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Chapter 1
Introduction

In contemporary natural sciences strong mutual relations can be observed. Thus,
biology is associated with chemistry and physics. It is connected, furthermore, with
computer science, electronics, mathematics, cybernetics and philosophy which con-
tribute significantly into biological studies. Let us specify the aforementioned rela-
tions in detail - see Fig. 1.1.

Biology, as such, treats of structures and processes in living systems. The two
latter are studied by using observations and experiments, often sophisticated and
technologically advanced. The obtained results are, on the one hand, the starting
point for biological theories, for instance, to the paradigm that specific features are
inherited genetically. On the other hand, in the contemporary biology, formal mod-
els of structures and processes are created. In order to create an adequate model,
the properties which are crucial for the modelled phenomenon have to be specified.
The semi-formal description, which is in its character, in a way, analogous to axiom
systems in mathematics, is introduced on the basis of the specified properties - see,
for example, [41], Sect. 2. This description is the starting point for creating either
a formal model (the arrow 4 in Fig. 1.1), for instance mathematical one, or some
implementations. The aforementioned implementations can have two forms - of a
software algorithm or an electronic system. The latter one should be functionally
similar to the modelled process or structure (the arrow 5). There is a reciprocal rela-
tion between a formal model and its implementation - each one can be the starting
point for the other. For instance, if the ordinary differential equation, which models
the dynamics of the studied biological process, can be easily obtained on the basis of
the semi-formal description, then the electronic circuit, whose dynamics is described
by this equation, can be constructed (the arrow 6). On the contrary, if the structure of
the electronic circuit can be derived directly from the semi-formal description, then
this circuit can be implemented and the differential equation, which describes its
dynamics, can be derived (the arrow 7). Regardless of the order of the model and the
implementation creation, the model can be analyzed by using formal approach (the
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2 1 Introduction

Fig. 1.1 The general schema of relations in modelling biological structures and processes

arrow 8). This analysis allows the researcher to study the properties of the formal
model and, as the consequence, the properties of the investigated phenomenon. The
results of this analysis can point out the directions for further observations and exper-
iments (the arrow 9) as well as the necessity to modify the set of crucial properties
(the arrow 10). In such a way the formal models and both software and electronic
implementations become a significant part of the methodology of biological studies
and generate specific methodological and philosophical problems [34].

This monograph treats of models of neural networks in the context of their mod-
elling. The artificial systems, which are modelled after biological neural cells and
structures constituted by them, are created for two reasons. On the one hand, such
an approach enables the researchers to study biological phenomena indirectly by
investigating artificial models. On the other hand, artificial neural networks (ANNs,
for abbreviation) are computational systems of artificial intelligence. The mentioned
systems enable researchers to solve a wide class of problems - pattern recognition,
control, classification and diagnostics can be put as examples. Modelling of neural
systems, hardware and software implementations of these models and, first of all,
analysis of the models by using mathematical tools is the main topic of this mono-
graph. Thus, referring to Fig. 1.1, problems which correspond to the frames E, F,
G and partially, D, as well as the relations symbolized by the arrows 4, 5, 6, 7 and
8, are the topics of this monograph. It should be stressed, however, that only some
selected problems are discussed.
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In scientific investigations, the studies concerning mathematical modelling of the
biological neural structures and artificial neural networks are, usually, regarded as
separate topics. Nevertheless, all types of ANNs, as well as their training algorithms,
are based on the models of biological prototypes. Therefore, in this monograph, the
intension of the author is to unify these two topics. The more so because it seems
that there are numerous models of biological neural structures that can be the basis
for artificial systems and that have not been utilized yet. The way of the problem
presentation in this monograph can be prospective for the abovementioned reasons.

This monograph consists of five parts. The first part, the preliminary one, treats
of the foundations of both neuroscience (Chap. 2) and ANNs (Chap.3). It should
be stressed that biological foundations are presented more detailed than usually in
the books that concern neurocybernetics and neuromathematics. In Chap.3 all types
of ANNs are discussed. In the second part (Chaps. 4 and 5) foundations of mathe-
matical tools used in the sequel are specified. Chapter 4 treats about mathematical
foundations. It deals with basic issues and as such can be omitted bymathematicians.
In Chap.5 very special topics of dynamical systems theory are presented and it can
be interesting even for the professional mathematicians. Mathematical models of the
neuron, both the whole one (Chap. 6) and its parts (Chap.7), are discussed in the third
part of the monograph. The models discussed in Chap.7 are based on differential
equations and they describe the processes of signal transmission inside of the neu-
ron. Electronic implementations of these models are discussed widely as well. The
Sects. 7.3.2 and 7.3.3 present the results obtained by the author. They concern fast
and slow transport phenomena in the presynaptic bouton. The mathematical models
of the perceptron are discussed in the fourth part. This part of the monograph also
refers to the results obtained by the author. In Chap.8 the model of the perceptron
structure, as well as the general model of gradient training process of the perceptron,
is presented. Dynamical aspects of training process of linear, weakly nonlinear and
nonlinear perceptrons are analyzed in Chaps. 9, 10 and 11, respectively. The analysis
is based on the dynamical systems theory and refers to the stability of a dynamical
system, the flow discretization, the topological conjugacy of cascades and the shad-
owing property. Concluding remarks are presented in Chap.12. Appendix (Chaps. 13
and 14) is the fifth part of the book. The dynamical models are the topic of the mono-
graph. The approximation capabilities of perceptrons, however, are the very classical
and well-worked topic in mathematical analysis of perceptrons. Thus, the basic and
classical results are presented in Chap.13. In the text of this monograph only the
proofs of the theorems that concerns the topis directly are presented. The proofs of
other theorems that are not known widely but has been utilized in this monograph,
are presented in Chap. 14.
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Chapter 2
Biological Foundations

Each type of biological cells, including the simplest bacteria, receives stimuli from
its environment and processes the obtained signals. Nevertheless, only metazoans,
are the group whose representatives are equipped with neurons - the cells highly
specialized in signal processing and transmission. In particular, only neurons are
able to transmit signals over long distances. Neurons constitute multicellular struc-
tures including the most complex one which is the brain that is built not only from
neurons but also from glia cells. The evolutionary development of the brain enable
animals to perform intensional, not only reflexive, movements. Each consciously
and intentionally initiated movement has its origin in the centers of movement con-
trol. “For this reason, the motoneurons are arranged in the neocortext according
to the body parts they innervate. Basal ganglia and the cerebellum are connected
with the neocortex by extensive nerve tracts and build separate feedback loops for
control and estimation of the outcome of the planned actions from the neocortext. (...)
Voluntary movements and goal-oriented movements, which need sensory guidance,
are not possible without sensory control. This exemplifies that, with the enlargement
of the cortex, especially the more flexible, goal oriented and (...) more autonomous
movements become possible” [162], Sect. 8.3. The development of the brain enables
living organisms to create complex models of the surrounding world and, as a con-
sequence, to predict and plan events as well as achieve the goals that were planned
beforehand. All of this allows the individuals equipped with complex central nervous
system, first of all primates, to be a fully autonomous systems in the sense studied
in [33, 134, 135, 161–163]. Let us recall briefly some basic facts concerning neural
cells, the structures created by them and their functional properties.

Although there are a few types of neurons - see, for instance, [166], Chap. 5 -
they have, in general, both the same structural scheme (see Fig. 2.1) and functional
properties.
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8 2 Biological Foundations

Fig. 2.1 The general schema of a neuron

Dendrites, the cell body and the axon are usually specified as the main parts of the
neuron if it is regarded as the unit which transmits and processes signals. Similarly
to all other types of biological cells, the neuron is separated from its environment by
the cellular membrane. The membrane is a lipid bilayer which is an insulator but,
because of the presence of electric channels and pumps which enables passive and
active ion transport across the membrane, it is electrically polarized. In the neuron
baseline state there is a difference between the electric potential of an internal and
external sides of the membrane - the so called resting polarization. The internal
side has negative value of a potential. When a neuron is excited, then the resting
polarization is distorted at the point of excitation. This distortion is propagated along
the neuron membrane as a wave. The stimulus can be of mechanical, electrical
or chemical character. It should be stressed, however, that the statement that the
neuron simply transmits signal from a dendrite to the synaptic bouton is an overmuch
simplification. The neuron is stimulated mainly via dendrites but other parts of a cell
can be stimulated as well. Furthermore, the signal is processed during propagating,
for instance at the dendritic forks. The way it is processed in these spots depends
on the geometry of the fork, among others on the relative lengths of diameters of
its branches as well as it depends on the strength of the signal in both branches of
the fork - see [166], Chap. 5. Furthermore, the neural cell body has low excitatory
threshold and therefore it is sensitive to even low signals which can be propagated
from synapses of other neurons which lie near the cell. The aforementioned wave
is propagated along the membrane and stimulations from various parts of a neuron,
processed during propagation, are summarized in the axon. Signal transmission to
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Fig. 2.2 Chemical synapse - a general scheme

the neuron terminal is the main function of this part of the neuron. The axon is
myelinated. The myelin is an insulator but there are gaps between myelin segments
in which additional stimulations from other neurons can be received and to act as
control signals. The synaptic bouton, which is a neuron terminal, is the first part of
the synapse, that makes the connection between two neurons. The synapse consists
of three parts: the aforementioned presynaptic terminal bouton, synaptic cleft and
the input of the postsynaptic dendrite of the neighbouring neuron - see Fig. 2.2.

The molecules of neurotransmitters, such as noradrenaline and acetylcholine, are
synthesized and packed to vesicles in the terminal bouton. The vesicles have vari-
ous sizes and, as a consequence, they contain various numbers of neurotransmitter
molecules - from 3000 in small vesicles to over one million in the large ones [184].
The vesicles move inside of the terminal bouton probably utilizing cytoskeleton as
paths along which transport takes place. Some of vesicles are docked in the specific
region of the cellular membrane. Vesicles do not leave the domain unless the action
potential arrives. The arrival of the action potential, i.e. the wave of the membrane
polarization, open voltage gated channels and, then, the membrane ion pumps drive
calcium ions inside of the bouton. This process triggers the release of neurotransmit-
ter from docked vesicles through some period of time - see Fig. 2.3. The number of
vesicles that release their content into the synaptic cleft is proportional to the vesicle
concentration in the vicinity of the release site. It should be also stressed that exocyto-
sis can take place in twoways according to the way inwhich the vesicle interacts with
the cell membrane. In the full fusion the vesicles collapse into the plasma membrane
and, as a consequence, the whole content of the vesicle is released to the synaptic
cleft. In the kiss-and-run fusion only a part of the content of a vesicle is released



10 2 Biological Foundations

Fig. 2.3 Chemical synapse -
transport of
neurotransmitters in a
presynaptic bouton.
Neurotransmitter is packed
to vesicles (1). Then, the
vesicles diffuse towards the
cell membrane (2) where
they dock (3). When the
action potential arrives,
voltage gated channels open
(3) and membrane ion pumps
drive calcium ions inside the
bouton. In the response to
the inflow of the ions (4) the
neurotransmitter is released
from docked vesicles to the
synaptic cleft (5)

[184]. Such mechanism can control precisely the neurotransmitter signalling, among
others it can retrie vesicles with great fidelity [159].

Depending on the part of the neuron to which the axon terminal is connected
three types of synapses can be specified: axodendritic, axosomatic and axoaxonic
[170], Chap. 5. In the first one the axon is connected to the dendrite of the postsynaptic
neuron and this typeof a synapse acts as a signal transmitter between twoneurons.The
two other types of synapses, in which the axon terminal is connected to the soma or to
the axon of the other neuron, act probably as the modulators of a transmitted signal.
It should be also mentioned that in neural networks dendrodendritic interactions also
occur [170, 171].

It should be stressed that neurons communicate chemically by using two mech-
anisms, recognized as fast and slow synaptic transmissions. Fast transport of neu-
rotransmitters, described briefly above, consists in stimulation a target cell within
millisecondswhereas neuropeptide interaction lasts even several minutes. Neuropep-
tides are synthesized in the body of a neuron. Then, they are packed there in vesicles
(so called large dense core vesicles - LDCV for abbreviation) and sent to the presy-
naptic bouton. Neuropeptides are activated by calcium ions. Space distribution of
the inactive LDCVs is not uniform and their diffusion is slow, whereas the activated
LCDVs diffuse faster and their diffusion is undirect. Only the activated LDCVs can
be released to the synaptic cleft - see Fig. 2.4. Slow-acting neurotransmitters control
the efficacy of the fast synaptic transmission by regulating the efficiency of neuro-
transmitter release from presynaptic terminals and by regulating the efficiency with
which the fast-acting neurotransmitters produce their effects on postsynaptic recep-
tors [85]. More detailed discussion concerning the slow transport of neuropeptides
can be found in [125].
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Fig. 2.4 Chemical synapse - transport of neuropeptides in a presynaptic bouton. The large dense
core vesicles are filled with neuropeptide before they arrive from the cell soma (1). Then, they are
captured and immobilized (2). The voltage gated channels are opened by the action potential (3) and
ionic pumps drive calcium to the cytoplasm of the bouton. There, the calcium activates immobile
vesicles (4). After diffusing to the cytoplasm (5) the active vesicles arrive in the vicinity of the
membrane (6). Then, they are docked to the cell membrane and the neuropeptide is released (7)

In both types of the synapses described above the interaction has chemical charac-
ter whichmeans that chemical substances - neurotransmitters and neuropeptides - are
sent between two neurons. In such synapses, called chemical synapses, the synaptic
cleft has the length of 20÷ 40 nanometers. In the electrical synapses (gap junc-
tions) the length of the synaptic cleft is equal to 1.2÷ 3.5 nm. Such small distance
between two neurons enables the ions to flow by using the gap junction channels. In
the electrical synapses the signal control is not as precise as in the chemical synapses
but signal transmission is significantly faster [22]. Therefore the electrical synapses
are used to trigger fast reactions. Furthermore, the electrical synapse acts as a low
pass filter [22]. Moreover, the electrical synapse can be regarded as a synchronizing
element - for instance a few networks constituted by electrical coupling were found
in the neocortex [92, 168, 169].

In the central nervous system the signal is propagated not only from a presynaptic
neuron to a postsynaptic one but also the backward signalling, based on depolariza-
tion induced suppression of inhibition (DSI) phenomenon is observed. This mecha-
nism utilizes the transport of endocannabinoids from the postsynaptic neuron to the
presynaptic cell. The gamma-aminobutyric acid (GABA) is released and that causes
stopping a neurotransmitter transmitting. The DSI mechanism enhances the long-
term potential ([142, 185]) - it was shown experimentally that endocannabinoids
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extinguish the negative emotions triggered by the reminders of past experiences, by
using control activity of GABA - see [120] and [121], Chap. 8.

It should also be mentioned that the signal processing in neural networks has the
analog-digital character and both aspects have to be considered. Both the subliminal
analog potentials that are transmitted non-synaptically in the nervous network - see
discussion below concerning signalling in extra-cellular space (ECS, for abbrevi-
ation) - and digital spiking discharges of the whole neuron have to be taken into
account, which was postulated in the 70’ of the 20th century as one of the neuro-
physiological foundations of psychiatry [107], p. 185.

As it has been mentioned above, the signals in neural networks can be propagated
non-synaptically by diffusion in ECS. The active substances can diffuse to neurons,
glial cells and capillaries without using synapses. This type of the signal processing
can function between both neurons and glia. It seems that it is the basis for integrating
of the signal processing between distant cells and it involves large numbers of units
[9, 174].

The aforementioned glial cells play key roles in the nervous system. They con-
stitute the scaffolding on which the neural network is stretched and they insulate
one neuron from another. They also take part in metabolism by supplying oxygen
and nutrients to the neurons. Furthermore, they protect neurons from pathogens.
They also take active role in repairing the damaged neural network. According to
the recent studies it turns out that glia play an important role in neurotransmission.
For instance, the release of ATP, among others from glia, activates the membrane
receptors that modulate intracellular calcium. By using this mechanism glia not only
detect neural activity but also communicate among other glial cells [70]. Not only
glia-glia communication was observed but also signal transfer between glia and neu-
rons is possible. The signal transmission between neurons and glial cells is realized
by using chemical conduction, ion fluxes and cell adhesionmolecules [72]. The com-
munication between neurons and glia has significant influence on homeostasis of the
neural processes by regulation the synaptic strength, gene expression, mitotic rate
and differentiation of cells in the dependence of the activity in neural network [71].
Glia activity is also crucial for learning process as well as for forming long-term
memory because they take part in forming synapses [9, 69, 174].

Neurons and glia constitute network of interacting cells. In the neural network
some areas can be distinguished according both to they roles in signal processing
and to the structure which is generated by connections between neurons. In general,
the following structures of neurons can be listed: multilayer structures, recurrent
structures and local connections. In multilayer structures neurons form layers in
such a way that the neurons of a given layer are connected only to the neurons of
the next layer. Such connections are characterized for these part of neural network
which process signals from senses, first of all from sight and hearing. In the recurrent
structures the stimulation of some neurons causes excitation in closed loops. In such
a way, after a single external stimulation a neuron in recurrent network is usually
stimulated several times. In the neural structures organized as local connections the
neurons are located in the nodes of two-dimensional or three-dimensional lattice.
The structure of the lattice determines how many neighbours each neuron has. The
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neuron communicates with its neighbouring neurons. In such networks the external
stimulation is propagated through the whole network as a wave of excitations.

The structures and phenomena briefly discussed above are starting points for
mathematical, computer science, cybernetic and electronic models. Very often a
given model has more than one of the listed aspects. The processes in subregions of
neurons, for instance excitation of neural membrane, axonal transport, transport in
presynaptic bouton, synaptic conductance as well as synaptic plasticity, are modelled
by using both extremely simple and sophisticated tools. Some of these models are
starting points for the studies concerning artificial neural networks. These problems
are considered in Chap.6 in reference to single neuron and in Chaps. 8, 9, 10 and
11 in reference to perceptrons. It should also be mentioned that although glial cells
have not been taken into consideration in artificial neural networks, the possibilities
of taking into account them in neural network model have been already discussed
[49].



Chapter 3
Foundations of Artificial Neural
Networks

The rapid growth of computational power of computers is one of the basic qualities
in the development of computer science. Therefore, informatics is applied to solving
more and more complex problems and, what follows, the demand for bigger and
more complex software occurs. It is not always possible, however, to use classical
algorithmic methods to create such a type of software. There are two reasons for it.
First of all, a goodmodel of the relation between the input and output parameters often
either does not exist at all or it cannot be created at the present level of scientific
knowledge. It is worth of mentioning that the algorithmic approach requires the
knowledge of the explicit form of the mapping between the aforementioned sets of
parameters. Secondly, even if the model is given, the algorithmic approach can be
impossible regarding its over-complexity. It can be both complexity of the task on
the stage of the algorithm creating, and too slowworking of the implemented system.
The latter one is a critical parameter especially in the on-line systems. Therefore,
the alternative approaches, in comparison with the classical algorithmic approach,
are developed intensively. Artificial neural networks are included into this group of
methods.

The neurophysiological studies of functional properties of nervous systems
enabled researchers at the beginning of the 1940’s to formulate the cybernetic model
of the neuron [58] which, slightly modified, is commonly used up to present. At the
turn of 1950’s and 1960’s the first artificial neural systems - PERCEPTRON and
ADALINE were constructed. They were electromechanical systems. The first algo-
rithms for setting of the synaptic weights in such a type of systems were worked out.
Those pioneering attempts attracted attention to the possibilities of such systems.
At the same time, however, significant limits were discovered. Nowadays, from the
perspective of the time, it is known that on the one hand, the limits were caused by the
lack of proper mathematical models of neural networks. On the other hand, they were
caused by the application of just one type of artificial neural networks - themultilayer
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ones. They consisted of binary neurons and were the only ones known then. Never-
theless, the heated criticism of the new approach, first of all [138], caused more or
less 15-year-long lasting impasse in the research on artificial neural networks. There
came a breakthrough of the half of 1980’s when many new types of artificial neural
networks and their training algorithms were introduced. Mathematical analysis of
artificial neural systems was initiated then as well. That is one of two main topics of
this monograph. The formal models of biological neurons is the second one. In this
monograph the models based on differential equations and dynamical systems are
considered. Electronic circuits that reflect some functions of neurons are considered
as well.

3.1 Models of Neurons and Synaptic Transmission

The aforementioned cybernetic model, founded by McCulloch and Pitts, is the sim-
plest possible model. According to this approach, the neuron is treated as an indi-
visible unit which realizes the stimulus-reaction scheme. Such types of models are
generalizations of the model proposed by McCulloch and Pitts. In the deterministic
models of such a type, the neuron is represented by a mapping dependent on the
family of parameters whereas in the probabilistic models the neuron is modelled by
a distribution of probability. In this monograph, various models of the neuron are
discussed in Chap. 6.

Nevertheless various complex processes take place in the neuron. Even if the
neuron is considered only as the unit which processes the signals received from its
environment i.e., first of all, from other neurons and glia cells, a complex signal
processing takes place in dendrites, in the axon and in the synapse - see Chap.2.
Thus, the neuron is considered as a complex unit and, what follows, the models that
describe the processes that take place in various parts of the neuron, can be modelled
individually by usingmathematical tools. Thus, signal processing in dendrites, soma,
axon and synapse ismodelled separately. Since the chemical synapse consists of three
parts - the presynaptic bouton, the synaptic cleft and the receptors of the postsynaptic
dendrites - the processes in each part of the synapse can be modelled individually
as well. The modelling of the whole chemical synapse that is considered as an
indivisible module is an alternative possibility. The electric synapse, however, is
structurally and functionally far simpler than the chemical one and therefore it is
usually modelled as an indivisible module. The modelling of the cellular membrane
conductance, including controlled conductance in various types of ionic channels, is
another problem in the modelling of processes in various parts of the neuron.

Two types of mathematical models are used in the context of modelling signal
processing in various parts of the neuron - the probabilistic models and the ones
which are based on differential equations and dynamical systems theory. In the first
ones the probabilistic aspect of the modelled processes is regarded as the most cru-
cial. In the second ones, the dynamical aspect is regarded as the crucial one and, as
a consequence, differential equation or a system of differential equations is used as
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Fig. 3.1 Example of a
perceptron which has one
hidden layer

a model. Both partial differential equations and ordinary differential equations can
be used as the mathematical tool. In the case of nonlinear models and most of the
partial differential equations models it is impossible to find analytical solution of the
problem. Therefore, numerical simulations are necessary which, in turn, generates
subsequent both theoretical and practical problems concerning their stability, accu-
racy, convergence and computational complexity. If the model is based on ordinary
differential equations then it can be implemented by using electronic circuit whose
dynamics is described by the same differential equation. It should be also mentioned
that, sometimes, it is more convenient to propose an electronic circuit functionally
equivalent to a modelled process only on the basis of semi-formal description -
arrow 5 in Fig. 1.1. Then, a formal model based on ordinary differential equation can
be obtained as the model which describes directly the circuit - arrow 7 in Fig. 1.1.
In this monograph the models of signal processing in neurons based on differential
equations and dynamical systems theory are discussed. The possibilities ofmodelling
neural phenomena by using electronic circuits are analyzed as well. Both analogue
and digital electronic modules are taken into consideration and their relation with
mathematical model are discussed in detail. This problems are described in Chap.7.

3.2 Artificial Neural Networks and Their Applications

In this section the basic types of artificial neural networks are discussed in Sect. 3.2.1.
Then, a review of training methods of neural networks is presented in Sect. 3.2.2 and
applications of various types of artificial neural networks are presented briefly in
Sect. 3.2.3.
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3.2.1 Taxonomy of Neural Networks

Artificial neural network (ANN for abbreviation) is a system of artificial neurons that
are connected in such a way that output signals of neurons are put onto inputs of the
other ones. Taxonomy of ANNs can be done according to various criteria. The type
of neurons that constitute an ANN can be one of such criterion. Thus, an ANN can
consist of McCulloch-Pitts type neurons, radial neurons or neurons with memory
including neurons with hysteresis. The aforementioned neurons are equivalent to the
mappings according to which the input stimulus is transformed in the deterministic
way and it generates the output signal. Probabilistic neurons are another class of
artificial neurons. In such neurons if an input signal is put then the output signal
is generated by using a given probabilistic distribution. Various types of artificial
neurons are described in details in Chap. 6.

The structure which is constituted by connected neurons can be another criterion
of ANNs taxonomy. In such a context three following types of neural networks can
be specified.

Multilayer neural networks. In this type of ANNs, called also perceptrons, the
signal is propagated in one direction. Neurons constitute layers in such a way that
each neuron of a given layer is connected only with all neurons of the next layer -
see Fig. 3.1.A perceptron has the input units and the output layer. It usually has one
hidden layer or, in some cases, more. It is caused by the fact that such the structure
with one hidden layer is sufficient to approximate any continuous mapping on a
compact set. This problem is discussed briefly in Chap.13. If an input vector x
is put onto input units, then each neuron of a given layer is stimulated only one
time, and it propagates the signal onto inputs of the neurons of the next layer. As
the result, the output signals are generated on outputs of the output layer. These
signals constitute an output signal which is a vector y. In such a way a perceptron
creates an output which is the answer to the stimulation x.

Recurrent neural networks. Neural connections in recurrent ANNs form loops.
Therefore, after stimulation of a group of neurons by an input signal x, the neu-
rons are stimulated repeatedly and they generate dynamical process of the neural
network excitation. After some time a recurrent network, activated by a signal
x, can achieve a stable state which means that in two successive iterations the
output signals of all neurons do not change. As a consequence, the states of all
neurons remain unchanged after all following iterations. Oscillations of the states
of neurons or chaotic dynamics are another possibilities. Hopfield networks, in
which each neuron is connected with all neurons in the network, are the basic
type of recurrent ANNs - see Fig. 3.2.

Cellular neural networks. Neural connections in cellular neural networks are
local. Neurons are placed in the nodes of the net whose structure is defined. It usu-
ally is a square net on a plane but other structures, including three-dimensional,
are also possible - see Fig. 3.3. A neuron is connected only with neighbouring
ones and a neighbourhood is defined according to the structure of the net. Since
the neurons situated on the edge of the net disturb the symmetry, the edges of the
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Fig. 3.2 The schema of a Hopfield neural network which consists of three neurons

Fig. 3.3 The schema of a
cellular neural networks with
square neighbourhood (top)
and hexagonal
neighbourhood (bottom). If
in the square network the
additional connections
between the following pairs
of the neurons: A-D, E-H,
I-L, M-P and A-M, B-N,
C-O, D-P were created then
the toroidal structure of the
network connections would
be obtained. In the analogous
way, adding connections
between pairs: A-D, E-I, J-M
and A-J, B-K,C-L, D-M in
the hexagonal network leads
to the toroidal structure of
the network geometry

net that define the structure of a cellular neural network can be identified and, in
such a way, a toroidal net is obtained. In cellular networks a stimulation is propa-
gated in the form of a wave. Its dynamics is described by a partial differential or
difference equation.

The types of artificial neural networks specified above are the basic ones. There
are other several types of ANNs. Apart form the aforementioned ART-type net-
works, Hamming neural networks, Kohonen networks or RBF networks can be put
as examples.
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3.2.2 Taxonomy of Training Methods

If an artificial neural network is planned to be used for solving a given problem, then
parameters of its neurons have to be set. The process of setting the parameters is
called a training or a learning process. There are numerous methods of setting of the
parameters. Let us present the taxonomy of training processes.

1. Supervised learning
In a supervised training pieces of information about a properly trained neural
network are given. This information is used in the training process. The following
supervised training strategies can be specified in dependence on this a priori given
information character and the way the information is used during the training
process.

(a) Iterative methods are common types of supervised training algorithms. In
these methods parameters of neurons are changed iteratively and changes of
parameter values in a single step are small. In the group of iterative training
algorithms two subgroups can be specified.
i. In delta-methods a set of input signals, for which the correct out-

put signals of the network is known, is given. Thus, it can be speci-
fied a so-called training set which is a finite sequence of pairs {(x(n),

z(n))}n∈{1,...,N }, where z(n) is a signal which should be an output one if
the input signal x(n) is put onto the input of the neural network. The
untrained ANN, however, generates an output signal y(n), usually dif-
ferent from z(n). Then, the difference between these two output signals,
the current one y(n) and the proper one z(n), is measured by using so-
called criterial function and the neuron parameters are modified slightly
in order to obtain smaller difference. The modification of the parame-
ters is done in a deterministic way, commonly by using a differential
method, often a gradient one. In such a case the criterial function has to
be differentiable. It should be mentioned that the analysis of a training
process dynamics of perceptrons generated by a gradient method is one
of the main topic of this monograph.

ii. Probabilistic methods consists in probabilistic setting of the parame-
ters of neurons according to the given probabilistic distributions. The
distributions are obtained on the basis of the pieces of information that
concern the proper solution. This setting of parameters is an iterative
process as well. Genetic algorithms, sometimes used as the training
strategies of neural networks, can be put as examples of these types of
methods.

(b) Non-iterative methods have nowadays marginal significance. They can be
used if the problem is simple and neural network is small. In such a case it
is sometimes possible to find the proper values of parameters by using the-
oretical methods. In the simple case, for instance, weights of McCulloch-
Pitts-type neuron can be calculated as the solutions of a system of linear
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algebraic inequalities. In Hopfield neural networks, in some sorts of prob-
lems, an algebraic formula for calculation of weights values can be inferred
from theoretical considerations as well.

2. Unsupervised learning
In this group of training methods no information about the solution is given
a priori. Thus, the training set contains only some input signals without any
reference to the proper answers of the ANN. According to the basic approach
to the training process, unsupervised training methods can be divided into two
subgroups.

(a) Competitive methods consist in selection of the neuron or a group of neu-
rons that have been strongest stimulated by a given input signal. Then, only
the weights of this neuron (the winner takes all algorithm) or of this group
of neurons (the winner takes most algorithm) are modified in a current step
of the training process. This type of training methods are used, first of all, in
Kohonen networks. This group of methods as well as the Kohonen networks
can be used for detection of relations in the set of input signals, first of all
for clusterization of the input signal set. As the result of the training process
the neurons represent clusters of input signals.

(b) The methods based on the Hebb’s rule, according to which a neuron
stimulated repeatedly in short time becomes more and more sensitive to this
type of stimulation: “Let us assume that the persistence or repetition of a
reverberatory activity tends to induce lasting cellular changes that add to
its stability. [...] When an axon of cell A is near enough to excite a cell B
and repeatedly or persistently takes part in firing it, some growth process or
metabolic change takes place in one or both cells such that A’s efficiency, as
one of the cells firing B, is increased.” [89]. The creation of the patterns of
stimulations of the neurons in a network in the response to the input signals
is the result of the training process.

3.2.3 Applications of Neural Networks

As it has been aforementioned, themathematical foundations of perceptrons is one of
the crucial topics of this monograph. Artificial neural networks, however, offer such
wide possibilities of applications that they should be mentioned in the introductory
part of this book. Let us discuss the specificity of ANNs in the context of their
applications. Then, examples of the applications will be presented.

