by the Oxford University Department
of Computer Science. Its primary functionality is to check refinement in a number of
CSP’s behavioral models, including those discussed in Sect. 32.2.2. The capabilities
and limitations of FDR are much more fully set out than we have space for here in
Roscoe’s 2010 book [75] and more recent papers [3, 4, 32].

In deciding whether Spec 8 Imp, it first determinizes, or normalizes, Spec. In
other words, it transforms Spec into a form that has a unique state for every trace.
It is in this transformation that FDR’s algorithm has the potential to exhibit the ex-
ponential complexity we would expect when solving a PSPACE-complete problem.
For in calculating the normal form of Spec, it is natural to discover the set of subsets
of Spec’s states that have some trace in common: in pathological cases, the number
of such subsets can be exponential.

Such pathology—or indeed anything close to it—is uncommon in cases where
Spec is a coherently designed process, and almost unknown in cases where Spec
is a process representing a clear behavioral specification. In the great majority of
FDR use cases the process on the left-hand side of refinement is a specification with
relatively few states, and the time taken to normalize it is trivial.

Given a normalized specification Spec and an implementation Imp, FDR seeks
to prove that there is no state reachable in Spec × Imp, where Imp displays a
behavior (typically an event, refusal set, or divergence) that Spec does not. Either
it covers all reachable states without finding such a situation, or it finds a counter-
example and displays the way Imp performs it. This is, of course, just model check-
ing. If Spec× Imp were explored one state at a time, it follows that the complexity
of this phase is at worst the product of the (normalized) state space of Spec and
the (unnormalized) one of Imp. In most cases, just one Spec normal-form state is
visited per state of Imp.
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32.3.3 Diagnostic Information (HML , �FD)

In [15], Cleaveland presented an algorithm for generating an HML formula that dif-
ferentiates between two bisimulation-inequivalent finite-state systems. The method
works in conjunction with the Relational Coarsest Partitioning algorithm for com-
puting bisimulation equivalence (see Sect. 32.3.1) and yields formulae that are often
minimal in a precisely defined sense.

The method of [15] uses information computed by a slightly altered version
of the RCP algorithm that, in addition to computing the partition as described in
Sect. 32.3.1, retains information about how blocks are split. Then, a postprocessing
step constructs a formula distinguishing the states in one block from the states in
another.

The RCP algorithm is modified as follows. Rather than discarding an old partition
after it is refined, the new procedure constructs a “tree” of blocks as follows. The
children of a block are the new blocks that result when the block is split; accordingly,
the root is labeled with the block Q, and after each iteration of the foreach loop
the leaves of this tree represent the current partition. When a block B is split (by
split(B,a,B ′)), we place the new block B1 = { s ∈ B | ∃s′ ∈ B ′. s a−→ s′ } as the
left child and the new block B2 = { s ∈ B | ¬∃s′ ∈ B ′. s a−→ s′ } as the right child,
and we label the arc connecting B to B1 with a and B ′. Recall that every state in B1
has an a-transition into B ′ and that no state in B2 does. If a block is not split during
an iteration of the foreach loop, it is assigned a copy of itself as its only child.9

Given a block tree computed by the new version of the RCP algorithm, and two
states s1 and s2 that are inequivalent and hence in different blocks, the postprocess-
ing step builds a formula δ(s1, s2) that distinguishes {s1} from {s2}. Although this
formula will not necessarily be minimal, it will in general be much smaller than the
formula computed using the more naive method described in [15]; it is guaranteed
to be no larger.

The more naive method computes distinguishing formulae by associating a for-
mula, Φ(B), with each block B in the partition computed by RCP in such a way
that the following hold.

• B ⊆ [[Φ(B)]].
• B ′ ∩ [[Φ(B)]] = ∅ if B ′ �= B .

In the initial partition, {Q}, Φ(Q) is set to tt. Now suppose a block B is split,
i.e., suppose there is an action a and another block B ′ such that split(B,a,B ′) =
{B1,B2}, with every state in B1 having a transition into B ′ and no state in B2
having one. Then Φ(B1) may be set to Φ(B) ∧ 〈a〉Φ(B ′), while Φ(B2) becomes
Φ(B) ∧ ¬〈a〉Φ(B ′). Arguing inductively, it is easy to establish that for any block
B , a state satisfies Φ(B) exactly when it is contained in B . Since two states that are
not bisimulation equivalent will eventually wind up in different blocks, it is a simple

9Strictly speaking, this is not necessary; these blocks may be left childless. These spurious children
are included to simplify the inductive argument of correctness.
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Fig. 3 Debugging a divergence in FDR3

matter to compute a formula that distinguishes such states: just return the formula
associated with one of the containing blocks.

The diagnostic offered for failure of a refinement P 8Q over a behavioral model
is invariably a behavior b of Q that is not possible for P . We can generally demon-
strate reasonably succinctly why such a behavior is possible. This is of course ap-
propriate for the case where P represents some sort of specification process. It is
not really possible, where this is desired, to give an explanation for why P does not
permit such a behavior, were we to decide that b is OK and therefore P is at fault
for not permitting it: a behavior might have been allowed in many different ways.
We therefore concentrate on the analysis ofQ’s offending behavior b, which can be
done by providing an explanation of how each component process in Q contributes
to b, perhaps coupled with animation.

The FDR debugger permits one to see the contribution (which, for familiar mod-
els, will always be a trace, a failure, or a divergence) of each component process to
a counter-example. Thus in (P ‖

X

Q) \X the user can look at the top-level behavior,

that of P ‖
X

Q (so with all the hidden events revealed), that of P , and that of Q. The

lowest-level components one can examine are those identified for direct translation
to state machines by the compiler.

Like previous versions of FDR, FDR3 permits one to examine the behaviors of
both the top-level system and its components. However, unlike its predecessors,
FDR3 allows users to inspect all these component behaviors at the same time and
see how they relate to each other, and at the same time allows one to animate the be-
havior of the whole of P or some component thereof. For example Fig. 3 illustrates a
divergence in a small token ring: two nameless10 tokens (initially in nodes 0 and 1—
they are initially in state NodeR rather than the empty NodeE—simply circulate

10Careful examination of the behavior shows that the loop that FDR has detected actually swaps
the position of the two tokens.
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when the nodes do not want to use them, creating an infinite sequence of τ s. In this
view we have chosen to view all the available details: note that top-level actions
typically map down to actions in a subset of the low-level components, with dot-
ted lines meaning that a given component is not participating in the corresponding
event.

The figure illustrates the most general form of a divergence error: an initial se-
quence of τ and non-τ events followed by a loop of events that are all, in the top-
level view, τ s. Trace and refusal errors simply produce a sequence of states, with
the addition of final refusal (alternatively acceptance) sets for each process.

The user is able to inspect each state of every component by mouse clicks on the
window, or to animate them.

This extended functionality is non-trivial in the case where some of the com-
ponents are the subject of state compression functions, particularly because these
frequently make τ s that occur inside the compression disappear when viewed from
the outside. The explanation that FDR3 produces for the counter-example removes
this effect of compression, so such τ s are made explicit in the top level behavior
even though they may not have been seen in the main refinement checking phase.
Aligning such “decompressed” behaviors is challenging for divergent loops.

FDR3 (like FDR2) allows one to control how many counter-examples are re-
ported for a single check, the default being one: if this is set to a higher value the
tool will carry on until it has found the specified number of states exhibiting a breach
of the specification or the state space is exhausted. As reported in Chap. 15 of [75],
this capability can be exploited to return quantitative information, such as a time
bound, about the process under examination.

FDR3 provides a tool which visualizes the transitions of any process and allows
the user to inspect any state in more detail.

32.3.4 Compositional Verification

All process algebras have well-developed theories of process equivalence≡, as out-
lined in Sect. 32.2, and some such as have well-developed theories of refinement in
which P 8Q means in some sense that Q is a refinement of P and so can replace
it without losing correctness. Both these ideas, except for a few exceptional cases,
are always developed in a fully compositional way, in the senses that

• If P ≡Q, then C[P ] ≡ C[Q] for any context C[·] formed in the given process
algebra.

• If P 8Q, then C[P ] 8 C[Q] for such contexts.

The first of these underpins the use of compression operators by FDR and other
model checkers: if we take a complex process P= C[P1, . . . ,Pn] and can find pro-
cesses Qi such that Pi ≡ Qi but Qi has fewer states than Pi , then if we want to
check P for some property R that respects≡ (i.e., P ≡Q⇒ (R(P )⇔R(Q))) then
it is usually easier to check Q= C[Q1, . . . ,Qn], since the latter can be expected to
have fewer states.
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Such manipulations can also be done by hand: if, for such a property R we can
find a simpler Q such that P ≡Q, then to prove C[P ] satisfies R it is sufficient to
prove R(C[Q]).

32.4 Tools

32.4.1 FDR

FDR has gone through three major releases, FDR (1991), FDR2 (1995), and FDR3
(2013) [32], with the last two representing complete re-writes and incorporating
significant algorithm changes. FDR3 can be downloaded from www.cs.ox.ac.uk/
projects/fdr. FDR2 had many incremental releases up to FDR2.94 [3]. FDR2 in-
troduced the CSPM language, which merges the CSP process algebra with a lazy
functional language in the style of Haskell. This combination, introduced by Scat-
tergood [80], allows functional programming to be used for laying out networks,
for defining sets of events such as process alphabets, and for computations involv-
ing the events and parameters used by individual processes. It makes CSP into a
serious programming language that can provide succinct descriptions of substantial
systems.

FDR2 and FDR3 use essentially the same method of enumerating and explor-
ing state machines. This is optimized to deal with the case of networks formed as
the parallel composition of relatively small components. One of the main functions
of the CSPM compiler is to identify these low-level components; it then compiles
each of them into an explicit state machine and derives rules (supercombinators) for
combining actions of these components into actions of the whole system. It there-
fore ends up with an efficient implicit representation of the state space of the im-
plementation that can either be explored explicitly by bit-vector operations or trans-
lated into propositional logic for SAT checking. An implementation of the latter
was reported in [64], and incorporated into later experimental releases of FDR2 [3],
together with a CEGAR implementation and the Static Livelock analysis (SLAP)
techniques reported in [62]. Explicit model checking, however, supplemented by
compression (i.e., state-space reduction) techniques such as strong and divergence-
respecting weak bisimulation, diamond compression, and normalization, and by the
chase operator, generally remains the most effective approach.

The main search mode of FDR has been breadth-first (BFS) because this pro-
duces minimal-length counter-examples and is comparatively efficient in its use of
virtual memory and file storage. Implemented using B-Trees, it works particularly
well with the backing store provided by Solid-State Drives (SSDs).11 DFS is used to

11For example, FDR3 performed a 73-billion-state check, using 707 G of storage on a 16-core
machine with 256 G of RAM and a RAID array of 8 SSDs. The rate of state coverage remained at
just over 700,000 per second over almost the entire check, taking about 29 hours in all. Thus, there
was no slow-down at the point where the disk storage started to be used, or beyond it for reasons
attributable to storage access speed.

http://www.cs.ox.ac.uk/projects/fdr
http://www.cs.ox.ac.uk/projects/fdr
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identify divergence, and can be useful for quickly finding counter-examples when a
system has many.

The most significant innovations in FDR3 are:

• Many functions are parallelized for multi-core and clusters. This and other ef-
ficiency improvements reduce FDR’s most familiar benchmark example, namely
evaluating all 187M states of the standard peg solitaire board (see [72]) to perhaps
5–10 minutes on a standard workstation or laptop with 2–6 cores, 51 seconds on a
40-core server and less that 2 seconds on a supercomputing cluster of 64 16-core
machines. Over a wide range of examples, the current parallel implementation of
this main model-checking phase works well in terms of processor usage and ob-
taining near-linear speed-up. The multi-core work is reported in [32] and the clus-
ter implementation in [33]. Experimental results reported in these papers suggest
slightly super-linear speed-up on average. The latter paper reports the completion
of a check with 1.2 × 1012 explicit states on a cluster of 64 16-core machines
rented from Amazon. This took about 5 hours, and would have had about 1020

states if FDR’s compressions had not been used.
• FDR3 has the potential to support languages other than CSP, provided that their

semantics is CSP-like as discussed above. Future versions of FDR3 will provide
support for users wishing to define their own input language subject to this con-
straint.

• FDR3 has an integrated type checker for the CSPM language.
• The debugger (i.e., counter-example viewer) has been improved.

There have been several experiments in the context of CSP with using sym-
bolic model-checking techniques such as BDDs [87] and the SAT checking men-
tioned above. While these have been successful in finding counter-examples in some
classes of system (some reasonably up-to-date figures for the SAT case may be
found in [64]; ARC is not maintained, and we were unable to obtain a version to
compare), they have not so far, at least to our knowledge, performed significantly
better than FDR with DFS, and have performed relatively badly [64] (even with the
incompleteness of bounded model checking) for cases where there is no counter-
example.

FDR has been extended [4] to encompass the theory of Timed CSP, using Ouak-
nine’s [61, 75] translation to a discrete-time language, where continuous properties
can be inferred using the theory of digitization (first proposed for timed automata
in [39]). The analysis of timed systems requires the use of priority: internal τ ac-
tions must have priority over the passage of time. Besides Timed CSP, FDR3 and
later versions of FDR2 support the priority operator described in Chap. 20 of [75].
Though this operator is only compositional over the finest abstract models of CSP,
it adds significantly to the language’s expressive power; see [76, 77].

32.4.1.1 Using FDR

FDR is largely written in C++, and is currently only supported on Unix platforms
(including Mac OSX), though there are plans for a Windows port of FDR3.
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There are three ways of using FDR. Traditionally, it was used either through its
own GUI or through a command-line interface. In addition, FDR3 has an API which
is starting to replace the command-line interface when integrating it as the back-end
for other tools such as SVA (see below).

The following are some of the major applications of FDR.

• It was the first general-purpose model checker applied to cryptographic proto-
cols, by Gavin Lowe [54], who for over a decade has supported a front-end
(Casper [55]) for FDR that is dedicated to this application.

• The CSPM language has been used to write “compilers” for other notations, such
as a shared-variable language in SVA (see Chaps. 18 and 19 of [75]), and State-
mate Statecharts in [78]. These compilers actually work by simulating the object
program in CSP; the results of the simulation are then analyzed by FDR.

• FDR is integrated into ASD, a technology for developing verified embedded con-
trol software [44]. (As in the examples above, the end-user does not see the CSP
that is generated.) Hundreds of millions of lines of verified code, for systems typ-
ically in the 10s or 100s of thousands of lines of code, have been generated using
ASD for some substantial clients.

• It has been used on many substantial projects, both in research and product devel-
opment, by DERA/QinetiQ; see [89], for example. These include aspects of the
European Fighter Aircraft (Typhoon) and military networking.

• It has been used by over 30 commercial and government organizations in total,
mainly in areas relating to safety-critical systems but also in more diverse applica-
tion development [49] and test-suite generation [65]. Many of these applications
have been based on real-time systems, using the discrete-time variant of CSP
described in Chap. 14 of [72]. This is distinct from the support for Timed CSP
discussed earlier, though it too requires the prioritization of internal events over
the passage of time.

FDR is the work of many people, including Michael Goldsmith, David Jackson,
Paul Gardiner, Bryan Scattergood, and Philip Armstrong. Tom Gibson-Robinson,
aided by Sasha Boulgakov and Armstrong, has led the development of FDR3. The
project has been led throughout by Roscoe and supported by funding from EPSRC,
ONR, DARPA, DERA/QinetiQ, and industrial users. For the period 1991–2007, it
was developed and maintained by Formal Systems (Europe) Ltd., a small Oxford
University spin-off, and since 2008 by Roscoe’s group at Oxford University, De-
partment of Computer Science.

32.4.2 The Concurrency Workbench

The Concurrency Workbench (see http://www.cs.sunysb.edu/~cwb and [19–22]) is
an extensible tool for verifying systems written in various process algebras, includ-
ing CCS. The key feature of the system is its modular design and concomitant
flexibility. The system is built around three generic algorithms: one for computing

http://www.cs.sunysb.edu/~cwb
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equivalences (the general equivalence is based on bisimulation equivalence), one
for computing preorders (the general preorder is based on the divergence preorder
of [84]), and one for model checking in a very rich temporal logic, the propositional
mu-calculus [48]. The system uses the first two of these generic routines to compute
a number of different equivalences and preorders, including the failures/testing rela-
tions, by combining them with suitable process transformation routines [16, 17]. To
decide a given relation, the Workbench applies the appropriate transformation to the
processes in question and then runs the implied generic routine on the transformed
processes. This structure also makes it particularly easy to add new process relations
to the Workbench—just determine the appropriate process transformation and apply
the indicated general procedure.

The model-checking facility of the Workbench enables users to determine when
a process satisfies a formula written in the propositional mu-calculus. The appeal
of the mu-calculus lies in its expressive power and its ability to encode many other
temporal logics (and, indeed, equivalences and preorders [83]) in a uniform fash-
ion [14, 30, 83]. This power results from its capacity for expressing arbitrary re-
cursive formulae. The Workbench also supplies a macro facility that enables new
propositional constructors to be defined in terms of existing ones. This feature en-
ables the development of other temporal logics in the Workbench: one defines the
proposition constructors of the logic as macros, and the model checker may then be
used to check formulae built using these macros.

The inclusion of these different verification techniques permits different styles of
correctness checking to be carried out, and it facilitates the development of method-
ologies that employ more than one of these techniques.

32.4.3 XMC

XMC (see http://www.cs.sunysb.edu/~lmc/ and [69]) supports the specification,
simulation, and verification of concurrent systems such as communication protocols
and embedded systems. It is implemented atop XSB, a high-performance logic-
programming system. System models are specified in XL, a typed value-passing
language based on Milner’s CCS, properties of interest are specified in the modal
mu-calculus, and model checking is used to verify properties of systems. XMC in-
corporates a justifier which allows the user to navigate the proof tree underlying a
model-checking computation; such proof trees are effective in debugging branching-
time formulae. XMC has been successfully applied to the specification and verifi-
cation of a variety of systems including the Rether real-time Ethernet protocol [28],
the Java meta-locking algorithm [8], and the SET e-commerce protocol [56].

32.4.4 mCRL2

mCRL2 [35] is a toolset based on an extended version of ACP. Extensions at the
process-algebra level include the addition of renaming and hiding in forms similar

http://www.cs.sunysb.edu/~lmc/
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to those used in CSP, plus support for time. The language is extended with data in
a form not dissimilar to the extension from CSP to CSPM . As with XMC above,
properties of interest are specified in the modal mu-calculus. It operates by reducing
processes to LTSs and uses state minimizations such as strong and branching bisim-
ulation [34]. It can act as a front-end to LTS analysis tools such as LTSmin [11], and
is capable of dealing with systems with billions of explicit states.

mCRL2 has been widely used in industrial verifications in areas such as bridge
control, and in the development of software for CERN [46], the ALMA radio tele-
scope [66], and a solar-powered car. Some of these are described at mCRL2’s web
page: http://www.mcrl2.org.

32.5 Case Studies

32.5.1 Distributed Leadership Election (FDR)

Many distributed algorithms require the presence of a leader, or coordinator pro-
cess, which plays some central role such as initiating phases or collecting results.
Leadership election algorithms are designed to secure agreement throughout the
network about the identity of such a process. The details of the problem vary with
the network in question: is the topology fixed (e.g., a ring), arbitrary but static, or
dynamic? What initialization do the nodes have (e.g., with different integers)? Do
we have to cope with node or network errors, and/or nodes dying and reviving? Can
the leadership role remain static, or is it expected to be shared among the nodes?

Many election algorithms are based on asynchronous communications; it is, how-
ever, straightforward to simulate this in a process algebra with handshake commu-
nication such as CCS or CSP. Algorithms described for highly symmetric networks
are sometimes stochastic, as when all processes choose a value at random to deter-
mine which is the leader, and it is possible that some may pick the same value. Most
depend on timing ideas such as time-outs. CSP and FDR are capable of handling the
first and third of these ideas, but not the analysis of randomized algorithms. A good
example to examine, therefore is the bully algorithm. This algorithm was first de-
scribed by Garcia-Molina [31]. A full case study is set out in Chap. 14 of [75]. The
CSPM code of that example (as well as much other such code) can be downloaded
from that book’s website http://www.cs.ox.ac.uk/ucs.

The following paraphrases the presentation of the bully algorithm in [23].

This is used to allow a group of N processors to have an agreed coordinator from among
them. It is intended to work despite processors failing and reviving from time to time.12 The
objective is always to have them agree that the coordinator is the highest-indexed processor
that is working. We assume that communication is reliable, but processors can fail at any
time (including during the election procedure that the algorithm represents).

12The algorithm is therefore intended to be fault-tolerant.

http://www.mcrl2.org
http://www.cs.ox.ac.uk/ucs
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There are three types of message in an election, and in our implementation these are repre-
sented by separate channels rather than as data values sent along a single channel of more
complex type. A process sends an election message to all those with a higher index. It
then awaits an answer message in response. If none arrives within time T1, the processor
considers itself the coordinator (as it thinks all the higher ones must be dead), and sends a
coordinator message to all processes with lower identifiers announcing this fact. Oth-
erwise, the process waits a further limited period (T2), expecting to receive a coordinator
message as described in the next paragraph, before beginning another election (if no such
message is received).
If a process receives a coordinator message, it records the identifier of the coordinator con-
tained within it (i.e., the sender of that message) and treats that process as the coordinator.
If a process receives an election message, it sends back an answer message and begins
another election, unless it has begun one already.
When a failed process is revived, it begins an election. If it has the highest live process
identifier, then it will eventually decide that it is the coordinator, and announce this to the
other processes. Thus it will become the coordinator, even though the current coordinator is
functioning. It is for this reason that the algorithm is called the bully algorithm.

The following are the channels13 that the algorithm description refers to explic-
itly:

channel election, answer, coordinator:Proc.Proc

where Proc={0..N-1} and all these represent messages from a sender process
(the first index) to a receiver.

An election.n.m message is used to announce an election (from n to m); an
answer message is sent in response to an election message; and a coordinator
message is sent to announce the identity of the new coordinator. A process begins
an election when it notices that the coordinator has failed.

When you try to translate this into a language like CSP you realize that a lot of
detail has been left out. How do processes notice that the coordinator has failed?
How regularly are such failures tested for? It seems inappropriate to implement the
bully algorithm in such a way that any process (even a failed one) can block another
one from outputting to it. So what happens if processes receive messages that they
are not currently expecting? Developing the example using FDR rapidly makes you
allow for many such cases, and it is not always easy to decide what the right reaction
is to such messages. A typical node state therefore has code to deal with many sorts
of input. For example:

SendElections(k,n) =
(if k<=n then AwaitAnswers(T1,n)

else election.n.k -> SendElections(k-1,n))
[] election?k’:below(n)!n ->answer.n.k’ ->

SendElections(k,n)
[] answer?k:above(n)!n -> AwaitCoordinator(T2,n)
[] ok?k’:above(n)!n -> SendElections(k,n)

13The key word channel declares one or more channels in CSPM that have the type set out after
the colon.
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[] coordinator?c:above(n)!n -> Running’(n,c)
[] fail.n -> Failed(n)
[] test?m:below(n)!n -> SendElections(k,n)

where test and ok are channels used to test coordinators and respond to tests.
One event that the above state cannot communicate initially is tock, the event
representing time passing. This is because the above state is urgent: in the ab-
sence of interruption by other events that happen immediately, this state always
sends the message election.n.k on the current time step. The node can also
be in states AwaitAnswers, AwaitCoordinator, BecomeCoordinator,
RunAsCoord, Running Testing, and Failed.

Discovering how each of these states should react to any of the messages that
might arise without some obvious misbehavior took a number of iterations con-
sisting of checking small implementations of the algorithm against both general-
purpose specifications such as the consistency of the timing model, and case-specific
ones – for example, that if a test has occurred subsequent to any node failure, suf-
ficiently long before the present, then all nodes have the correct view of who the
coordinator is.