Artificial neural networks belong to the class of distributed connectionist systems
(see, for instance, [78],Chap. 3) inwhich the knowledge is distributed among the units
that constitute the AI system. In ANNs the knowledge is encoded as the parameters
of neurons - the weights in the case of McCulloch-Pitts neurons. The parameters
are set automatically during a training process. In the trained neural network the
knowledge is encoded implicitly which means that apart from very specific types of
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ANNs the parameters of the neurons have not any direct interpretation which could
be the basis to decode the knowledge. Therefore, at the cognitive level, the causal
relation between the stimulus and the network reaction cannot be traced. This is one
of the crucial drawbacks of artificial neural networks. On the other hand, however,
in order to apply a neural network to solve a problem, it is necessary to know only
the factors the solution is dependent on. Therefore, artificial neural networks can
be applied successfully to the problems for which the effective algorithm cannot be
worked out directly because of the high level of complication or because of the fact
that the cause and effect chain between the inputs and the solution remains unknown.
Since the input of neural networks is of the vector form, the factors mentioned above
have to be encoded as a vector or other mathematical structure that can be naturally
interpreted as a vector, for instance a matrix. If the factors are numerical ones then
they can be encoded in a natural way as the components of the input vector. If they
have symbolic character, then the proper way of encoding them as components of
a vector have to be found. It is crucial to reflect the relations between the symbolic
data and not to produce relations that do not exist in the data set. For instance, if a
day of the week should be taken into consideration as a part of the data encoded in
the input vector, then the way of encoding should reflect cyclic character of this data.
Representation the days of the week as seven points evenly distributed on a circle is
an example of a proper solution. If, for instance, the letters of the alphabet are the
input data, then do not exist any relations between them. Because it is impossible to
create vector representation without any relations between the vectors, the relations
between each two pairs of vectors should be the same. Encoding the letters as binary
vectors in which only one bit is equal to one is an example of a proper solution. In
a such way of the encoding, all vectors have the same structure - one active bit, and
Hamming distance between each two different vectors is equal to two. Examples of
such encoding can be found in [155], Sect. 4.1.1. The studies concerning sensitivity
of neural networks to input data representation are presented in [154].

The aforementioned sensitivity is, amongothers, connected to the problemof input
data transformation. If, for instance, one input parameter denotes the air temperature
in Celsius degrees and the other one the atmospheric pressure in millimeters of
mercury, then the first parameter can take values around zero whereas the second
one oscillates around 760. The trained neural network, however, does not “interpret”
the meaning of the parameters but only “experiences” them as a weak or strong
excitement. Therefore, the temperature, as close to zero value, will not have any
influence on the training process. Both parameters, however, should be treated as
equally important. Therefore, in such cases, the transformation of parameters that
constitute the input of the network is necessary. The input signal normalization is
the most common used transformation of this type.

A normalization procedure corresponds to creating a mapping

F : Rn ⊃ A � x → x̂ ∈ R
k, where ‖x̂‖ = 1,

where A is the set of the input signals. The most commonly used normalization is
done according to the formula x̂ = x

‖x‖ . This formula defines projection,
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Fig. 3.4 Simple projection of R2 onto S1

� : Rn \ {0} → Sn−1 ⊂ R
n,

let us call it a simple projection, of Rn \ {0} onto (n − 1)-dimensional sphere Sn−1

- see Fig. 3.4 for the two-dimensional case.
A simple projection has crucial drawbacks. First of all, the dimension of the space

is reduced. Secondly, the projection is not defined on the whole space because the
mapping is undefined for the origin of the coordinate system. Furthermore, the space
R

n, which has an an infinite measure, is projected onto a sphere which has a finite
measure. Additionally, the projection is not an injective mapping - if two points,
let us say u and w, lie on the same radial line, then �(u) = �(w) - see Fig. 3.4.
Referring to the considered problem that means that if two data clusters are situated
along the same radial direction then, after normalization, they cannot be separated
even if they were well separated before normalization. Therefore, this method of
input data normalization should be used only in such cases when is a priori known
that clusters, in the space of input signals, are located in various radial directions.

The mentioned problems cause looking for the normalization which does not
reduce the input signals space dimension. The stereographic projection

S : Rn → Sn ⊂ R
n+1

is an example of such a mapping. It was proposed as a normalization procedure for
the data processed by neural networks - see [36]. Geometric interpretation of the
stereographic projection is visualized in Fig. 3.5 for the two-dimensional case.
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Fig. 3.5 Stereographic projection of R2

The stereographic projection transforms the n−dimensional Euclidean space into
n−dimensional sphere that has its south pole in the origin of the coordinate system.
The classical stereographic projection is given explicitly by algebraic formulae for
each natural n. The formulae given below describes a little modified stereographic
projection - the space R

n is transformed into n−dimensional unit sphere which
has the centre at the origin of the coordinate system, as it is demand for the data
processed by neural networks. Let P = (x1, ..., xn) be a point in R

n. Then S(P) =
P̃ = (x̃1, ..., x̃n+1) is given as

x̃i = 4xi
4+s for i = 1, ..., n;

x̃n+1 = s−4
4+s ,

(3.1)

where s := ∑n
i=1 x2

i .

As it has been already mentioned, stereographic projection preserves the trans-
formed space dimension and is defined on the whole Rn. Furthermore, it is an injec-
tive mapping i.e. if u �= v, u, v ∈ R

n then S(u) �= S(v). Nevertheless, it transforms
a space which has an infinite measure into a space which has a finite measure. This
implies, among others, that points that are far from each other in R

n can be closed
each to other on Sn. Therefore, two clusters which are well separated in R

n can be
hardly separated after normalization. Such case, however, can only take place if the
clusters are far from the coordinate system origin - then they are transformed near
to the north pole of the sphere. Since, in practice, the norms of transformed vectors
are limited, the minimal distance between clusters after signal normalization can be
estimated. Having such estimation, the radius r of the sphere can be taken as large
as possible because in normalization in the context of ANNs training process all
input vectors should have the same norm, nor necessarily equal to one. In a such case
formulae (3.1) have the following form

x̃i = 4r2xi
4r2+s for i = 1, ..., n;

x̃n+1 = s−4r2

4r2+s · r.
(3.2)
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Artificial neural networks can be applied in many areas. The following applica-
tions can be put as examples. According to the topic of this monograph, the stress is
put onto perceptrons and perceptron-like networks.

Industrial applications. Possibilities of applications of various types of artificial
neural networks in power industry have been widely studied. Two-layer percep-
tron was applied to the failure diagnostics of oil underground switches [65]. The
status of the switch is characterized by the degree of corrosion of its internal tank.
The parameters that reflected the status of the equipment such as the content of
moisture in the oil, the parameter indicating loses of the oil and the dielectric
strength were encoded as the components of the input signals. The output sig-
nal was binary: non-corrosive condition or corrosive condition. It turned out that
the used perceptron classified the oil switch status significantly better than the
commonly used the current threshold classification method. All the cases were
classified correctly by the perceptronwhereas the thresholdmethod achieved 84%
of efficiency. It should be mentioned, however, the the number of the classified
cases was low and was equal to 19.

An interesting example of the application of an untypical neural network in power
industry is described in [2]. A neural network which realizes a Parzen estimator
[149] was used to power plant monitoring and diagnostics. This type of neural
network was introduced by Specht [172]. Real sensor data obtained from the
feedwater systems of an electric power plant were used as input for the Specht
neural network. The neural network was integrated with influence diagrams in
order to combine efficiency, economy and flexibility of the diagramswith learning
abilities, parallel computation and the noise resistance of neural networks. The
describedmethod allows the operator to observe both themost likely failure causes
and the probability ranking of them.
The intelligent monitoring of wind turbines by using ART-type neural networks
is described in the series of publication [12–15, 35]. Various types of resonant
networks as well as a hybrid system consisted of an ART network and RBF
network were tested. The parameter describing operational states of a turbine and
signals from vibration channels were put onto input of the systems. It turned out
that the tested systems were managed to cluster operational states effectively in
real times detecting the new ones that corresponded to faults.

There are numerous reasons for which the prediction of power load is one of
the crucial problems in power industry. First of all, the electric production on
industrial scale has great inertia, especially if it is produced by using the coal
power stations. Secondly, in the selected types of power stations, first of all in
the wind plants, production possibilities are hardly predictable. The prediction
of twenty four hours load profile is a common task. Various types of artificial
intelligent systems are used to solve this problem and ANNs are the ones that
are applied universally. The single perceptrons, as well as hybrid systems that
consisted of perceptrons and an expert module, were utilized successfully to pre-
dict the power load at the country level. In such systems the daily electricity
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usage, a day of the week, a day of the year and the weather temperature are used
as the input parameters. Themeanabsolute percentage error (MAPE)of thepredic-
tion is contained at the interval 1.2 ÷ 5% [19, 147].
It should be also mentioned that the other types of ANNs, not only perceptrons,
were efficiently applied to the load term forecasting. Kohonen networks that are
examples of a self-organizing systems achieved MAPE around 1% which is a
very good result [108].

Engineering applications. There are numerous possibilities for application of
various types of ANNs in engineering. Neural networks are widely used as control
modules and cognitive systems that process, arrange and recognize sensor data
including camera images. Furthermore, they are used as diagnostic systems.
The mentioned applications are commonly implemented in robotics. So called
convolution neural networks (ConvNN) are very similar to perceptrons so they
refer strongly to the topic of this monograph. This type of neural networks is
dedicated to process and recognize camera images, often in the context of a robot
vision system. It turned out that simple perceptrons are not a proper tool to solve
this task because they need huge number of weights. Therefore, the convolution
neural networks, in which layers are organized in a suchway that this organization
is optimal in the context of camera image processing, are the proper tools. Each
layer of a ConvNN has its inner structure. The width and height of the input layer
define the array of neurons equal to the number of pixels in the processed image
whereas the depth of the layer corresponds to the number of colours. The subse-
quent layers, which also have the analogous structure, i.e. neurons are organized
as three-dimensional arrays, process the image. The neurons of a given layer are
connected only to a small region of the preceding layer. Thus, the inter-layer con-
nections have a local character. The output layer reduces the input image into a
vector encoding class scores. It should be also mentioned that the output layer is
fully connected with the previous one, as in classical perceptrons. The effective
application of a convolution neural network in a robot vision system is described
in [124].

Medical applications. Artificial intelligence systems, not necessarily artificial
neural networks, are widely used in medicine. There are two main areas of their
application: medical imaging and medical diagnostics. In the context of medical
imaging AI systems are used both for images processing and recognition and
understanding [45, 143, 177]. Medical image understanding is strictly connected
with medical diagnostics aided by computer systems. In such context syntactic
method are used [25–27] as well as soft computing [177]. In the artificial intel-
ligence systems applied in medicine the neural networks play an important role.
Let us present a few examples.
The aforementioned convolution neural networks were applied in forensic den-
tistry [137]. In some cases dental records are crucial in forensic postmortem
identification. Since the procedures of comparison of postmortem dental find-
ings with antemortem records can be time consuming, especially in the case of
huge disasters, the demand for automatization of the process occurs. In the cited
paper the application of a deep convolutional neural network for the tooth types
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classification is described. A ConvNN is used for the process dental cone-beam
computed tomography images and in order to recognize the type of a tooth. The
system efficiency is equal to 91%.

In the paper [186] the application of a perceptron for diagnosis of skin diseases
is described. The perceptron had one hidden layer consisted of 20 neurons and
an output layer that had 10 neurons. The symptoms of diseases were encoded by
using an input vector which had 96 components. The value of the component was
equal to one if the symptom occurred, to zero if the symptom did not occurred
and to 1

2 in the case of the lack of information about the symptom appearance.
The output signals corresponded to ten dermatoses. The accuracy of the diagnosis
was equal to 70%.

The perceptron applications for recognizing of appearance of myocardial infarc-
tion is discussed in [16, 17]. The patients were presented to the emergency depart-
ment with anterior chest pains. The symptomswere encoded in the analogous way
as in the aforementioned perceptron for the diagnosis of skin diseases. It was only
one neuron in the output layer. Initially, according to the medical knowledge,
forty one symptoms were put onto the network input. The perceptron was trained
by using the descent gradient method with momentum. It turned out that only
twenty from among specified symptoms were necessary to make the perceptron
act properly. There perceptrons with one and with two hidden layers were tested.
The ability of the perceptron to distinguish patients with an acute myocardial
infarction from those without the disease was compared with the diagnosis made
by physicians. The best perceptron had two hidden layers, each consisted of ten
neurons. It diagnosed correctly 92% patients with infarction and 95.7% patients
without infarction. The diagnostic correctness for physicians was equal to 88%
and 76% respectively.

Economic applications. In economics artificial neural networks are used for pre-
diction of time series in various contexts. Prediction of currencies rates, shares
and bond values, prices on the markets as well as the demand and supply are the
classical examples [10, 20, 158, 187]. In the paper [10] theUSD toGBP exchange
rate prediction by using a perceptron is described. Not only the previous values
of the rate were used as the input signals but also the coefficient of random walk
was taken into consideration.
A financial predictor implemented as a perceptron is described in [119]. The
system predicts the value of the Dow Jones Industrial Average index for the next
month. The index is one of the principal financial indices and it shows how thirty
largest US companies have traded. Its values are calculated monthly. Twenty
variables were put as the system input parameters: The changes of the index in
three preceding months - three variables, the index of consumption prices in three
preceding months - three variables, the prices of oil in three preceding months
- three variables, the inflation rate in three preceding months - three variables,
the interest rate in three preceding months - three variables, the unemployment
rate in three preceding months - three variables, one variable which characterized
the political situation and the last variable - the number of the month. In the 21st
century the neural systems for the prediction of the Dow Jones Industrial Average
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index were studied intensively. The influence of various input parameter of the
prediction accuracy is discussed in [131]. The authors also reported that the Root
Mean Squared Error is equal to around 0.015.

Other applications. Industrial, engineering, medical and economic applications
of artificial neural networks are contemporary classical. Neural networks, how-
ever, can be applied efficiently also in other fields. Let us present one of them.
In each language a problem of phonematic translation appears. Phonematic trans-
formation is a basic tool for any artificial system of speech synthesis. The task can
be described as a translation of a written text into a string of phonematic charac-
ters that define the way in which a given letter should be pronounced. Phonematic
transformation is a difficult task because of the context sensitivity. The transfor-
mation of a single letter into a phoneme is usually ambiguous because, in most
cases, it depends on the characters both before and after the letter. In the context
of phonematic translation some languages, for instance Italian, are very regular
whereas others, for instance English, are extremely irregular. A neural system
of the orthographic-phonematic translation for Polish language, which is rather
regular in the context of this transformation, is described in a series of papers
[18, 48, 155, 156]. The aforementioned problem of representation of symbolic
data, which in this context are letters, appears in the phonematic translation task.
Two representation were tested. In the unary representation a letter is encoded
as a binary vector that has thirty two components according to the fact that there
are thirty two letters in the Polish alphabet. Only one component in the vector,
which represents a given letter, is equal to one. Vertices of the unitary cube in R4

were tested as the alternative representation of the Polish letters. Seven encoded
letters were put onto the perceptron input - the transformed one, the three pre-
ceding and the three following letters. The best perceptron achieved the accuracy
of transformation equal to 96.4% on a testing set. In order to improve the effi-
ciency, a modular system consisted of five neural networks was proposed. The
individual perceptrons were specialized in the following subtasks: transformation
of the digraph rz, transformation of nasal letters, transformation of the letter n,
transformation of the letters i,u,y, according to the fact that in Polish language
phonematic transformation of these letters is very similar, and the network which
solved the problem of voicing and devocalization. The system was aided by nine
rules because in Polish language translation of nine letters is independent of the
context. This hybrid system achieved accuracy equal to 98.5%. The application
of the voting committees allowed the system to achieve accuracy 99.2%. It is
significantly better than accuracy of NETTALK system for phonematic transfor-
mation for English language proposed in [167]. The system consisted of a single
perceptron. The version with one hidden layer achieved accuracy equal to 77% on
testing set whereas the version with two hidden layers achieved asymptotic accu-
racy equal to 91%. Let us remember, however, that English is far more difficult
to phonematic transformation than Polish.
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Chapter 4
General Foundations

In this chapter generalmathematical foundations, necessary for the presented studies,
are specified. Most of them have basic character.

Let us start from the definition of a typical property. In general, the word typical
refers to the property of the elements of a given set which is shared by all elements
of a large subset of this set. There are various definitions about what it means that
the set is large in such context. The one used in this monograph is a strong one.

Definition 4.1 A given property is said to be generic in a topological space if there
exists an open and dense set in this space which has this property.

The dynamical systems on manifolds are the mathematical foundation for the
analysis of the training process of perceptrons that is presented in this monograph.
Let us recall some basic facts concerning manifolds - see, for instance, [148], Chap. 1
and [118], Chap. 2.

Let M be a subset of Rn with the induced topology on M.

Definition 4.2 M is said to be a differentiable manifold of dimensionm if for each
p ∈ M there exists a neighbourhood Up ⊂ M of p, an open set V ∈ R

m and a
homeomorphism f : Up → V such that the inverse homeomorphism f −1 : V →
Up ∈ R

n is a C∞ immersion. A pair ( f,Up) is called a chart at the point p. Further-
more, if f −1 ∈ Cr , then M is said to be a manifold of class r. (or Cr manifold).

Definition 4.3 Let M be a Cr manifold, r ≥ 1. Let (U1, f1) be a chart at the point
p ∈ M. Let, furthermore, v1 be a vector which is an element of the vector space in
which f1(U1) is contained. It is said that two triples (U1, f1, v1), and (U2, f2, v2),
specified at the same point p, are equivalent if the derivative of ( f2 ◦ f −1

1 ) at the
point f1(p) maps v1 on v2. An equivalence class of such triples at the point p is
called a tangent vector toM at p. The set of all tangent vectors to M at p is called
a tangent space toM at p. It is denoted by Tp(M).
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Let us denote that each chart at the point p ∈ M determines a bijection of Tp(M)

onto a Banach space and, as a consequence, the structure of the topological vector
space given by a chart is transported to Tp(M). Let us also denote that the structure
of the vector space Tp(M) is independent of the choice of a chart.

Definition 4.4 LetM be an n−dimensional manifold. The tangent bundle ofM is
defined as

T M := {(p, v) ∈ R
n × R

n : p ∈ M, v ∈ TpM} ⊂ R
2n

with topology induced from R
n × R

n.

It can be easily shown that T M is a differentiable 2n−dimensional manifold and
that the projection π : T M → M, given by the formula π(p, v) = p, is continuous.

TwoWhitney’s theorems refermanifolds toEuclidean space.According to the first
one each differentiable manifold can be regarded, in a natural way, as a submanifold
of Rk - see [148], p. 9.

Theorem 4.5 (Whitney Theorem) Let M be a differentiable n−dimensional man-
ifold. Then, there exists a proper embedding g : M → R

2n+1.

Let us stress that, according toWhitney Theorem, not onlyM is a subset ofR2n+1

but also the manifold together with the tangent bundle is embedded in R
2n+1.

According to the second Whitney Theorem each differentiable manifold can be
considered as a C∞ manifold.

Theorem 4.6 (Whitney Theorem) LetM be a Cr n−dimensional manifold, where
r ≥ 1.Then, there exists aCr embedding g : M → R

2n+1 such that g(M) is a closed
C∞ submanifold of R2n+1.

Flows on manifolds are generated by vector fields.

Definition 4.7 A Cr mapping

X : M → R
n,

where M is an n−dimensional manifold, is called a Cr vector field on M.

The definition means that a vector field transforms a point p ∈ M to TpM.

Let 〈·, ·〉 be a scalar product inR j . In each point p of themanifoldM the spaceR j

generates scalar product 〈·, ·〉p and, as a consequence, it generates the norm || · ||p.
Let f : M → R be a mapping of a class Cr+1. Then, for each p ∈ M there exists
a unique vector X (p) ∈ TpM such that for each vector v ∈ TpM the equality

d f pv = 〈X (p), v〉p
is satisfied. In a such way on the manifold M a vector field f, called a gradient of
a mapping f, has been defined. The mapping f is called a potential determined on
M. It can be shown that X is of a class Cr .
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Let us move to algebraic foundations. In the analysis of properties of linear and
weakly nonlinear perceptrons the following well known fact is used.

Theorem 4.8 Let A be a real symmetric matrix. Then A has only real eigenvalues.

Gram matrices are used in the analysis of dynamics of training process of the
linear and weakly nonlinear perceptrons - see Chaps. 9 and 10. Gram matrices are
symmetric and in this monograph only the real ones are considered. Let us recall the
definition and some basic properties.

Definition 4.9 Let v1, . . . , vn be vectors in a space with a scalar product 〈, 〉. The
Gram matrix of these vectors, let us denote it as G(v1, . . . , vn), consists of scalar
products of these vectors which means that its elements are defined in the following
way: gi j := 〈vi , v j 〉.

The definition means that the Gram matrix is generated by a finite sequence of
vectors.

Corollary 4.10 The vectors that generate Gram matrix are linearly independent if
and only if the Gram matrix is nonsingular. If the generating vectors are elements of
R

k, then they are linearly independent if and only if detG(v1, . . . , vn) > 0 and they
are linearly dependent if and only if detG(v1, . . . , vn) = 0.

It turns that, under some natural assumptions, the linear independence of the
family of vectors is a generic property.

Lemma 4.11 Let Vn(m) denotes the family of all m−elementary sets of vectors
from R

n, where m ≤ n. Linear independency of vectors that belong to Vn(m) is a
generic property.

The Lemma is a simple consequence of the fact that in the family of square real
matrices the nonsingularity is a typical property.

The following property of Grammatrices are used in the analysis of the dynamical
properties training process of linear perceptrons - see Chap. 9

Corollary 4.12 For each sequence of n vectors that belong to R
k the following

inequality holds

detG(v1, . . . , vm, vm+1, . . . , vn) ≤ detG(v1, . . . , vm) detG(vm+1, . . . , vn).



Chapter 5
Foundations of Dynamical Systems
Theory

In this chapter the issues of dynamical systems theory, which is used for the further
analysis, are presented. In the first section some basic facts are recalled. In the
subsequent sections some advanced topics are considered. Then, the Euler method
on a manifold is discussed. Then linear, weakly nonlinear and gradient dynamical
systems are elaborated. In three last sections of this chapter topological conjugacy
of cascades, pseudo-orbit tracing property and dynamical systems with control are
presented. It should be mentioned that both topological conjugacy and shadowing
property are the topics that are far from being worked out completely and a lot of
problems in this field are open.

5.1 Preliminaries

Let us recall the most basic definitions and facts concerning dynamical systems
theory.

Let X be a topological space and (T,⊕) be a topological group with a neutral
element e.

Definition 5.1.1 A mapping � : X × T → X is a dynamical system if

1. �(x, e) = x for each x ∈ X;
2. �(�(x, t1), t2) = �(x, t1 ⊕ t2) for each x ∈ X; and t1, t2 ∈ T ;
3. � is continuous.

If (T,⊕) = (R,+) then a dynamical system is called a flow; if (T,⊕) = (Z,+)

then a dynamical system is called a cascade.
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Formally, a dynamical system should be denoted as (T, X,�). It is denoted, however,
as (X,�) or simply as � if it does not lead to misunderstanding.

Let us assume that a dynamical system � is given.

Definition 5.1.2 The set

orb�(x) := {�(x, t), t ∈ T }

is called the orbit of the point x .

Definition 5.1.3 A point p ∈ X such that �(p, t) = p for each t ∈ T is called a
fixed point of the system �.

Definition 5.1.4 A fixed point p of a dynamical system �, which is a flow or a
cascade, is called locally attracting if there exists an open neighbourhood Vp of p
such that for each x ∈ Vp limt→∞ �(x, t) = p, where t ∈ R in the case of a flow

and t ∈ Z in the case of a cascade.

Definition 5.1.5 A fixed point p of a dynamical system �, which is a flow or a
cascade, is called locally repelling if there exists an open neighbourhood Vp of p
such that for each x ∈ Vp limt→−∞ �(x, t) = p, where t ∈ R in the case of a flow

and t ∈ Z in the case of a cascade.

Definition 5.1.6 A point p ∈ X,which is not a fixed point, is called a periodic point
if there exists t0 ∈ T, t0 �= e such that �(p, t0) = p.

In this monograph, dynamical systems on manifolds are used to analyse the
dynamics of the learning (training) process of perceptrons. Let us recall the basic
definitions - see [148], Chap.1.

A specific dynamical system can be obtained in various ways. One of them is to
give an algorithm of generation of its orbits.

A vector field generates orbits of a flow is such a way that a vector vx at the point
x is the velocity vector at the point x . Alternatively, it can be said that, for a given
vector field X, the flow is generated by a differential equation

dx
dt

= X (x) (5.1)

with a given initial condition. Formally, for manifolds, it can be expressed in the
following way - see [148], p. 11.

Proposition 5.1.7 Let X be a Cr vector field on a compact manifoldM. Then, there

exists a Cr mapping � : M × R → M such that �(p, 0) = p and
d�

dt
(p, t) =

X (�(p, t) for each p ∈ M and t ∈ R.
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The above proposition means that there exists a global flow � on M generated
by X.

A bijection F : M → M generates orbits of a cascade by iterations, i.e.
orbF (x) := {Fn(x), n ∈ Z}, where F−1 denotes the mapping inverse to F and if n
is a natural number then Fn denotes the nth superposition of the mapping F. When
the cascades are considered on manifolds it is usually additionally assumed that the
generating mapping F is a diffeomorphism.

Definition 5.1.8 A fixed point p ∈ M of the flow generated by a vector field X is
called a hyperbolic fixed point if the derivative dX p : TpM → TpM has no imagi-
nary eigenvalues.

Definition 5.1.9 Afixedpoint p ∈ M of the cascade generated by a diffeomorphism
F is called a hyperbolic fixed point if the derivative dFp : TpM → TpM has no
eigenvalues which have module equal to 1.

Definition 5.1.10 Let Ws
�(p) and Wu

�(p) denotes, respectively, stable and
unstable manifolds of a fixed point p of a dynamical system � which is a flow
or a cascade. These manifolds are the sets defined in the following way

Ws
�(p) := {x ∈ M} : lim

t∈∞ �(x, t) = p,

Wu
�(p) := {x ∈ M} : lim

t∈−∞ �(x, t) = p,

where t ∈ R in the case of a flow and t ∈ Z in the case of a cascade.

Definition 5.1.11 A hyperbolic fixed point which is neither attracting nor repelling
is called a saddle point.

Definition 5.1.12 A dynamical system has not got saddle-saddle connections if the
fact that a point x belongs to the stable manifold of a saddle point implies that x does
not belong to the unstable manifold of any other saddle point.

So called limit sets play an important role in the description of properties of flows
and cascades.

Definition 5.1.13 Let � be a flow or a cascade. The ω-limit set of a point p ∈ M is
the set of those points q ∈ M for which there exists a sequence tn → ∞ such that
�(p, tn) → q. Similarly, the α-limit set of a point p ∈ M is the set of those points
q ∈ M for which there exists a sequence tn → −∞ such that �(p, tn) → q.

Qualitative features of a dynamical system can be expressed by periodic-like
behaviour of the regions of its phase portrait. The most strong examples of such
behaviour are fixed points and periodic orbits. Nevertheless, more subtle possibilities
are also taken into consideration. The following one plays an important role in a
Morse-Smile dynamical systems widely considered in this book.
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Definition 5.1.14 Let (X,�) be a dynamical system. A point x ∈ X is said to be a
non-wandering point if for any neighbourhoodUx of x there exists some t0 > 0 such
that �(Ux , t0) ∩Ux �= ∅.

Clearly, the fixed points and periodic points are the non-wandering ones.
Let us define a Morse-Smile cascades and flows.

Definition 5.1.15 A cascade is called a Morse–Smale cascade if its non-wandering
set is a finite union of periodic orbits and fixed points, each of which is hyperbolic one
and whose stable and unstable manifolds are all transversal to each other. A mapping
which generates a Morse–Smale cascade is called a Morse–Smale mapping.

Definition 5.1.16 A flow is called a Morse–Smale flow if its non-wandering set is
a finite union of periodic orbits and fixed points, each of which is hyperbolic and
whose stable and unstable manifolds are all transversal to each other, and there are
no saddle-saddle connections. A vector field which generates a Morse–Smale flow
is called a Morse–Smale vector field.

Definition 5.1.17 A dynamical system is called a Morse–Smale gradient-like
dynamical system if it is a Morse–Smale system which has no periodic orbits.

The example of a Morse–Smale gradient-like flow on R
3 is shown in Fig. 5.1.

The following property of the presented flow should be noticed. Let us consider
the ball which has the origin at the point A1 and a sufficiently large radius. The
trajectories of the flow cut transversally the sphere which is the boundary of the ball
in a direction into the interior of the ball. Therefore, the flow can be completed after
the compactification ofR3 in such a way that it remains aMorse–Smale gradient-like
flow with the additional repelling point. Such a complement plays a crucial role in
the analysis of training process dynamics of nonlinear perceptrons - see Chap.11.

If a flow � : M × T → M is given, then its time step can be fixed which gives,
so called, discretization of the flow. In such a way a bijection �(·, h) : M → M,

usually denoted as�h, is obtained.On the other hand, frequently, a numericalmethod
is applied to a flow, especially if it is generated by a differential equation - see
Eq. (5.1). If an operator of the used numerical method is a bijective mapping then
it generates the cascade on M. The question whether the cascade generated by
a numerical method reflects the dynamics of the flow discretization is a classical
topic in numerical dynamics. This is also one of the main topics of mathematical
considerations presented in this monograph. This part of the mathematical research
field is the basis of analysis of the perceptron training process.

Let us recall some basic facts that concern the stability theory.

Definition 5.1.18 The orbit orb�(x0) of the flow� is called a stable orbit if for each
ε > 0 and t0 ∈ R there exists δ > 0 such that the inequality �(�(x0, t0),�(x1, t0)) <

δ implies �(�(x0, t),�(x1, t) < ε for each t > t0.

Intuitively, the orbit is stable if orbits that start close to it at a time t0 remains close
to it for all times t > t0.
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Fig. 5.1 The example of the phase portrait of a Morse–Smale gradient-like flow on R3. At the top,
the flow on the ball, which is used for the construction of the whole system, is presented. The flow is
shown of the sphere (left) and inside the ball (right). At the bottom, the phase portrait of the whole
system is shown

Definition 5.1.19 The orbit orb�(x0) of the flow � is called an asymptotic
stable orbit if it is stable and for each t0 ∈ R there exists� > 0 such that the inequal-
ity �(�(x0, t0),�(x1, t0)) < � implies limt→∞ �(�(x0, t),�(x1, t)) = 0.

Definition 5.1.20 A flow is stable if its each orbit is stable. Similarly, a flow is
asymptotically stable if each its orbit is asymptotically stable.

Definition 5.1.21 An asymptotically stable flow on the manifold M is said to be
globally asymptotically stable if it has only one fixed point, let us say p, which is
attracting and such that Ws

�(p) = M.