Eventually a point was reached where the system was provably correct for three
nodes. Trying it for four, however, resulted in many counter-example traces like the
following:

<fail.2, fail.3, test.1.3, tock, election.1.3,
election.1.2, revive.2, revive.3, coordinator.3.2,
fail.3, test.0.3, tock, coordinator.1.0,
tock, tock, tock, tock, leader.2.3>

This can be interpreted as follows:

1. Nodes 2 and 3 fail.
2. Node 1 tests node 3; when it gets no response an election is started.
3. Both 2 and 3 revive shortly after they miss (through being failed) the election

messages sent from 1.
4. 3 manages to tell 2 it is the coordinator before failing again.
5. 0 begins a test of 3.
6. By this time, 1 decides that, since it has not had any response to the election it

started, it is the rightful coordinator. It therefore tells 0, which preempts the test
it is doing.

7. The specification then gives the system time to settle (the tock events towards
the end of the trace), though nothing of significance actually happens in this time.

8. We are left in a state where 0 and 1 believe 1 is the coordinator, and 2 believes that
3 is (though 3 has failed). Actually, of course, 2 ought to be agreed as coordinator
since it is the highest-indexed live process.

The problem with the above is that all the individual node behaviors seem com-
pletely reasonable within the English description of the bully algorithm given ear-
lier. The eventual conclusion of this study is that the algorithm, as described, is not
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tolerant of a node failing in the middle of sending a sequence of coordinator
messages to the nodes below it.

A solution is proposed in [75] which involves any node which is informed of the
identity of the coordinator always testing that coordinator soon after. This works
for all sizes of system that FDR has verified (up to seven nodes). It is by no means
obvious, unfortunately, how one would create a proof by model checking that this
corrected algorithm works for all N . (In more symmetric and simpler cases it is
sometimes possible to justify arbitrary-sized networks, for example by combining
induction and data independence as in [24–26].)

We might therefore draw the following lessons from this case study:

• Distributed algorithms frequently need to be made much more concrete before
they can be model checked.

• Iterating a process algebra description can be an effective way of refining such an
algorithm into a program.

• “Handshaking” process algebras can simulate networks where no output action is
ever refused.

• Model checkers are exceptionally powerful tools for finding problems in dis-
tributed systems, but not so good at proving general results about arbitrary-sized
systems.

• Sometimes it takes a larger system than you would think to find a problem with
an algorithm: a number of people, having discovered the problem in the bully al-
gorithm outlined above, have found “corrections” where four nodes were correct,
but not five!

32.5.2 Active-Structure Control System (CWB)

Active structures include an embedded system that acts to limit structural vibration
due to external excitations such as earthquakes or high winds. Typically, such struc-
tures include length-adjustable members, or actuators, that may be expanded or
contracted to counteract the external forces applied to the structure. A process con-
troller monitors sensors that measure the state of the structure and sends commands
to the actuators when sensor readings indicate an undesirable state.

A major application of active-structure control systems involves earthquake-
resistant buildings [82]. Earthquake damage often results less from the violence
of movement than from the vibrations they induce in buildings. In particular, if an
earthquake causes a structure to vibrate at its resonant frequency, then the structure
becomes unstable and may collapse. Thus, to minimize vibration-induced earth-
quake damage, the natural frequencies of a structure should be located outside the
frequency band of the seismic excitations produced by earthquakes.

An active-structural control system attempts to do this by sensing seismic excita-
tions with a high sampling rate and changing the natural frequencies of the structure
using the active members, with the particular method for changing these frequen-
cies depending on the control algorithm used. Such control systems must satisfy
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certain timing constraints on the activity of the actuators, since if the needed length-
adjustments of the active members are not applied within the time bounds required
by the control algorithm, then the structure may become unstable [2].

Several different control techniques have been proposed for active structures in
the literature [1, 86]. In pulse-control approaches, the aim is to limit the vibratory
displacement of structures near resonance by applying an opposing pulse at a higher
frequency to “break up” the resonant forces. The major design variables are the
time between pulse initiations, �tp , and the pulse duration, �t . These values are
determined by the natural frequencies of the system, the expected forcing functions,
and the desired level of displacement control.

In [29], a case study involving the modeling and verification of a pulse-control
system is described. The system uses a fault-detection and -recovery mechanism to
cope with sensor and actuator failures, and was modeled first using the Modechart
graphical notation and then translated into a real-time dialect of CCS. The resulting
system contained over 1019 states and 13 parallel components; the specification
was a simple timed CCS expression expressing timing constraints on inter-pulse
durations. Using a compositional minimization strategy, the system was eventually
proved equivalent to its specification using the Concurrency Workbench.

32.5.3 GNU i-Protocol (XSB)

The i-protocol, is part of the GNU uucp package available from the Free Software
Foundation, and is used for file transfers over serial lines. The i-protocol sits on
the uucp protocol stack; its purpose is to ensure ordered reliable duplex communi-
cation between two sites. At its lower interface, the i-protocol assumes unreliable
(lossy) packet-based FIFO connectivity. At its upper interface, it provides reliable
packet-based FIFO service. A distinguishing feature of the i-protocol is the sophisti-
cated manner in which it attempts to minimize control-message and retransmission
overhead. The GNU uucp package also contains the g- and j-protocols, which are
variants of the i-protocol.

A problem with the i-protocol, GNU uucp version 1.04, was first noticed by Gene
Stark14 while trying to transfer large files from a remote computer to his home PC
over a modem line. In particular, it appeared that, under certain message-loss con-
ditions, the protocol would enter a “confused” state and eventually drop the con-
nection. In order to diagnose this problem, we extracted an abstract version of the i-
protocol from its source code, consisting of approximately 1500 lines of C code. We
formalized this abstraction of the protocol in VPL (Value Passing Language), the in-
put language of the Concurrency Factory specification and verification toolset [18].

The VPL source of the i-protocol was then subjected to a series of model-
checking experiments using the Concurrency Factory’s local model checker for the

14Eugene Stark is a Professor of Computer Science at Stony Brook University.
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modal mu-calculus [68]. This led us to the root of the problem: a livelock that oc-
curs when a particular series of message losses drives the protocol into a state where
the communicating parties enter into a cycle of fruitless message exchanges without
any packets being delivered to the upper-layer entities. Seeing no progress, the two
sides close the connection, which must then be re-established. If the communication
line is sufficiently noisy, or if one of the sides is slow in emptying communication
buffers, say due to disk waits leading to buffer overflows, the chances of this sce-
nario recurring are high, and can result in extremely poor performance.

Using the Concurrency Factory’s diagnostic facility, we were able to pinpoint
and subsequently “patch” the bug in the VPL code. The fix to the protocol consists
of a simple change in the way negative acknowledgements are handled. The livelock
error was fixed independently by Ian Taylor, the i-protocol’s systematic case study
conducted on the i-protocol original developer, in GNU uucp version 1.05.

Since the Concurrency Factory was applied to the problem, there has been a
systematic case study conducted on the i-protocol using the Cospan, Murϕ, Spin,
and XMC verification tools. The i-protocol makes for a particularly interesting case
study in protocol verification for several reasons. First, the version originally model
checked there has a bug, i.e. the livelock error, and hence the protocol can be used
to gauge a tool’s ability to uncover errors of this nature. In this case, we are more
interested in debugging or refutation than in verification.

Secondly, the size of the i-protocol’s state space grows exponentially in the win-
dow size, and the entirety of this state space must be considered to verify that the
protocol, with the livelock error eliminated, is deadlock- and livelock-free. Also, the
i-protocol is an asynchronous, low-level software system equipped with a number of
optimizations aimed at minimizing control-message and retransmission overhead.
These optimizations further add to the protocol’s complexity.

Thirdly, because of the i-protocol’s inherent complexity, a novice tool user would
immediately encounter difficulties in trying to analyze the protocol, due to the fact
that the size of a system’s state space is in general exponential in the size of the
system’s specification. This phenomenon is referred to as state-space explosion.

It is therefore imperative that certain modeling guidelines be followed when spec-
ifying the i-protocol in the input language of a model checker, to limit the effects
of state-space explosion. Such guidelines are usually tool-specific and require a de-
tailed knowledge of the tool’s modeling language if they are to be deployed effec-
tively. An informed choice of tool run-time options is also essential. Similarly, the
results of our case study show that state-space explosion can be further curtailed
by applying certain general-purpose abstraction techniques, several of which are
identified in [43].

32.6 Conclusions

In this chapter, we have seen that the process algebras CSP, CCS, and ACP provide
notations that are particularly well adapted to describing systems that interact by
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(usually synchronous) message passing. We have both given examples of this type of
system and referenced many practical applications of these ideas. The descriptions
of such systems in process algebras are frequently efficient in terms of state spaces,
and the model-checking technology developed for these theories can exploit the
strong compositional properties they have.

The three process algebras we discussed have both been extended in various ways
and encompass far more theory than we have had space to mention here. All three
have real-time extensions [5, 70, 88], all of which were alluded to in this chapter.
All three have been combined with probability (sometimes jointly with time), for
example in [6, 36, 53].

The programming language occam [51], introduced to support the inmos Trans-
puter in the 1980s, can be regarded as an imperative version of CSP, on which it
was based.

The seminal calculus of mobility, the π -calculus [60, 79], is an extension of CCS,
and of course has itself been extended in various ways. There was a reluctance to
repeat, for mobile calculi, the multiplication that had earlier occurred in process
algebras, but there has recently been interest in looking at mobility through the eyes
of occam [85] and CSP [75].

Any serious development of a process algebra will inevitably have led to some-
one trying to develop verification technology for it, or at the very least investigating
how to do this. Such technology is usually a form of model checking and its exten-
sions described in other chapters of the present volume, including timed, symbolic,
stochastic, and software model checking.

References

1. Abdel-Rohman, M., Leipholz, H.H.E.: Structural control by pole assignment method. Eng.
Mech. 104(5), 1157–1175 (1978)

2. Agrawal, A.K., Fujino, Y., Bhartia, B.K.: Instability due to time delay and its compensation in
active control of structures. Earthq. Eng. Struct. Dyn. 22(3), 211–224 (1993)

3. Armstrong, P., Goldsmith, M.H., Lowe, G., Ouaknine, J., Palikareva, H., Roscoe, A.W., Wor-
rell, J.: Recent developments in FDR. In: Madhusudan, P., Seshia, S. (eds.) Intl. Conf. on
Computer-Aided Verification (CAV). LNCS, vol. 7358, pp. 699–704. Springer, Heidelberg
(2012)

4. Armstrong, P., Lowe, G., Ouaknine, J., Roscoe, A.W.: Model checking timed CSP. In:
Voronkov, A., Korovina, M. (eds.) HOWARD-60. A Festschrift on the Occasion of Howard
Barringer’s 60th Birthday, pp. 13–33. EasyChair, Manchester (2014)

5. Baeten, J.C.M., Bergstra, J.A.: Real time process algebra. Form. Asp. Comput. 3(2), 142–188
(1991)

6. Baeten, J.C.M., Bergstra, J.A., Smolka, S.A.: Axiomatizing probabilistic processes: ACP with
generative probabilities. Inf. Comput. 121(2), 234–255 (1995)

7. Baeten, J.C.M., Weijland, W.P.: Process Algebra. Cambridge Tracts in Computer Science,
vol. 18. Cambridge University Press, Cambridge (1990)

8. Basu, S., Smolka, S.A.: Model checking the Java metalocking algorithm. ACM Trans. Softw.
Eng. Methodol. 16(3) (2007)

9. Bergstra, J.A., Klop, J.W.: Algebra of communicating processes with abstraction. Theor. Com-
put. Sci. 37, 77–121 (1985)



1192 R. Cleaveland et al.

10. Bergstra, J.A., Ponse, A., Smolka, S.A. (eds.): Handbook of Process Algebra. Elsevier, Ams-
terdam (2001)

11. Blom, S., van de Pol, J., Weber, M.: LTSmin: distributed and symbolic reachability. In: Touili,
T., Cook, B., Jackson, P. (eds.) Intl. Conf. on Computer-Aided Verification (CAV). LNCS,
vol. 6174, pp. 354–359. Springer, Heidelberg (2010)

12. Brookes, S.D., Hoare, C.A.R., Roscoe, A.W.: A theory of communicating sequential pro-
cesses. J. ACM 31(3), 560–599 (1984)

13. Brookes, S.D., Roscoe, A.W.: An improved failures model for communicating processes. In:
Brookes, S.D., Roscoe, A.W., Winskel, G. (eds.) Proceedings of the Pittsburgh Seminar on
Concurrency. LNCS, vol. 197, pp. 281–305. Springer, Heidelberg (1985)

14. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons using
branching-time temporal logic. In: Kozen, D. (ed.) Proceedings of the Workshop on Logic
of Programs, Yorktown Heights. LNCS, vol. 131, pp. 52–71. Springer, Heidelberg (1981)

15. Cleaveland, R.: On automatically explaining bisimulation inequivalence. In: Clarke, E.M.,
Kurshan, R.P. (eds.) Intl. Conf. on Computer-Aided Verification (CAV). LNCS, vol. 531,
pp. 364–372. Springer, Heidelberg (1991)

16. Cleaveland, R., Hennessy, M.C.B.: Testing equivalence as a bisimulation equivalence. In:
Sifakis, J. (ed.) Automatic Verification Methods for Finite State Systems. LNCS, vol. 407,
pp. 11–23. Springer, Heidelberg (1989)

17. Cleaveland, R., Hennessy, M.C.B.: Testing equivalence as a bisimulation equivalence. Form.
Asp. Comput. 5(1), 1–20 (1993)

18. Cleaveland, R., Lewis, P.M., Smolka, S.A., Sokolsky, O.: The Concurrency Factory: a devel-
opment environment for concurrent systems. In: Alur, R., Henzinger, T.A. (eds.) Intl. Conf.
on Computer-Aided Verification (CAV). LNCS, vol. 1102, pp. 398–401. Springer, Heidelberg
(1996)

19. Cleaveland, R., Parrow, J., Steffen, B.U.: The Concurrency Workbench: a semantics-based
tool for the verification of finite-state systems. Tech. Rep. ECS-LFCS-89-83, Department of
Computer Science, University of Edinburgh (1989)

20. Cleaveland, R., Parrow, J., Steffen, B.U.: A semantics-based tool for the verification of finite-
state systems. In: Proceedings of the Ninth IFIP Symposium on Protocol Specification, Testing
and Verification. North-Holland, Amsterdam (1989)

21. Cleaveland, R., Parrow, J., Steffen, B.U.: The Concurrency Workbench: a semantics-based
tool for the verification of concurrent systems. ACM Trans. Program. Lang. Syst. 15(1), 36–
72 (1993)

22. Cleaveland, R., Sims, S.: Generic tools for verifying concurrent systems. Sci. Comput. Pro-
gram. 42(1), 39–47 (2002)

23. Colouris, G., Dollimore, J., Kindberg, T.: Distributed Systems, Concepts and Design.
Addison-Wesley, Reading (1994)

24. Creese, S.J., Roscoe, A.W.: TTP: a case study in combining induction and data independence.
Tech. Rep. PRG-TR-1-99, Oxford University Computing Laboratory (1999)

25. Creese, S.J., Roscoe, A.W.: Verifying an infinite family of inductions simultaneously us-
ing data independence and FDR. In: Wu, J., Chanson, S.T., Gao, Q. (eds.) Proceedings of
FORTE/PSTV’99, pp. 437–452. Springer, Heidelberg (1999)

26. Creese, S.J., Roscoe, A.W.: Data independent induction over stuctured networks. In: Arabnia,
H.R. (ed.) Proceedings of PDPTA 2000. CSREA (2000)

27. Dams, D., Grumberg, O.: Abstraction and abstraction refinement. In: Clarke, E.M., Henzinger,
T.A., Veith, H., Bloem, R. (eds.) Handbook of Model Checking. Springer, Heidelberg (2018)

28. Du, X., McDonnell, K.T., Nanos, E., Ramakrishna, Y.S., Smolka, S.A.: Software design, spec-
ification, and verification: lessons learned from the Rether Case Study. In: Johnson, M. (ed.)
Proceedings of the Sixth Internationaal Conference on Algebraic Methodology and Software
Technology (AMAST). LNCS, vol. 1349, pp. 185–198. Springer, Heidelberg (1997)

29. Elseaidy, W.M., Cleaveland, R., Baugh, J.W. Jr.: Modeling and verifying active structural
control systems. Sci. Comput. Program. 29(1–2), 99–122 (1997)



32 Process Algebra and Model Checking 1193

30. Emerson, E.A., Lei, C.L.: Efficient model checking in fragments of the propositional mu-
calculus. In: Symp. on Logic in Computer Science (LICS), pp. 267–278. IEEE, Piscataway
(1986)

31. Garcia-Molina, H.: Elections in a distributed computing system. IEEE Trans. Comput. 31(1),
48–59 (1982)

32. Gibson-Robinson, T., Armstrong, P., Boulgakov, A., Roscoe, A.W.: FDR3: a modern refine-
ment checker for CSP. In: Abraham, E., Mavelund, K. (eds.) Intl. Conf. on Tools and Algo-
rithms for the Construction and Analysis of Systems (TACAS). LNCS, vol. 8413, pp. 187–201
(2014)

33. Gibson-Robinson, T., Roscoe, A.W.: FDR into the cloud. In: Welch, P.H., et al. (eds.) Pro-
ceedings of Communicating Process Architectures (CPA). Open Channel Publishing (2014)

34. Glabbeek, R.J.V., Weijland, W.P.: Branching time and abstraction in bisimulation semantics.
J. ACM 43(3), 555–600 (1996)

35. Groote, J.F., Mousavi, M.R.: Modeling and Analysis of Communicating Systems. MIT Press,
Cambridge (2014)

36. Hansson, H., Jonsson, B.: A calculus for communicating systems with time and probabilities.
In: Proceedings 11th Real-Time Systems Symposium (RTSS), pp. 278–287. IEEE, Piscataway
(1990)

37. Hennessy, M.C.B., Milner, R.: Algebraic laws for nondeterminism and concurrency. J. ACM
32(1), 137–161 (1985)

38. Henzinger, M.R., Henzinger, T.A., Kopke, P.W.: Computing simulations on finite and infi-
nite graphs. In: 36th Annual Symposium on Foundations of Computer Science, pp. 453–462.
IEEE, Piscataway (1995)

39. Henzinger, T.A., Manna, Z., Pnueli, A.: What good are digital clocks? In: International Col-
loquium on Automata, Languages and Programming (ICALP). LNCS, vol. 623, pp. 545–558.
Springer, Heidelberg (1992)

40. Hoare, C.A.R.: Communicating sequential processes. Commun. ACM 21(8), 666–677 (1978)
41. Hoare, C.A.R.: A model for communicating sequential processes, tech. monograph PRG-22,

Programming Research Group, Oxford University Computing Laboratory (1981)
42. Hoare, C.A.R.: Communicating Sequential Processes. Prentice Hall, New York (1985)
43. Holzmann, G.J.: Designing executable abstractions. In: Proceedings of the Second Workshop

on Formal Methods in Software Practice (FMSP), pp. 103–108. ACM, New York (1998)
44. Hopcroft, P.J., Broadfoot, G.: Combining the box structure development method and CSP for

software development. Electron. Notes Theor. Comput. Sci. 128(6), 127–144 (2005)
45. Hunt, H.B., Rosenkrantz, D.J., Szymanski, T.G.: On the equivalence, containment, and cover-

ing problems for the regular and context-free languages. J. Comput. Syst. Sci. 12(2), 222–268
(1976)

46. Hwong, Y.L., Keiren, J.J.A., Kusters, V.J.J., Leemans, S., Willemse, T.A.C.: Formalising and
analysing the control software of the Compact Muon Solenoid experiment at the Large Hadron
Collider. Sci. Comput. Program. 78(12), 2435–2452 (2013)

47. Kanellakis, P.C., Smolka, S.A.: CCS expressions, finite state processes, and three problems of
equivalence. Inf. Comput. 86(1), 43–68 (1990)

48. Kozen, D.: Results on the propositional μ-calculus. Theor. Comput. Sci. 27(3), 333–354
(1983)

49. Lawrence, J.: Practical application of CSP and FDR in software design. In: Abdallah, A.E.,
Jones, C.B., Sanders, J.W. (eds.) Communicating Sequential Processes. The First 25 Years.
LNCS, vol. 3525, pp. 151–175. Springer, Heidelberg (2005)

50. Lazic, R.S.: A semantic study of data independence with applications to model checking.
Ph.D. thesis, University of Oxford (1999)

51. Limited, I.: Occam Programming Manual. Prentice Hall, New York (1984)
52. Liu, Y., Sun, J., Dong, J.S.: PAT 3: an extensible architecture for building multi-domain model

checkers. In: Proceedings of the 22nd International IEEE Symposium on Software Reliability
Engineering (ISSRE), pp. 190–199. IEEE, Piscataway (2011)



1194 R. Cleaveland et al.

53. Lowe, G.: Probabilistic and prioritized models of timed CSP. Theor. Comput. Sci. 138(2),
315–352 (1995)

54. Lowe, G.: Breaking and fixing the Needham-Schroeder public-key protocol using FDR. In:
Intl. Conf. on Tools and Algorithms for the Construction and Analysis of Systems (TACAS).
LNCS, vol. 1055, pp. 147–166. Springer, Heidelberg (1996)

55. Lowe, G.: Casper: a compiler for the analysis of security protocols. In: Proceedings of the 10th
Computer Security Foundations Workshop (CSFW), pp. 18–30. IEEE, Piscataway (1997)

56. Lu, S., Smolka, S.: Model checking the secure electronic transaction (SET) protocol. In: Pro-
ceedings of the 7th International Symposium on Modeling, Analysis and Simulation of Com-
puter and Telecommunication Systems (MASCOTS), pp. 358–364. IEEE, Piscataway (1999)

57. Luttik, B.: What is algebraic in process theory? In: Proceedings of the Workshop “Essays
on Algebraic Process Calculi” (APC 25). Electronic Notes in Theoretical Computer Science,
vol. 162, pp. 227–231 (2006)

58. Milner, R.: A Calculus of Communicating Systems. LNCS, vol. 92. Springer, Heidelberg
(1980)

59. Milner, R.: Communication and Concurrency. International Series in Computer Science. Pren-
tice Hall, New York (1989)

60. Milner, R., Parrow, J., Walker, D.J.: A calculus of mobile processes. Inf. Comput. 100(1),
1–40 (1992)

61. Ouaknine, J.: Discrete analysis of continuous behaviour in real-time concurrent systems. Ph.D.
thesis, University of Oxford (2000)

62. Ouaknine, J., Palikareva, H., Roscoe, A.W., Worrell, J.: Static livelock analysis in CSP. In: Ka-
toen, J.P., König, B. (eds.) Intl. Conf. on Concurrency Theory (CONCUR). LNCS, vol. 6901,
pp. 389–403. Springer, Heidelberg (2011)

63. Paige, R., Tarjan, R.E.: Three partition refinement algorithms. SIAM J. Comput. 16(6), 973–
989 (1987)

64. Palikareva, H., Ouaknine, J., Roscoe, A.W.: SAT-solving in CSP trace refinement. Sci. Com-
put. Program. 77(10), 1178–1197 (2012)

65. Peleska, J.: Applied formal methods—from CSP to executable hybrid specifications. In: Ab-
dallah, A.E., Jones, C.B., Sanders, J.W. (eds.) Communicating Sequential Processes. The First
25 Years. LNCS, vol. 3525, pp. 293–320. Springer, Heidelberg (2005)

66. Ploeger, B.: Analysis of ACS using mCRL2. Tech. Rep. CS–09–11, Technische Universiteit
Eindhoven (2009)

67. Plotkin, G.: A structural approach to operational semantics. Tech. Rep. DAIMI FN-19, Com-
puter Science Department, Aarhus University (1981)

68. Ramakrishna, Y.S., Smolka, S.A.: Partial-order reduction in the weak modal mu-calculus.
In: Mazurkiewicz, A., Winkowski, J. (eds.) Intl. Conf. on Concurrency Theory (CONCUR).
LNCS, vol. 1243, pp. 5–24. Springer, Heidelberg (1997)

69. Ramakrishnan, C.R., Ramakrishnan, I.V., Smolka, S.A., et al.: XMC: a logic-programming-
based verification toolset. In: Emerson, E.A., Sistla, A.P. (eds.) Intl. Conf. on Computer-Aided
Verification (CAV). LNCS, vol. 1855, pp. 576–580. Springer, Heidelberg (2000)

70. Reed, G.M., Roscoe, A.W.: A timed model for communicating sequential processes. Theor.
Comput. Sci. 58(1–3), 249–261 (1988)

71. Roscoe, A.W.: Unbounded non-determinism in CSP. J. Log. Comput. 3(2), 131–172 (1993)
72. Roscoe, A.W.: The Theory and Practice of Concurrency. Prentice Hall, New York (1997)
73. Roscoe, A.W.: Seeing beyond divergence. In: Abdallah, A.E., Jones, C.B., Sanders, J.W.