5.2 The Euler Method on a Riemannian Manifold

In thismonograph theEulermethodon compactRiemannianmanifolds is considered.
In such a case it is defined by using exponent mapping. Let us recall its definition.
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The local exponent is a mapping expp : TpM ⊃ Up → M given by the formula

expp(v) = γ(1),

where Up is a neighbourhood of the point p and γ is the geodesic line such that
γ(0) = π(p, v) and γ̇(0) = v. The dot denotes the derivative over the parameter
by which the geodesic line is parametrized. The mapping π : T M → M is the
canonical projection i.e. it is given by the formula π(p, v) = p.

Let M be a Riemanian C j manifold, j ≥ 1, embedded in R
2k+1 - see Whithey

Theorem. Let a flow on M be generated by the equation

dx
dt

= f (t, x), x(0) = xo, (5.2)

Let us assume that for every t the function f (t, ·) is a Lipschitz mapping. Let the
time step h be constant. The Euler method on M is defined in the following way

xn = expxn−1
(−h · f (tn−1, xn−1)), (5.3)

where f (tn−1, xn−1) is a vector of the tangent space Txn−1M. If M = R
k then the

formula (5.3) has the form

xn = xn−1 + h · f (tn−1, xn−1), (5.4)

where tn = tn−1 + h.

Let the flow generated by the problem (5.2) be denoted as φ. Let, furthermore,
φh and ψh be the cascades generated by the discretization φ(·, h) and by the Euler
method for the Eq. (5.2) respectively. For the initial points x0, x̃0 ∈ M the error
ẽn(x0, x̃0, h) after n steps is defined as

ẽn(x0, x̃0, h) := �R

(
ψn
h (x0), φn

h(x̃0)
)
, (5.5)

where �R denotes a Riemannian metric onM.

Let T := [0, a], where a = n · h. Let us define the maximal error after n steps

en(x0, x̃0, h) := max
k≤n

�R

(
ψk
h(x0), φk

h(x̃0)
)
. (5.6)

The error of the Euler method on a Riemannian manifold is estimated as follows
- see [30].

Theorem 5.2.1

en(x0, x̃0, h) ≤ ea·L · e0(x0, x̃0) + b

L
· (
ea·L − 1

) · h, (5.7)
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where L and b are constants which depends on the starting point, the manifold
properties and the length of the time interval.

Let us notice that if the manifold is compact then the constants L and b are global.
Furthermore, in the case of a compact manifold, if the initial error e0(x0, x̃0) zeroes,
which means x0 = x̃0, then the error (5.7) depends only on the time interval length a.

5.3 Linear Dynamical Systems

The linear flows are the simplest ones. Not only the analytical formula that defines
their orbit can be obtained but also the analysis of their stability is simple. In this
monograph the stability of perceptron training process, considered as dynamical
system, is considered - see Chaps. 9–11. Let us recall some basic facts.

Definition 5.3.1 A flow � on R
n is called linear homogenious if it is generated by

a differential equation
dx
dt

= Ax

and linear nonhomogeneous if it is generated by a differential equation

dx
dt

= Ax + b,

where A is an n × n matrix and b is an n-dimensional vector.

Lemma 5.3.1 Theflowgeneratedbya linear nonhomogeneous equation dx
dt = Ax +

b is asymptotically stable if and only if the flow generated by its homogeneous part
dX
dt

= Ax is asymptotically stable.

Lemma 5.3.2 The flow � generated by a linear homogeneous equation is asymp-
totically stable if and only if limt→∞ �(x, t) = 0 for each x.

Corollary 5.3.3 Asymptotically stable linear flow is globally asymptotically stable.

Theorem 5.3.4 The linear flow generated by the equation

dx
dt

= Ax

is asymptotically stable if and only if the real parts of all eigenvalues of the matrix
A are negative.

Calculation or even approximation of eigenvalues for the matrices that have large
size is usually troublesome. In the case of asymptotical stability of linear flows,
however, the following Hurwitz criterion can be applied.
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Let us recall that if a principal diagonal of a minor of a square matrixA consists of
elements of the principal diagonal of this matrix, then the minor is called a principal
minor.

Theorem 5.3.5 (Hurwitz criterion) Let

dx
dt

= Ax

be a linear equation in R
n, where A is a real matrix. The flow generated by this

equation is asymptotically stable if and only if the following inequalities hold:
�1 = −A1 > 0
�2 = −A1A2 + A3 > 0
�3 = (−1)3A3�2 > 0
...

�n = (−1)nAn�n−1 > 0,
where Ak is a sum of all principal minors of rank k of the matrix A.

5.4 Weakly Nonlinear Dynamical Systems

The dynamics of linear dynamical systems is very regular. Nevertheless, most of
the dynamical phenomena including, in particular, training process of perceptrons,
are not linear and, as a consequence, they cannot be described by using the linear
dynamical systems. Thus, the following problem emerges: does a class of nonlinear
dynamical systems that are as regular as linear ones exist? It turns out that the answer
is affirmative.

Let us consider a flow generated by a differential equation (5.1). The linear part
can be separated and the equation can be written in the following form

dx
dt

= Ax + g(x). (5.8)

If the nonlinear part g satisfies some conditions that concern limitations of its values
and derivatives, then the flow generated by formula (5.8) is said to be weakly non-
linear. The specific form of the aforementioned conditions depends on the context
in which the problem is considered. The examples of such theoretical results which
concern weakly nonlinear systems are given in Sect. 5.6. The application of the idea
to perceptrons is discussed in Chap.10.
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5.5 Gradient Dynamical Systems

Gradient flows are the type of dynamical systems that are also very regular. Let us
recall definition and some basic properties.

Definition 5.5.1 A dynamical system � on M is said to be gradient flow if it is
generated by a differential equation of the following form:

dx
dt

= gradV (x),

where the function V : M → R is called a potential.

Since gradV (p) = 0 if and only if DV (p) = 0, the point p is a fixed point of a
gradient flow if and only if DV (p) = 0.

One of the most fundamental properties of gradient dynamical system is the fact
that if a point is not a fixed point, then the value of the potential increases along its
orbit. It can be expressed formally in the following form.

Theorem 5.5.2 Let a point p does not be a fixed point of a gradient flow �. If
t1 < t2, then V (�(p, t1)) < V (�(p, t2)).

The following corollary is implied directly from the above theorem.

Corollary 5.5.3 A gradient flow has no periodic orbit.

Let us notice that the above corollary implies that each gradient system which is
a Morse–Smale one is a Morse–Smale gradient-like system.

Corollary 5.5.4 Both the limit sets of any orbit consists of fixed points.

Corollary 5.5.5 If a gradient flow onM has only finite number of fixed points then
each limit set of any orbit consists of at most one point which is a fixed one. If the
manifoldM is compact then each limit set of any orbit consists of exactly one point
which is a fixed one.

The last corollary states that on a compact manifold each point belongs both to
the stable manifold of an attracting or saddle fixed point and to the unstable manifold
of a repelling or saddle point.

5.6 Topological Conjugacy

A flow, especially the one generated by a differential equation, can be analysed by
using theorems that concern flows. On the other hand, cascades are usually hard to
analyse because does not exist a mathematical tool for analysing discrete dynamical
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systems which is as strong as we have for continuous dynamical systems. Therefore,
the crucial question occurs whether the cascade generated by a flow has dynamic
properties similar to the ones that has the generating flow. Time h−map discretization
- see Sect. 5.1 - is the simplest way to generate the cascade by using a flow. The orbits
of �h cascade are subsets of the orbits of � flow. Thus, in a way, � and �h have
the same dynamical properties although the first one is a flow whereas the second
one is a cascade and, as a consequence, formally, they cannot be compared. The time
discretization �h cannot be implemented directly as a computational algorithm.
The orbits can be calculated by using numerical scheme applied to the differential
equation that generates the flow. The problem is whether the dynamics of the cascade
�h and the cascade, let us say �h, generated by the numerical method are the same
or, at least, similar. Topological conjugacy is a formal tool that is used to study this
problem.

Definition 5.6.1 Let (T, X1,�1) and (T, X2,�2) be dynamical systems. They are
said to be topologically conjugate if there exists a homeomorphism α : X1 → X2

such that for each x ∈ X1 and t ∈ T the following is satisfied

α(�1(x, t)) = �2(α(x), t). (5.9)

If the Eq. (5.9) is satisfied but the conjugating homeomorphism α is determined only
on a neighbourhood Up of a point p ∈ X1, then the dynamical systems are said to
be locally topologically conjugate at the point p.

In the case of cascades it is sufficient to satisfy Eq. (5.9) only for n = 1.

Corollary 5.6.2 Let F1 and F2 be bijective mappings on X1 and X2 respectively.
The cascades generated by F1 and F2 are topologically conjugate if and only if there
exists a homeomorphism α : X1 → X2 such that

α ◦ F1 = F2 ◦ α. (5.10)

It should be stressed that, usually, the conjugating homeomorphism is not a dif-
feomorphism.

The conjugate dynamical systems have the same dynamics. In particular, orbits are
transformed into orbits and their properties are preserved. This means that attracting,
repelling and saddle stable points are images of attracting, repelling and saddle ones
respectively and the dimension of stable and unstable manifolds of saddle points
are preserved. The orbits are deformed in a homeomorphic way. Formally it can be
expressed in the following way.

Theorem 5.6.3 Let (X1,�1) and (X2,�2) be dynamical systems conjugate by a
homeomorphism α : X1 → X2. Then:

1. For each x ∈ X1, α(orb�1(x)) = orb�2(α(x)).
2. If p ∈ X1 is a stable point of the system �1, then α(p) ∈ X2 is a stable point of

the same type of the system �2.
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3. If x ∈ X1 is a periodic point of the system �1, then α(x) ∈ X2 is a periodic point
of the system �2. Furthermore, the points have the same period.

4. If Y ⊂ X1 is an invariant set of the system �1, then α(Y ) ⊂ X2 is an invariant
set of the system �2.

As it has been already discussed, the linear dynamical systems have very regular
dynamics because in the linear case the system has only one stable point. If the point
is a hyperbolic one, then two systems in the same Euclidean space are conjugate if
the stable manifolds of their stable point has the same dimension. This implies that
the systems are conjugate if stable points are either both attracting or both repelling.
Therefore the problem of topological conjugacy of two linear dynamical systems is
trivial.

It turns out that near a hyperbolic fixed point the dynamics of a system is the same
as the dynamics of a linear system which, in a way, corresponds to this hyperbolic
fixed point. It happens both for cascades and flows and is formalized as Hartman
Theorem for cascades and Grobman–Hartman Theorem for flows.

Theorem 5.6.4 (Hartman local linearization theorem)Let� be a cascade generated
by a diffeomorphism f on a manifoldM and let p ∈ M be a hyperbolic fixed point
of�. Let, furthermore, A = Dfp : T Mp → T Mp. Then, there exist neighbourhoods
Up ⊂ M of the point p and V0 ⊂ T Mp of the origin in the tangent space, and a
homeomorphism α : V0 → Up such that the formula

α ◦ A = f ◦ α

is satisfied on V0.

Theorem 5.6.5 (Grobman–Hartman local linearization theorem) Let � be the flow
generated by a differential equation

dx
dt

= f (x)

on a manifold M and let p ∈ M be a hyperbolic fixed point of �. Let, further-
more, A = Dfp : T Mp → T Mp and let � be the linear flow generated by a linear
differential equation

dx
dt

= Ax.

Then, there exist neighbourhoods Up ⊂ M of the point p and V0 ⊂ T Mp of the
origin in the tangent space, and a homeomorphism α : V0 → Up such that for each
x ∈ Up

α ◦ � = � ◦ α

if only �(x, t) ∈ Up.
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The versions of Hartman and Grobman–Hartman theorems cited above say that
dynamical systems have locally, near a hyperbolic fixed point, the same dynamics as
the corresponding linear systems. The theorems, however, have also global versions.

Let us recall some basic facts and definitions. Let F : Rn → R
n be linear hyper-

bolic. This means, among others, that F has a spectrum σ(F) which splits in two
disjoint parts:σs(F) inside the unit circle andσu(F) outside the unit circle. The space
R

n is a direct sum of two F−invariant subspaces, let us say Es and Eu, where the
spectra of Ts := T |Es and Tu := T |Eu are σs(F) and σu(F) respectively. The num-
ber a := max{‖Ts‖, ‖Tu‖−1} is called the skewness of Fwith respect to the chosen
norm.

As it has been mentioned in Sect. 5.4 linear systems preserve their regular dynam-
ics under small perturbations. This property can be formalized in the following form.

Theorem 5.6.6 (Hartman global linearization theorem)Let F be a linear hyperbolic
automorphism of Rn with a skewness a < 1. Let f : Rn → R

n be a Lipschitzean
mapping which has a Lipschitz constant κ < min{1 − a, ‖T−1

s ‖−1}. Then F and
F + f are topologically conjugate.

It turns out that discretization of the weakly nonlinear flow and its Euler method
are topologically conjugate.

Theorem 5.6.7 (Fečkan Theorem) Let (�,Rn) be a flow generated by Eq. (5.8),
where the linear operator A has no eigenvalues on the imaginary axis and g ∈
C1(Rn,Rn), g(0) = 0, supx∈Rn |g(x)| < ∞. Let, furthermore, |Dg(x)| < b, where
b > 0 is sufficiently small. Let �h be a discretization of the flow � and let �h be
a cascade generated by the Euler method applied for the Eq. (5.8), which means
that �h(x) = x + h · Ax + hg(x). Then, there exist a ball Br := {x : |x| ≤ r}, a
real number h0 > 0 and a continuous mapping α : Rn × (0, h0) → R

n such that
for each h ∈ (0, h0) the mapping αh : Rn → R

n defined as αh(x) := α(x, h) is a
homeomorphism and the following equation is hold

�h ◦ αh = αh ◦ �h .

The constants in Fečkan theorem can be estimated.

Theorem 5.6.8 Let � be a weakly nonlinear flow generated by Eq. (5.8), where
the linear operator A has no eigenvalues on the imaginary axis. Let �Ah be a
cascade generated by the Euler method applied to the linear part of the flow
� i.e. �Ah := Ahx, where Ah := I d + hA. Let us assume that Ah is hyperbolic
and 0 < h < ‖A‖−1. Let �h be a cascade generated by the Euler method applied
to Eq. (5.8) which means that �h(x) := Ah(x) + hg(x). Let, furthermore, Mh :=
max{‖As

h‖, ‖(Au
h)

−1‖}. Under the notation of Theorem 5.6.7, if the below inequali-
ties are satisfied

h · b <
(1 − Mh)

‖A−1
h ‖ (5.11)
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h · b(‖A‖ + b) <
(1 − Mh)

‖A−1
h ‖ · ‖ehA‖ (5.12)

then the conclusion of Theorem 5.6.7 holds.

From inequality (5.12) the following square inequality is obtained

hb2 + h‖A‖ · b − 1 − Mh

‖A−1
h ‖ · ‖ehA‖ < 0. (5.13)

Taking into account that b is positive, inequality (5.13) is satisfied for b ∈ (0, b1),
where

b1 = 1

2h

(

−h‖A‖ +
√

h2‖A‖2 + 4h(1 − Mh)

‖A−1
h ‖ · ‖ehA‖

)

. (5.14)

In a general case it is not an easy task to calculate the used matrix norms. Never-
theless, in the applications considered in this monograph - see Chap. 10 - the matrix
A is real and symmetric. Therefore it is diagonalizable and it has only real eigen-
values. In such a case the matrix norms can be calculated easily and, as a conse-
quence, the constants can be estimated effectively. Thus, provided that A is n × n
matrix of a hyperbolic flow it is sufficient to consider the following form of it:
A = Diag(λ1, . . . ,λk,λk+1,...,λn ), λ1 ≥ ... ≥ λk > 0 > λk+1 ≥ ...λn. Let us denote
λmax := max{|λ1|, |λn|}. Thus, the matrix A can be written in the form

A =
[
Au

h 0
0 As

h

]
,

where Au
h = Diag(1 + hλ1, . . . , 1 + hλk), As

h = Diag(1 + hλk+1, . . . , 1 + hλn).

Furthermore, the matrix norms used in constant estimations in Fečkan Theorem
- see Theorem 5.6.8 - have the simple forms:

‖A‖ = λmax ,

‖Ah‖ = 1 + hλ1,

‖A−1
h ‖ = 1

1+hλn
,

‖(Au
h)

−1‖ = 1
1+hλk

,

‖As
h‖ = 1 + hλk+1,

‖ehA‖ = ehλ1 .

The estimates (5.11) and (5.12) can be rewritten in the following forms

h · b < (1 − Mh) · (1 + hλn) (5.15)

h · b(λmax + b) <
(1 − Mh)

(1 + hλn) · ehλ1 .
(5.16)

To sum up, utilizing (5.14), the following estimation is obtained
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0 < b < min{M1, M2}, (5.17)

where

M1 := 1

h
(1 − Mh) · (1 + hλn)

and

M2 := 1

2h

(
−hλmax +

√
h2λ2

max + 4h(1 − Mh)(1 + hλn) · e−hλ1

)
.

The problem of topological conjugacy between substantially nonlinear dynamical
system is studied intensively. Some strong results have been obtained for Morse–
Smale gradient-like dynamical systems. Let us recall the crucial results for this type
of the dynamical systems on manifolds.

In the three theorems put forward below M is a finite-dimensional compact
smooth Riemanian manifold without a boundary and

� : M × R → M

is a Morse–Smale gradient-like flow that is generated by a differential equation on
the manifold M

dx
dt

= F(x), (5.18)

where F is a C2 vector field on M. Furthermore, �h : M → M is the time-h-map
of the system φ, i.e. φh(x) := φ(x, h).

Theorem 5.6.9 Let �h,p denotes the diffeomorphism generated by a Runge–Kutta
method of the stepsize h and order p > 1 which is applied to Eq. (5.18). Then for
a sufficiently small h > 0 there exists a homeomorphism αh : M → M which con-
jugates the cascade generated by �h and the cascade generated by the numerical
operator �h,p which means that the following formula holds:

�h,p ◦ αh = αh ◦ �h . (5.19)

Furthermore, limh→0 �(αh(x), x) = 0.

The analogous theorem for the Runge–Kutta method of order p = 1, i.e. for the
Euler method, is worked out only under very specific assumptions.

Theorem 5.6.10 Let us assume that the manifold M is two-dimensional. Let �h

denotes the diffeomorphism generated by the Euler method of the stepsize h which is
applied to Eq. (5.18). Then for a sufficiently small h there exists a homeomorphism
αh : M → M which conjugates the cascade generated by �h and the cascade
generated by a numerical operator �h which means that the following formula
holds:
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�h ◦ αh = αh ◦ �h . (5.20)

Furthermore, limh→0 �(αh(x), x) = 0.

The topological conjugacy in all cases for Runge–Kutta methods applied for
Morse–Smale dynamical systems on manifolds is worked out in the case of the
iterative numerical operator.

Theorem 5.6.11 Denote by ψh,k the diffeomorphism generated by the Runge–Kutta
methodof the stepsize h andorder k which is applied toEq. (5.18).Let T > 0 begiven.
Then for a sufficiently large m and each k ∈ {1, 2, . . .} there exists a homeomorphism
αm : M → M such that the following formula holds

ψm
T
m ,k

◦ αm = αm ◦ φT . (5.21)

Furthermore, limm→∞ �(αm(x), x) = 0.

5.7 Pseudo-orbit Tracing Property

The idea of topological conjugacy, that has been put forward in the previous section, is
useful provided that the calculations are performed in exact arithmetic. This assump-
tion, however, is not true. Therefore, in the analysis of dynamical properties of the
training process of perceptrons themathematical tool, which is appropriate for analy-
sis of dynamical properties of the systems,whose orbits are calculated in approximate
arithmetic, should be used. This leads us to the concept of shadowing property known
also as the pseudo-orbit tracing property.

In this subsection some basic definitions and results concerning both the shad-
owing and the inverse shadowing property are recalled. They are applied then to
analysis of the properties of perceptron training process - see Chap.11.

Let us assume that f : M → M is a diffeomorphism, i.e. f ∈ Diff(M). Let Z
denotes the set of integer numbers.

Definition 5.7.1 Let � be a cascade generated by the mapping f. A sequence
{yn}n∈Z ⊂ M is called a δ-pseudo-orbit of � if, for each n ∈ Z, the following
inequality is satisfied

d( f (yn), yn+1) ≤ δ.

Definition 5.7.2 The cascade � generated by f is shadowing, if for every ε > 0
there exists δ > 0 such that any δ-pseudo-orbit {yn}n∈Z of the diffeomorphism f is
ε-traced by the orbit of some point x ∈ M, which means that for each n ∈ Z the
following inequality is satisfied

d(yn, f n(x)) ≤ ε.
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LetMZ denotes the set of all sequences of elements which belong toM. Let us
assume that the elements of the sequences are indexed byZ. Let us recall the concept
of δ-method.

Definition 5.7.3 Amapμ f : M → MZ is called a δ-method of the diffeomorphism
f , if the following conditions hold:

1. μ f (y)0 = y, for all y ∈ M
2. μ f (y) is a δ-pseudo-orbit of the mapping f.

Let us present themost general way to introduce the idea of the inverse shadowing.
LetT = T ( f ) denotes a collection of such δ-methods of f that for any δ > 0 there

exists a δ-method μ f ∈ T . Such T will be called a class. The set of all δ-methods is
then a class and it will be denoted by T0.

Definition 5.7.4 Let us distinguish four following classes of δ-methods.

1. The class Tc( f ) of all continuous δ-methods, where the continuity of a δ-method
μ is defined with respect to the product topology in MZ - see [112].

2. Let g : M → M be onto map satisfying D∞( f, g) ≤ δ, where D∞( f, g) :=
supx∈M d( f (x), g(x)). Define the mapping

μ f (y) = orbg(y), for all y ∈ M.

Then μ f is a δ-method of f .
The class of all δ-methods of the above form, where the mapping g is a homeo-
morphism, is denoted as Th( f ).

3. Let χn : M → M, n ∈ Z be a family of maps such that χ0 = idM and for all n,
D∞( f ◦ χn,χn+1) ≤ δ and let:

μ f (y) = {χn(y)}n∈Z, for all y ∈ M.

Then μ f is a δ-method of f .
The class of all δ-methods of the above form, where each χn is a continuous map,
is denoted as �c( f ).

4. Let χn : M → M, n ∈ Z be a family of maps such that for all n, D∞( f,χn) ≤ δ
and let:

μ f (y) = {yn}n∈Z such that y0 = y, yn+1 = χn(yn) for all y ∈ M.

Then μ f is a δ-method of f .
The class of all δ-methods of the above form, where each χn is a continuous map,
is denoted as �s( f ).

Let T be a class of δ-methods.
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Definition 5.7.5 It is said that the cascade generated by a mapping f has T −
inverse shadowing property if for any ε > 0 there exists a positive δ such that for any
orbit {xn}n∈Z and any δ-method μ f ∈ T there exists y ∈ M such that for all n ∈ Z

the following inequality is satisfied

d(xn,μ f (y)n) < ε.

Definition 5.7.6 The cascade generated by a mapping f is T − robust (or T −
bishadowing), if it is both shadowing and T − inverse shadowing.

Relations between various type of the introduced δ−methods can be expressed in
the form of the following corollary.

Corollary 5.7.7 The δ−methods satisfy the following relations.

1. If T1( f ) ⊂ T2( f ) and f is T2( f ) inverse shadowing then it is T1( f ) inverse
shadowing as well.

2. The following inclusions are satisfied:

Th( f ) ⊂ �c( f ) ∩ �s( f ) ⊂ �c( f ) ∪ �s( f ) ⊂ T0( f )

and all the inclusions are proper. In particular,�c( f ) and�s( f ) do not include
each other (see [152]).

3. We have �c( f ) = Tc( f ). Namely, for a given δ-method μ ∈ Tc( f ) one can
define maps χn as χn(y) = μ(y)n and this means that Tc( f ) ⊂ �c( f ). The
other inclusion is obvious.

Morse–Smale cascades are so regular that they have shadowing property. It can
be expressed formally as the following theorem.

Theorem 5.7.8 Let � := �c ∪ �s . Each Morse–Smale diffeomorphism is T −
robust if T = �.

Robustness is an invariant of topological conjugacy. In particular, the following
theorem is satisfied:

Theorem 5.7.9 Let f, g : M → M be topologically conjugate diffeomorphisms.
For the class T = �c,�s , T ( f ) robustness of f is equivalent to T (g) robustness
of g.

5.8 Dynamical Systems with Control

In control theory not only stability is studied but also controllability and observability
of the system. In this section we recall only the properties that are used directly in
the sequel.
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Fig. 5.2 Implications between various types of controllability

Let us consider the following linear problem

dx
dt

= Ax(t) + Bv(t), (5.22)

y(t) = Cx(t) + Dv(t), (5.23)

in which the real matrices A, B, C and D do not depend on time, i.e. the problem
(5.22)–(5.23) is time-invariant. Differential equation (5.22) describes the dynamics
of the system state x(t) ∈ R

n where v ∈ L2
loc([t0,∞],Rm) is the vector of accessible

control, L2
loc([t0,∞],Rm) denotes the space of locally 2−integrable functions with

values in Rm . Algebraic equation (5.23) describes the output state. The matrices A,

B, C and D have a dimension n × n, n × m, p × n and p × m, respectively.

Definition 5.8.1 The dynamical system generated by Eq. (5.22) is said to be
controllable in the time interval[t0, t1] if for anyvectorsx(t0) ∈ R

n andx1 ∈ R
n there

is a control u ∈ L2
loc([t0,∞],Rm such that the trajectory x(t, x(t0),u) of the system

satisfies the condition x(t1, x(t0),u) = x1.
The system is controllable at time t0 if there is t1 ∈ (t0,∞) such that the system

is controllable in the time interval [t0, t1].
The system is controllable if it is controllable for each t0 ∈ (−∞,∞).

The system is uniformly controllable if it is controllable for each time interval
[t0, t1].
It should be mentioned that the above definitions are usually put forward for the
general case for which the matrices are time-dependent. In this general case the
implications between the proposed types of controllability, shown in Fig. 5.2, can be
directly derived from the definition.

For the time invariant case, however, the following lemma is satisfied.

Lemma 5.8.2 For the time-invariant dynamical system (5.22) the notions of uni-
form controllability, controllability, controllability in the time interval [t0, t1], and
controllability at the point t0 are pairwise equivalent.
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Since in the time-invariant case the characteristics of the equation do not change
with time, it can be assumed, in this case, t0 = 0, without loss of generality.

For the time-invariant dynamical systems the following simple criterium of their
controllability exists.

Theorem 5.8.3 The time-invariant dynamical system (5.22) is controllable if and
only if

rank
[
B|AB|...|An−1B

] = n,

where
[
B|AB|...|An−1B

]
denotes the block matrix with component matrices B,

AB, . . . ,An−1B.

In practice, usually, some additional conditions are required, that concern the set
of accessible controls. In a such context, a few additional types of controllability
are proposed. Thus, let M(V ) denotes the set of vector measurable functions v :
(t0,∞) → V ∈ R

m .

Definition 5.8.4 The time-invariant dynamical system (5.22) is said to be
V − controllable to the setS ∈ R

nfromx0 ∈ R
n if for any initial state x(t0) = x0

there is an accessible control v ∈ M(V ) such that there exists t1 > t0 such that
x(t1, x(t0), v) ∈ S. The system is locally V−controllable to the set S ∈ R

n if it is
V−controllable to the set S ∈ R

n from each x0 ∈ X and S ⊂ X. If S = {0} then the
system is locally V−controllable to zero.

Two following criteria of V−controllability can be specified.

Theorem 5.8.5 Let zero belong to the interior of V . The system (5.22) is locally
V -controllable to zero if and only if rank

[
B|AB|...|An−1B

] = n.

Let CH(V ) denotes the convex hull of the set V .

Theorem 5.8.6 The system (5.22) is locally V-controllable to zero if and only if it is
locally CH(V)-controllable to zero.

The idea of the system observability refers to the possibility of determination of
the system states by using the values of the inputs and outputs of the system. In
engineering applications, as well as in natural sciences, both the inputs and controls
are given directly. In turn, the inner states of the system can be unobservable or at
least difficult to observe. In such the cases observability of the system is a very useful
property.

Definition 5.8.7 The system (5.22) and (5.23) is observable if its initial state x(0)
can be determined on the basis of the control v(t) and the output y(t) over a finite-time
interval.

The following criterion of observability is satisfied.

Theorem 5.8.8 The system (5.22) and (5.23) is observable if and only if

rank
[
CT |ATCT |...| (An−1

)T
CT

]
= n.
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Theorem 5.8.8 implies that the observability of a time invariant system (5.22)
and (5.23) does not depend on the matrices B and D and, as a consequence, it is
independent of control v.

The set of all the systems that have the form (5.22) can be identified with the
space F of pairs of the matrices because each system is determined unambiguously
by the pair (A,B) of the (n × n)−dimensionalmatricesA and (n × m)−dimensional
matrices B.

It turns out that the controllability is a generic property of the time-invariant
dynamical systems.

Theorem 5.8.9 Let the set F be equipped with the topology induced by the metric
� defined as

�((A,B), (A′,B′)) := ‖A − A′‖1 + ‖B − B′‖2,

where ‖ · ‖1 is a certain matrix norm equivalent to the Euclidean norm in the space
of all n × n matrices whereas ‖ · ‖2 is a matrix norm equivalent to the Euclidean
norm in the space of all n × m matrices. Then, the set of time-invariant systems that
are controllable is open and dense in F with respect to the introduced topology.

By Theorem 5.8.9, for almost all dynamical systems (5.22) there exists an open
neighbourhood containing only controllable dynamical systems. Therefore, it is pos-
sible to define the controllabilitymargin for a given dynamical system as the distance,
according to the metric �, between the present system and the nearest system that is
not controllable.

5.9 Bibliographic Remarks

In this chapter both the basic foundations of the dynamical systems theory have been
discussed and some advanced topics as well. There are many handbooks that concern
the foundations of the dynamical systems - the books [99, 148, 183] can be put as
examples. The stability of a dynamical systems as well as its linearization are also the
basic topics. The first one is presented in detail in [61], whereas the second one -Hart-
man Theorem for cascades and Grobman–Hartman Theorem for flows can be found,
for instance, in [148], Sect. 2.4. Some basic definitions and the properties concern-
ing the controllability and observability of linear dynamical systems can be found,
for example, in [109]. For the time-invariant dynamical systems the criteria of their
controllability and observability are specified in [54], Sect. 5.4, [104], Sect. 1.9.5,
[109], Sect. 1.10. The characteristics of various aspects of V -controllability can be
found in [23, 24, 52, 93, 165] and [109], Sect. 1.9. The considerations that concern
the controllability as a generic property of the time-invariant dynamical systems can
be found in [55, 60], [109], Sect. 1.6, [122], Sect. 2.3, and [136].

The remaining part of the topics of this chapter concerns some advanced and
specialized problems. Thus, discretization of flows in R

n is discussed in a series
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Garay’s papers [80–84]whereas the discretization onmanifolds is the topic presented
in [28, 31, 126–130].