(eds.) Communicating Sequential Processes. The First 25 Years. LNCS, vol. 3525, pp. 15–
35. Springer, Heidelberg (2005)

74. Roscoe, A.W.: CSP is expressive enough for π . In: Jones, C.B., Roscoe, A.W., Wood, K.R.
(eds.) Reflections on the Work of C.A.R. Hoare, pp. 371–404. Springer, Heidelberg (2010)

75. Roscoe, A.W.: Understanding Concurrent Systems. Springer, Heidelberg (2010)
76. Roscoe, A.W., Hopcroft, P.J.: Slow abstraction through priority. In: Liu, Z., Woodcock, J.,

Zhu, H. (eds.) Theories of Programming and Formal Methods. LNCS, vol. 8051, pp. 326–
345. Springer, Heidelberg (2013)



32 Process Algebra and Model Checking 1195

77. Roscoe, A.W., Huang, J.: Checking noninterference in timed CSP. Form. Asp. Comput. 25(1),
3–35 (2013)

78. Roscoe, A.W., Wu, Z.: Verifying statemate statecharts using CSP and FDR. In: Liu, Z., He, J.
(eds.) Proceedings of Formal Methods and Software Engineering (FMSE). LNCS, vol. 4260,
pp. 324–341. Springer, Heidelberg (2006)

79. Sangiorgi, D., Walker, D.J.: The pi-Calculus: A Theory of Mobile Processes. Cambridge Uni-
versity Press, Cambridge (2003)

80. Scattergood, J.: The semantics and implementation of machine-readable CSP. Ph.D. thesis,
University of Oxford (1998)

81. Schneider, S.A.: Concurrent and Real-Time Systems. Wiley, New York (2000)
82. Soong, T.T.: Active Structural Control. Longman, New York (1990)
83. Steffen, B.: Characteristic formulae. In: Ausiello, G., Dezani-Ciancaglini, M., Rocca, S.R.D.

(eds.) Proceedings of the International Colloquium on Automata, Languages and Program-
ming (ICALP). LNCS, vol. 372, pp. 723–732. Springer, Heidelberg (1989)

84. Walker, D.J.: Bisimulation and divergence in CCS. In: Symp. on Logic in Computer Science
(LICS), pp. 186–192. IEEE, Piscataway (1988)

85. Welch, P.H., Barnes, F.R.M.: Communicating mobile processes. In: Abdallah, A.E., Jones,
C.B., Sanders, J.W. (eds.) Communicating Sequential Processes. The First 25 Years. LNCS,
vol. 3525, pp. 175–210. Springer, Heidelberg (2005)

86. Yang, J.N., Akbarpour, A., Ghaemmaghami, P.: New control algorithms for structural control.
Eng. Mech. 113(9), 1369–1386 (1987)

87. Yantchev, J.T.: ARC—a tool for efficient refinement and equivalence checking for CSP. In:
IEEE Second Int. Conf. on Algorithms and Architectures for Parallel Processing (ICAPP),
pp. 68–75. IEEE, Piscataway (1996)

88. Yi, W.: CCS + time = an interleaving model for real-time systems. In: Albert, J.L., Monien,
B., Rodríguez-Artalejo, M. (eds.) International Colloquium on Automata, Languages and Pro-
gramming (ICALP). LNCS, vol. 510, pp. 217–228. Springer, Heidelberg (1991)

89. Zakiuddin, M.I., Moffat, N., O’Halloran, C.M., Ryan, P.Y.A.: Chasing events to certify a crit-
ical system. Tech. rep., UK Defence Evaluation and Research Agency (1998)



Index

Symbols
2cl solver, 248
3-valued semantics, 19, 410, 831
ε (silent transition), 1012
μ-calculus, 11, 79, 229, 390, 568, 661, 766,

872, 927, 1113, 1184
model checking, 887
proof system, 901
quantitative, 913, 1140
relation to MSOL, 904
satisfiability, 896

π -calculus, 1167
τ (internal action), 182, 362, 1152
ω-automaton, see Automaton
ω-regular language/property, 109, 154, 291,

559, 798, 864, 922, 970, 1013, 1133
� (successful termination event), 1167

A
ABC tool, 866
Abstract domain, 292, 406, 504, 566, 593, 671,

1142
Abstract interpretation, 5, 295, 399, 465, 494,

576, 632, 670, 785, 1087, 1142
Abstract state, 165, 293, 399, 442, 465, 494,

674, 721, 831, 1076
Abstract state machine, 75
Abstraction, 2, 17, 80, 154, 162, 265, 292, 310,

347, 385, 424, 447, 494, 574, 614, 655,
687, 752, 776, 809, 831, 1075

acceleration, 698, 1142
Cartesian, 229, 293, 428, 465, 515, 835
convex hull, 1026
corner-point, 1030
counter, 720
counterexample guided abstraction

refinement (CEGAR), 17, 375, 402,
476, 526, 593, 866, 1075, 1082, 1181

data, 575, 674, 831
data-type, 93
discrete, 20, 1076
existential, 293, 399
finite-chain, 594
logical, 1086
monotonic, 703
of hybrid automaton, 1075
predicate, 18, 292, 305, 385, 427, 447, 460,

466, 472, 478, 481, 515, 673, 712
proof-based, 422
refinement, 17, 277, 375, 402, 411, 424,

471, 526, 593, 637, 677, 787, 819, 991,
1082

region, 1002
soundness, 162, 388
transition predicate, 466, 478, 952

Accellera standard, 781
Accepting condition, 108, 122, 124, 940, 1013
Accepting end component, 28, 989
Ackermann reduction, 331
ACL2 prover, 15, 487, 667, 866
ACP (Algebra of Communicating Processes),

1149, 1172
Active testing, 622
Active-structure control system, 1188
Adversary knowledge, 737
Alignment operator, 809
Alloy verification language, 84
Alt-Ergo solver, 306
Alternating

automaton, see Automaton, alternating
depth, 139, 878
hierarchy, 899, 1115
removal, 139

Ample set, 174
Antecedent failure, 8, 841
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Antichain, 947, 1121
Apollo verification tool, 632
AppVerifier tool, 627
AProVe prover, 487, 533
Architecture description language, 82
Ariane 5 bug, 780
ARMC model checker, 486
ART verification tool, 1027
Assume-guarantee reasoning/rule, 15, 62, 349,

362, 375, 603, 716, 842, 953, 1100
circular, 372

Assumption, see Assume-guarantee reasoning
Assumption generation, 367, 375
Astree verification tool, 785
Asynchronous circuit, 154, 173
Asynchronous composition/product, 88, 227,

350
Athena model checker, 751
ATL (Alternating-time Temporal Logic), 907,

935
AT&T network collapse, 780
Authentication, 740
Automaton, 107

alternating, 136, 895
Büchi, 13, 48, 108, 142, 159, 235, 280,

356, 487, 556, 694, 816, 907, 936, 943,
1119

co-Büchi, 122
complement, 112, 364, 1014
containment, 132, 1002, 1015, 1064
control-flow, 426, 501
emptiness, see Language, emptiness
intersection, see Language, intersection
generalized Büchi, 122, 565
modal, 892, 896, 903
Muller, 123
parity, 123, 898, 921, 1133
Rabin, 122, 986
Streett, 123
typeness, 124
union, 110
universality, 132
weak alternating, 138

Auxiliary variable, 359
AVISPA model checker, 749

B
BACH tool, 1064
Backtracking, 180, 200, 248, 252, 254, 314,

619
Backward analysis, 499
Bakery mutual-exclusion protocol, 673, 710
Bandera verification tool, 637
Barrier certificate, 1087

BDD, see Binary decision diagram
Beaver solver, 306
Bebop model checker, 243, 542
Behavioral congruence, 1161
Behavioral equivalence, 568, 1010, 1142, 1150
Behavioral pre-congruence, 1155, 1161
Bekic principle, 878
BerkMin solver, 248
BFS, see Breadth-first search
Binary decision diagram, 16, 37, 81, 179, 191,

219, 222, 248, 267, 277, 360, 405, 517,
542, 656, 721, 766, 848, 928

apply algorithm, 197
complement edge, 198
for non-Boolean function, 206
image computation, 224
multi-terminal, 207, 966
ordered, 195, 197, 1112, 2010
partitioned, 205, 226
variable ordering, 202
zero-suppressed, 204

Biological application, 21, 77, 686, 964, 991
Bisimilarity, 162, 385, 394, 396, 891, 991,

1010, 1119
approximate, 1083
axiomatization, 1161
branching, 182, 1185
checking, 1011, 1176
invariance, 891, 904
logical characterization, 1157
time-abstracted, 1007
timed, 1010
weak, 182, 1159

Bit-blasting, 81, 287, 323
BitBlaze testing tool, 632
Bit-state hashing, 84, 168, 621
Bit vector, 287, 322, 1181
BLAST model checker, 406, 431, 486, 500,

569
Bloom filter, 168
BMC, see Bounded model checking
Bohne verifier, 486
Boogie verification language, 84
Boolean formula, 16, 194, 222, 249, 279, 350,

466, 577, 679, 779, 797, 833, 888, 1112
Boolean program, 239, 293, 541, 637
Boolean satisfiability, 16, 81, 209, 247, 659,

1183
eager encoding, 330
model enumeration, 267

Boolector solver, 306
Bounded model checking, 16, 93, 278, 283,

286, 311, 406, 421, 501, 533, 576, 625,
675, 744, 766, 810, 1027, 1058, 1182
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Bounded prover, 438
Bounded-session model checking, 732
Bounded synthesis, 946
Boyer–Moore theorem prover, 764
BPA (Basic Process Algebra), 1172
Branching time, 12, 52, 385, 500, 568, 580,

661, 771, 797, 965, 1021, 1022, 1116
BRB BDD package, 200
Breadth-first search, 155, 179, 210, 229, 464,

509, 1024, 1181
Broadcast, 578
Brutus model checker, 732
Büchi

automaton, see Automaton, Büchi
game, 928

Bully algorithm, 1185

C
Cache coherence protocol, 80, 685, 784
CAD, see Computer-aided design
Calfuzzer tool, 623
CaRet (Temporal Logic of Calls and Returns),

562
CatchConv testing tool, 632
CATG testing tool, 632
CAV, see Computer-aided verification
CAV Award, 766
Cayley trick, 1076
CBMC model checker, 285, 533
CCS (Calculus of Communicating Systems),

78, 574, 1151
finite, 1161
regular, 1163

CDCL, see Conflict-driven clause learning
CEGAR, see Abstraction,

counterexample-guided abstraction
refinement

Centaur technology, 866
Certificate, 4, 332, 525
CFA, see Automaton, control-flow
Chaff solver, 248, 766
Channel property, 755
Chase operator, 1181
Chess verification tool, 623, 1028
Choice operator, 369, 1152, 1165
CL-Atse protocol analyzer, 732
Clausal validity problem, 663
Clause learning, 254
Clock, 19, 81, 208, 286, 805, 935
Clock constraint, 19, 1003, 1013, 1124
Clock operator, 805
Clock region, see Region
Clock variable, 208, 1002, 1049, 1124
Closed system, 88

Clustering, 229, 1074
CMC model checker, 621
CMP (Chip Multi-Processor) router, 90
CMP method for parameterized verification,

727
CNF, see Conjunctive normal form
Co-Büchi automaton, see Automaton,

co-Büchi
Co-Büchi condition/objective, 122, 925, 1134
Co-Büchi game, 928
CodeSonar, 785
Column transducer, 699
Communication channel, 601, 755, 964
Communication merge, 1174
Communication operation, 575
Communication pattern, 595, 637
Compactness, 658
Compassion, see Fairness
Compatibility checking, 922
Completeness, 354, 1153

for abstraction framework, 412
for assume-guarantee rule, 365
for bisimulation equivalence, 1162
for bounded programs, 285
for consequence finding, 439
for Hoare logic, 668
for propositional logic, 658
for propositional μ-calculus, 901
for theory solver, 327, 330
refutational, 328
threshold, 289

Complete partial order, 1169
Composition of Boolean functions, 193
Composition of program analyses, 510
Composition operator, 668, 1151

alternative, 1172
parallel, 363, 369, 1005, 1152, 1165
relational, 457
sequential, 1166, 1172

Compositional modeling, 78
Compositional reasoning/verification, 345,

605, 709, 718, 857, 1099, 1180
Compositionality, 754
Compression, 1180

lossless, 168
Compromised agent, 737
Computational soundness, 753
Computer-aided design, 769
Computer-aided verification, 1, 764
Concolic testing, 627
Concrete state, 166, 399, 502, 673
Concurrency Factory, 1189
Concurrency Workbench, 1183
Concurrent data structure, 589, 607, 953
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Concurrent game, 934, 1139
Concurrent software/program, 16, 98, 286,

345, 573, 615, 633
Configurable program analysis, 493, 501, 511
Conflict analysis, 254, 315
Conflict clause, 316
Conflict-directed reachability, 678
Conflict-driven clause learning, 252, 313
Conflict set, 314
Conformal equivalence checker, 781
Congruence closure, 317
Conjunctive normal form, 249, 266, 280, 287,

315
Constant propagation, 498, 512, 520
Constraint satisfiability, 310, 317
Constraint solving, 422, 527, 625, 639, 744
Containment test, see Automaton, containment
Context-bounded model checking, 170
Contextual locking, 592
Continuous-set approximation, 1066
Continuous-set representation, 1070
Continuous successor, 1059, 1061, 1065, 1081
Continuous time, 19, 21, 78, 97, 992, 1084
Control-flow automaton, see Automaton,

control-flow
Controller synthesis, 923, 951, 993, 1002,

1027, 1056, 1084, 1137
Coq theorem prover, 667
Correctness witness, see Certificate
Corruption model, 754
COSPAN model checker, 108, 1190
Cost-bounded operator, 976, 983, 984, 989
Cost function, 267, 967, 975
Cost-optimal schedule, 1029
Counterexample, 3, 8, 12, 100, 173, 180, 279,

289, 360, 368, 472, 525, 593, 652, 678,
1099

feasible, 17, 294, 375, 401, 403, 411, 480,
595, 638, 675, 715, 1082

lasso, 16, 404, 478, 676
spurious, see feasible

Counting operator, 800
Counting property, 799, 1035
Coverability, 691, 1129
Coverity verification tool, 785
CPA, see Configurable program analysis
CPAchecker, 486, 501, 518, 533
CPAlien verification tool, 501
CPAtiger, 501
Craig interpolation, see Interpolation
CREST testing tool, 632
Crowds communication system, 757
Cryptographic complexity, 732
Cryptographic equational reasoning, 746

Cryptographic protocol, 18, 727, 1183
CSAT solver, 248
CSeq verification tool, 533
CSP (Communicating Sequential Processes),

78, 1163
theoretical, 1164

CTA tool, 486
CTL (Computation Tree Logic), 10, 53, 181,

220, 378, 391, 567, 574, 817, 832, 906,
964, 1002

fair, 220, 233
first-order, 55
model checking, 54, 231, 233
Probabilistic, see PCTL
satisfiability, 57
translation to μ-calculus, 907
weighted, 1031

CTL*, 7, 28, 63, 67, 181, 391, 567, 796, 902
model checking, 69, 567
satisfiability, 70
translation to μ-calculus, 907

CuDD BDD package, 243, 928
Cumulated cost, 968, 1033
CUTE (Concolic Unit Testing Engine) tool,

632
CVC Theorem Prover, 306, 632
CWB (concurrency workbench), 1188
Cycle detection, 160, 176, 322, 557

D
DART (Directed Automated Random Testing),

627
Dash verification tool, 638
Data-flow analysis, 5, 493, 496, 504, 542, 605
Data-flow model, 78
Data independence, 155, 1150, 1188
Data-type reduction, 714
DBM, see Difference bound matrix
DDD, see Difference decision diagram
Deadlock, 63, 77, 153, 174, 356, 573, 615,

618, 695, 936, 1157
Deductive generalization, 421
Deductive verification, 45, 177, 653
Delayed theory combination, 327
Depth-first search, 155, 175, 464, 509, 634,

677, 752, 1181
double, 180
nested, 160

Derivation, 255, 423
Deterministic automaton, 109, 938, 1133
Determinization, 70, 120, 130, 377, 561, 802,

913, 935, 943, 1122, 1177
DFS, see Depth-first search
Diagnostics, 2, 789, 1178
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Diamond compression, 1181
Difference bound matrix, 1024
Difference decision diagram, 208, 1026
Difference logic, 321, 1027
Differentiable, 1054
Dirac distribution, 967
Discounted game, 890, 933
Discounted objective, 926, 993
Discrete successor, 1063, 1070, 1081
Discrete time, 18, 78, 757, 805, 974, 1003,

1056, 1182
Disjunctive normal form, 249, 312, 895
Disjunctive well-foundedness, 466
Disolver solver, 632
Distinguishing formula, 1178
Distributed leadership-election protocol, 1185
Divergence, 754, 1014, 1167

closed, 1170
pre-order, 1184
respecting, 1170
strict, 1168

Division property of the μ-calculus, 902
DNF, see Disjunctive normal form
Dolev–Yao model, 731
DPLL (Davis–Putnam–Logemann–Loveland)

algorithm, 212, 248, 295, 316, 787
DPLL(T ), 269, 289, 316
Dynamic logic, 6617989061099
Dynamic partial-order reduction, see

Partial-order
Dynamic precision adjustment, 521
Dynamic symbolic execution, 627
Dynamic test generation, 626, 627
Dynamic variable reordering, 202

E
EDA, see Electronic design automation
Edge-lean algorithm, 187
Edge-triggered design, 806
EGT testing tool, 632
Electronic design automation, 765
Elimination order, 435
Ellipsoid, 1070
Else verification tool, 1027
Embedded C-code, 165
Emptiness, see Language, emptiness
Encapsulation, see Hiding
Ended operator, 802
Energy constraint, 1032
Energy game, 933
Energy objective, 926
Environment model, 85, 772
Equality with uninterpreted functions, 317, 515
Equational axiom, 1151
Equational certificate, 1089

Equational theory, 746, 1172
Equivalence checking, 19, 286, 306, 568, 780,

1177
Equivalence query, 367
Equivalence relation, 165, 185, 290, 317, 394,

699, 1010, 1155
Error witness, see Counterexample
ESBMC verification tool, 533
EUF, see Equality with uninterpreted functions
Event-clock automaton, 1015
Event of cryptographic protocol, 735
Event structure, 188
Evolution domain, 1052, 1069, 1079
Exclusive or, 212, 746
EXE testing tool, 432
Existentially quantified Horn solver, 487
Existentially quantified transition, 704
Expected cost, 965
Explanation generation, 315
Explicit-heap analysis, 516, 523
Explicit state, 15, 37, 153, 175, 219, 360, 441,

513, 604, 656, 743, 785, 1049, 1181
Expressiveness, 5, 27, 78, 145, 305, 414, 562,

580, 660, 765, 817, 871, 946, 1001

F
Failure (process algebra), 1168
Failures-divergences model, 1167
Failures refinement, 1169
Fair computation problem, 37, 102, 233, 356,

547
generalized, 555

Fair discrete system, 30, 390
Fairness, 12, 31, 89, 234, 390, 655, 694, 936,

1022
Falsification, 2, 411, 750, 777
Farkas’ lemma, 440, 527
FAST verification tool, 756
FDR (Failures-Divergences Refinement)

model checker, 731, 1181
Feaver verification tool, 637
Finite-model property, 663, 901
Finite-variant property, 747
Finitely nondeterministic CPS, 1170
First-match property, 800
First-order logic, 16, 31, 46, 175, 284, 307,

423, 517, 565, 628, 661, 710, 764, 798,
904, 1120

Fixed point, 11, 38, 213, 289, 349, 391, 441,
465, 496, 542, 587, 661, 742, 865, 878,
1022, 1098, 1113, 1170

greatest, 873
least, 353, 873
operator, 873
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Fixpoint-Analysis Machine, 568
FormalCheck model checker, 773
Formality equivalence checker, 781
FormalPro equivalence checker, 781
ForSpec verification tool, 108
FORTE verification system, 831
Forward analysis, 525
Forward flow, 433
Forward search, 742
Fourier–Motzkin elimination, 318, 1051
FrankenBit verification tool, 533
FSM, see State machine, finite
F-Soft model checker, 284, 486
FuncTion verification tool, 533
Fusion property, 801

G
Galois connection, 671, 832
Game semantics, 880
Generalization, 155
Generalized trajectory logic, 865
German’s protocol, 713
Global condition, 686
GNU i-protocol, 1189
Goto operator, 800
GR(1) Generalized Reactivity-1, 951, 1134
Graph game, 18, 882, 924, 1131

deterministic, 1133
non-zero-sum, 953
objective, 925
play, 924
probabilistic, 1137

GRASP solver, 248, 766
Ground term/formula, 328
Guarantee language/property, 45, 346, 349,

362, 364, 372
Guarded fixed-point logic, 912

H
Handshaking, 1164
Hardware description language, 82, 281, 806
Hardware/software co-verification, 277, 286
Hash collision, 169
Hash-compact, 169
Hausdorff distance, 1067
Heap analysis, 516
Helicopter model, 97
Hennessy–Milner Logic (HML), 661, 1157
Hiding, 80, 167, 1165
Higher-order logic (HOL), 665, 860
Hoare logic, 425, 563, 667, 858, 912
HOL (Higher-Order Logic) prover, 857
Homomorphic encryption, 746
Honest thread, 739

Horn clause, 434, 752
Houdini annotation assistant, 486
HSF solver, 486
HSolver model checker, 1098
Hybrid automaton, 1028, 1052, 1061, 1065

non-linear, 1072
rectangular, 1055, 1126

Hybrid system, 19, 29, 78, 108, 655, 778,
1003, 1048

Hybrid verification, 778, 1099
Hybridization, 1075
HyTech model checker, 1027, 1063, 1127

I
IBMC, see Interpolant-based model checking
IC (Integrated Circuit) design, 769
IC3, see Iterative inductive strengthening
IEEE 754 standard, 851
IEV verification tool, 778
IKE (Internet Key Exchange) protocol, 732
Image computation, 224, 289, 405, 434, 454,

1051
Image-finite, 1158
Impact model checker, 486
Implication graph, 251
Independence relation, 175
Inductive invariant, 290, 349, 424, 457, 625
Inductive transition invariant, 459
Inference rule, 333, 496, 656, 746, 858, 1151
Infinite-state

game, 935
Markov chain, 971
system, 31, 108, 310, 405, 673, 686, 733,

1002, 1115
transducer, 699

Informative prefix, 815
Initial condition, 30, 350, 442, 530, 1052
Initial configuration, 134, 497, 546, 579, 690
Input-space decomposition, 851
Instantaneous cost, 974
Integer arithmetic, 319, 431, 1100
Integer difference logic, 322
Interface, 1, 80, 192, 316, 364, 606, 632, 767,

1102, 1165
equality, 327
generation, 377
variable, 325

Interference, 348, 576, 636
Interleaving semantics, 88, 173, 286, 718
Interpolation, 220, 265, 291, 312, 421, 485,

527, 659, 766, 901
Interpretation

abstract, see Abstract interpretation
Sigma-interpretation, 308, 388, 656
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Interrogator verification tool, 731
Intersection, see Language, intersection
Interval property checking, 832
Introduction order, 437
Intruder deduction, 744
Invariant, 44, 60, 231, 279, 311, 349, 426, 712,

906, 1003, 1052, 1125
differential, 1085
generation, 424, 525, 605

Isabelle theorem prover, 667
ISO/IEC 9798 standard, 733
Iterated structure, 908
Iteration algorithm, 504, 933
Iteration order, 509
Iterative inductive strengthening, 292

J
Jakstab verification tool, 501
Jalangi testing tool, 632
Java Pathfinder tool, 621
jCUTE testing tool, 633
Join, 496, 503, 525
Jump, 1052
Justice, see Fairness