The Fečkan Theorem has been published in [67].
The constants in Fečkan Theorem were estimated by Jabłoński - see [39, 101,

102].
Shadowing [46, 47, 111–113, 145, 146, 152], in particular the concept of δ-

method was introduced by Kloeden and Ombach in [112]. The presented classes of
δ−methods are discussed in [46, 152]. If T = T0 then the definition 5.7.6 is the same
as the concept of the inverse shadowing introduced and examined by Corless and
Pilyugin in [57]. Actually, they did not use the notion of a δ-method there. In the
same paper the authors showed that the definition was of a limited interest. In fact,
they showed that any structurally stable diffeomorphism is not T0 inverse shadowing.

Corollary 5.7.7 can be found in [152].
Theorem 5.7.8 was proved in [46].



Part III
Mathematical Models of the Neuron



Chapter 6
Models of the Whole Neuron

Aneuron, as itwas discussed inChap.2, is a biological cell that has complex structure.
Furthermore, numerous processes occur within it. Therefore, at the present level of
scientific knowledge it is impossible to create any formal model that contains all the
structural and dynamical aspects of the neuron. In such a situation two approaches
can be applied: either a very simplified model of the neuron is created or there is
created a model which describes only a part of a neuron structures or processes. The
first group of the models is widely used as the basis for artificial neural networks.
The second group of the models is frequently embodied as electronic circuits. Such
an approach creates good perspectives for using the electronic circuits in future as
the components of more holistic models of the neuron and, as the consequence, as
the basis of artificial neural networks. In this chapter both groups of models are
discussed. Connections with electronic circuits are presented as well.

Let us sum up the properties of the biological neuron described in Chap.2. From
the cybernetic point of view the neuron is a unit which processes signals. It has a
few, let us say N , inputs - dendrites and one output - the axon. The neuron which
has N inputs is called in the sequel an N−neuron. In general, there are two sorts of
models of neurons: iterative and continuous. In the first one the input signals are put
onto a neuron input iteratively, step by step. In the second one the input signal has
continuous character. The iterative neurons and, what follows, the artificial neural
networks based on them can be implemented by using both a software and digital
electronic circuits. Continuous neurons and continuous artificial neural networks can
be realized only by using analog circuits.

There are three types of models of the iterative neurons: deterministic, determin-
istic with memory and probabilistic.

In a deterministic neuron its inputs are weighted by the weights w1, . . . , wN .

The weighted inputs correspond to the dendrites, whereas the output corresponds to
the axon. As it has been aforementioned, the input signals x1, . . . , xN are weighted
which means that for each input the product xi · wi is calculated. Then, the products
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Fig. 6.1 The cybernetic schema of a neuron

are summed i.e. the so called total excitation s = ∑N
i=1 xi · wi of a neuron is cal-

culated and, next, it is processed. The output signal y is the effect of this process-
ing. The cybernetic schema of a such model of the neuron is presented in Fig. 6.1.
The introduced model is a good starting point to create a mathematical model. The
input signals and weights can be considered as vectors x = [x1, . . . , xN ] ∈ R

N and
w = [w1, . . . , wN ] ∈ R

N , respectively. Then, the total excitation s is a standard
scalar product of vectors x and w, so it can be put s = x ◦ w and, more general
s = 〈x,w〉, where 〈·, ·〉 denotes the inner product. The output signal y can be treated
as a function of s, i.e. y = f (s), f : R → R, provided that the total excitation s is
transformed in a deterministic way. The weights of a neuron are set, usually itera-
tively, during a training process. If the process is finished, then the neuron is called a
trained one. Thus, a neuron which has N inputs, i.e. x ∈ R

N , is a family of functions
indexed by a multi-index w. Therefore a neuron can be identified with a mapping
F : RN × R

N � (x,w) → Fw(x) ∈ R. Such a mapping embodied as an algorithm
or a circuit is called an artificial neuron. An artificial neuron with fixed weights i.e. a
mapping Fw(·) : RN → R is called a trained neuron. The notation introduced above
is regarded as the convention that will be obligatory in the rest of the monograph.

More general, a deterministic neuron can be regarded as a mapping

F : Rn × � � (x, θ) �−→ F(x, θ) ∈ R,

where � denotes the set of parameters indexing the family of the mappings. In the
case of the aforementioned neurons based on the McCulloch’s and Pitts’s models
[58] the weights of a neuron are, among others, the parameters of a neuron. The
revival of the studies concerning artificial neural networks, which took place in the
1980s, resulted in, among others, using gradient methods for setting parameters of
neural networks - the learning process of networks. Therefore, the differentiable
functions has been widely used as the activation functions of a neuron since then.
Linear neurons are the simplest ones of this type. Identity is the activation function of
the linear neuron, i.e. f (s) = s. In this type of neurons � = {w ∈ R

n}. The neuron
with the identity function is the most general neuron that realizes the linear mapping
which can be formally expressed as follows.
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Lemma 6.1 Let A : RN → R be a linear operator. There exists a trained linear
N−neuron that realizes the operator A.

Proof Let a vector basis be given. In this basis the operator A can be expressed as
a one-row matrix [a1, . . . , aN ]. If the neuron weights are set as w1 = a1, . . . , wN =
aN , then for each x = [x1, . . . , xN ]T ∈ R

N the value of the neuron output y(x) is
equal toAx,whereA is thematrixwhich, in a given basis, corresponds to the operator
A.

�

Linear neurons and the artificial neural networks consisted of them, called linear
neural networks, have very limited abilities. Therefore, nonlinear activation functions
are widely used. The logistic function is contemporary the most common one:

fβ(s) = 1

1 + exp(−βs)
(6.1)

In the models based on this type of function � = {w ∈ R
n, β ∈ R}. Historically,

however, binary neurons were used as the first ones. They process signals by using
the Heaviside function

f (s) =
{
0 if s ≤ p0,
1 if s > p0.

(6.2)

In the case of a binary n-neuron � = {w ∈ R
n, p0 ∈ R}. They were studied inten-

sively in the 1960s in the context of logic. The obvious question is whether the
artificial neural network can realize logical calculi. In such a context the problem
whether each two-argument logical operator can be realized by a single neuron is
the most basic one. It turned out that fourteen of the all sixteen two-argument binary
operators could be realized by the binary neuron - see the following lemma.

Lemma 6.2 Each of the two-argument binary logical operator apart from the equiv-
alence and XOR operators can be realized by a binary 2-neuron.

Proof Let us consider the problem from geometric point of view. Each binary logi-
cal operator is a binary function defined on the four-component set X = {(x1, x2) :
x1, x2 ∈ {0, 1}}.On the other hand, the border line between 1 and 0 values of the out-
put for the trained binary 2-neuron is given by the equation x1 · w1 + x2 · w2 − p0 =
0 which is the equation of the straight line in R

2 if w1, w2 and p0 are set. Thus, the
problem is reduced to the question: For which binary two-argument operators the
points for which the operator value is equal to 1 (true value) can be separated by a
straight line from those points for which the operator value is equal to 0 (false value).
It is obvious that it is possible for each of two constant operators and for those ones
for which the value of the operator for exactly three points is the same. In the last
case one vertex of the unit square should be separated from the three others. For the
operators that have the same value on exactly two points, separation by a straight
line is possible only for these cases for which the points with the same operator value
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Fig. 6.2 The cybernetic schema of the multiplex neuron which realizes the XOR operator, u =
x1 · x2

Fig. 6.3 The cybernetic schema of the continuous-time neuron proposed in [56]

lie on the edge of the unit square. If they lie on a diagonal, as it is in the case of
the equivalence and XOR operators, then the separation by a single straight line is
impossible.

�

As it has been aforementioned in Chap.2 a neuron is a multiplex module which
means that the signals from dendrites are processed also before they reach the axon.
It has been modelled in such a way that the processed input signals are put at the
additional weighted neuron input - see Fig. 6.2 for a 2-neuron. Let such type of an
artificial neuron be called a multiplex neuron. Let us introduce a multiplex multiply-
ing 2-neuron i.e. a neuron that has one additional weighted input on which the signal
u(x1, x2) = x1 · x2 is put (Fig. 6.3).
Lemma 6.3 Each of the two-argument binary logical operator can be realized by a
multiplex multiplying binary 2-neuron.

Proof The border line between 1 and 0 values is of the form: x1 · w1 + x2 · w2 + u ·
w3 − p0 = 0, where u(x1, x2) = x1 · x2. A binary 2-neuron is obtained by putting
w3 = 0. Therefore, a multiplex multiplying binary 2-neuron has not less computa-
tional abilities than a binary 2-neuron. Thus, it is sufficient to show that it can realize
two operators that are nonseparable linearly. It can be easy verified that the multiplex
neuron with w1 = w2 = 2, w3 = −4 and p0 = 1 realizes XOR operator whereas
the neuron which realizes the equivalence operator can be obtained by putting, for
instance, w1 = w2 = −2, w3 = 4 and p0 = −1.

�
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Radial neurons are another class ofmodels of neurons. In this type of deterministic
neurons the function, that is realized by a neuron, has a radial-based form which
means that their values are changed radially around a given centre c ∈ R

n. The
functions

f (r) = exp

(

− r2

2σ 2

)

and
f (r) = g(r2 − σ 2),

where r = ||x − c||, are most often used as radial-based ones. The set of the param-
eters of a radial neuron has the form � = {c ∈ R

n, σ ∈ R}.
Such neurons in which the output signal is determined not only by the current

excitation but also by the value of the previous neuron excitation or by the previous
state of its output are the generalization of the above-mentioned models

y(0) = y(s(0))
y(k + 1) = f (s(k + 1), s(k), y(k)).

(6.3)

A neuron with a hysteresis is the intensively studied type of such neurons. The
simplest example of activation function has the following form

y(k + 1) =
⎧
⎨

⎩

1 dla s(k + 1) > pg
y(k) dla pd ≤ s(k + 1) ≤ pg
0 dla s(k + 1) < pd ,

(6.4)

where pg, pd denote upper and lower threshold respectively. The set of the parameters
of a neuron with hysteresis has the form � = {w ∈ R

n, pg, pd ∈ R}.
A self-exciting neuron is another simple example of a neuron determined not only

by its current state:

s(k + 1) = w · y(s(k) + x(n + 1) + p0,
y(k) = 1

1+exp(−s(k)) .
(6.5)

The set of the neuron parameters is of the form � = {w ∈ R, p0 ∈ R.}. A neuron
with the memory, in which all previous values of the output signals affect the current
output value, is another possible generalization. It acts according to the following
schema:

y(k + 1) = fβ

⎛

⎝
n∑

j=1

w j x j −
k∑

r=0

ηr y(k − r)

⎞

⎠ , (6.6)

where f is an activation function that depends on the set of parameters β (usually
β ∈ R,) and η ∈ (0, 1) is a dumping factor. As it is implied by formula (6.6), the
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more distant in time the previous state is the less influence on the current state it has.
It this model � = {w ∈ R

n, η ∈ (0, 1), β}.
All above-mentioned models are the discrete ones which means that they can

be implemented directly on computers. The continuous models, described usually
by differential equations, are the second basic group of deterministic neurons. Such
models can be implemented directly only by using analog electronic circuits. On
computers they can be implemented only after discretization. In such a case the
basic question is whether the crucial properties of the model are preserved under
discretization - see Sects. 5.6 and 5.7. There are several continuous models of a
neuron. One of the most general one was proposed in [56]. The model is based on
ordinary differential equations:

ds(t)
dt = k · s(t) + α

(∑N
n=1 wn · xn(t) + p0

)
− z(t)(y(t) − p1),

dz(t)
dt = −βz(t),
y(t) = 1

1+exp(−εs(t)) ,

(6.7)

where the nonnegative term z : R → [0,∞) is related to inhibitory self-feedback
with a bias p1. The above model is a generalization of the historically first model
based on differential equations proposed by Hopfield [95]. The only difference
between these two models is that a nonlinear term −z(t)(y(t) − p1) is added. As a
result, the dynamics of the neuron depends strongly on z.

In the deterministic neurons, if the neuron parameters are set, then the value of the
input signal determines unambiguously the value of the output signal. Probabilistic
neurons are another group of models in which the value of the output signal is drawn
according to a given probabilistic distribution. The following probabilistic binary
neuron can be presented as a simple model of this type

p(y = +1) = 1
1+exp(−2βs)

p(y = −1) = 1
1+exp(+2βs) ,

(6.8)

where s = x ◦ w, p(y = +1) is probability that the value of the output signal is
equal to 1. In the probabilistic neurons described by formulae (6.8) the set of the
parameters of the neuron is of the form � = {w ∈ R

n, β ∈ R, P}, where P is a
probability distribution.

In the light of neurophysiological knowledge, the models of the whole neuron are
simplified to such an extent that they do not reflect, even approximately, the char-
acter of signal processing in the biological neuron. For instance, on the basis of the
analysis of the functional properties of the neuron done by Waxman four fragments
of the signal processing in the neuron was distinguished: dendritic region, the body
of the cell, the axonal segment and the synapse. Furthermore, the axon can modulate
spatial and temporal relations between signals acting as an active filter. Neverthe-
less, artificial neural networks built from even such simple units both model some
neurophysiological phenomena and can be used as effective systems of artificial
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intelligence. Furthermore, such artificial neural networks generate interesting math-
ematical problems. Some aspects of them are the topics of Chaps. 8–11 andAppendix
13 of this monograph.

6.1 Bibliographic Remarks

The introduced model is based on the idea presented in [58].
Radial-based neurons were introduced in 1988 - [53, 140].
Neurons with hysteresis were proposed in 1991 - [178].
A self-exciting neuron is described in [150].
The neuron with the memory is introduced in [3].
The Waxman model was introduced in [180] and it is discussed in [166], Chap.5.
The discussion concerning the axon functionality, including modulating spatial

and temporal relations between signals is presented in [173].
Probabilistic binary neuron is presented [90], Sect. 5.6.
Firing neurons, omitted in this monograph as the subject of discussion, are

described, for instance, in [132].
Electronic circuits are the widely used models of functional aspects of both whole

neurons and their parts since the early 1960s when an electronic model of the whole
neuron was proposed in [86], see also [176], Chap.4.



Chapter 7
Models of Parts of the Neuron

As it has been mentioned in the previous section, the models of the whole neuron are
too simplified to reflect all crucial aspects of the signal processingwhich is performed
by the nervous system. Therefore, models of parts of the neuron are created. Both
mathematicalmodels and electronic circuits are used formodelling the parts of neural
cells. These two approaches refer to each other - if a circuit model is given, then the
ordinary differential equation that describes the dynamics of potential or current in
the circuit can be formulated. On the other hand, mathematical formulae can be often
realized by using the circuit that acts according to the dynamics described by these
formulae. In this section both approaches are exploited and the relationships between
them are discussed.

Four regions of the neuron have been distinguished and, as the consequence,
described in the subsequence subsections: the dendritic region, the axon, the presy-
naptic bouton and the synapsis.

It should be stressed that, currently, the computational power of computers is
too weak to compose the model of the whole neuron by using models of its parts.
Therefore the results described in this section have not been applied yet in the context
of artificial neural networks. The observed progress in hardware development may
enable the researchers to implement artificial neuron and, a consequence, artificial
neural networks built from neurons based on prototypes combined from the models
of parts of the neuron.

7.1 Model of Dendritic Conduction

The fact that the cellular membrane separates the ions on its internal and external
surface is the starting point for many models of conduction in the neuron. On the
other hand, the capacitor is the element of electric circuits which separates charge.

© Springer International Publishing AG, part of Springer Nature 2019
A. Bielecki,Models of Neurons and Perceptrons: Selected Problems
and Challenges, Studies in Computational Intelligence 770,
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Fig. 7.1 The electronic model of a segment of the cellular membrane

Fig. 7.2 The electronic model of the cellular membrane considered as discretized cable - see [106],
Sect. 8.1

Thus, the simplest model of a segment of the cellular membrane can be built by
using a simple circuit with the capacitor and the resistor - see Fig. 7.1. This basic
idea appears, in various variants, in the sequel in this chapter as the basis of the model
of the membrane conductance.

Utilizing Coulomb and Kirchoff laws, the equation that describes the dynamics
of potential in the circuit presented in Fig. 7.1 can be easily obtained

c
dV

dt
+ Iion = 0, (7.1)

where V = Vinside − Voutside.

The series connectionof the circuits thatmodel a segment of the cellularmembrane
leads to the model of a long fragment of the cellular membrane - see Fig. 7.2. It can
be shown that, after introducing the dimensionless variables, the dynamics of voltage
changes is described by, so called, the cable equation
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∂V

∂τ
= ∂2V

∂X2
+ f (V, τ ), (7.2)

where τ is a dimensionless time and X is a dimensionless length. Normal electrical
activity of neuronal dendrites has passive character which means that the linear form
of the Eq. (7.2) is a good approximation

∂V

∂τ
= ∂2V

∂X2
− V . (7.3)

Equation (7.3) needs to be complemented by some initial and boundary conditions.
It is, usually, assumed that initially the dendrite is in the resting state which means
V (X, 0) = 0.

Various boundary conditions can be specified in dependence on the assumptions
that concern the conditions at the boundaries of the dendrite. For instance, if the
voltage is fixed at the boundaries, then V (Xb, τ ) = Vb, where Xb denotes the end of
the dendrite. It is assumed that if a current, let us say I (τ ), is injected at one end of
the cable, then the boundary condition is of the form ∂V (Xb,τ )

∂X = αI (τ ).

7.2 Model of Axonal Transport

Processing of the impulse in the axon takes place in the cellular membrane. The
Hodgkin–Huxley system of ordinary nonlinear differential equations is the first and
the most classical model of the process which was confirmed experimentally and
is regarded as the classical basis of neurodynamics. Since the model is commonly
known - see the bibliographic remarks - it is not discussed in this book. High com-
putational complexity of the model was the reason for looking for simpler models.
The FitzHugh–Naguno proposal is one of them.

The FitzHugh–Naguno proposal is a simplified model of the cellular membrane.
In their approach three aspects of themembrane aremodelled by three components of
the electronic circuit and the components are connected parallelly - see Fig. 7.3. The
first component, which consists of the capacitor, models the membrane capacitance.
The second one, which consists of the resistor, coil and battery connected in series,
represents the recovery current. The third component, the nonlinear one, models the
fast current. Such an approach leads to the following equations that describe the
system dynamics:

Cm
dV

dt
+ F(V ) + i = −I0, (7.4)

L
di

dt
+ Ri = V − V0. (7.5)
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Fig. 7.3 The electronic
circuit functionally
equivalent to the FitzHugh
model

In the above equations i is the current in the line including the coil, I0 is the
external current, V = Vi − Ve is the membrane potential, V0 is the battery potential
- see Fig. 7.3. The nonlinear module is described by the function F(V ) = I.

After introducing dimensionless constants: ε = R2
1Cm

L , γ = R
R1

, w0 = R1 I0
V1

, v0 =
V0
V1

and dimensionless variables: τ = Lt
R1

, v = V
V1

, w = R1i
V1

, f (v) = − R1F(V1v)

V1
, the

system (7.4)–(7.5) takes the form:

ε
dv

dτ
= f (v) − w − w0, (7.6)

dw

dτ
= v − γw − v0. (7.7)

The variable v is the fast one whereas w represents the slow variable. Since the
Hodgkin–Huxley model is confirmed experimentally, the FitzHugh–Naguno model
is required to have similar properties to the Hodgkin–Huxley model. In order to
ensure this, the nonlinear component f should be similar to cubic polynomial which
has one zero point at the origin of the coordinate system and two other positive.
Thus, the polynomial of the form f (v) = av(v − α)(1 − v), where 0 < α < 1, is
the classic choice. Piecewise linear model, which consists of three linear segments,
is another possibility that is used commonly. It should be also mentioned that the
electronic circuit presented in Fig. 7.3 is not the only analog device that models the
dynamics described by Eqs. (7.6)–(7.7) - the more complex circuit in which opera-
tional amplifiers are used, is another possibility. The system can be analyzed by using
phase-plane technique which is caused by the fact that the FitzHugh approach leads
to the two-variable dynamical system. It was shown that if the model is considered as
a family of dynamical systems indexed by the parameter ε then a bifurcation occurs.
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To sumup, this significantly simplifiedmodel of the dynamics of signal processing
by the axon demonstrates that this processing is complex, in particular nonlinear, and
the character of the dynamics can change.

7.3 Models of Transport in the Presynaptic Bouton

Signal transmission between neurons consists in either transport of chemical sub-
stances from the presynaptic neuron to the postsynaptic one or direct transfer of ions
between the neurons. In the first case the phenomena that take place in a presynaptic
bouton are the first stage of the process. They are modelled by using either ordinary
or partial differential equation. In the three subsequent subsections both types of the
models are presented.

7.3.1 The A-G Model of Fast Transport Based on ODEs

The transport phenomena in biological units, including transport of various sub-
stances at subcellular level, are controlled precisely. In the commonly used compart-
ment models that are based on ODEs the transport phenomenon is described as flows
via channels between reservoirs (pools) in which the medium is stored. Aristizabal
andGlavinovic created the compartment model of vesicular storage and release (A-G
model for abbreviation). In this model the vesicles can be stored in three pools - the
immediately available one, the small one and the large one, in the dependence on the
proximity to the membrane of the cell and the degree of release competence. The
vesicles in the immediately available pool, about 20% of all the vesicles, correspond
to the docked vesicles - see Chap.2. They are released to the synaptic cleft when
the action potential arrives. Then, the pool is replenished by the flow from the small
pool that, in turn, is replenished by vesicles from the large one. The whole process
is described by the system of ordinary differential equation in which the density of
vesicles is the unknown quantity.

The use of analog electronic circuits as models of biological phenomena are stan-
dard approach in biological modelling, including subcellular processes. It should be
stressed, however, that electronicmodels are not an alternative to theODEmodels but
they are a fast and efficient way of physical realization of the processes described by
differential equations. Such realization is useful in order to represent themechanisms
occurring both in biological and artificial structures, for instance, in robotics or in
hardware realization of artificial neural networks. On the other hand, the electronic
model can sometimes be obtained in easier way than a differential one. In such a
case, a mathematical model based on differential equations can be obtained easily
as a description of a circuit dynamics.

In general, in modelling of transport phenomena, the capacitor corresponds to
a reservoir, voltage corresponds to the factor which causes the transport and the
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Fig. 7.4 The scheme of the electric circuit which corresponds to A-G model - see [5]. Capacitors
represent the pools of vesicles, resistors - the resistance forces during diffusion between the pools.
The source corresponds to the synthesis of neurotransmitter and the switch models the process of
neurotransmitter release

resistor models the resistance forces, for instance the friction. Thus, let Ci , i ∈
{1, 2, 3}, denotes the i th pool in which vesicles are stored and the pool is modelled
by a capacitor - see Fig. 7.4. Let, furthermore, Ui denotes the unknown vesicles
density modelled by voltage and E denotes the speed of production of vesicles by
the source that is situated in the large pool marked by subscript 1. Moreover, 1

RiC j

denotes replenishment rates of various pools. The small and large pools are marked
by subscripts 2 and 3 respectively and subscript 0 marks the synaptic release channel.
When the action potential arrives, then the channel is open and the dynamics of the
vesicular transport is described by the following differential model:

dU1

dt
= −

(
1

R1C1
+ 1

R0C1

)
U1 + 1

R1C1
U2, (7.8)

dU2

dt
= 1

R1C2
U1 −

(
1

R2C2
+ 1

R1C2

)
U2 + 1

R2C2
U3, (7.9)

dU3

dt
= 1

R2C3
U2 −

(
1

R3C3
+ 1

R2C3

)
U3 + 1

R3C3
E . (7.10)

The above system of differential equations describes the dynamics of electric
voltage in the circuit which consists of three capacitors and a source connected in
parallel. Furthermore, the circuit includes four resistors and a switch - see Fig. 7.4.
The closed switch corresponds to the release of neurotransmitter during stimulation
by the action potential. The open switch prevent the capacitor C1 from discharge
which corresponds to R0 → ∞. Thus, the Eq. (7.8) takes the following form:

dU1

dt
= − 1

R1C1
U1 + 1

R1C1
U2. (7.11)

To sum up, if the switch is closed then the dynamics of the electronic circuit is
represented by Eqs. (7.8)–(7.10). Otherwise it is represented by Eqs. (7.9)–(7.11).
In the circuit E denotes the voltage of the source, Ui is the potential across the i th
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capacitor, Ci denotes the capacitance of the i th capacitor and Ri is resistance of the
i th loop.

7.3.2 The Model of Fast Synaptic Transport Based on PDEs

In this subsection the model of fast transport of neurotransmitters, based on par-
tial differential equations (PDEs, for abbreviation), is presented. In the model the
following parameters are used.

(i) R
3 ⊃ � - the domain of the terminal bouton; it is assumed that it is a sufficiently

regular set;
(ii) � ⊃ �3 - the domain of production of neurotransmitter;
(iii) ∂� ⊃ ∂�d - the regions on the cell membrane in which neurotransmitter is

released to the synaptic cleft;
(iv) β : � → R models the efficiency of the source of neurotransmitter; in the

simplest case it can be defined as constant in the domain of neurotransmitter
production and as equal to zero outside this domain, i.e. β(x) = 0 outside �3

and β(x) = βz on �3;
(v) �̄ is the balance concentration of vesicles with neurotransmitter inside the

bouton; new vesicles can appear only if the concentration is below the balance
concentration;

(vi) α denotes the coefficient of the rate of neurotransmitter exocytosis, i.e. it is the
number of vesicles released through the unit area of the membrane in unit time
by the unit difference of the concentration in the cell and outside the cell; in
some types of biological neurons a single action potential activates about 300
vesicles and a single vesicle contains 103 ÷ 104 molecules of neurotransmitter;

(vii) ai j : � → R is the diffusion tensor for the vesicles; in the discussed model
it is additionally assumed that, in the context of transport, the interior of the
bouton is both time independent and homogenous, as well as isotropic; in a
such case the tensor is diagonal, independent on space and constant in time;
furthermore, the values of all three entries on the diagonal are the same and, as
a consequence, the tensor can be reduced to the single coefficient of diffusion;
for instance, for the acetylcholine, it is equal to 300µm2/s - see [57]);

(viii) τ denotes the time period through which the neurotransmitter is released from
the release regions to the synaptic cleft; in the case of fast transport it is equal
to 2 ÷ 5µs;

(ix) t0 is the moment in which the action potential arrives.

The function � : � × [0, T ] → R, which denotes the concentration of the vesi-
cles, is the unknown of the model that is based on the diffusion-type equation:

∂�(x, t)
∂t

=
3∑

i, j=1

∂

∂xi

(
ai j (x)

∂�(x, t)
∂x j

)
+ β(x)(�̄ − �(x, t))+. (7.12)
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Fig. 7.5 Domains of the
PDE problem

The first term on the right hand side of the equation describes diffusion and the
second one models production of neurotransmitter. The function β, which describes
production, is weighted by the factor (�̄ − �(x, t))+. Therefore, if concentration of
the neurotransmitter is greater than the threshold value �̄, then he production is
stopped. The production term causes the nonlinearity of the Eq. (7.12).

Let us define the boundary conditions (Fig. 7.5).

• Vesicles can leave the bouton only via docking sites

3∑
i, j=1

ai j
∂�(x, t)

∂x j
ni = 0 for (x, t) ∈ (∂� − ∂�d) × [0, T ], (7.13)

• Vesicles can leave the bouton only in the time interval in which the calcium chan-
nels are open by the action potential

3∑
i, j=1

ai j
∂�(x, t)

∂x j
ni = 0 for (x, t) ∈ ∂�d × ([0, t0) ∪ (t0 + τ , T ]). (7.14)

• The vesicles release outside the bouton is proportional to their concentration inside
the bouton. Furthermore, it is assumed that vesicle concentration outside� is equal
to 0.

3∑
i, j=1

ai j
∂�(x, t)

∂x j
ni = −α�(x, t) for (x, t) ∈ ∂�d × [t0, t0 + τ ] (7.15)

Let us also specify the initial condition

�(x, 0) = �0(x) on �. (7.16)
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The solution of the (7.12)–(7.16) can be found only by using numerical approxi-
mation. The assumption that the bouton is a three-dimensional sphere is the simplest
possibility. The numerical solutions based on more realistic geometric assumptions
are also studied. The case in which the bouton geometry for computer simulations
is based on the image from optical microscope can be put as an example.

Averaging

Let us derive ODEmodel of fast synaptic transmission by averaging the PDEmodel.
In the below passage, in which the averaging is described, the three-dimensional
Lebesgue measure is denoted by m, whereas two-dimensional boundary Lebesgue
measure in R

3 is denoted by m2. The model obtained by averaging will be referred
to A-G model.

Let us assume that all the coefficients are smooth i.e. they are of the class C∞.
Such regularity can be easily obtained by a mollifier function. Namely, if the coef-
ficients ai j ,β,α are not smooth, but they are only L∞ functions, then we replace
them with smoothed functions. Thus, let p be a standard mollifier kernel. The coef-
ficient ai j can be replaced by asi j (x) = ∫

�
pk(z)ai j (x − z) dz. The other coefficient

can be smoothed in the same way. The solution � of the equation with smoothed
coefficients is also smooth on � × (0, T ) - see, for instance, [66], Sect. 7.1.3. Addi-
tionally, the smoothed functions ai j and β are equal to the original ones apart from
small neighborhoods of the boundaries ∂�32 and ∂�21.

Let ε > 0 be fixed and small. Let �3ε be such a neighbourhood of the boundary
∂�32 that �3ε ⊂ � and m(�3ε) ≤ εm2(∂�32). Analogously, let �2ε be such the
neighborhood of the boundary ∂�21 that is included in �2ε ⊂ � and m(�2ε) ≤
εm3(∂�21). Furthermore, a(x) ≡ a3 in �3 \ �3ε, a(x) ≡ a2 in �2 \ (�3ε ∪ �2ε)

and a(x) ≡ a1 in �1 \ �2ε. Finally β(x) ≡ β in �3 \ �3ε and β(x) ≡ 0 outside �3.
In the integrals considered below dV denotes an element of volume and d�

denotes an element of surface. Let the averaged variables be defined in the following
way:

�3(t) =
∫
�3\�3ε

�(x, t) dV

m(�3 \ �3ε)
, (7.17)

�2(t) =
∫
�2\(�3ε∪�2ε)

�(x, t) dV

m(�2 \ (�3ε ∪ �2ε))
, (7.18)

�1(t) =
∫
�1\�2ε

�(x, t) dV

m(�1 \ �2ε)
. (7.19)

Let us apply averaging procedure to the inner domain. The below equation is
obtained by integrating (7.12) over �3

∫
�3

∂�(x, t)
∂t

dV =
∫
�3

3∑
i=1

∂

∂xi

⎛
⎝a(x)

3∑
j=1

∂�(x, t)
∂x j

⎞
⎠ dV +

∫
�3

β(x)(�̄ − �(x, t))+ dV . (7.20)

By using Green formula - see, for instance, [66], Appendix C.2, we obtain
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∫
�3\�3ε

∂�(x, t)
∂t

dV +
∫

�3ε∩�3

∂�(x, t)
∂t

dV =
∫

∂�32

a(x)
∂�(x, t)

∂ν
d� +

+
∫

�3\�3ε

β(x)(�̄ − �(x, t))+ dV +
∫

�3ε∩�3

β(x)(�̄ − �(x, t))+ dV, (7.21)

where the normal derivative is directed outside �3. Let us introduce the following
denotation

C := max

{
sup

(x,t)∈�×[0,T ]
�(x, t), sup

(x,t)∈�×[0,T ]
∂�(x, t)

∂t

}
.

Then
∣∣∣∣
∫

�3\�3ε

∂�(x, t)
∂t

dV −
∫

∂�32

a(x)
∂�(x, t)

∂ν
d� − β

∫
�3\�3ε

(�̄ − �(x, t))+ dV

∣∣∣∣ ≤
≤ εm2(∂�32)(C + βρ̄ + Cβ)

Let us denote
D := m2(∂�32)(C + βρ̄ + Cβ).

New vesicles are produced only if their concentration is less than the threshold
value �̄. Therefore, it can be assumed that �(x, t) ≤ �̄ and, as a consequence, the
positive operator (superscript (·)+) can be omitted. The term in the boundary integral
can be approximated as a2+a3

2
�2(t)−�3(t)

ε
. Then

∣∣∣∣m(�3 \ �3ε)
d

dt
�3(t) − m2(∂�32)

a2 + a3
2

�2(t) − �3(t)

ε
− βm(�3 \ �3ε)(�̄ − �3(t))

∣∣∣∣ ≤ εD,

(7.22)
which simply implies

∣∣∣∣ ddt �3(t) − m2(∂�32)(a2 + a3)

2εm(�3 \ �3ε)
(�2(t) − �3(t)) − β(�̄ − �3(t))

∣∣∣∣ ≤ ε
D

m(�3 \ �3ε)
.

(7.23)

Thus, it has been shown that �3(t) satisfies the following problem

�3(0) =
∫
�3\�3ε

�(x, 0) dV

m(�3 \ �3ε)
, (7.24)

d�3(t)

dt
= m2(∂�32)(a2 + a3)

2εm(�3 \ �3ε)
(�2(t) − �3(t)) + β(�̄ − �3(t)) + f3(t), (7.25)

where | f3(t)| ≤ ε D
m(�3\�3ε)

.
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After substitutions E = �̄, 1
R3C3

= β and 1
R2C3

= m2(∂�32)(a2+a3)
2εm(�3\�3ε)

it can be easy

noticed that the function �3 satisfies the Eq. (7.10) with the additional control term
f3.
If ε > 0 is close to zero then the absolute value of the term f3 becomes close to zero

as well. The term m2(∂�32)(a2+a3)
2εm(�3\�3ε)

in Eq. (7.25), however, becomes large. Therefore,
the passing to the limit ε → 0 causes the singularity in the first term of the right side
in Eq. (7.25).

Let us apply averaging procedure to the middle domain. The below equation is
obtained by integrating Eq. (7.12) over �2

∫
�2

∂�(x, t)
∂t

dV =
∫

�2

3∑
i=1

∂

∂xi

⎛
⎝a(x)

3∑
j=1

∂�(x, t)
∂x j

⎞
⎠ dV . (7.26)

The following is obtained in the analogous way as in the case of the inner domain

∫
�2\(�3ε∪�2ε)

∂�(x, t)
∂t

dV +
∫

�2∩�3ε

∂�(x, t)
∂t

dV +
∫

�2∩�2ε

∂�(x, t)
∂t

dV =

=
∫

∂�32

a(x)
∂�(x)
∂ν

d� +
∫

∂�21

a(x)
∂�(x)
∂ν

d�, (7.27)

where the normal derivative is directed outside the set �2. The first term on the right
side of Eq. (7.27) can be approximated as a2+a3

2
�3(t)−�2(t)

ε
, whereas the second one as

a1+a2
2

�1(t)−�2(t)
ε

. Thus

|m(�2 \ (�3ε ∪ �2ε))
d

dt
�2(t) − m2(∂�32)

a2 + a3
2

�3(t) − �2(t)

ε

−m2(∂�21)
a1 + a2

2

�1(t) − �2(t)

ε
| ≤

≤ εC(m2(∂�32) + m2(∂�21)). (7.28)

After division by m(�2 \ (�3ε ∪ �2ε)) it is obtained

| d
dt

�2(t) − m2(∂�32)(a2 + a3)

2εm(�2 \ (�3ε ∪ �2ε))
(�3(t) − �2(t))

− m2(∂�21)(a1 + a2)

2εm(�2 \ (�3ε ∪ �2ε))
(�1(t) − �2(t))| ≤

≤ ε
C(m2(∂�32) + m2(∂�21))

m(�2 \ (�3ε ∪ �2ε))
. (7.29)

Thus, the function �2(t) satisfies the following problem



78 7 Models of Parts of the Neuron

�2(0) =
∫
�2\(�3ε∪�2ε)

�(x, 0) dV

m(�2 \ (�3ε ∪ �2ε))
,

d

dt
�2(t) = m2(∂�32)(a2 + a3)

2εm(�2 \ (�3ε ∪ �2ε))
(�3(t) − �2(t)) +

m2(∂�21)(a1 + a2)

2εm(�2 \ (�3ε ∪ �2ε))
(�1(t) − �2(t)) + f2(t), (7.30)

where | f2(t)| ≤ εC(m2(∂�32)+m2(∂�21))

m(�2\(�3ε∪�2ε))
and C has been introduced above.

Analogously to the inner pool, in comparison to A-G model (see also Fig. 7.7),
where the capacity of the “middle” pool is given by the Eq. (7.9), we can set

1
R1C2

= m2(∂�21)(a1+a2)
2εm(�2\(�3ε∪�2ε))

and 1
R2C2

= m2(∂�32)(a2+a3)
2εm(�2\(�3ε∪�2ε))

. Thus, the function �2 satisfies

the Eq. (7.9) with the additional control term f2.
Let us apply averaging procedure to the release domain. The below equation is

obtained by integrating the Eq. (7.12) over �1

∫
�1

∂�(x, t)
∂t

dV =
∫

�1

3∑
i=1

∂

∂xi

⎛
⎝a(x)

3∑
j=1

∂�(x, t)
∂x j

⎞
⎠ dV . (7.31)

By using Green formula

∫
�1\�2ε

∂�(x, t)
∂t

dV +
∫

�1∩�2ε

∂�(x, t)
∂t

dV =

=
∫

∂�21

a(x)
∂�(x, t)

∂ν
d� +

∫
∂�d

a(x)
∂�(x, t)

∂ν
d�. (7.32)

The first term on the right side of (7.32) can be approximated by a1+a2
2

�2(t)−�1(t)
ε

(the sign “minus” appears since the outer normal is directed inside the domain �1.

By utilizing the boundary condition it is obtained

m(�1 \ �2ε)
d�1(t)

dt
+

∫
�1∩�2ε

∂�(x, t)
∂t

dV =
a1 + a2

2

�2(t) − �1(t)

ε
m2(∂�21) − s(t)α

∫
∂�d

�(x, t) d�. (7.33)

The function s(t) = 1 during the release period and s(t) = 0 otherwise. It can be
assumed that the concentration in the release domain does not change significantly
in space and is equal to �1(t). Then

∣∣∣∣m(�1 \ �2ε)
d�1(t)

dt
− a1 + a2

2

�2(t) − �1(t)

ε
m2(∂�21) + s(t)α�1(t)m2(∂�d)

∣∣∣∣
≤ εCm2(∂�21), (7.34)



7.3 Models of Transport in the Presynaptic Bouton 79

where C is defined above.
The formula can be divided by m(�1 \ �2ε)

∣∣∣∣d�1(t)

dt
− m2(∂�21)(a1 + a2)

2εm(�1 \ �2ε)
(�2(t) − �1(t)) + s(t)

αm2(∂�d)

m(�1 \ �2ε)
�1(t)

∣∣∣∣
≤ ε

Cm2(∂�21)

m(�1 \ �2ε)
. (7.35)

Thus, the function �1(t) satisfies the problem

�1(0) =
∫
�1\�2ε

�(x, 0) dV

m(�1 \ �2ε)
,

d

dt
�1(t) = m2(∂�21)(a1 + a2)

2εm(�1 \ �2ε)
(�2(t) − �1(t))

−s(t)
αm2(∂�d)

m(�1 \ �2ε)
�1(t) + f1(t), (7.36)

where | f1(t)| ≤ εCm2(∂�21)

m(�1\�2ε)
.

Similarly to the cases of the middle and inner pools it can be set 1
R1C1

=
m2(∂�21)(a1+a2)
2εm(�1\�2ε)

and 1
R0C1

= αm2(∂�d )

m(�1\�2ε)
. Thus, the function �1 satisfies the Eq. (7.8) with

the additional control term f1.
Let us notice that the speed of neurotransmitter release is given as y(t) =

s(t) αm2(∂�d )

m(�1\�2ε)
�1(t). Thus, the total amount of the released neurotransmitter during

the time interval (t1, t2) can be calculated as N (t1, t2) = ∫ t2
t1
y(t)dt.

Let us consider controllability, observability and stability of the obtained ODE
model and A-G model. By averaging, two time-invariant systems with control have
been received. The first one describes the dynamics without release, i.e. the case
s(t) = 0. It is defined by Eqs. (7.37) and (7.38):

dz(t)
dt

= A1z(t) + Bv(t), (7.37)

and
y(t) = C1z(t). (7.38)

The second one describes the dynamics with release, i.e. the case s(t) = 1, and it is
defined by Eqs. (7.39) and (7.40):

dz(t)
dt

= A2z(t) + Bv(t), (7.39)

y(t) = C2z(t). (7.40)
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In the above equations

z(t) = [�1(t), �2(t), �3(t)]T and v(t) = [ f1(t), f2(t), f3(t) + β�̄]T , (7.41)

the matrix A1 has the following form

⎛
⎜⎜⎝

−m2(∂�21)(a1+a2)
2εm(�1\�2ε)

− αm2(∂�d )
m(�1\�2ε)

m2(∂�21)(a1+a2)
2εm(�1\�2ε)

0
m2(∂�21)(a1+a2)

2εm(�2\(�3ε∪�2ε))
− m2(∂�32)(a2+a3)

2εm(�2\(�3ε∪�2ε))
− m2(∂�21)(a1+a2)

2εm(�2\(�3ε∪�2ε))
m2(∂�32)(a2+a3)

2εm(�2\(�3ε∪�2ε))

0 m2(∂�32)(a2+a3)
2εm(�3\�3ε)

−m2(∂�32)(a2+a3)
2εm(�3\�3ε)

− β

⎞
⎟⎟⎠ ,

(7.42)
and the matrix A2 is of the form

⎛
⎜⎜⎝

−m2(∂�21)(a1+a2)
2εm(�1\�2ε)

m2(∂�21)(a1+a2)
2εm(�1\�2ε)

0
m2(∂�21)(a1+a2)

2εm(�2\(�3ε∪�2ε))
− m2(∂�32)(a2+a3)

2εm(�2\(�3ε∪�2ε))
− m2(∂�21)(a1+a2)

2εm(�2\(�3ε∪�2ε))

m2(∂�32)(a2+a3)
2εm(�2\(�3ε∪�2ε))

0 m2(∂�32)(a2+a3)
2εm(�3\�3ε)

−m2(∂�32)(a2+a3)
2εm(�3\�3ε)

− β

⎞
⎟⎟⎠ .

(7.43)
The other matrices and vectors in formulae (7.37)–(7.40) are given as follows:

B = I3×3, (7.44)

C1 = [
0, 0, 0

]
, C2 =

[
αm2(∂�d )

m(�1\�2ε)
, 0, 0

]
. (7.45)

Since the functions f1, f2, f3 are both lower and upper bounded, the set R
3 ⊃

V = V1 × V2 × V3 of accessible controls has the components from the following
closed intervals

V1 =
[
−εCm2(∂�21)

m(�1\�2ε)
, εCm2(∂�21)

m(�1\�2ε)

]
,

V2 =
[
−εC(m2(∂�32)+m2(∂�21))

m(�2\(�3ε∪�2ε))
, εC(m2(∂�32)+m2(∂�21))

m(�2\(�3ε∪�2ε))

]
,

V3 =
[
−ε D

m(�3\�3ε)
+ β�̄, ε D

m(�3\�3ε)
+ β�̄

]
.

(7.46)

The model postulated by Aristizabal and Glavinovic - Eqs. (7.8)–(7.11) - define
two time-invariant systems with control. The dynamics described by Eqs. (7.47) and
(7.48)

dU(t)

dt
= A3U(t) + Bv(t), (7.47)

y(t) = C3z(t), (7.48)

takes place when there is no release, i.e. the case s(t) = 0. The system generated by
Eqs. (7.49) and (7.50)
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d

dt
U(t) = A4U(t) + Bv(t), (7.49)

y(t) = C4U(t), (7.50)

describes the release time, i.e. the case s(t) = 1.
In Eqs. (7.8)–(7.11)

v(t) =
[
0, 0,

E

R3C3

]T

and U(t) = [U1(t),U2(t),U3(t)]T ,

whereUi is the voltage on the capacitance Ci - see Fig. 7.4, whereas the matrices are
given as

A3 =

⎛
⎜⎜⎜⎝

−
(

1
R1C1

+ 1
R0C1

)
1

R1C1
0

1
R1C2

−
(

1
R1C2

+ 1
R2C2

)
1

R2C2

0 1
R2C3

−
(

1
R2C3

+ 1
R3C3

)

⎞
⎟⎟⎟⎠ , (7.51)

A4 =

⎛
⎜⎜⎝

− 1
R1C1

1
R1C1

0
1

R1C2
−

(
1

R1C2
+ 1

R2C2

)
1

R2C2

0 1
R2C3

−
(

1
R2C3

+ 1
R3C3

)

⎞
⎟⎟⎠ , (7.52)

B = I3×3, (7.53)

C3 = [
0 0 0

]
, C4 = [ 1

R0C1
0 0

]
. (7.54)

To sum up, the matrices A j , j ∈ {1, 2, 3, 4} have the form

A =
⎛
⎝− (δ2 + s(t)δ1) δ2 0

δ3 − (δ3 + δ4) δ4
0 δ5 − (δ5 + δ6)

⎞
⎠ , (7.55)

where s(t) ∈ {0, 1} and δi > 0, i ∈ {1, 2, 3, 4, 5, 6}.
Theorem 7.3.1 The dynamical systems with control (7.37), (7.39), (7.47) and (7.49)
have the following controllability properties:

1. they are uniformly controllable, controllable, controllable at t0 and controllable
in [t0, t1],

2. they are locally V-controllable to zero provided that β�̄ ≤ ε D
m(�3\�3ε)

,

3. they are CH(V)-controllable to zero provided that β�̄ ≤ ε D
m(�3\�3ε)

,

4. they are not V-controllable to zero,
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5. in the norm ‖(ai j )i, j∈{1,2,3}‖ := ∑3
i, j=1 |ai j | the controllability margin of the con-

sidered systems is greater or equal to 1.

Proof In all Eqs. (7.37), (7.39), (7.47) and (7.49) the matrix B = I3×3. Therefore,

rank
[
B|AB| . . . |An−1B

] = 3.

The controllability of the considered systems is implied by Theorem 5.8.3, whereas
their uniform controllability, controllability in [t0, t1] and controllability at t0 are
implied by Lemma 5.8.2. If β�̄ ≤ ε D

m(�3\�3ε)
, then 0 ∈ V3 which implies 0 ∈ V .

CH(V)-controllability to zero and local V-controllability to zero are obtained by
Theorems5.8.6 and 5.8.5, respectively.

The necessary condition of V-controllability to zero is not satisfied because if
δ2 = δ3 and δ4 = δ5, then A has only real eigenvalues as a symmetric real matrix.

In order to prove the last point of the theorem let us notice that we need to
demonstrate that the minimal value of ‖I3×3 − M‖ is equal to 1 if M is a singular
matrix. Thus, the controllability margin will be grater or equal to 1 because the term
that is generated by the matrices Ai cannot be negative - see Theorem 5.8.9. It is
obvious that the matrix

K =
⎛
⎝0 0 0
0 1 0
0 0 1

⎞
⎠ (7.56)

is singular and ‖I3×3 − K‖ = 1. Let us assume, by contradiction, that for some
singular matrix M there is ‖I3×3 − M‖ < 1.

The matrix M can be represented as

M =
⎛
⎝ 1 − α1 β1 γ1

β2 1 − α2 γ2
β3 γ3 1 − α3

⎞
⎠ . (7.57)

Then,wehave‖M − I3×3‖ = ∑3
i=1(|αi | + |βi | + |γi |). ByGershgorinTheorem, for

the singular matrix M its zero eigenvalue must lie within a closed ball
B(1 − αi0 , |βi0 | + |γi0 |) for some i0 ∈ {1, 2, 3}. If 1 − αi0 < 0, then αi0 > 1 and,
as a consequence, ‖M − I3×3‖ > 1, which is a contradiction. If 1 − αi0 ≥ 0, then
1 − αi0 − |βi0 | − |γi0 | ≤ 0 and, as a consequence, 1 ≤ αi0 + |βi0 | + |γi0 | ≤ ‖M −
I3×3‖ which is a contradiction as well. �
Theorem 7.3.2 The systems (7.39)–(7.40) and (7.49)–(7.50) are observable, The
systems (7.37)–(7.38) and (7.47)–(7.48) are not observable.

Proof The matrix
[
CT

i |AT
i C

T
i | (A2

i

)T
CT

i

]
, i ∈ {2, 4}, is a 3 × 3 upper triangle

matrix without zeroes on the diagonal which is implied by (7.55) and the fact that
CT

i = [c1, 0, 0], where c1 > 0, i ∈ {2, 4}. Therefore,

rank
[
CT

i |AT
i C

T
i | (A2

i

)T
CT
i

]
= 3.
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The observability of the systems (7.39)–(7.40) and (7.49)–(7.50) is implied by
Theorem5.8.8 whereas lack of the observability of the systems (7.37)–(7.38) and
(7.47)–(7.48) is implied by the same theorem due to the fact that CT

i = [0, 0, 0],
where i ∈ {2, 4}. �

Theorem 7.3.3 The systems described by (7.37), (7.39), (7.47) and (7.49) are
asymptotically stable.

Proof Let us calculate �1, �2 and �3 - see Theorem 5.3.5. By using (7.55):

�1 = −(s(t)δ1 + δ2 + δ3 + δ4 + δ5 + δ6),

�2 = s(t)δ1δ3 + s(t)δ1δ4 + δ2δ4 + δ3δ5 + δ3δ6 + δ4δ6 + s(t)δ1δ5 + s(t)δ1δ6 + δ2δ5 + δ2δ6,

�3 = −(s(t)δ1δ3δ5 + s(t)δ1δ3δ6 + s(t)δ1δ4δ6 + δ2δ4δ6).

Since all the terms of �3 exist also in the term �1�2, this term can be written in
the following form:−�1�2 = −�3 + κ,whereκ > 0,whichmeans that−�1�2 +
�3 = κ. To sum up, the following is satisfied

−�1 > 0,

−�1�2 + �3 > 0,

−�3 > 0.

The thesis is obtained by Theorems 5.3.5 and 5.3.1. �

7.3.3 Model of Neuropeptide Slow Transport

In themodel of slowneuropeptide transport, similarly as in themodel of fast transport,
the transport process is described by using diffusion-type equations to represent both
the space dependencies such as gradients of concentration, localization of release
regions and ion channels and changes in time. The model describes the LDCVs acti-
vation, diffusion, accumulation and release. This model, based on partial differential
equations, can be the starting point for the ordinary differential model that can be
obtained from PDE by averaging. The relations between these two models are also
discussed in the sequel. Furthermore, on the basis of the ordinary differential model,
the electronic circuit model is proposed and discussed.

Let us specify notations and assumptions that concern the domains corresponding
to functionally specific regions of the bouton - see also Fig. 7.6:

• R
n ⊃ �, n ∈ {2, 3} is the closed set that represents the synaptic bouton; for sim-

ulations in 2D and 3D n is equal to 2 and 3 respectively.
• �1 is the closed set that is the part of the domain � in which inactive LDCVs
are accumulated. The set � \ �1 denotes the central region of the bouton that is
devoid of inactive vesicles.
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Fig. 7.6 An example of a
configuration of the sets used
in the PDE model. �1 is the
set in which immobile
vesicles accumulate while
� \ �1 is devoid of them.
The boundary section ∂�Ca
represents the location of
calcium channels while ∂�N
is the part of the boundary
through which new vesicles
arrive

• ∂�1 denotes the boundary of the set � \ �1 that is contained in the interior of the
set �. The inactive LDCVs are accumulated in the neighborhood of the boundary
∂�.

• ∂�Ca is the part of the boundary of the set � in which the calcium channels are
situated, ∂�Ca � ∂�.

• ∂�N denotes the part of the boundary of the set � through which inactive LDCVs
enter the bouton, ∂�N � ∂�. The set ∂�N models the connection of bouton with
the body of the neuron. It is assumed that ∂�N ∩ ∂�1 = ∅ which means that the
calcium channels cannot be located at the entrance boundary.

• ν denotes the outer normal versor to the boundary of the considered sets. It is
assumed that the sets are sufficiently smooth i.e. that ν exists in each of the points
of boundary.

Let us specify the model assumptions.

• The variables ρN (x, t), ρA(x, t) and ρCa(x, t), that denotes the concentrations of
inactive LDCVs, active LDCVs and ions of calcium respectively, are the unknowns
of the model.

• Both the active vesicles and the ions diffuse freely in the domain �. The diffusion
coefficients are denoted as μCa and μA, respectively.

• The inactive vesicles can move only in the domain �1. Moreover, the intensity
of the diffusion varies between the points and depends on the directions i.e. it
is anisotropic and heterogeneous. That means, among others, that the diffusion
properties cannot be described by a single number but they have to be characterized
by the diffusion tensor, denoted as μ

i j
N (x), i, j ∈ {1, . . . , n}.

• Vesicles are activated if the concentration of calcium ions locally exceed the thresh-
old value ρThr

Ca . If this condition is satisfied, then the dependence between the
intensity of activation and the ions concentration is linear. The constants δ,β and
α denote the reaction rates for the inactive vesicles, the active vesicles and the
calcium ions, respectively.

• The inactive vesicles arrive to the bouton, which is modelled by �, via ∂�N . The
speed of the arrival is proportional to the difference between EN and the current
local concentration of the inactive vesicles, with the coefficient of the proportion
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denoted by η. The inactive vesicles can be accumulated if their local concentration
is less than EN .

• The calcium ions enter the bouton if the two following conditions are satisfied
simultaneously: If their value of concentration is less than the balance value ECa

and if the ion channels are open. The action potential opens the channels that
are modelled by the boundary set ∂�Ca . The channel capacity is described by
the function f (t) which is equal to the rate of the flow if the channel is open.
Otherwise, the value of the function is equal to 0.

• The active vesicles cannot dock at the bouton boundary which is the connection
with the neuron body. The release rate of the neuropeptide depends linearly with
the coefficient γ on the concentration of the vesicles.

• The initial distributions ρN0, ρA0, ρCa0 of the concentrations ρN , ρA and ρCa,

respectively, are given.

The reaction-diffusion problem, modeled by PDEs, is given by the following
equations.

(PN) The dynamics of the inactive neuropeptide is described as the following
problem:

∂ρN (x, t)
∂t

= ∂

∂x j
μ
i j
N (x)

∂ρN (x, t)
∂xi

−
−δ(ρCa(x, t) − ρThr

Ca )+ρN (x, t) on �1, (7.58)

ρN (x, t) = 0 on � \ �1, (7.59)

μ
i j
N (x)

∂ρN (x, t)
∂xi

ν j = η(EN − ρN (x, t))+ on ∂�N , (7.60)

μ
i j
N (x)

∂ρN (x, t)
∂xi

ν j = 0 on ∂�1 \ ∂�N , (7.61)

ρN (x, 0) = ρN0(x) on �1. (7.62)

(PA) The dynamics of the active neuropeptide is described as the following prob-
lem:

∂ρA(x, t)
∂t

= μA�ρA(x, t) +
+β(ρCa(x, t) − ρThr

Ca )+ρN (x, t) on �, (7.63)
∂ρA(x, t)

∂ν
= −γρA(x, t) on ∂� \ ∂�N , (7.64)

∂ρA(x, t)
∂ν

= 0 on ∂�N , (7.65)

ρA(x, 0) = ρA0(x) on �. (7.66)

(PCa) The calcium ions dynamics is described as the following problem:
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∂ρCa(x, t)
∂t

= μCa�ρCa(x, t) −
−α(ρCa(x, t) − ρThr

Ca )+ρN (x, t) on �, (7.67)
∂ρCa(x, t)

∂ν
= f (t)(ECa − ρCa(x, t))+ on ∂�Ca, (7.68)

∂ρCa(x, t)
∂ν

= 0 on ∂� \ ∂�Ca, (7.69)

ρCa(x, 0) = ρCa0(x) on �. (7.70)

As it has been aforementioned, the ODE model can be obtained from the PDE by
averaging its unknowns. Let us introduce the following denotations for the averaged
values of ρN , ρA, ρCa over �1 and � \ �1.

ρN
1(t) =

∫
�1

ρN (x, t) dV

m(�1)
, (7.71)

ρA
1(t) =

∫
�1

ρA(x, t) dV

m(�1)
, (7.72)

ρA
2(t) =

∫
�\�1

ρA(x, t) dV

m(� \ �1)
, (7.73)

ρCa
1(t) =

∫
�1

ρCa(x, t) dV

m(�1)
, (7.74)

ρCa
2(t) =

∫
�\�1

ρCa(x, t) dV

m(� \ �1)
. (7.75)

The defined variables correspond to ρN , ρAR , ρAI , ρCaR and ρCaI , respectively, in
the compartment model presented below.

Let us propose the compartment model of the slow neuropeptide transmission.
The model is based on a system of ODEs, analogous to the one introduced in [5].

In the model of the slow neuropeptide transport, according to the fact that activa-
tion of calcium ions has to be put into consideration explicitly, at least five pools are
necessary: the pool of inactive LDCVs, two pools of active LCDVs and two pools
for calcium. Both the ions and the active LDCVs can occupy the whole domain of
the bouton, whereas the inactive LDCVs can accumulate only near the membrane in
the selected regions. Let us introduce the following notations:

ρN (t) denotes the concentration of inactive LDCVs in the accumulation region;
ρAR (t) denotes the concentration of activated LDCVs in the accumulation region

of inactive LDCVs;
ρAI (t) denotes the concentration of activated LDCVs in the central region of the

bouton devoid of LDCVs;
ρCaR (t) - the concentration of calcium ions in the accumulation region of inactive

LDCVs;
ρCaI (t) - the concentration of calcium ions in the central region which is devoid of

LDCVs.
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The first equationmodels dynamics of vesicles concentration ρN .The dynamics is
causedboth by activationby calcium ions andby transport from theneuron soma.This
transport takes place only if the concentration inside the domain is lower then EN . The
activation causes the decrease of the inactive vesicles and the decrease is proportional
to two factors. The difference between the concentration of the calcium threshold
value, below which the activation does not occur, and its current concentration is the
first factor. The concentration of the inactive vesicles is the second one. The equation
has the following form:

dρN (t)

dt
= p1(EN − ρN (t))+ − d1(ρCaR(t) − ρThr

Ca )+ρN (t). (7.76)

In Eq. (7.76) the constants d1 and p1 describe the reaction rate constant of the
vesicle activation process and the flow rate of vesicles into the bouton, respectively.
The assumption that the flow rate p1 depends only on their concentration has been
made. It should be stressed, however, that in the light of the results described in [168]
the assumption is far simplistic because it is activity dependent. In order to express
this dependence, the rate should depend either on the capacity of the calcium pool
ρCaR or explicitly on time.

The second equationmodels the dynamics of concentration of ρAR in the activation
region. This concentration decreases during the release of the neuropeptide to the
synaptic cleft and it increases during the activation of the vesicles by the ions. As
it has been aforementioned, the activated vesicles can diffuse freely in the whole
domain. The equation has the following form:

dρAR (t)

dt
= d2(ρCaR (t) − ρThr

Ca )+ρN (t) + a1(ρAI (t) − ρAR (t)) − p2ρAR (t), (7.77)

where a1 denotes the diffusion rate of active LDCVs in the considered pool in the
bouton cytoplasm and d2 represents the reaction rate constant of the vesicle activation
process. The constant p2 denotes the release rate of LDCVs.

The third equation models the dynamics of the concentration of the active vesicles
ρAI in the central region of the bouton. This concentration increases after activation
because the diffusion process tends to balance the concentration of the active vesicles.
The equation has the following form:

dρAI (t)

dt
= −a2(ρAI (t) − ρAR (t)), (7.78)

where a2 represents the diffusion constant of active LDCVs.
Two last equations describe the changes of the calcium ions concentration. The

first one models the dynamics of the ions concentration ρCaR of the inactive LDCVs
in the region of accumulation. The right side of the equation consists of three
components. The first one describes the inflow of the calcium ions through the chan-
nels when the channels are open by the action potential. This inflow is proportional to
the difference between the current concentration and the balance concentration ECa .
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The second term represents the diffusion of the ions between the central region and
the region of accumulation of the inactive LSCVs. The third component represents
the calcium utilization during the activation process. The equation has the following
form:

dρCaR (t)

dt
= g(t)(ECa − ρCaR (t))

+ +
+ b1(ρCaI (t) − ρCaR (t)) − d3(ρCaR (t) − ρThr

Ca )+ρN (t), (7.79)

where the constant b1 represents the diffusion coefficient of calcium ions in the
considered pool and the constant d3 is the reaction rate of the activation process. The
function g is defined in the following way:

g(t) =
{
p3 > 0, if the membrane is activated by the action potential,
0, otherwise,

where the constant p3 denotes the rate of the inflow rate of calcium from the cleft to
the bouton when the voltage dependent channels are open.

The last equation models the dynamics of concentration ρCaI of the calcium in
the central region of the bouton. The associated pool fills, by diffusion, with the ions
that are not used to activate LDCVs in the pool ρN . Then, it is used as the reservoir
for calcium. The equation has the following form:

dρCaI (t)

dt
= −b2(ρCaI (t) − ρCaR (t)), (7.80)

where b2 represents the diffusion coefficient of calcium in the pool.
The structure of the mutual dependencies of Eqs. (7.76)–(7.80) is presented in

Fig. 7.7 whereas possible spatial distribution of the pools is shown in Fig. 7.8.
In order to derive the ordinary differential model from the partial differential

model let us make the assumption that the values of ρN , ρA and ρCa in points of �1

and� \ �1 can be approximated by the averaged values (7.71)–(7.75). According to
this assumption the specified concentrations are not varied too much in the averaging
domains and, as a consequence, the forces of diffusion are considered only between

Fig. 7.7 The flows between
the pools present in the ODE
model
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Fig. 7.8 Possible distribution of spatial pools and the placement of processes in the ODE model
of slow transport

Table 7.1 Relations between parameters of ODE and PDE models. Inflow/outflow capacities,
reaction rate parameters and actual diffusion coefficients are the parameters of PDE model. The
parameters of ODE model are the lumped ones which means that they depend on the domain
geometry. The parameter h denotes the length scale of the domains �1 and � \ �1, m is the
Lebesgue measure in R

n whereas σ denotes the Lebesgue boundary measure

Parameter type ODE model PDE model

Threshold concentration ECa, EN , ρT hrCa ECa, EN , ρThrCa

Inflow and Outflow p1
ησ(∂�N )
m(�1)

g(t) μCa f (t)σ(∂�Ca )
m(�1)

p2
γμAσ(∂�\∂�N )

m(�1)

Reaction rate d1 δ

d2 β

d3 α

Diffusion a1
μAσ(∂�1\∂�)

2hm(�1)

a2
μAσ(∂�1\∂�)
2hm(�\�1)

b1
μCaσ(∂�1\∂�)

2hm(�1)

b2
μCaσ(∂�1\∂�)
2hm(�\�1)

the domains of averaging that correspond to the compartments (pools). The relations
between parameters and constants of these two models are summarized briefly in
Table7.1.