K
Karp–Miller algorithm, 691
Kerberos protocol, 727
KeYmaera verification tool, 1099
k-induction, 277, 311, 675
KISS verification tool, 756
KLEE testing tool, 632
k-liveness, 281
Klocwork verification tool, 785
Kripke structure, 6, 30, 75, 102, 141, 221, 230,

278, 388, 500
Kronos model checker, 1027
Kudzu testing tool, 632

L
L* learning algorithm, 366
Labeling function, 6, 30, 102, 237, 388, 577,

938
LAMBDA theorem prover, 765
Language

emptiness, 132, 180, 561, 580, 693, 816,
887, 1012, 1064, 1112

intersection, 111, 159, 180, 556, 592, 707,
1014

Lasso, 12, 160, 404, 478, 676
Lattice, 503, 670, 833, 1113
Layered theory solver, 329
Lazy abstraction, 442
Lazy data type, 750

Learning, 22, 366, 529
Left-merge, 1173
Level of abstraction, 80, 406, 526, 788, 1167
Level-set method, 1101
Linear constraint, 1051
Linear integer arithmetic, 319
Linear programming, 982, 1064, 1140
Linear real arithmetic, 318
Linear term, 1051
Linear time, 63, 500, 661, 1135
Linearization, 173, 622, 1074
Liquid Types, 486, 667
LiQuor model checker, 990
Literal deduction, 315
Live-variable analysis, 499
Livelock, 1190
Liveness, 12, 43, 61, 88, 158, 280, 357, 578,

694
component, 803
verification, 158

LLBMC, 533
Local assertion, 351
Local proof, 357, 422, 431
Local symmetry, 361
Local variable, 710, 820
Localization, 401, 422, 736, 766, 787
Location, 1052
Location analysis, 511
Lock, 578, 634, 688

acquisition history, 581
causality graph, 586
chain, 589
nested, 581
pattern, 591

Logic programming, 1184
Logical certificate, 1090
Logical characterization, 1150, 1157
LoopFrog verification tool, 294, 486
Lossy channel, 601, 992
lp_solve solver, 632
LTA tool, 486
LTL (Linear Temporal Logic), 12, 42, 158,

279, 556, 797, 907, 942, 985
extensions, 46, 796
first-order, 46
indexed, 579
model checking, 15, 50, 146, 235, 987
satisfiability, 50, 146
synthesis, 942
translation to automaton, 13, 142
translation to μ-calculus, 907

LTSA verification tool, 369
LTSmin, 1185
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M
MaceMC model checker, 623
Magellan verification tool, 778
Magic model checker, 486
Markov chain, 12, 207, 757, 970

continuous-time, 990
Markov decision process, 18, 935, 964, 967,

971, 980, 987
continuous-time, 992
product, 988

Mars Orbiter bug, 780
Master method, 530
MathSAT solver, 306
Maude-NPA protocol analyzer, 748
Mazurkiewicz trace, 603
mCRL2 toolset, 1184
MDP, see Markov decision process
Mealy machine, 89, 936
Mean-payoff game, 933, 934
Mean-payoff objective, 926
Meet over all paths, 498
Membership query, 367
Memory consistency, 604
Memory model, 604
Merge operator, 16, 508, 514, 1139, 1173
Message pattern, 738
Message sequence chart, 78, 728
Minimization, 121, 229, 259, 280, 378, 398,

1150, 1185
MiniSAT solver, 248
Minkowski sum, 1062
Mixed integer and real arithmetic, 321
Moby model checker, 1027
Mocha model checker, 378
Modal automaton, see Automaton, modal
Modal logic, 7, 28, 660, 874, 891, 1112, 1151
Modal simulation, 406
Modal transition system, 407
Modality, 393, 660, 798, 876, 964, 978, 1018
Model-based quantifier instantiation, 329
Model-based testing, 4, 639
Model-driven verification, 167
Model measuring, 21
Modeling, 18, 29, 75, 77, 79, 82, 86, 88, 94,

173, 247, 322, 544, 666, 1001
challenge, 3, 18, 83, 776, 1048
formalism/language, 75, 76, 78, 82, 282,

614, 1101, 1149
MoDist verification tool, 623
Modular reasoning, 377
Modularity, 80, 429
Monadic second-order logic (MSOL), 139,

720, 764, 798, 904, 1017
over nested words, 562

Monitor automaton, 519
Monotonic fixed-point approach, 525
Monotonic transition relation, 706
Moore machine, 89, 936
MOPED model checker, 542
MSOL, see Monadic second-order logic
MTBDD, see Binary decision diagram,

multi-terminal
MTL (Metric Temporal Logic), 1018
Muller

automaton, see Automaton, Muller
game, 932

Multi-core algorithm, 170
Multi-index temporal-logic formula, 578
Multi-phase acyclic pushdown network, 597
Murϕ model checker, 84, 486, 1190
Murphi verification system, 84, 486, 713, 732,

784, 1190
Mutual exclusion, 34, 388, 574, 654, 704,

1021, 1130
protocol, 101, 354, 369, 687

N
Near-neighbor communication, 695
Needham–Schroeder public-key protocol, 731
Negation normal form, 1114
Negative acknowledgement, 1190
Nelson–Oppen method, 327, 664
Nested word, 557

automaton, 558
temporal logic, 562

Net-list, 282
Network, 78, 90, 154, 195, 347, 591, 596–598,

686, 728, 964, 1181
Next operator, 42, 392, 563, 796, 808, 980
Next-state function, 837
NIL process, 1152
Non-determinism, 63, 83, 94, 108, 113, 136,

167, 182, 325, 519, 561, 605, 615, 714,
747, 816, 887, 923, 964, 1055, 1121,
1156

Non-interference, 348, 709, 756
Non-linear dynamics, 1074
Non-monotonic approach, 528
Non-trace property, 755
Normalization, 1024, 1181
NPA (NRL Protocol Analyzer), 748
NPATRL logic, 748
NTAB solver, 248
Numerical simulation, 22, 1058
Nuprl theorem prover, 667
NuSMV model checker, 108, 243
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O
OBDD, see Binary decision diagram, ordered
Obligation language/property, 45
Observational congruence, 1161
Observational equivalence, 756, 1159
Observer automaton, 518
Occam (programming language), 1193
Occam’s razor, 422
Off-line guessing, 756
OFMC verification tool, 750
Omega test, 320
On-the-fly, 15, 133, 159, 180
One-to-one correspondence, 823
Open system, 69, 88, 108, 378
openSMT solver, 306
Orion verification tool, 518
Owicki–Gries method, 348

P
Pairwise reachability, 587
Pan model checker, 154
Parameterized systems, 77, 655, 685, 953
Parameterized verification, 686, 709
Parametric representation, 851
Parasoft verification tool, 785
Parity automaton, see Automaton, parity
Parity game/tree automaton, 130, 568, 767,

872, 930, 934, 1134
Parse tree, 495, 993
Partial correctness, 563, 652, 841
Partial-information game, 935
Partial order, 173, 503
Partial-order reduction, 15, 84, 153, 173, 174,

603, 621, 745, 991, 1150
for CTL, 181
for LTL, 176
for process algebra, 182

Partial-order semantics, 174
Partition, 1175, 1177
PASS model checker, 991
Past operator, 54, 802
Path, 6, 31, 102, 110, 162, 195, 236, 279, 284,

390, 474, 477
constraint, 277, 624, 1064
encoding, 284
event, 976
reductiveness, 426
slicing, 294

PathCrawler testing tool, 637
PCTL (Probabilistic CTL), 757, 964

model checking, 980
PCTL*, 993
PDL (Propositional Dynamic Logic), 906
Pentium FDIV bug, 780

Permissive, 364, 376
Persistence language/property, 45
PET verification tool, 636
Peterson’s mutual-exclusion protocol, 34, 62,

654
Petri net, 78, 687, 1129
PEX testing tool, 632
Phase-portrait approximation, 1078
PHAVER verifier, 1100
PicoSAT solver, 248
Piecewise affine dynamics, 1064
Piecewise constant dynamics, 1060
Piterman’s construction, 130, 943
Policy, see Strategy
Policy iteration, see Strategy improvement
Polyhedron, 1051
Polynomial approximation, 1075
Polynomial constraint, 1050
Polynomial term, 1050
Polyspace verification tool, 785
Polytope, 1051
POSIT solver, 248
Positional strategy, see Strategy
Post operator, 37
Post-closure, 454
Post-condition, 454, 652
Pre operator, 37, 586
Pre-condition, 652
Pre-congruence, 1155
Precision, 507
Predator verification tool, 533
Predicate, 307, 461, 1050
Predicate analysis, 515
Predicated lattice, 520
Predictive analysis, 592
Predictive model, 606
Pre-emptive context bounding, 606
Prefixing, 1152
Prenex normal form, 662
Pre-order, 1151
Presburger arithmetic, 320, 663
PRISM model checker, 757, 990
Probabilistic inference, 528
Probabilistic model checking, 757, 963

approximate, 991
Probabilistic system, 18, 79, 756, 967, 1137

metric, 1142
Probability distribution, 967
Probability measure, 970
Probability space, 970
ProbDiVinE model checker, 990
Process algebra (PA), 19, 78, 182, 1151
Process transformation, 1177
Program, 284, 425, 448
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Program (cont.)
asynchronous, 153
interrupt-driven, 100
message-passing, see with rendezvous
multi-threaded, 33, 348, 573, 621
procedural, 541
shared-variables, see multi-threaded
with rendezvous, 592

Program analysis, 504
Program counter, 34, 284, 448, 502
Program repair, 953, 1137
Program representation, 500
Program sketching, 953, 1137
Promela language, 107, 637, 991
Proof generalization, 441
Proof-rule-based approach, 528
Proof system, 333, 422, 658, 901
Propositional logic, 247, 280, 334, 656, 833,

980, 1181
interpretation, 656
proof system, 657

Protocol role, 734
ProVerif protocol analyzer, 732, 752
PSL (Property Specification Language), 283,

795
Pulse control, 1189
Pure term/formula, 327
Purify tool, 627
Push-down automaton/system, 78, 238, 545,

575, 785, 910, 935, 992
communicating, 592
interacting, 579

Push-down model checking, 238
Push-down network, 592

multi-phase acyclic, 597
lossy-channel, 601

PVS (Prototype Verification System), 666

Q
QBF (Quantified Boolean formula), 268
Quantified variable, 818
Quantifier elimination, 278, 291, 328, 436,

663, 1063, 1127
Quantifier-free interpolation property, 334
Quantitative abstraction refinement, 21, 991
Quantitative objective, 926
Quantitative verification, 21, 1142
QuartzFormal equivalence checker, 781
Quotienting, 21, 700

R
Rabbit model checker, 1027
Rabin

automaton, see Automaton, Rabin
game, 925

Randomized strategy, see Strategy
Ranking function, 358, 480, 653
RAPTURE model checker, 991
RCP (Relational Coarsest Partitioning), 1175
Reachability, 32
Reaching definition, 513
Reactive module, 78
Reactive programming, 83
Reactive synthesis, 921
Reactivity language/property, 45
Ready set, 1169
Real arithmetic, 318
Realizability, 924
Real-time logic, 1018
Real-time system, 18, 79, 1003
Recurrence language/property, 45
Recurrence solving, 529
RED verification tool, 1027
Refinement

abstraction, see Abstraction-refinement
checking, 1177
ordering, 1169

Refiner, 424
Refusal, 1169
Refutation, 277, 430
Region

algebra, 1115
automaton, 1007
equivalence, 1007

Regular expression, 696, 797
weak/strong, 802

Regular model checking, 695, 1142
Relabeling, see Renaming
Relational composition/product, 193, 226, 457,

764
Relsat solver, 248
Rely-guarantee reasoning, 354
Renaming, 221, 1152
Rendezvous, 578, 686
Repetition operator, 799
Reset, hardware, 810
Residual, 846
Resolution, 193, 251, 291, 334, 432
Restriction, 192, 1152
Reverse flow, 433
Robustness, 1037, 1083
Romeo, 1027
RTL (Register Transfer Level) language, 287,

768
RuleBase model checker, 773
Run-time scheduler, 619
Run-time verification, 638
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S
Safe, 364, 452
Safety, 12, 43, 84, 88, 155, 231, 279, 447, 451,