Electronic Model

As it has been aforementioned, the modelling of neuronal phenomena by using ana-
log electronic circuits is a standard approach. Two ways of creating such models
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Fig. 7.9 Electric circuit representing the presynaptic episode of slow transmission. The large black
box represents the Ca2+ activation of LDCVs. The laws that govern the box are placed inside. The
smaller box represents the pattern of bouton stimulation

are possible. The first one is possible if ODEs, that describe the modelled process
dynamics, are given. Then, the circuit whose dynamics is described by the same ordi-
nary differential equations can be built. The second way is to build the circuit which
has similar dynamic properties as the modelled process. In such a case, the system
of ODEs can be found. The system describes the dynamics of the circuit and, what
follows, the modelled process. In the considered case the first way can be applied.
The system of ODEs (7.76)–(7.80) are, however, complex, and therefore it is difficult
to reproduce them by a circuit that is made of some elementary electronic modules.
Therefore a two-step top-down methodology has been applied. The general structure
of the circuit was designed in the first step - see Fig. 7.9. Modelling of the pools is a
standard task so the loops that model their dynamics were designed in details. The
module of the circuit which models LDCVs activation by calcium ions is represented
by a black box. Such an approach was worked out in cybernetics, where black boxes
are used to model cybernetic systems that have unknown inner structure. Further-
more, it is assumed that in the black boxes the responses for input signals are known.
Thus, Eqs. (7.81)–(7.83) that describe the black-box inner processes dynamics were
modelled by using a programmable microcontroller. Another programmable micro-
controller allows the system to generate signal pulses of any frequency. In such a
way the pulses h(t)

C2·R2
(E2 −UC2)

+, used in Eq. (7.86), were modelled.
The electronic circuit that represents the introduced ODEs model is shown in

Fig. 7.9. Synthesis of LDCVs, inflow of calcium through the membrane via ion
channels and the threshold concentration of calcium are modelled by the sources
E1, E2, E3, respectively. The unidirectional flow of current, which is ensured
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Fig. 7.10 The structure of the black box. A microcontroller is responsible for the multiplication
of voltages whereas the interfaces I, II, III enforce the desired output currents. The interface III is
shown in details as the example

by diodes, corresponds to the fact that only positive parts of the terms (EN −
�N3), (�Ca2 − �̄Ca2), (ECa − �Ca1) appear in Eqs. (7.84)–(7.86). The voltages UC1 ,

UC2 , UC3 , UC4 , UC5 on the capacitors represent the mean concentrations �N , �AI ,

�CaR , �CaI and �AR of vesicles and ions in Eqs. (7.76)–(7.80). The resistors model
flow resistances between the pools. The black box models the reaction between ions
and inactive vesicles. This is realized by using an electronic microchip.

Let us assume that the black box is governed by the following formulae (Fig. 7.10)

I1 = C1 · α1 · V1 · V2, (7.81)

I2 = C2 · α2 · V1 · V2, (7.82)

I3 = C5 · α3 · V1 · V2. (7.83)

Then, the following equations are obtained by using Kirchhoff laws

dUC1

dt
= 1

C1R1
(E1 −UC1)

+ − α1(UC2 − E3)
+UC1 , (7.84)

dUC5

dt
= α3(UC2 − E3)

+ ·UC1 + 1

C5R3
(UC3 −UC5), (7.85)

dUC2

dt
= 1

C2 · R4
(UC4 −UC2) − α2(UC2 − E3)

+ + h(t)

C2R2
(E2 −UC2)

+, (7.86)

dUC3

dt
= − 1

C3R3
(UC3 −UC5), (7.87)
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dUC4

dt
= − 1

R4C4
(UC4 −UC2), (7.88)

where αi are constant.
To sum up, the circuit dynamics is described by the system of Eqs. (7.84)–(7.88)

which corresponds to model (7.76)–(7.80). The dynamics of the black box is mod-
elled by the Eqs. (7.81)–(7.83) and realized by a programmable microchip that has,
among others, analog-digital and digital-analog converters and amicroprocessorwith
a memory.

7.4 Model of the Synapse

In general, two types of synapses can be distinguished - the chemical and electric
ones (see Chap.2 for more details). Let us start discussion from the electric synapse.
It is far simpler than the chemical one and, what follows, its can be easily modelled.

Let us discuss a model of the electric synapse (gap junction). The properties of
transmission, that determine the dynamics of the voltage, are the starting point for the
analysis. Then, the electric circuit, in which the changes of voltage have analogous
dynamics, is proposed as an electronic model of the synapse. The specification of
ODE differential problem, that describes the voltage dynamics in the circuit, is the
last step of the model creation.

Referring to the properties of transmission of the signal via the gap junction, let
us recall that the postsynaptic potential is both delayed and attenuated in comparison
with the presynaptic signal [21, 22, 79]. The cell membrane acts as the capacitor. The
aforementioned delay is caused by the fact that the postsynaptic potential is detectable
if the postsynaptic membrane capacitance is charged [22]. Therefore, although the
ionic current flows through the synapse without delay, the postsynaptic potential is
delayed. Thus, the electric synapse acts as the low-pass filter [22, 79]. The simplest
electronic circuit which acts as this type of filter is presented in Fig. 7.11 and can be
used as a circuit model of the gap junction.

Derivation the mathematical formula which describes the dynamics of voltage in
the circuits can be done by using elementary methods. By Kirchhoff current law

i1(t) = i2(t) + i3(t), (7.89)

whereas Kirchhoff voltage law and Ohm law leads to

V1(t) = R1i1(t) + V2(t); thus i1(t) = V1(t)

R1
− V2(t)

R1
, (7.90)

i2(t) = V2(t)

R2
, (7.91)

i3(t) = c
dV2(t)

dt
. (7.92)
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Fig. 7.11 The circuit model of the electric synapse (gap junction). In the left dotted frame there
is the fragment which corresponds to presynaptic current. In the right dotted frame there is the
fragment which corresponds to the postsynaptic conductance

Putting (7.90)–(7.92) into (7.89) we obtain

V1(t)

R1
− V2(t)

R1
= V2(t)

R2
+ c

dV2(t)

dt
(7.93)

and
dV2(t)

dt
+ R1 + R2

cR1R2
V2(t) = 1

cR1
V1(t). (7.94)

Thus, the dynamics of changes of the voltage in the circuit, which is the model of
the gap junction, is described by a linear differential problem of the form

V2(0) = V0

dV2(t)

dt
+ bV2(t) = aV1(t), (7.95)

where b = R1+R2
cR1R2

> 0 and a = 1
cR1

> 0.
If an input signal V1(t) is given as a standard type of spike, it can be approximated

as V1(t) = a · t · e−t . Then, the postsynaptic voltage can be easily calculated from
(7.95) asV2(t) = a

b−1

(
((b − 1)t − 1)e−t + e−bt

)
- see Fig. 7.12 fora = 1 andb = 2.

The chemical synapse consists of three parts - the presynaptic bouton, the synap-
tic cleft and the membrane of the postsynaptic neuron. In general, two ways of the
modelling of the chemical synapse can be applied. In the first approach, that leads to
an extremely simplified model, the synapse is modelled as one module which means
that its inner structure is neglected. Such models exist and they are based on prob-
abilistic approach. They are not discussed in this monograph because probabilistic
models are beyond the scope of this monograph. The second approach consists in
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Fig. 7.12 The presynaptic impulse (dotted line), given as V1(t) = t · e−t and the postsynaptic
voltage V2(t) = (t − 1)e−t + e−2t , which is a solution of the problem (7.95)

modelling transport processes in all three parts of the chemical synapse. Such an
approach leads, however, to the models of high computational complexity. There-
fore, the processes are modelled in each part separately. The models of fast and slow
transport in the presynaptic bouton has been presented and discussed in Sect. 7.3.
Transport in synaptic cleft has diffusive character and it can be described by a diffu-
sion equation

∂�(x, y, z, t)

∂t
= a

(
∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2

)
�(x, y, z, t) + f (x, y, z, t). (7.96)

In the above equation � denotes the density of transmitter, a is the coefficient of
diffusion and f models the source. TheEq. (7.96) is completed by the initial condition

�(x, y, z, 0) = 0 (7.97)

and by the Neumann boundary conditions

∂�

∂z

∣∣∣∣
z=0

= 0 and
∂�

∂z

∣∣∣∣
z=d

= 0, (7.98)

where d denotes the width of the synaptic cleft. According to the above boundary
conditions, the transmitter is reflected at the presynaptic and postsynaptic side. The
source function f describes the release of the neurotransmitter from one vesicles
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and can be assumed as f (x, y, z, t) = α exp
(
−(

x2+y2

b + z2

c )
)

, where α, a and b

are positive constants. The model describes correctly the diffusion of glutamate in
the synaptic cleft.

7.5 Bibliographic Remarks

Themodels of themembrane fragments can be found in [106, 141], Sect. 2.6 whereas
a cable model of the current in the neuron is described in [106, 157], Chap. 8. The
application of the linear cable equation for modelling dendritic conductance is dis-
cussed in [103, 115, 178].

The use of analog electronic circuits as the models of biological phenomena are
a standard approach in biological modelling, including subcellular processes - see
[106].

The biological foundations of the pool models are presented in [1].
The A-G model, presented in this monograph was proposed in [5].
The PDE model of neurotransmitter fast transport in the presynaptic neuron is

proposed and analysed in [41], numerical simulations in two-dimensional version,
based on thismodel, are presented in [44], whereas some control aspects of themodel
are discussed in [42]. The PDE model of neuropeptide slow transport as well as the
model based on the corresponding electronic circuit can be found in [43]. The formal
problems connected with averaging in the context of the model of fast transport are
considered in [50].

The electronic model of the electric synapse (gap junction) is described in [22].
Some studies that concern the possibilities of modelling wide spectrum of sig-

nal processing in the nervous system, such as interneural long-distance and short-
distance signalling and dendro-dendritic coupling, are presented in [49]. In that
paper not only basic electronic elements constituted the circuit, as it is usually in
the standard studies, but also digital-analog and analog-digital modules were used as
components of the modelling circuit.

Cybernetic foundations, including black boxes methodology, can be found in [7],
Chap. 6.

Theoretical foundations of mollification procedure is described in [123], Lemma
2.21, p. 50. An example of its application can be found, for instance, in [47], in which
it was used in the model of dynamics of the training process of the perceptron (see
also Chap.11 in this book).

The aforementioned probabilistic model of the chemical synapse was proposed
by del Castillo and Katz [62] and it was also discussed in [106], Sect. 7.1.1. The
model was applied to mammalian neuromuscular junction [51].

Hodgkin–Huxley model was proposed in [94] and it was discussed in [165],
Chap. 4 and Appendices F and G as well as in [106], Sect. 4.1 and [175], Sect. 4.5.

The model, which is contemporary called FitzHugh–Naguno model, was intro-
duced by FitzHugh [76, 77]. It was clarified by using a tunnel diode which was
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introduced in [141]. Various types of the nonlinear module in the FitzHugh–Naguno
model were applied in [133]. The circuit modelling FitzHugh equations, in which
operational amplifiers were used, was proposed in [105]. The model as such and its
dynamical aspects were discussed in detail in [106], Sect. 4.2.

The model of the chemical synapse which is based on kinetic formalism and
Markov processes is proposed in [63]. The used formalism enables to describe act-
ing of the voltage-dependent channels in the presynaptic membrane, the release of
neurotransmitter to the synaptic cleft and the gating the postsynaptic receptors. As
the authors of the article declare: “This framework can facilitate the integration of
a wide range of experimental data and promote consistent theoretical analysis of
neural mechanisms from molecular interactions to network computations.”

The model of diffusion in synaptic cleft is discussed in [110]. The model is based
on diffusion partial differential equation and was applied effectively to describe the
diffusion of glutamine in the synaptic cleft.
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Mathematical Models of the Perceptron



Chapter 8
General Model of the Perceptron

The general model of the perceptron is presented in this chapter. The model consists
of two parts. The first one is a mathematical description of structure of the artificial
neural network. The description is based on graph theory and it is very general. It is
valid for each type of neural networks, not only for the perceptron. The formal basis
of training process of the perceptron is presented in Sect. 8.2. Next, in Sect. 8.3, the
training process of the perceptron is discussed in the context of dynamical systems
theory.

8.1 Model of a Structure of a Neural Network

As it has been aforementioned, the general approach to a mathematical description
of artificial neural networks structure is proposed in this section. Since it is based on
graph theory, let us recall some very basic definitions that concern oriented graphs -
so called orgraphs. In this type of graphs the edges are oriented.

Definition 8.1 Let a finite set A be given. An orgraph G is an ordered pair G :=
(A, Ed), where Ed ⊂ A × A. The set A is the set of the nodes of the graph G,

whereas the set Ed is a set of its edges.

Let us set that (ai , a j ),∈ Ed is the edge from the node ai to the node a j . Let us
notice that, according to the above definition, at most one edge (ai , a j ) belongs to
the set Ed. The oriented graphs in which this condition is not satisfied are called
multigraphs. They are not considered in this monograph.

If graphs are used to description of artificial neural network structures, then the
nodes denote neurons whereas the edges define connections between them.

Let #A denotes the power (the number of elements) of the finite set A.

© Springer International Publishing AG, part of Springer Nature 2019
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Definition 8.2 The number δG := #A is called the degree of the graphG.

Definition 8.3 Let a graph G = (A, Ed) be given. The number δ+
ai := #{a j :

(a j , ai ) ∈ Ed} is called the input semidegree of the node ai , whereas the number
δ−
ai := #{a j : (ai , a j ) ∈ E} is called the output semidegree of the node ai .

The above definition means that the input semidegree of the node ai is the number
of the edges that enter the node ai . Similarly, the output semidegree of the node ai
is the number of the edges that exit from the node ai .

The untrained deterministic neuron can be defined formally as a function of two
vector variables.

Definition 8.4 An untrained neuron which has k inputs and processes the input
signals that belong to the set X ⊂ R

k (a k neuron over X for abbreviation) is a
function of two real variables defined as follows

F : Rk × X � (w, x) → F(w, x) = f (< w, x >) ∈ R,

where “< ·, · >” denotes a real scalar product and f : R → R is called an
activation function of a neuron. If f is a linear function, then the neuron is called a
linear neuron. A learned k-neuron (called also a trained neuron or
programmed neuron) over X is a function

F∗ := F(w, ·) : Xk → R,

where w ∈ R
k .

Remarks 1. In practice a standard real scalar product is used, i.e.

< w, x >=
k∑

k ′=1

wk ′ · xk ′ := w ◦ x.

2. Without the loss of generality the identity mapping can be used as an activation
function in the linear neuron - see Lemma 6.1.

3. In nonlinear neurons bounded functions are usually used as activation functions.
Let us assume that the following objects are given.

G := (A, Ed) - an orgraph which has the degree δG and such that {a ∈ A : δ+
a =

0} 	= ∅;
γ : A � a → γ(a) ∈ L - a bijective mapping;
F - the set of all neurons or, alternatively, the set of all trained neurons;
α : A � a → α(a) ∈ F,whereα(a) is a k-neuron if δ+

a = 0 andα(a) is δ+
a -neuron

otherwise;
W := {(l,m) : l ∈ L , m ∈ {1, ..., k} if δ+

a = 0 and m ∈ {1, ..., δ+
a } if δ+

a 	= 0,
where l = γ(a);
β : E → W - a bijective mapping.



8.1 Model of a Structure of a Neural Network 101

Definition 8.5 A quintuple

Sk := (G, γ,α : A → F,W,β)

is said to be the structure of a k-neural network if F denotes the set of all neurons
and it is said to be the structure of a learned k-neural network if F is the set of all
trained neurons.

Remarks 1. The condition {a ∈ A : δ+
a = 0} 	= ∅ ensures that in the considered

neural network there exist neurons onto which the inputs of the external stimuli
are put. The definition does not guarantee, however, that the output neurons exist
in the network. In recurrent networks, for instance, the output neurons do not
exist - the terminal pattern of the network neurons excitations is treated as the
network response.

2. The γ mapping indexes the nodes of the graph by natural numbers.
3. The α mapping designs neurons to the nodes of the graph G. Let us assume that

a k − ANN is considered. Then, a k−neuron is assigned to a node whose input
semidegree is equal to zero. If δ+

a 	= 0, then a δ+
a −neuron is assigned to this

node.
4. W is the set of the indices that index the inputs of neurons. The first element l in

a pair is the index of a neuron, usually l ∈ {1, ..., δG}. In perceptrons, however,
L is usually a set of the bi-indices in which the first element encodes the number
of a layer whereas the second one encodes the number of a neuron in a given
layer.

5. The input of the neuron, to which a given component of the external stimulus
or the signal from other neuron is put onto, is determined by the mapping β.

Every weight in the neurons that are not the input ones can be identified with an
edge of the graph G which describes the ANN structure because β is a bijective
mapping.

In this monograph the perceptrons are considered. Their structure is defined as
follows.

Definition 8.6 Let
Sk := (G = (A, Ed), γ,α,W,β)

be a structure of a k−neural network. Let us also assume that the set A of the nodes of
graphG is a disjoint union of nonempty subsets A1, ..., AR such that ai ∈ Ar anda j ∈
Ar+1, for each edge (ai , a j ) ∈ Ed ( r ∈ {1, ..., R − 1}). Let, furthermore, m nodes
belong to AR . Then, Sk,m is called a structure of R− layer k− neural network and the
corresponding neural network is called R − k − m− perceptron, and it is denoted

as PRCk,m
R . If, furthermore, (ai , a j ) ∈ Ed for each ai ∈ Ar and a j ∈ Ar+1, then the

perceptron is called complete. The trained perceptron is defined in an analogical way
- in such a case Sk is the structure of a trained neural network.
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Remarks 1. In perceptrons the activation functions of neurons in the same layer
are the same. Activation functions in different layers, however, can be different.
Perceptrons, usually, have two layers and the logistic function is used in hidden
layer whereas identity is used in output layer. Such solution is justified by the
theoretical results that concern the approximation properties of perceptrons. In
the neural networks that have not the layer structure activation functions of all
neurons are usually the same.

2. By definition, in perceptrons the neurons that belong to the first layer are the
input neurons whereas the neurons of the last layer are the output ones.

3. In complete perceptrons an output signal from a neuron of the r th layer is put
onto each neuron of the r + 1−st layer. This implies that the number of inputs
of the neurons in the r + 1−st layer is equal to the number of neurons in the r th
layer.

4. The nodes that belong to AR correspond to the output neurons of the perceptron.

The defined above structure of a perceptron is the basis for formal definition of
the perceptron.

Definition 8.7 Let a structure

Sk := (G, γ,α,W,β)

of a PRCk,m
R be given, where G = (A, E). Let sets X ⊂ R

k and Y ⊂ R
m be such

sets that for each input signal x ∈ X the corresponding output signal y of PRCk
R

belongs to Y. A three-tuple

PRCRk,m(X,Y ) := (X,PRCk,m
R ,Y )

is called an R − k − m perceptron over X trained or not depending on the status of
the considered perceptron.

Remarks 1. An example of a complete PRC5,2
2 is shown in Fig. 3.1 whereas an

incomplete perceptron is shown in Fig. 8.1.
2. The set X is the set of input stimuli whereas Y contains all output signals that

correspond to the stimuli from X.

3. The definition of a recurrent neural network can be put forward in analogous
way. The only difference concerns the set Y. In the case of a recurrent network
it is an infinite sequence of vectors. A number of the components of vectors is
equal to the number of all neurons in the considered network. Thus, a vector
represents a single excitation of the network and the sequence is a chain of the
whole network excitations. An example of a recurrent neural network is shown
in Fig. 8.2.

Let a neural network PRCk,m
R (X,Y ) be given. When the vector stimulus x =

(x1, ..., xk) ∈ X is put into the input layer of the perceptron, the signals appear on
the outputs of all m neurons of the output layer. Their output signal of the whole
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Fig. 8.1 An example of an
uncomplete perceptron

y1 y2

x1 x2 x3 x4 x5

Fig. 8.2 An example of
structure of a recurrent
neural network

x1 x2

perceptron can be considered as a vector (y1, ..., ym) = y ∈ Y ⊂ R
m .Let {(x, y(x)) :

x ∈ X, y(x) ∈ Y } be a set of all pairs such that y(x) is the output signal of the
network of the perceptron if the vector x is put into the network input. In such
a way the function F : X → Y has been constructed. The function corresponds to
PRCk,m

R (X,Y ) and it can be identified with the perceptron.
The following corollary is implied by the above construction.

Corollary 8.8 Let us assume that a trained perceptron PRCk,m
1 (X,Y ) consists of

T neurons, which means that Y ⊂ R
T , is given. Let the functions

F1, ..., FT : Ft : Rk ⊃ X → Y ⊂ R, t ∈ {1, ..., T }

correspond to the trained neurons of the perceptron. Then, the function F, corre-
sponding to the perceptron, has the following form
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F : X � x → F(x) = (F1(x), ..., FT (x)) ∈ Y.

Let us assume that two trained perceptrons PRCk,m
R1

(X,Y ) and PRCk,m
R2

(X,Y )

are given. Let, furthermore, functions F1 : X → Y and F2 : X → Y correspond to
PRCk,m

R1
(X,Y ) and PRCk,m

R2
(X,Y ), respectively.

Definition 8.9 If the functions F1 : X → Y and F2 : X → Y are equal identically,
then the perceptrons are called equivalent.

The above definition implies that if two equivalent perceptrons are treated as black
boxes, then they cannot be differentiated because for each stimulus their reactions
are the same.

The definition of equivalent perceptrons implies the following corollary.

Corollary 8.10 Let structures

Sk := (G = (A, Ed), γ,α,W,β)

and
S�
k := (G� = (A�, Ed�), γ�,α�,W �,β�),

correspond to the incomplete trained perceptronPRCk,m
R1

(X,Y ) and to the complete

trained perceptron PRC�k,m
R1

(X,Y ), respectively. Let A� = A and Ed ⊂ Ed�. If the

weights of the the perceptron PRC�k,m
R1

(X,Y ) that correspond to the edges which
do not belong to Ed are all equal to zero and all the remaining weights of S�

k are
equal to the corresponding weights of Sk, then the perceptrons PRCk,m

R1
(X,Y ) and

PRC�k,m
R1

(X,Y ) are equivalent.

Let us notice that the above corollary implies that, without the loss of generality,
only complete perceptrons can be considered in theoretical studies.

Let us consider two trained perceptrons: PRCk,m
R1

(X,Y ) and PRCm,l
R2

(Y, Z) with
the corresponding functions F1 : R

k � X → Y ∈ R
m and F2 : Y → Z ∈ R

l . Let
us also assume that the output signal of PRCk,m

R1
(X,Y ) is put onto the input of

PRCm,l
R2

(Y, Z). In such a way a new perceptron PRCk,l
R1+R2

(X, Z) is obtained. This
construction can be described formally in the following way.

Definition 8.11 Let the structures Sk and S�
k of the trained perceptrons PRCk,m

R1

(X,Y ) and PRCm,l
R2

(Y, Z) have the form

Ak := (G = (A, E), γ,α,W,β)

and
A∗

m := (G∗ = (A∗, E∗), γ∗,α∗,W ∗,β∗),

respectively. Let us construct a new trained neural network PRCk,l
R1+R2

(X, Z) which
has the structure
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Ãk := (G̃ = ( Ã, Ẽ), γ̃, α̃, W̃ , β̃)

obtained in the following way:

Ã := A ∪ A∗,
Ẽ := E ∪ E∗ ∪ {(ai , a j ) : ai ∈ A, δ−

ai = 0, a j ∈ A∗, δ+
a j

= 0},
γ̃ : Ã � a → γ̃(a) - a bijection,
α̃ : Ã � a → α̃(a) ∈ F is such a mapping that α̃|A ≡ α and α̃|A∗ ≡ α∗,
β̃ : Ẽ → W̃ is a bijection and W̃ is a set of indices created according to Defini-
tion8.5.

The perceptron PRCk,l
R1+R2

(X, Z) constructed in the way described above is called

a superposition of the perceptrons PRCk,m
R1

(X,Y ) and PRCm,l
R2

(Y, Z).

The definitions of a perceptron and a superposition of perceptrons imply directly
two following corollaries.

Corollary 8.12 Amultilayer perceptron is a superposition of one-layer perceptrons
it consists of.

Corollary 8.13 Let a perceptron PRCk,l
R (X, Z) with the corresponding function

F : X → Z be superposition of the perceptrons PRCk,m
R1

(X,Y ) and PRCm,l
R2

(Y, Z)

with corresponding functions F1 : X → Y and F2 : Y → Z , respectively. Then

F = F2 ◦ F1.

Let us consider the following illustrating example. Let a signal x ∈ R
k be put

on the input of the trained perceptron PRCn0,nm
R (X,Y ). The signal is processed

simultaneously by the neurons of the first layer of the perceptron. Provided that the
first layer consists of n1 neurons, the first layer realizes the function

g1 : Rn0 � X → R
n1 .

In the case of the exemplary perceptron shown in Fig.3.1, x ∈ R
5 and

g1 : R5 → R
4.

The output signal s of the first layer is put onto the input of the second layer which
processes it and creates the output signal of the second layer. This process is continued
until the output signal from the penultimate layer is processed by the last layer that
create its output signal which is the output signal of the whole perceptron. In the case
of the aforementioned exemplary perceptron

g2 : R4 → R
2,

and the function corresponding to it has the form:
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F = g2 ◦ g1 : R5 � X → Y ∈ R
2.

In general, a trained perceptron PRCk,m
R (X,Y ) realizes the function

F = gR ◦ gR−1 ◦ · · · ◦ g1 : Rk → R
m .

To sum up, a trained perceptron PRCk,m
R (X,Y ) acts in such a way that after

putting a stimulus x ∈ X ⊂ R
k to the input layer it creates the reaction y ∈ Y ⊂ R

m .

8.2 Supervised Deterministic Training Process

In this section a formal approach to supervised deterministic training process of
perceptrons is presented.

A trained perceptron should solve a given problem. This means that in response to
a given stimulus x the perceptron reaction y should be equal to the desired (correct)
value, let us say, z. If the values of some of the desired output signals are known,
then the training sequence, used in the sequel in the supervised training process, can
be created.

Let us define a training set.

Definition 8.14 A finite sequence of the pairs

(
x(1), z(1)

)
, ...,

(
x(N ), z(N )

)
,

where x(n) ∈ X ⊂ R
k, z(n) ∈ Y ⊂ R

m, n ∈ {1, ..., N } is called a training set of the

perceptron PRCk,m
R (X,Y ) if for each n ∈ {1, ..., N } the vector z(n) is the correct

reaction of the perceptron to the stimulus x(n).

The training process of the perceptron consists in setting such weights in all
neurons that the difference between the perceptron reaction y(n) and the correct
reaction z(n) is as small as possible. This problem can be formulated as finding a
minimum of a certain function.

Let us assume that an untrained perceptron PRCk,m
R (X,Y ) and its training set

(x (1), z (1)), ..., (x (N ), z (N )) are given.

Definition 8.15 A function

E : R
s1 � w → E(w) ∈ [0,∞)

is called an error function if it is of the form

U (y (1)(w), ..., y (N )(w)),

where
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U : (RMR )N → [0,∞) and y(n) : Rs1 → R
MR ,

and s1 is a number of all weights in the perceptron whereas MR is a number of
neurons in the output layer. Furthermore, it is required that fulfilling the following
system of equations

y (1)(w) = z (1), ..., y (N )(w) = z (N ),

is the necessary and sufficient condition of zeroing the function E at the point w.

Remarks 1. In the above definition w denotes the vector of all weights of the
considered perceptron. As it has been aforementioned, the perceptron weights
and, as a consequence, the components of w can be indexed in various way. In
this mongraph they are used interchangeably depending on the convenience in
a given context. Anyway, the components of w are arranged in a certain way.

2. Vectors y(n)(w) ∈ Y are output signals of the perceptrons that are the reactions
to input signals x(n) which are the elements of the training set. It should be
stressed that during the training process the weights in neurons change and, as a
consequence, at various stages of the training process the perceptron reactions
to the same input signal are various, as well.

3. Iterative algorithms in which derivatives are used are commonmethods of super-
vised learning of perceptrons. Therefore, some additional assumptions concern-
ing regularity of the function E are often specified. It is assumed, usually, that
E is at least of class C1.

4. Theoretically, finding the global minimum of the function E would be the best
solution of the problem of a perceptron training. Nevertheless, it is impossible
to solve it by using analytical methods - it would be a system of equations whose
number is equal to the number of all weights in the perceptron. Furthermore,
in the case of a nonlinear perceptron, the equations would be nonlinear as well.
Therefore, it is looking for a sufficiently good local minimumby using numerical
methods. Difference iterative schemata, in which the error function E is used
explicitly, are commonly applied. The descent gradient method with application
of back-propagation is the simplest one.

5. The mathematical analysis of the aforementioned schemata has not only numer-
ical aspect but also it has the optimization and dynamical aspects. The last one
is analyzed in this monograph.

6. The finding weights that zeroes the function E,which corresponds to the finding
the global minimum of E, although theoretically optimal, is not optimal in
practice because of the so called overtraining. In such a case a trained perceptron
reacts perfectly to stimuli from the training set but, usually, it does not react
correctly to the stimuli that do not belong to the training set.
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8.3 Gradient Learning Process

In this section the gradient descent method, which is the simplest algorithm in the
group of differential training methods of the perceptron, is considered. Back propa-
gation technique that is necessary in the case of the multilayer perceptron is utilized
in the training process.

In order to analyze the descent gradient learning process formally, let us assume
that the training set {x (n), z (n)}n=1,2,...,N of a perceptronPRCk,m

R (X,Y ) is given. Let,
furthermore, the activation function of each neuron be of a C1 class. Let a training
algorithm be given by a descent gradient iterative scheme

w(p+1) := w(p) − h · gradE(w(p)), (8.1)

which can be also presented for each component separately

w
(p+1)
j := w

(p)
j − h · ∂E(w(p))

∂w j
, j ∈ {1, ..., J }, (8.2)

where J is the number of all weights in the perceptron and h ∈ (0, 1). The variable
p corresponds to the number of a step of iteration. It can be easily noticed that the
presented schema is the Euler method applied to the following gradient differential
equation

dw
dt

= −gradE(w). (8.3)

This observation is the starting point for the analysis presented in this monograph -
the training process, described by formulae (8.1) and (8.2), will be studied by using
dynamical systems theory referred to the gradient differential equation (8.3).

In the sequel the following function, so called square error function, is used as
the error function

E(w) =
N∑

n=1

TR∑

t=1

[
y(n)
R,t − z(n)

t

]2
, (8.4)

where y(n)
R,t = fR,t

(
wR,t ◦ x(n)

R,t

)
, fR,t is a C1 activation function of the t th neuron in

the Rth layer, the input signal of the penultimate layer is put into the input of the last
layer xR,t (n) = yR−1, wR,t = [wR,t,1, . . . , wR,t,m] and the following convention of
indexing is used:

n = 1, . . . , N - the number of element in the training set specified as superscript in brackets,
r = 1, . . . , R - the number of a layer, t = 1, . . . , Tr - the number of a neuron in the r th layer,
m = 1, . . . , Mr - the number of an input of a neuron in the r th layer.

As it has been already mentioned Tr−1 = Mr .
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To sumup, the following convention of indexing of outputs andweights of neurons
is used:

y(p)
r,t - the output signal of the t th neuron in the r th layer in the pth training step,

w
(p)
r,t,m - the mth weight in the t th neuron in the r th layer in the pth training step,

wr,t - the vector of weights of the t th neuron of the r th layer.

Thus, for instance, y(11)
2,7 denotes the output signal of the seventh neuron in the

second layer in the eleventh training step.
The error function E depends, explicitly, only on weights of the neurons that

belong to the last layer of the perceptron and on the input signals of the last layer.
These signals are the output signals of the penultimate layer and they depend explic-
itly on the weights of the neurons of this layer and on the input signals of this layer.
Thus, the error function E depends on all the weights of the perceptron. Since the
input signals x(n) are fixed as the elements of the training set, the vector of all weights
of the perceptron is the only variable on which the function E is dependent.

In order to apply the formula (8.2) efficiently all the gradient components ∂E
∂w j

,

where j ∈ {1, . . . , J } indexes all the weights of a perceptron, should be calculated.
Let us calculate the change of weights of the neurons that belong to the last layer.
The output signal of the perceptron depends directly on these weights, so

y(p)
R,t = fR,t

(
MR∑

m=1

x (p)
R,m · w

(p)
R,t,m

)
,

where x (p)
R,m = y(p)

R−1,m . Thus, by formula (8.2), the weights change rule for the last
layer has the form

w
(p+1)
R,t,m = w

(p)
R,t,m − η · ∂E

∂wR,t,m
.

Let us assume that the square error function is used. Then

∂E

∂wR,t0,m0

= ∂

∂wR,t0,m0

N∑

n=1

TR∑

t=1

[
fR,t

(
MR∑

m=1

y(n)
R−1,m · w

(n)
R,t,m

)
− z(n)

t

]2

=

=
N∑

n=1

∂

∂wR,t0,m0

TR∑

t=1

[
fR,t

(
MR∑

m=1

y(n)
R−1,m · w

(n)
R,t,m

)
− z(n)

t

]2

=

= 2 ·
N∑

n=1

[
y(n)
R,t0

− z(n)
t0

]
· f ′

R,t0

(
s(n)
R,t0

)
· y(n)

R−1,m0

where s(n)
R,t0

:= ∑MR
m=1 y

(n)
R−1,m · w

(n)
R,t,m is a total excitation of the t0th neuron of the

Rth layer in the nth step and f ′ denotes the derivative of the function f.
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In order to calculate the weights changes for neurons of the hidden layers, the
chain rule must be applied because the input signal y of the perceptron depends on
them indirectly. Thus, for the penultimate layer

w
(p+1)
R−1,t,m = w

(p)
R−1,t,m − η · ∂E

∂wR−1,t,m

∂E

∂wR−1,t,m
=

N∑

n=1

TR−1∑

t=1

∂E

∂y(n)
R−1,t

· ∂y(n)
R−1,t

∂wR−1,t,m
.

The calculations can be continued in the same way as for the neurons of the output
layer.

For the subsequent layers calculations can be done in analogous way. The pre-
sentedway of calculations of theweights changes is called back-propagationmethod.

8.4 Bibliographic Remarks

The presented general description of a neural network structure is based on the
approach presented in [32]. Other examples of graph theory applications to descrip-
tion of the structure of artificial neural networks can be found in [153, 154]. The
description of the structure of perceptrons is based on the formalism presented in
[188].

The back-propagation training method of the perceptrons was worked out inde-
pendently by a few groups of scientists [64, 181] and was described, for instance, in
[90], Sect. 6.1, [139], Sect. 6.2.



Chapter 9
Linear Perceptrons

In this chapter the linear perceptrons are considered. InSect. 9.1 somebasic properties
of structures of the linear perceptrons are discussedwhereas in Sect. 9.2 the dynamics
of the training process of the linear perceptrons is analyzed. The stability of the
training process is studied in Sect. 9.3.

9.1 Basic Properties of Linear Perceptrons

Let us start from the basic facts that have crucial significance in the theory of linear
perceptrons.

Corollary 9.1.1 Each programmed linear neuron is equivalent to a linear neuron
that has the identity function as its activation function.

Proof Because of clarity, in order to specify all subtleties, in the proof the scalar
product is denoted as < ·, · > .

Let us assume that the considered linear M−neuron has a corresponding function
F : RM × R

M → R. Then, the function corresponding to the trained neuron, which
has the weight w, is of the form F = f (< ·,w >), where f : R → R is the activa-
tion function which is linear i.e. f (x) = a · s, a ∈ R and s :=< x,w > is the total
excitation of the neuron. The trained neuron which has the corresponding function
F�(x) =< x, a · w > is equivalent to the considered one because

F(x) = f (< x,w >) = a < x,w >=< x, a · w >= F�(x) = id(< ·, a · w >).

�

© Springer International Publishing AG, part of Springer Nature 2019
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Thus,without loss of generality, it can be assumed that linear neurons have identity
as activation function.

The following corollary is simply implied by the properties of scalar product.

Corollary 9.1.2 A linear function F : Rm ⊃ X → R corresponds to a linear
M−neuron with the set X as its set of input signals.

It turns out that, without loss of generality, only one-layer linear perceptrons can
be considered.

Lemma 9.1.3 Each multilayer linear perceptron is equivalent to a one-layer linear
perceptron.

Proof Since a multilayer perceptron consists of a finite number of layers, it is suffi-
cient to prove the lemma only for two layers. By Corollary9.1.1, it can be assumed
that all neurons have identity as activation function.

Let us consider a neuron which belongs to an output layer. Let this layer consists
of M2 neurons.

y2,t = y1 ◦ w2,t,

where y1 is a vector which is formed by an output signals of the neurons from the
first layer andw2,t is a weight vector of the t th neuron of the second layer. The vector
y1 can be presented in an orthogonal basis {e1, . . . , eM2}

y1 =
M2∑

m=1

y1mem =
M2∑

m=1

(x ◦ w1,m)em,

where x is an input signal of the perceptron. By the properties of scalar product we
have

y2,t =
M2∑

m=1

((x ◦ w1,m)em) ◦ w2,t =
M2∑

m=1

(x ◦ w1,m)(em ◦ w2,t ).

The vectorsw2,t can be represented in the basis {e1, . . . , eM2}.Utilizing the orthonor-
mality of the basis:

y2,t =
M2∑

m=1

(x ◦ w1,m) · w2,t,m =
M2∑

m=1

x ◦ (w2,t,m · w1,m).

The above equality means that for each input signal x the considered two-layer linear
trained perceptron gives the same output signal y2 as the one-layer linear perceptron
with the suitably selected weights. �

Corollaries8.8, 9.1.2 and Lemma9.1.3 imply directly the following corollary.
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Corollary 9.1.4 The function F which corresponds to the trained linear
M−perceptron with input signals from the set X is a linear operator. The set X
is its domain.

9.2 Dynamics of Training Process of Linear Perceptrons

In Sect. 8.3 it was shown that the formula

dw
dt

= −grad E(w),

where w is a vector of all weights in the perceptron,

E(w) =
N∑

n=1

TR∑

t=1

[
y(w)

(n)
R,t − z(n)

t

]2
,

and

y(w)
(n)
R,t = fR,t

(
M∑

m=1

x (n)
m wR,t,m

)

describes the dynamics of the training process of a perceptron. Let us consider a
single linear M−neuron. Let a training set be given. As it has been shown above, it
can be assumed that it has identity as its activation function. In such a case the error
function is of the form

E(w) = E(w1, . . . , wM) =
N∑

n=1

[
y(w1, . . . , wM)(n) − z(n)

]2
,

where

y(w) = y(w1, . . . , wM)(n) =
M∑

m=1

x (n)
m wm .

Let us calculate the partial derivative from the equality (8.2)

∂E(w1, . . . , wM)

∂wm0

= ∂

∂wm0

N∑

n=1

[
M∑

m=1

x (n)
m wm − z(n)

]2

.

Let us denote

H (n) =
M∑

m=1

x (n)
m wm − z(n).



114 9 Linear Perceptrons

Then

∂E(w1, . . . , wM)

∂wm0

=
N∑

n=1

2 · H (n) · ∂(y(n) − z(n))

∂wm0

= 2 ·
N∑

n=1

H (n) · ∂y(n)

∂wm0

=

= 2 ·
N∑

n=1

H (n) · ∂(
∑M

m=1 x
(n)
m wm)

∂wm0

= 2 ·
N∑

n=1

H (n) · x (n)
m0

=

= 2 ·
N∑

n=1

x (n)
m0

·
[(

M∑

m=1

x (n)
m wm

)
− z(n)

]
.

Thus, the formula that describes the training process of a linear neuron by using
a training set {(x(1), z(1)), . . . , (x(N ), z(N ))} is a linear nonhomogeneous differential
equation of the form

dw
dt

= A · w − b, (9.1)

where A is the following matrix

A = −2G(x1, . . . , xM),

and xm, m = 1, . . . , M, denotes N -dimensional vector, with the components formed
by the sequence of the mth component of the x elements of the training set, i.e.
xm = [

x (1)
m , ..., x (N )

m

]
.

Thus, for an M−neuron and an N−element training set the Gram matrix G in
equation (9.1) is a square M × M matrix which elements are given as

gi j = xi ◦ x j ,

whereas the vector b is an M-dimensional vector with the components

bm = xm ◦ z, z = [
z(1), . . . , z(N )

]
.

Remarks The trainingprocess of a one-layer linear perceptron consisted of T neurons
is described by a system of T mutually independent linear differential equations the
same as the Eq. (9.1) which describes the training process of a single neuron. It can
be shown in the following way.

∂E

∂wt∗,m∗
= ∂

∂wt∗,m∗

N∑

n=1

T∑

t=1

[(
M∑

m=1

x (n)
m wt,m

)
− z(n)

t

]2

=
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= ∂

∂wt∗,m∗

⎧
⎨

⎩

N∑

n=1

⎧
⎨

⎩

T∑

t=1,t �=t∗

[(
M∑

m=1

x (n)
m wt,m

)
− z(n)

t

]2
⎫
⎬

⎭+

+ ∂

∂wt∗,m∗

N∑

n=1

[(
M∑

m=1

x (n)
m wt∗,m

)
− z(n)

t

]2

.

Since the first term does not depend on wt∗,m∗ , it zeroes. Thus:

∂E

∂wt∗,m∗
= ∂

∂wt∗,m∗

N∑

n=1

[(
M∑

m=1

x (n)
m wt∗,m

)
− z(n)

t

]2

=

= 2 ·
N∑

n=1

x (n)
m∗

[(
M∑

m=1

x (n)
m wt∗,m

)
− z(n)

t∗

]
.

In such a way a system of equations indexed by a parameter t∗ ∈ {1, . . . , T } has
been obtained. It can be summed up as the following corollary.

Corollary 9.2.1 The training process of a one-layer linear M−perceptron, which
consists of T neurons, is described by a system of linear nonhomogeneous differential
equations

dwt

dt
= −2 · (G(x1, . . . , xM) · wt − Bt ). (9.2)

Vector Bt has, for a fixed t = t∗, the following components

bm,t∗ = xm ◦ zt∗ ,

where zt∗ = (z(1)
t∗ , . . . , z(N )

t∗ ).

Remarks 1. The obtained system of equations can be written in the matrix form

dW
dt

= A · W − B, (9.3)

where W is the matrix, whose the t-th column is the vector wt , whereas B is a
matrix whose elements are given as bm,t = xm ◦ zt .

2. By Lemma 9.1.3, only one-layer linear perceptrons can be considered without
loss of generality. Thus, Eq. (9.3) describes the most general case of the training
process of linear perceptrons.

Example Let us consider a simple example - the training process of a single 2-neuron
with the training set which consists of three elements:
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{([
x (1)
1 , x (1)

2

]
, z(1)

)
,

([
x (2)
1 , x (2)

2

]
, z(2)

)
,

([
(x (3)

1 , x (3)
2

]
, z(3)

)}
.

This means that
x(n) =

[
x (n)
1 , x (n)

2

]
,

xm = [
x (1)
m , x (2)

m , x (3)
m

]

and
z = [

z(1), z(2), z(3)
]
.

According to the obtained formulae

dw1

dt
= −2

3∑

n=1

x (n)
1 ·

(
(x (n)

1 w1 + x (n)
2 w2) − z(n)

)
=

−2 · (x (1)
1 x (1)

1 w1 + x (1)
1 x (1)

2 w2 − x (1)
1 z(1) + x (2)

1 x (2)
1 w1 + x (2)

1 x (2)
2 w2 − x (2)

1 z(2)+

+x (3)
1 x (3)

1 w1 + x (3)
1 x (3)

2 w2 − x (3)
1 z(3)) =

= −2 · ((x (1)
1 x (1)

1 + x (2)
1 x (2)

1 + x (3)
1 x (3)

1 )w1+

+(x (1)
1 x (1)

2 + x (2)
1 x (2)

2 + x (3)
1 x (3)

2 )w2−

−x (1)
1 z(1) − x (2)

1 z(2) − x (3)
1 z(3)) =

= −2 · ((x1 ◦ x1) · w1 + (x1 ◦ x2) · w2 − (x1 ◦ z)).

The term dw2
dt can be calculated in the same way. To sum up, the following system of

equations has been obtained.

dw1

dt
= −2 · ((x1 ◦ x1) · w1 + (x1 ◦ x2) · w2 − (x1 ◦ z))

dw2

dt
= −2 · ((x2 ◦ x1) · w1 + (x2 ◦ x2) · w2 − (x2 ◦ z)),

which can be written as
dw
dt

= −2 · (A · w − B),

where

A =
(

x1 ◦ x1 x1 ◦ x2
x2 ◦ x1 x2 ◦ x2

)
(9.4)
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and

B =
(
x1 ◦ z
x2 ◦ z

)

9.3 Stability of the Learning Process of Linear Perceptrons

Let us consider the stability of training process of linear perceptrons. Without loss
of generality, one-layer linear perceptron with identity activation function can be
considered - see Corollary9.1.1 and Lemma9.1.3. Furthermore, the learning process
of a one-layer linear perceptron is described by a system of mutually independent
linear differential equations - see formula (9.2). Therefore it is sufficient to analyze
one equation that describes the training process of single linear neuron.

Theorem 9.3.1 The flowgenerated by the nonhomogeneous linear differential equa-
tion

dw
dt

= −2 · G(x1, . . . , xM)w − B (9.5)

is asymptotically stable if and only if the vectors {x1, . . . , xM} are linearly indepen-
dent.

Proof By Lemma5.3.1 it is sufficient to check asymptotic stability of the linear
differential equation

dw
dt

= A · w,

whereA = −2G(x1, . . . , xM).The stability can be proved by usingHurwitz criterion
- see Theorem 5.3.5. Let us calculate all�i and let us show that they all have positive
values.

�1 = −A1 = −(−2) · Tr G(x1, . . . , xM) = 2 ·
M∑

m=1

xm ◦ xm > 0,

It can be easily shown that �2 is positive, as well.

�2 = −A1 · A2 + A3 > 0.

The above condition is equivalent to the following one

A3 > A1 · A2, or (−2)3 · G3 > (−2)3 · G1 · G2,

where Gk is a sum of all principal minors of the rank k of the matrix G.
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Thus, it has been obtained
G3 < G1 · G2. (9.6)

On the left side of (9.6) the sum of all principal minors of rank 3 occurs. It can
be observed that for each component of the left side of inequality (9.6) there exists
a component on the right side such that Corollary 4.12 can be applied. Furthermore,
on the right side there exist additional components whose positiveness is directly
implied by the linear independence of the vectors of the matrix G. Thus, inequality
(9.6) is satisfied.

By Corollary 4.10, the remaining assumptions of Hurwitz criterion:

�n = (−1)n · An · �n−1 = (−1)n · (−2)n · Gn · �n−1 > 0,

for n ≥ 3 are satisfied if and only if the vectors {x1, . . . , xM} are linearly independent.
�

Thus, it has been proved that the dynamics of the flow generated by equation
(9.5) is asymptotically stable and, as a consequence, by Corollary 5.3.3, it is globally
asymptotically stable as well provided that the vectors x1, . . . , xM are linearly inde-
pendent. Let us recall that if the vectors have N components and N ≥ M then linear
independency is a typical property - see Lemma 4.11. This implies the following
Theorem.

Theorem 9.3.2 The time continuous model (9.2) of the training process of the linear
perceptron that consists of M−neurons is, generically, globally asymptotically stable
if only N ≥ M,where N is the length of training set. Furthermore, the flow generated
by differential equation (9.5) that describes the training process has exactly one fixed
point which is hyperbolic, globally attracting.

The above theorem implies that the flow which models the training process of
a linear perceptron has, generically, extremely regular dynamics. Nevertheless, the
question arises, whether this regularity is preserved if a numerical method is applied
in the training process implementation. It turns out that the answer is affirmative.

First of all, the dynamics of discretization of the flow generated by the system
Eq. (9.2) has the same dynamics as the Euler method applied to (9.2).

Theorem 9.3.3 Let us assume that the linear perceptron consists of M− neurons
and that the training set consists of N elements, N ≥ M. The discretization �h of
the flow � generated by (9.2) is, for a sufficiently small h, generically topologically
conjugate with the cascade �h generated by the Euler method applied to (9.2).

Proof Using Fečkan theorem is the simplest way to prove this theorem. Since the
equations are mutually independent, it is sufficient to consider only one equation that
describes training process of an M−neuron.

Put g ≡ 0 in (5.8). Since the flow� : RM → R
M has, generically, one hyperbolic

attracting fixed point, the assumptions of Fečkan theorem are satisfied. Thus, for
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sufficiently small h, there exists a homeomorphism α∗
h that conjugates the cascades

�h and�h on a ball Br that is a neighbourhood of the fixed point. Since the attracting
fixed point is global, for each x ∈ R

M which does not belong to Br there exists nx
such that �−nx

h ∈ Br and �
−nx−1
h /∈ Br . Let us define

αh(x) :=
{

α∗
h(x) if x ∈ Br ,(
�

−nx
h ◦ α∗

h ◦ �
nx
h

)
(x) otherwise.

(9.7)

The way of constructing αh is, so called, a basic domain method. It is a commonly
known fact that the the mapping αh defined in such a way is a conjugating homeo-
morphism.

As it has been aforementioned, the numerical computer implementations can be
done in the approximate arithmetic, not in the exact one. The dynamical properties
are preserved if the system has shadowing property.

Theorem 9.3.4 Let T = �c or T = �s . Under assumptions of Theorem 9.3.3 the
cascade �h is, for a sufficiently small h, generically T robust.

Proof Generically, the cascade �h has one global hyperbolic attracting fixed point.
This implies that it is a gradient-like Morse-Smale cascade. By Theorem5.7.8 it is
T robust. �

9.4 Bibliographic Remarks

The results described in this chapter are presented in [32].



Chapter 10
Weakly Nonlinear Perceptrons

The character of the dynamics of linear both flows and cascades is well investigated.
It is known, among others, that the cascades generated by a linear flow preserve
regular dynamics of the flow. In particular, the problems connected with topological
conjugacy and shadowing properties are resolved. The regular dynamics of linear
dynamical systems is preserved if they areweakly distorted - so calledweakly nonlin-
ear dynamical systems. This is formulated strictly inGrobman andHartman theorems
and Fečkan Theorem - see Sect. 5.6.

The results obtained for weakly nonlinear dynamical systems can be applied for
perceptrons. Basing on the aforementioned class of dynamical systems a new type of
perceptrons that consist of so called weakly nonlinear neurons has been introduced.
It turns out that this type of neurons preserves regular dynamics of training process of
linear perceptrons. Furthermore, they have stronger approximation properties than
linear perceptrons. Thus, there exists a class of problems that can be solved by using
weakly nonlinear neurons and they cannot be solved by using linear neurons.

Definition 10.1 A neuron is called a weakly nonlinear neuron if its activation func-
tion is of the form

f : R � s → f (s) = s + g̃(s) ∈ R,

where g̃ : R → R is bounded and, furthermore, |g̃′(x)| < b1 and |g̃′′(x)| < b2 for
each x, provided that the constants b1 > 0 and b2 > 0 are sufficiently small.

It can be shown that the training process of a weakly nonlinear neuron and, as
the consequence, a one-layer weakly nonlinear perceptron, is modelled by a flow
generated by differential equation 5.8 which satisfies the assumptions of Theorem
5.6.7.

© Springer International Publishing AG, part of Springer Nature 2019
A. Bielecki,Models of Neurons and Perceptrons: Selected Problems
and Challenges, Studies in Computational Intelligence 770,
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Theorem 10.2 The flow model of the training process of a weakly nonlinear neuron
with a square error function (8.4) has the same dynamics as the flow generated by
the differential equation (5.8) which satisfies the assumptions of Theorem 5.6.7.

Proof Let us assume that an N−elementary training set
(
(x(1), z(1)), . . . , (x(N ), z(N ))

)

of an M−neuron is given. The total excitation of the neuron in the n−th training step
is of the form

s(n) =
M∑

m=1

x (n)
m w(n)

m .

Since the considered neuron is weakly nonlinear, its activation function has the form

f
(
s(n)

) = s(n) + g̃
(
s(n)

)
,

whereas the square error function is as follows

E(w1, . . . , wM) = 1

2

N∑

n=1

[
s(n) + g̃

(
s(n)

) − z(n)
]2

.

Let us calculate the k−th component of the gardient

∂E

∂wk
=

N∑

n=1

{[
s(n) + g̃(s(n)) − z(n)

] ·
[
x (n)
k + g̃′(s(n)) · x (n)

k

]}
=

=
N∑

n=1

x (n)
k s(n) +

N∑

n=1

x (n)
k · [

g̃(s(n)) + g̃′(s(n)) · f (s(n)) − z(n) · g̃′(s(n)) − z(n)
]
.

Thus, the gradient differential equation that models the training process of a weakly
nonlinear neuron

dw
dt

= −grad E(w)

has the following form
dw
dt

= −(Aw + b + g(w)), (10.1)

where the Gram matrix A is given by the formula

A =
⎛

⎜
⎝

x1 ◦ x1 . . . x1 ◦ xM
...

...

xM ◦ x1 . . . xM ◦ xM

⎞

⎟
⎠ , (10.2)

and the vector b has the form



10 Weakly Nonlinear Perceptrons 123

b = −
⎛

⎜
⎝

∑N
n=1 x

(n)
1 z(n)

...∑N
n=1 x

(n)
M z(n)

⎞

⎟
⎠ , (10.3)

whereas the vector mapping g : RM → R
M is of the form

g(w) =
⎛

⎜
⎝

∑N
n=1 x

(n)
1 · [

g̃(s(n)) + g̃′(s(n)) · f (s(n)) − z(n) · g̃′(s(n))
]

...∑N
n=1 x

(n)
M · [

g̃(s(n)) + g̃′(s(n)) · f (s(n)) − z(n) · g̃′(s(n))
]

⎞

⎟
⎠ .

Let us calculate the element of the Dg(w) matrix

Dg(w)ik = ∂

∂wi

⎛

⎝
N∑

n=1

x(n)
k ·

[
g̃(s(n)) + g̃′(s(n)) · f (s(n)) − z(n) · g̃′(s(n))

]
⎞

⎠ =

=
N∑

n=1

x(n)
k ·

[
∂

∂wi
g̃(s(n)) + ∂

∂wi
(g̃′(s(n)) · f (s(n))) − z(n) · ∂

∂wi
g̃′(s(n))

]
=

=
N∑

n=1

x(n)
k ·

[
∂

∂wi
g̃(s(n)) + f (s(n)) · ∂

∂wi
g̃′(s(n)) + g̃′(s(n)) · ∂

∂wi
f (s(n)) − z(n) · ∂

∂wi
g̃′(s(n))

]
=

=
N∑

n=1

x(n)
k ·

[
x(n)
i g̃′(s(n)) + f (s(n)) · x(n)

i g̃′′(s(n)) + g̃′(s(n)) · x(n)
i f ′(s(n)) − z(n) · x(n)

i g̃′′(s(n))
]

=

=
N∑

n=1

x(n)
k x(n)

i ·
[
g̃′(s(n)) + f (s(n)) · g̃′′(s(n)) + g̃′(s(n)) · f ′(s(n)) − z(n) · g̃′′(s(n))

]
.

Let us write Eq. (10.1) as follows

dw
dt

= −A(w + A−1b + A−1g(w))), (10.4)

and let us put z = w + A−1b. This substitution defines topological conjugacy and
the Eq. (10.4) is transformed into the following form

dz
dt

= −(Az + g(z − A−1b)), (10.5)

If g(A−1b) = 0 then the mapping g satisfies the assumptions of Fečkan theorem. �

To sumup, if only themodules of themapping g and its first and second differential
satisfy the conditions specified as the assumptions of Theorem10.2, then themapping
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satisfies the assumptions of both Grobman–Hartman and Fečkan Theorems. This
means that

• The flow generated by the equation

dw
dt

= −(Aw + b + g(w))

is globally topologically conjugate with its linear part

dw
dt

= −Aw.

This implies, among others, the asymptotic stability of the training process.
• The cascade generated by the discretization of the equation

dw
dt

= −(Aw + b + g(w))

is, on a large ball, topologically conjugate with the cascade generated by the
Euler method for this equation. It should be stressed that not the discretization but
the numerical method is the basis of the training algorithm of a neural network.
Topological conjugacy on a large ball is, in practice, sufficient - see the discussion
in the next section.

• A linear flow that models the training process of a linear perceptron is, generically,
globally asymptotically stable with an attracting fixed point - see Theorem 9.3.2,
stable under numerics - Theorem 9.3.3 and T -robust, where T = θc ∪ θs - see
Theorem 9.3.4. By Theorem 10.2 and the fact that these properties are invariant
under topological conjugacy the training process of a weakly nonlinear perceptron
has the aforementioned properties, as well.

10.1 Bibliographic Remarks

The idea of a weakly nonlinear perceptron was proposed by the author [29] and it
was studied by him [32, 40].



Chapter 11
Nonlinear Perceptrons

In this chapter a training process of the most general class of perceptrons - the
nonlinear ones - is considered. Runge–Kutta methods, first of all the gradient descent
method (the Euler method), that are used as the numerical training algorithm, are
studied in the context of their stability and robustness. It should be stressed that
the continuous model of the training process is considered in the Euclidean space
R

n. The training algorithm is implemented as an iterative numerical rule in R
n, as

well. However, the theoretical analysis presented in this chapter concerns numerical
schemata on the n−dimensional compact manifold Mn

S, which is homeomorphic
to the sphere Sn. This is possible thanks to the specific compactification procedure,
which is described in details in theStep 1 of the proof ofTheorem11.1. Such approach
allows us to apply results concerning numerical dynamics on compact manifolds.

First of all let us notice that most types of the activation function used in practice
are of the class C2(R,R). Bipolar and unipolar sigmoid functions and most radial
functions, satisfy this assumption. Therefore, the square error function E is of the
class C2(Rn,R), as well. Equation (8.1) describes an algorithm of finding a local
minimum of the error function E by using the descent gradient method (the Euler
method) which is the Runge–Kutta method of order k = 1. It should be mentioned
that the Runge–Kutta methods of orders k = 2 are also applied as training algorithms
of perceptrons.

In order to applied the aforementioned compactification, a regularization proce-
dure of the error function, which in gradient equation plays a role of the potential,
has to be applied. Let Bn(0, r) denotes a closed, n-dimensional ball in R

n, where
0 denotes zero in R

n. Theorem11.1 can be applied to the dynamical systems on
compact manifold within boundaries. In order to apply the theorem to perceptrons
training process, the process must be transformed onto such manifold. In order to
perform this transformation let us modify the error function in such a way that on
a certain, sufficiently large ball Bn(0, r1) ⊂ R

n, the potential is not modified. The
radius r1 can be choose as large as it is needed. The potential will be modified in
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such a way that the ball Bn(0, 2r1) will be an invariant set of the considered dynam-
ical system which models the training process. Thus, let E(w) = E(r), r = ‖w‖2,
for r large but less than 2r1. In such a way a flow

(
Bn(0, 2r1), φ̃

)
is obtained. The

procedure of the regularization of the error function E is presented in details in the
second step of the proof.

Let us notice that the modification of the error function consists in remaining the
potential unchanged in a large ball and modification outside the ball according to
needs. A such way of modification is well based on the properties on the modelled
realities. If an algorithm is implemented on the computer, then the range of repre-
sented numbers is bounded. Therefore, it can be assumed, without loss of generality,
that modules of the considered vectors are less than r1. Let us also mentioned that the
situation in neurodynamics is similar. In a biological neural cell, neurotransmitters
are liberated in tiny amounts from the presynaptic bouton to synaptic cleft - about
10−17 mol per impulse.

Thus, both in artificial and biological neural networks, norms of input vectors x
and weight vectors w are bounded. Therefore, in models of neurons, without loss of
generality, only bounded vectors can be considered. This means, among others, that
only dynamics restricted to some set, possibly large but bounded, is essential. We
can assume that this set is a ball Bn(0, r1) with the radius r1 sufficiently large.

To sum up, the error function remains unchanged on the ball Bn(0, r1) and the

flow
(
Bn(0, 2r1), φ̃

)
which is generated by the differential equation

dw
dt

= −grad Ẽ(w), w ∈ Bn(0, R) ⊂ R
n (11.1)

is adequate as the model of a perceptron training process.
Let� denotes the set of allC1 vector fields on themanifoldM.Let us assume that

the vector fields are equipped with theC1 topology. Let us also assume that G ⊂ � is
formed by all vector fields that have the form −grad E, provided that E : M → R

is a function of the classC2.With any vector field inG let two cascades be associated:
its discretizations: φT and Runge–Kutta methods ψ T

m ,p. Let us furthermore assume
that � = ψm

T
m ,p

- see Theorem 5.6.11 and T = � - see Sect. 5.7. The dynamical

properties of a training process of a perceptron which has n weights can be specified
in the form of the following theorem.