454, 460, 690, 698, 711, 1116
accidental, 816
automaton, 936
component, 804
game, 928, 1034
of hybrid automaton, 1054
intentional, 816
invariant, 12, 43, 60, 350, 426
objective, 925
operator, 391
pathological, 817
verification, 1054, 1097

Safraless synthesis, 946
Safra’s construction, 114, 130, 943
SAGE testing tool, 633
SAL (Symbolic Analysis Laboratory)

language, 83
SAL model checker, 84, 676
SART verification tool, 1027
SAT, see Boolean satisfiability
SAT-based model checking, 212, 277, 431, 786

completeness, 289
image computation, 289

SAT engine/solver, 247, 252, 253, 264
branching heuristics, 263
clause minimization, 259
incremental, 265
lazy data structure, 261
non-chronological backtracking, 254
search restart, 263

SATABS model checker, 294, 406, 486
Satisfiability, 50, 56, 69, 146, 657, 896
Satisfiability modulo theories, 305
SAT-MC, 732, 744, 750
SATO solver, 248
Saturation, 552, 567

differential, 1094
Scenario, 78
Scheduler, see Strategy
Scyther protocol analyzer, 751
Second-order logic, 46, 562, 906
Secrecy, 739
Secrecy pattern, 751
Semantics, 46, 102, 308, 562, 615, 656, 738,

821, 872, 976, 986, 1054, 1113
3-valued, see 3-valued semantics
axiomatic, 1161
denotational, 496, 1163
operational, 689, 1004, 1151

Semi-group property, 1066
Semi-lattice, 503

Separation logic, 607
Separation of concerns, 824
Sequence, 834, 836
Sequence interpolant, 431
Sequential circuit, 834
Sequential consistency, 604
Sequential equivalence checking, 286, 781
Sequentialization, 605
Session of cryptographic protocol, 748
Shannon, Claude, 766
Shannon expansion, 192
Shape analysis, 532
Signature, 307, 861
Similarity, 529, 891, 1011, 1119

checking, 1177
Simplex method, 319
Simplify theorem prover, 293
Simulation, 83, 294, 831, 1058, 1175
Simulation relation, 394

time-abstracted, 1007
timed, 1010

SixthSense model checker, 773
SKIP process, 1165
SLAB model checker, 486
SLAM model checker, 292, 312, 406, 434,

486, 541, 638, 785
Sleep set, 183
SLEC equivalence checker, 781
Small-model property, 899
Small-steps method, 779
Smallest sufficient model, 155
SMART model checker, 202
Smash model checker, 638
SML (simple modeling language), 85
SMT (Satisfiability Modulo Theories) solver,

247, 288, 305
incremental, 314
lazy, 267, 313

SMT-COMP, 306
SMT-EXEC, 306
SMTInterpol solver, 306
SMT-LIB, 307
SMV model checker, 84, 637, 718, 776
Software model checking, 17, 79, 283, 312,

434, 506, 604, 637
Software verification, 5, 100, 153, 188, 283,

401, 447, 493, 541, 866
SONOLAR solver, 306
Sort symbols, 307
SOS, see Structural operational semantics
Soundness, 162, 388, 524, 753

for assume-guarantee rule, 347, 365
for Hoare logic, 668
for propositional logic, 658
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refutational, 332
SpaceEx verification tool platform, 84, 1101
Spec# specification language, 84
SpecC verification tool, 294
Specialization, 155
Specification, 2, 27, 79, 107, 173, 219, 283,

378, 518, 556, 638, 795, 925, 1169
SPIN model checker, 84, 108, 159, 743
Splat testing tool, 632
Split invariant, 351
Split prover, 439
Splitting on demand, 330
SSA, see Static single assignment
SSL (Secure Sockets Layer) protocol, 727
Stability, 1084, 1168
Stable-failures model, 1169
Stably infinite, 326, 664
Star-free ω-regular language/property, 795
State compression, 168, 1180
State descriptor, 153
State explosion, see State-space explosion
State formula/predicate, 7, 31, 158, 232, 390,

975, 1021
State machine, 3, 75, 203, 229, 362, 542, 615,

947, 1154
finite, 3, 78, 229, 362, 615, 948, 1155
recursive, 542

State space
explosion, 3, 80, 173, 345, 385, 621, 743,

966, 1025, 1190
minimization, 1150
reduction, 749, 1181
search, 160, 620, 741

State vector, 165
Statecharts, 78, 786, 1183
Stateless search, 621
Statemate tool, 1183
Static equivalence, 756
Static single assignment form, 284, 430
Static test generation, 625
Statistical model checking, 21, 991, 1037
STE, see Symbolic trajectory evaluation
STE deductive system, 858
STE model checking, 844
Stochastic game, 19, 890, 934, 992
STOP process, 1165
STP solver, 306, 632
Strategy, 882, 924, 1034

deterministic, 1132
finite-memory, 924
improvement, 931
memoryless, see Positional
optimal, 890, 927, 981, 1002, 1140
positional, 882, 924

randomized, 1138
simple, 971
winning, 882, 927

Streett automaton, see Automaton, Streett
Streett condition/objective, 124, 952
Streett game, 931
Strengthening, 277, 510, 654, 712, 804, 858
Strong component, 804
Strong equivalence, 1156
Strong fairness, 30, 102
Strong regular expression, 802
Strongest post-condition, 350, 434, 516, 672
Strongest split invariant, 352
Structural contradiction, 804
Structural method, 15
Structural operational semantics, 1151, 1167
Stuttering, 39, 88, 159, 175

bisimulation, 182
equivalence, 175

Subset construction, 118, 377, 935, 1015, 1121
Substitution method, 529
Subterm convergence, 747
Subtyping, 496, 667
Suffix implication, 798
Summarization, 541, 604
Supertrace hashing, 169
Support function, 1072
Support of a distribution, 967
SVA (System Verilog Assertions), 781, 795,

1183
Symbolic algorithm/method, 16, 37, 229, 398,

675, 845, 927, 1023, 1123
Symbolic execution, 284, 377, 435, 527, 623,

676, 862
Symbolic indexing, 832
Symbolic model checking, 16, 153, 191, 219,

312, 378, 441, 625, 672, 720, 766, 786,
796, 833, 1111

BDD-based, 210, 219, 656, 1124
of timed automaton, 1024

Symbolic session generation, 750
Symbolic state, 229, 750, 786, 1059
Symbolic trajectory evaluation, 19, 787, 831

generalized, 864
relational, 860

Symbolic transition system, 87, 672
Symbiotic verification tool, 533
Symmetric, 162, 373, 709, 1157
Symmetric rule, 373
Symmetry, 361
Symmetry reduction, 15, 176, 621, 721, 787,

991, 1027
Synchronization operation, 605
Synchronous circuit, 90, 153, 1002
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Synchronous composition/product, 52, 81,
159, 227, 350, 926, 987

Synchronous control system, 96
Synchronous language, 83
Synergy algorithm, 442, 486, 638, 680, 782,

1150
Synopsys Corporation, 859
Syntax tree, 222, 494
Synthesis, 20, 45, 77, 130, 282, 378, 527, 607,

656, 767, 872, 921, 1002, 1056, 1111
symbolic, 1131

SystemC language, 82, 286, 788

T
T2 verification tool, 533
Tableau, 13, 57, 237, 565
Tamarin prover, 744, 752
TAME, 1027
TAN verification tool, 533
TAPALL verification tool, 1027
Taylor model, 1075
TCTL (Timed CTL), 1021
Technology transfer, 763
Template-based approach, 529
Template polyhedron, 1073
Temporal hierarchy, 43
Temporal logic, 6, 27, 795

branching, 7, 181
extended, 46
linear, 42
quantified, 818
regular-expression-based, 797
simple subset, 817
weighted, 1031

Temporal tester, 50
Term of cryptographic protocol, 734
Termination, 356, 447, 547, 622, 1118
Test bench, 770
Test generation, 625, 676
Testing, 4, 613
Theorem proving, 5, 764
Theory, 305, 309, 663

axiom, 309
combination, 324, 664
convex, 326
interpretation, 309
lemma, 333
literal, 307
matching, 328
propagation, 315
quantified, see Quantifier elimination
satisfiability, 309
theory, 307
unsatisfiable core, 333

validity, 309
Therac-25 bug, 780
Thread of cryptographic protocol, 738
Thread-modular verification, 607
Threader verification tool, 486, 533
Tic-tac-toe, 163
Time discretization, 1066, 1101
Time sampling, 809
Time successor of a polyhedron, 1061
Timed automaton, 208, 1003, 1124

complement, 1014
containment, see Automaton, containment
emptiness, 1015
model checking, 1019
probabilistic, 992
weighted, 1028

Timed CSP, 1172, 1182
Timed game, 935, 1034
Timed language, 1012
Timed word, 1003
Times, 1027
Token-passing protocol, 696
ToolboxLS (Level Set), 1101
Total cost, see Cumulated cost
Toyota braking problem, 782
TPTL (Timed Propositional Temporal Logic),

1018
Trace, 363, 737, 986

equivalence, 185, 1167
normal form, 184
refinement, 1169

Traces model, 1169
Trajectory, 838

assertion, 840
evaluation, 787
evaluation logic, 838
formula, 838

Transducer, 697, 938
Transfer relation, 504
Transition

invariant, 453
predicate, 467
probability function, 967
relation, 6
weak, 1159

Transition system, 2, 101, 310, 407, 1112
fair, see Fair discrete system
labeled, 6, 500
rooted, 1156
symbolic, 87
well-quasi-ordered, 687

Tree automaton, 893, 939
Tree-model property, 891
Triggers operator, see Suffix implication
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Truncated path, 809
Tseitin encoding, 287
TVLA tool, 486
Type checking, 494
Type logic, 495

U
UCLID verifier, 84, 331
UFO verification tool, 486, 533
Ultimate Automizer model checker, 486
Unfolding, 188, 431, 874, 879
Unified algorithm, 506
Uninterpreted function, 82, 309, 317, 431, 515,

627
Uninterpreted symbol, 309
Unique fixed-point induction, 1163
Unique implication point, 256
Unit clause rule, 250
Unit propagation, 250
Universal algebra, 1149
Universal tree automaton, 939
Universally quantified Horn solver, 486
Universally quantified transition, 704
Unsatisfiable core, 265, 333, 679
Until operator, 42, 796, 843, 906, 981, 986
UPC-Thrille tool, 623
Updated variable, 1052
UPPAAL model checker, 84, 1027, 1137
Upward closed set, 691, 1129
Urgent state, 1187
Utility of proof, 422

V
Vacuity, 12, 841

hidden, 842
Valgrind tool, 627
Validity, 51, 309, 663, 907, 980
Value analysis, 513, 533
Value iteration, 933, 982
Variant function, 653
Variant narrowing, 747
Verics model checker, 1027
Verification condition, 624, 653
Verification game, 883
Verification language, 83
Verilog language, 82, 282, 769
VeriSoft tool, 620
veriT solver, 306
Verity equivalence checker, 781
VeSTA verification tool, 1027
VHDL language, 82, 282, 769

Viability, 38, 40
Visible content, 1159
Visibly pushdown automaton, 558
VOSS verification system, 858
VPL (Value Passing Language), 1189

W
WALi library, 542
Watched-literals data structure, 262
Weak aliveness, 740
Weak alternating automaton, see Automaton,

weak alternating
Weak bisimulation, see Bisimilar, weak
Weak component, 804
Weak disagreement, 845
Weak fairness, 31, 89, 694
Weak MSOL, 905
Weak regular expression, 803
Weakening, 348, 436, 677, 852, 1128
Weakest assumption, 364
Weakest pre-condition, 294, 437, 483, 515,

669, 720
Well-founded relation, 453
Well-quasi-order, 687, 1016, 1128
Well-structured transition system, 1128
White-box fuzzing, 633
Widening, 507, 720, 1059
Wiggling, 845
Wolverine verification tool, 406, 486
Worst-case execution time, 21, 285
Wrapping effect, 1068

X
XMC model checker, 1184

Y
YAPA verification tool, 756
Yices solver, 306
Yogi verification tool, 441, 486, 638

Z
Z3 solver, 306, 632
Zapato theorem prover, 293
ZChaff solver, 279
ZDD, see Binary decision diagram,

zero-suppressed
Zenoness, 1005
Zone, 1023, 1126
Zonotope, 1071
ZZ toolset, 866
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