Theorem 11.1 Let a real number T > 0begiven.Assume that a trainingprocess of a
perceptron which has n weights is modelled by a flow φ̃ on the ball Bn(0, 2r1) ⊂ R

n

- see formula (11.1). Then, there exists a compact, smooth, n−dimensional man-
ifold Mn

S without boundaries and a flow
(
Mn

S, φ̂
)
such that Bn(0, 2r1) ⊂ Mn

S,(
Mn

S|Bn(0, 2r1), φ̂
) =

(
Bn(0, 2r1), φ̃

)
. Furthermore, the flow

(
Mn

S, φ̂
)
is, gener-

ically, stable under numerics with respect to the operator � i.e. the cascades(
Mn

S, φ̂T
)
and

(
Mn

S, �
)
are topologically conjugate. Moreover, the cascades φ̂T

and � are generically T robust.



11 Nonlinear Perceptrons 127

Proof Step 1. Construction of the manifold Mn
S .

Let Bn(0, r1) ⊂ R
n be a closed ball which has the radius r1 as large as we need and

put R = 3r1. A manifold Mn
S ∈ R

n × R will be constructed in such a way that it
will have a radial symmetry with respect to rotations around the real axis which is
orthogonal to the n− dimensional Euclidean hyperplane Eucn - see Fig. 11.1. Let
us assume that the ball Bn(0, R) is contained in Eucn . Since the manifold has the
radial symmetry, its construction can be described for n− dimensional section. Let us
describe it for n = 2. The construction can be generalised without any problems for
higher dimensions. Thus, let us glue the line segment [−R, R], which is contained
in Euc2, with two hemicircles of a circle of radius rs at the points A = (R, 0) and
D = (−R, 0) respectively. Then, let us glue the obtained curve with the line segment
parallel to the previous one at the pointsC = (−R, rs) and D = (R, rs), respectively.
The construction is illustrated in Fig. 11.1. The obtainedmanifold is compact because
it is homeomorphic to 2−dimensional sphere S2. Furthermore, it is of the class C1.

The lack of C∞ smoothness in the points A, B,C, D on a two-dimensional section
can be counterbalanced by using a mollifier function f[a,b](x) ∈ C∞(R). Let f[a,b] be
defined as: f[a,b](x) = 0 for x ∈ (−∞, a], f[a,b](x) = 1 for x ∈ [b,∞) and f[a,b] is
increasing on [a, b].Such type of function is called a cutoff function and is commonly
used. Thanks to the symmetry of the two-dimensional section, it is sufficient to
describe the smoothing procedure only at the point A. We can treat the quarter of the
section as the function fsec : [0, R + rs] → [0, rs] defined in the following form:

fsec(x) :=
{
0 for r ∈ [0, R),

rs − √
r2s − (x − R)2 for [R, R + rs].

Thus, the point A = (R, 0) is a glue point. Let us cut the domain of f[R,R+ rs
2 ]

to the interval [0, R + rs]. Define the mapping fsmooth(x) := fsec(x) · f[R,R+ rs
2 ](x).

It is of the class C∞(0, R + rs). The manifold M2
S is obtained by the rotation of

Fig. 11.1 Construction of the manifold Mn
S for n = 2.
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the described two-dimensional section glued smoothly at the points A, B,C and D
around the real axis - see Fig. 11.1.

Let Base denotes the part of Mn
S which belongs to the hyperplane Eucn, i.e.

Base := Bn(0, R). Define Cap := Mn
S \ Base. Let us notice that the flow φ̃ is

founded on the ball Bn(0, 2r1) ⊂ Eucn which is a subset of Base.

Step 2. Compactification.

As it has been aforementioned, in computer implementations vectors are bounded.
Therefore, only the training process on a closed, sufficiently large ball Bn(0, r1)
is essential. Thus, modifications and completing of the potential outside the ball
Bn(0, r1) can be done only if the ball remains invariable. Let us modify the potential
E by using a function g defined in the following way

g(w) :=
{
1 for r ∈ [0, r1),
e(r−r1)a for r ≥ r1,

where r := ‖w‖2. The square dependence is chosen for clarity because then ∂r
∂wi

=
2wi provided that ‖ · ‖ is the Euclidean norm. The natural number a is selected in
dependence on the potential E . The radius r1 is chosen in the way specified below.
Let us notice that g ∈ C2(Rn,R) for a > 2. Define Ẽ(w) := E(w) · g(w). If a is
sufficiently large, then the solutions of the equation

.
w= −grad Ẽ(w), which gen-

erates a flow φ̃, cut the (n-1)-dimensional sphere Sn−1(0, 2r1) ⊂ Base transversally
entering into interior of the ball Bn(0, 2r1). This is equivalent to the fact that the
scalar product −grad Ẽ(w) ◦ w has for r = 2r1 negative values. As a consequence,
the ball Bn(0, 2r1) is an invariant set of the flow φ̃. To show this, let us calculate the
i th component of the scalar product −grad Ẽ(w) ◦ w

−wi · ∂ Ẽ(w)

∂wi
= −wi · ∂

∂wi
(E(w) · g(w)) =

= −wi

(
E(w) · ∂g(w)

∂wi
+ g(w) · ∂E(w)

∂wi

)
= ...

Let us calculate the derivative

∂g(w)

∂wi
=

{
2 · wi · a · (r − r1)a−1 · e(r−r1)a for r > r1,
0 for r ∈ [0, r1],

Let us put r := 2r1. Continuing the calculation, we obtain

... =
(

−2w2
i a(r − r1)

a−1E(w) − wi
∂E(w)

∂wi

)
e(r−r1)a =

(
−2w2

i ar
a−1
1 E(w) − wi

∂E(w)

∂wi

)
er

a
1 .
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Thus, as on Sn−1(0, 2r1) we have
∑

i w
2
i := ‖w‖2 = 2r1, so

−grad Ẽ(w) ◦ w = er
a
1

(
−4ara1 E(w) −

∑
i

wi
∂E(w)

∂wi

)
.

The problem is considered on the sphere Sn−1(0, 2r1). Therefore, all variables,
functions and derivatives are bounded. In particular, the term−∑

i wi
∂E(w)

∂wi
can have

positive value but is upper bounded. The potential E is, by definition, nonnegative
and the considered flow, as a gradient morse-Smale flow, has a finite number of
singularities. This implies that E has only a finite number of zeroes. Therefore r1 can
be chosen in such a way that E(w) > 0 for each w such that ‖w‖2 = 2r1 > 0. Since
r1 is large and the term

∑
i wi

∂E(w)

∂wi
does not depend on a, the number a can be chosen

so large that the inequality 4ara1 E(w) >

∣∣∣∑i wi
∂E(w)

∂wi

∣∣∣ is satisfied. Let us restrict the
domain of Ẽ to Bn(0, 2r1) ⊂ Base.Complete the potential onMn

S in such away that
at the point xnp, which corresponds to the north pole of the sphere (see Fig. 11.1),
there exists a hyperbolic fixed point, repelling on Mn

S \ Bn(0, 2r1). Then, let us
glue C2-regularly the potential on the border of Bn(0, 2r1). This can be done in the
followingway.Let us define the potential onCap ∪ ∂Base asV (w) := c · �(xsp,w),

where c > 0 is chosen in such a way that the minimal value of V on the border of
Base is greater than the maximal value of Ẽ on Bn(0, 2r1). Let us assume that the
points xsp and xnp correspond to the south pole and to the north pole of the sphere,
respectively. Let us also define a cutoff function gγ, on a geodesic line γ, such
that gγ(w) = Ẽ(γ ∩ Bn(0, 2r1)) if �(xsp,w) ≤ 2r1 and gγ(w) = V (γ ∩ ∂Cap) if
�(xsp,w) ≥ R = 3r1. The geodesic line γ connects the points xsp and xnp. Let us
define

Ê(w) :=
⎧⎨
⎩

Ẽ(w) on intBn(0, 2r1)
gγ(w) on Base \ intBn(0, 2r1)
V (w) on Cap.

Thus, the potential Ê ∈ C2(Mn
S) has been obtained.As a consequence, the dynam-

ical system (Mn
S, φ̂), which is generated by differential equation Mn

S

dw
dt

= −gradÊ(w) (11.2)

has been constructed. Let us fix a time step T . By applying a Runge–Kutta method,

the cascades
(
Bn(0, 2r1), φ̃T

)
,
(
Bn(0, 2r1), ψ̃ T

m

)
,
(
Mn

S, φ̂T
)
and

(
Mn

S, ψ̂ T
m

)
are

generated. By the properties of −grad Ẽ(w), the ball Bn(0, 2r1) is the invariant set
of the cascade φ̃T . Furthermore, for a sufficiently large m, it is also the invariant set
of the cascade ψ̃ T

m
. This implies that Bn(0, 2r1) is invariant for φ̂T and ψ̂ T

m
as well.

Step 3. Genericity.

Structural stability of a dynamical system is equivalent to the strong transversal-
ity condition and Axiom A - see [148], p. 171. Furthermore, if a dynamical sys-
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tem satisfies Axiom A, then it has only a finite number of singularities and all of
them are hyperbolic. Moreover, the strong transversality condition implies that the
gradient system has no saddle-saddle connections. Therefore, the structural stabil-
ity of the flow (Mn

S, φ̂) that describes the training process of perceptrons implies
the assumptions of Theorem 5.6.11. Thus, the assumptions of Theorem 5.6.11 are
generic because the set of structurally stable systems is open and dense in the space
of gradient dynamical systems G (see [148], p. 116).

Step 4. Stability under numerics.

The flow which models a training process of perceptrons has, inside the ball
Bn(0, R) ⊂ Eucn, a finite number of singularities and all of them are hyperbolic
ones. Therefore, after the compactification andmodification of the potential, themod-

ified flow (11.2) and, as a consequence, the cascades
(
Mn

S, φ̂T
)
and

(
Mn

S, ψ̂ T
m ,p

)

generated by this flow, constructed on the manifold Mn
S, satisfy assumptions of

Theorem 5.6.11. Thus, a training process of perceptron is, after compactification,
generically stable under numerics with respect to the operator � = ψ̂m

T
m ,p

according

to every Runge–Kutta method ψ̂ T
m ,p.

Step 5. Robustness.

Let us prove that a generic training process of a perceptron is robust. That means, by
definition, thai it is shadowing and inverse shadowing with respect to a broad class of
δ-methods. In order to do this, it will be shown that the sort of differential equation
which generates the training process is generic. Since the differential equation can
be identified with the vector field defined by its right side, it is sufficient to show
genericity of a certain type of vector field.

Lemma 11.2 There exists an open and dense set of vector fields which is contained
in G such that the cascade φT , that is a discretization of the generated flow, is T
robust. Let ψh,p denotes the diffeomorphism generated by a Runge–Kutta method of
order p and stepsize h which is applied to the equation generating the flow φ. Then,
for each p ∈ {1, 2, ...} and a sufficiently large m, the cascade� := ψm

T
n ,p

is T robust

as well.

Proof Let MSG denotes the family of all Morse-Smale vector fields contained in G.

Let us recall that G ⊂ � is the set of all vector fields of the form −grad E, where
E : M → R, E ∈ C2. It is known that the family MSG is open and dense in G - see
for [148], p. 153.

Let us notice that if −grad E belongs to MSG , then the critical points of the flow
φ are also the fixed points of the cascade φT which has not any other fixed points.
Furthermore, φT , like the flow φ, does not have other periodic points but the fixed
points. Furthermore, both the stable and unstable manifolds of the flow φ and the
cascade φT at their (common) fixed points are the same. Thus, φT is a Morse-Smale
diffeomorphism and, by Lemma 5.7.8, is T robust, where T = �c ∪ �s . It can be
easily verified that the vector field −grad E ∈ MSG satisfies all the assumptions
of Theorem 5.6.11. Thus, the cascades φT and � are topologically conjugate if m
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is sufficiently large. Furthermore, Theorem 5.7.9 implies the robustness of �. This
completes the proof of Lemma11.2 and, as the consequence, the proof of Theo-
rem11.1. �

Let us briefly comment on the presented idea.
A specific n−dimensional manifold Mn

S, homeomorphic to the sphere Sn, has
been constructed.The subset of themanifold is geometrically identicalwith the subset
of the Euclidean space Rn and the learning process of the perceptron is, in practice,

analysed only on this subset. Therefore, the dynamical system
(
A = Bn(0, 2r1), φ̃

)

that models a perceptron training process remains unchanged after transforming the
problem onto the manifold. More formally, the theory applied to the analysis of the
training process of perceptrons concerns the properties of gradient flows and cascades
on compactmanifolds without boundaries. The numerical scheme, however, which is
implemented as the training algorithm, is performed inRn .Therefore, the conclusions
should concern directly the set that is a domain of the implemented algorithm. This
set, let us denote it as A ⊂ R

n, has to satisfy the following relations:

Bn(0, r1) ⊂ A ⊂ Base and αm(A) ⊂ Base

- see Steps 1 and 2 of the proof of Theorem 11.1
Let us analyse properties of the set αm (Bn(0, 2r1)). First of all, the following

condition is satisfied:αm (Bn(0, r1)) ⊂ αm (Bn(0, 2r1)). Furthermore, since the con-
jugating homeomorphism αm converges to identity form converging to infinity - see
Theorem 5.6.11, the following condition is also satisfied: αm (Bn(0, 2r1)) ⊂ Base,
if onlym is sufficiently large. Thus, topological conjugacy of the considered cascades
exists on the setA = Bn(0, 2r1) ⊂ R

n on which the training process of a perceptron
is implemented.

The introduced construction allowed us to apply Theorem 5.6.11 as the theoretical
basis of the performed analysis and, as the consequence, it has been shown that the
dynamical system that models the training process is, under some natural assump-
tions, correctly reproduced by its Runge–Kutta method of each order if only a single
step of the numerical method is sufficiently small. The dynamics of gradient flows
is very regular. In particular, the system has no periodic orbits and the dynamics
cannot be chaotic. It implies asymptotic stability of each training process, that is
based on any Runge–Kutta method, and it ensures satisfying the stop condition of
the training algotithm. These properties are preserved by the cascades generated by
every Runge–Kutta method because of the existence of global topological conjugacy
between the numerical scheme and the time-h-map flow discretization. It also implies
T robustness of the training process.

In the presented theory the robustness was considered for k ∈ Z. In the imple-
mented algorithms, however, it is interested in practice only for k ∈ N. The ball
Bn(0, 2r1) is a positively invariant set according to the cascade φ̂T and robustness is
a topological conjugacy invariant - see Theorem 5.7.9. Therefore, according to the
above conclusion concerning topological conjugacy, the robustness with respect to
N takes place on the ball Bn(0, 2r1).
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Let us notice that the discrete dynamical system �, that models the training
process of perceptrons, is a multi-step operator. It should be stressed that the term
multi-step should not lead to the confusion with a multi-step discretization method.
Thus, the m-fold iteration of the operator �, generated by the applied Runge–Kutta
method is considered as a single unit of the theoretical analysis. In practice, it does not
produce any limitation because during implementations we can consider the results
of training process after each m-step stage.

It should be noticed that the presented results have one drawback. Namely, the
implemented numerical schema are only piecewise continuous and therefore they
are not contained in the considered classes of δ-methods. In order to fill this gap
it should be proved that the aforementioned learning process φT or ψ T

m ,p is inverse
shadowing with respect to the class generated by numerical methods

{
ψ T

m ,p,b, b ∈ {1, 2, ...}
}

,

where the index b is connected with the round-off with the set up accuracy, let us
say 2−b. Such methods are piecewise constant, so the presented theory is insufficient
because of the presence of the points of discontinuity.

To sum up, some properties of the training process of the perceptrons can be ana-
lyzed by using dynamical systems theory. The training algorithms, that are described
by numerical schema applied to formula (11.1), and the gradient dynamical systems
generated by the training process are, generically, convergent to equilibrium states
and they are robust. It implies, among others, accuracy, stability and well defined
stop condition when they are implemented as computer algorithms. Nevertheless,
the complementary studies of the inverse shadowing with respect to piecewise con-
tinuous methods are necessary to complete the obtained results.

11.1 Bibliographic Remarks

In this chapter the results described in [29, 46, 47] are presented.
Thementioned biological aspects concerning liberation of neurotransmitters from

the presynaptic bouton to synaptic cleft - see [91] - Sect. 2.5 and [176] - pp. 39–40.
The construction of the cut-off function, used in the first step of the proof of

Theorem 11.1, is described in details in [123], Lemma 2.21.



Chapter 12
Concluding Remarks and Comments

In this monograph three topics, mutually complementary, are studied:

• modelling of the neuron,
• modelling of the processes that take place in the neuron,
• mathematical analysis of dynamical properties of gradient training processes of
perceptrons.

There are various reasons for presentation the topic in such perspective. First of
all, there are structures and processes in the neuron that have not been modelled
yet. Let us put an example. In the presynaptic bouton which has an irregular shape
there are inner structures, for instance - mitochondrion. In all the models of the
synaptic processes created up till now, in which geometry of the bouton was taken
into consideration, the bouton was assumed to be a ball and the presence of the inner
structures was neglected [37, 114]. Such assumptions are extremely simplifying. The
models in which the bouton shape is based onmicroscopic imaging are more realistic
but they are at the very preliminary stage of development [38]. In such models the
inner structures are taken into consideration, as well. The author intended to signalize
the problem and give a preliminary review of the structures and processes that can be
modelled. Therefore, in Chaps. 2 and 7, especially in Sect. 7.3, biological foundations
have been discussed in detail. Secondly, the review of the models of the neuron and
its parts is given. On the one hand, there are several models of functional aspects
of fragments of the neuron but, so far, they have not been put together. There are
at least two reasons. The high computational complexity of numerical realization of
such models is the first one. The doubts whether such a complex model of the neuron
could contribute crucially new aspects in comparison with far simpler models of the
whole neuron is the second reason. Nevertheless, it should be stressed that it has not
been proved that such approach cannot contribute new aspects - this problem should
be investigated carefully. On the other hand, although there are several functional
models of the whole neuron, only few of them are used in artificial neural networks.
To sum up, if the aforementioned levels of analysis are considered, i.e.
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• the level of modelling of sub-neural structures and processes;
• the level of modelling of functional properties of the whole neuron;
• the level of designing and implementing ANNs,

then it can be easily noticed that only a tiny part of the potentiality of the lower level,
i.e. the more detailed one, is utilized at the higher level. Thus, presentation of this
problem and, as a consequence, recommending the inter-level studies together with
pointing out their directions are some of the novelty aspects in this monograph. It
is even more significant because, usually, the topics of the researchers’ interests are
included inside one of the single levels specified above. The synthetic approach to
the modelling of neural processes is the second aspect of this monograph specificity.
In this monograph the cybernetic modelling, the mathematical modelling and the
modelling by using electronic circuits intertwine. It is clear, especially, in Sect. 7.3.
This is also a specificity of the approachpresented in thismonographbecause, usually,
these three ways of modelling are exploited separately. The problem of the synthetic
approach to the scientific studies is more general. Since the Enlightenment analytic
approach to scientific problems has dominated and the synthetic approach is, in
general, in the state of atrophy. The synthetic mathematical-electronic approach to
modelling of sub-neural processes, presented in this monograph, is a test whether
such approach can be efficient. The results show that the answer is affirmative.
The presentation of the consistent model of the perceptron structure and training
process dynamics is the subsequent topic of this monograph. The analysis of the
mathematical properties of the dynamics of the training process are crucial part
of these studies. The approach which consists in application of dynamical systems
theory to analysis of the training process of ANNs in not the branch of studies
that is exploited intensively. Nevertheless, apart from the results presented in this
monograph, some other interesting studies have been conducted - the papers [73–
75] can be put as examples.



Part V
Appendix



Chapter 13
Approximation Properties of Perceptrons

As it wasmentioned in Sect. 8.1, an untrained perceptron can be treated as a family of
functionsRn → R

m indexed by a vector set of all its weights. A given training set, in
turn, can be regarded as a set of the points towhich amapping should be approximated
in the best way. The investigations of approximation abilities of neural networks are
focused on the existence of an arbitrarily close approximation. They are also focused
on the problemhow accuracy depends on a complexity of a perceptron. In this chapter
a few basic theorems that concern the approximation properties of perceptrons are
discussed. The presented theorems are the classical results. In this monograph they
are presented without the proofs which can be found in literature.

Kolmogorov theorem on the representation of continuous function of many vari-
ables by superposition of continuous functions of one variable is the main basis of
the studies concerning perceptrons in the context of approximation. Let us recall it.

Theorem 13.1 (Kolmogorov Approximation Theorem) For each natural n ≥ 2
there exists a family of functions {ψpq}, p ∈ {1, . . . , n}, q ∈ {1, . . . , 2n + 1}, con-
tinuous on the interval [0, 1], such that on the n−dimensional cube I n any continuous
function f : I n → R can be represented in the following form

f (x1, . . . xn) =
2n+1∑

q=1

χq

⎛

⎝
n∑

p=1

ψpq(xp),

⎞

⎠ ,

where {χq}, q ∈ {1, . . . , 2n + 1} is a family of continuous real functions.
On the basis of Kolmogorov Approximation Theorem Hecht–Nielsen proposed a

perceptronwith one hidden layer as a system for approximation a continuous function
f : I n −→ R. The proposed perceptron consisted of n input units that put the input
signal x = [x1, . . . , xn] onto the hidden layer that consisted of 2n + 1 neurons. The
output signals of the neurons in the hidden layer were of the following form
© Springer International Publishing AG, part of Springer Nature 2019
A. Bielecki,Models of Neurons and Perceptrons: Selected Problems
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uq =
n∑

p=1

λpqψq(xp),

where {λpg}, q ∈ {1, . . . , 2n + 1}, p ∈ {1, . . . , n} was a family of real constants.
The output layer consisted of a single neuron which generated the output signal

y =
2n+1∑

q+1

φ(uq),

where φ is a continuous nonlinear function.
The above proposal has only existential character because the way of the con-

struction of functions ψq and φ remained unknown. Cybenko presented a more con-
structive result. Let us consider a perceptron with one hidden layer which consists of
N neurons. Each one has an increasing continuous activation function f : R → R

that satisfies the following limit conditions

lim
s→−∞ f (s) = 0, lim

s→∞ f (s) = 1 (13.1)

The neurons had a threshold γk, k ∈ {1, . . . , N }. The output layer consisted of a
single linear neuron. Input signals were d−dimensional i.e. x ∈ R

d . The perceptron
output was given by the formula

yN(x) =
N∑

k=1

vk · f (wk ◦ x + γk) , (13.2)

where wk is a vector of weights of the k−th neuron of the hidden layer, whereas
v = [v1, . . . , vN ] is a vector of weights of the output neuron. Such a perceptron can
approximate, with an arbitrary accuracy, any continuous function on a compact set.

Theorem 13.2 (Cybenko Approximation Theorem) Let a function f, that satisfies
the conditions specified above, be given. Then, for any continuous function g : I d →
R and each ε > 0, there exists a natural number N and parameters v, wk, γk such
that for any x ∈ I d

|g(x) − yN(x)| < ε.

In Cybenko theorem the activation functions are given explicitly but the theorem
gives neither a way of parameter choice nor approximation accuracy. The last one
was given by Barron for the perceptrons described by formula (13.2) with increasing
activation function which satisfies the conditions (13.1). In order to present this
estimation of approximation let us specify two following assumptions that concern
a function g : Rd → R :



13 Approximation Properties of Perceptrons 139

C1 The function g has an integral representation of the form

g(x) =
∫

Rd

ei ·ω
T ·x · g̃(ω)dω,

where g̃ is a function of a complex variable.
C2 The function

√
ωTω · g̃(ω) is integrable in Rd which implies that

C f :=
∫

Rd

√
ωT · ω · |g̃(ω)|dω < ∞.

Let �d denote the family of functions g : Rd −→ R which satisfies the conditions
C1 and C2.

Theorem 13.3 Let us assume that a function f : R → R is the activation function
which satisfies the conditions specified above that concern the activation function f.
Let us choose a ballRd ⊃ Br := {x ∈ R

d : ||x|| < r, r > 0}. Let us also assume that
g ∈ �d .Then, for each natural N ≥ 1, there exist such parameters v = [v1, . . . , vN ],
wk, γk, that the perceptron (13.2) realizes a function yN : Rd → R which satisfies
the inequality ∫

Br

(g(x) − yN(x))2 <
2 · r · C f

N
.

The theorem can be easily generalized. First of all, the approximation domain can
differ from a ball. Secondly, the measure which is not a Lebesgue one can be used.

13.1 Bibliographic Remarks

Kolmogorov approximation theorem is proved in [116].
Hecht–Nielsen approximator is described in [87].
Cybenko theorem is presented in [59].
The proof of Barron theorem [11], i.e. Theorem 11.2, is based on Strong Law of

Large Numbers.
The other theorems and their proofs related to the problem of approximation

properties of the perceptron can be found in [88, 96–98, 117].



Chapter 14
Proofs

Two proofs that are not commonly known, are presented in this chapter.

14.1 Estimation of Constants in Fečkan Theorem

In this section the proof of Theorem 5.6.8, conducted by Jabłoński, is presented -
see [39, 101]. In this section, both linear operators and corresponding matrices are
denoted by capital letters. The matrices, however, are not denoted in bold because
the operator aspect of the considered objects is crucial.

The following lemma is the starting point.

Lemma 14.1.1 Let ε > 0 be given. Let, furthermore, φ1, φ2 ∈ CB(Rn) be Lip-
shitzean mappings with the Lipschitz constants less than ε. Let us also assume that
A ∈ L(Rn) is an endomorphism without eigenvalues on the imaginary axis. Then,
for 0 < h < ‖A‖−1, themappings Ah + φ1 and Ah + φ2 are topologically conjugate
provided that

ε‖A−1
h ‖

1 − Mh
< 1, (14.1)

where Mh = max {‖(Au
h)

−1‖, ‖As
h‖}.

In order to prove Lemma14.1.1 the following lemma is needed - see [148], p. 60,
Lemma4.3:

Lemma 14.1.2 Let G, K ∈ L(Rn). There exists μ ∈ [0, 1) such that ‖K‖, ‖G−1‖
≤ μ and

(i) the mapping I + K is automorphism and ‖(I + K )−1‖ ≤ 1
1−μ

,

(ii) the mapping I + G is automorphism and ‖(I + G)−1‖ ≤ μ

1−μ
.
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Proof of Lemma 14.1.1 First a mapping s : Rn → R
n of the form s = I + u,where

u ∈ CB(Rn),will be constructed. The mapping s has to satisfy the following equality

(Ah + φ1) ◦ s = s ◦ (Ah + φ2). (14.2)

The Eq. (14.2) can be written in the form

Ah ◦ u − u ◦ (Ah + φ2) = φ2 − φ1 ◦ (I + u). (14.3)

It will be shown that there exists a unique mapping s0 ∈ CB(Rn) which satisfies
Eq. (14.3).

Let us define a linear operator

� : CB(Rn) −→ CB(Rn)

in the following way
�(u) = Ah ◦ u − u ◦ (Ah + φ1).

Since the matrix A has not imaginary eigenvalues and eigenvalues of Ah are different
from 1, the operator � is invertible and, by Lemma 14.1.2

‖�−1‖ ≤ ‖A−1
h ‖ · (1 − Mh)

−1.

Let us consider the mapping

ζ : CB(Rn) −→ CB(Rn)

defined as follows
ζ(u) = �−1 ◦ (φ2 − φ1 ◦ (I + u)).

Let us estimate distance between ζ(u1) and ζ(u2) for any u1, u2 ∈ CB(Rn).

‖ζ(u1) − ζ(u2)‖ = ‖�−1 ◦ [φ2 ◦ (I + u2) − φ1 ◦ (I + u1)]‖ ≤

≤ ε (1 − Mh)
−1 · ‖A−1

h ‖ · ‖u1 − u2‖.

The above inequality implies that ζ is a contraction provided that

ε < (1 − Mh) · ‖A−1
h ‖−1.

By Banach Fixed Point Theorem, there exists a unique mapping

u0 ∈ CB(Rn)
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which satisfies (14.3). This completes the proof of Lemma 14.1.1.
The following lemma was proved in [175, Theorem 1.8.1].

Lemma 14.1.3 Let F(h, x) = ehAx, x ∈ R
n and let �(h, x) be the time-h-map of

the flow generated by (5.8). Then the mappings �(h, ·), F(h, ·) are topologically
conjugate provided that

hb · ‖eAh‖ · (‖A‖ + b) < (1 − M) · ‖A−1
h ‖−1.

Proof of Lemma 14.1.3 For a fixed x ∈ R
n the equation

d�(t, x)

dt
= A�(t, x) + g(�(t, x)),

is, on the interval [0, h], equivalent to the integral equation

�(t, x) = et Ax + f (t, x),

where

f (t, x) =
∫ t

0
e(t−τ)Ag(�(τ, x))dτ.

Since ‖Dg(x)‖ ≤ b for each x ∈ R
n,

‖D�(x)‖ = ‖A + Dg(x)‖ ≤ ‖A‖ + b.

The derivative D f : Rn → L(Rn) is bounded:

‖D f (x)‖ ≤
∫ t

0
‖e(t−τ)A‖ · ‖Dg(�(t, x))‖ · ‖D�(x)‖ dτ ≤

≤
∫ t

0
b · ‖et A‖ · (‖A‖ + b)dτ = tb · ‖et A‖ · (‖A‖ + b).

For t = h the mapping f (h, ·) is Lipschitzean with the constant

ε = hb · ‖eAh‖ · (‖A‖ + b).

By Lemma 14.1.1, the mappings �(h, ·), F(h, ·) are topologically conjugate if

ε < (1 − Mh) · ‖A−1
h ‖−1.

This implies
hb · ‖eAh‖ · (‖A‖ + b) < (1 − Mh) · ‖A−1

h ‖−1

which means that the inequality (5.12) is proved.
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Lemma 14.1.4 Let the mappings F(h, x) = ehAx and G(h, x) = Ahx . The map-
pings F(h, ·) and G(h, ·) are topologically conjugate.
Proof The number of elements of the set {ν ∈ σ(ehA) | ν > 1} is equal both to the
number of elements of the set {ν ∈ σ(Ah) | ν > 1} and to the number of the eigen-
values less than 1. That means the cascades F and G have the same index and, as
the consequence, are topologically conjugate.

Lemma 14.1.5 Let b > 0 be given. Let the mapping g ∈ C1
B(Rn) be such that

‖Dg(x)‖ < b for each x ∈ R
n.

Then, the mappings G(h, ·), H(h, ·) are topologically conjugate provided that

hb < (1 − M) · ‖A−1
h ‖−1.

Proof Since ‖Dg(x)‖ ≤ b for each x ∈ R
n , the mapping hg is Lipschitzean with a

constant ε = hb. By Lemma 14.1.1 the mappings G(h, ·) and H(h, ·) are topolog-
ically conjugate provided that

hb (1 − Mh)
−1 < ‖A−1

h ‖−1,

which completes the proof of Lemma 14.1.5.

Inequality (5.11) is implied by Lemma 14.1.1. This completes the proof of
Theorem 5.6.8.

14.2 Estimation of the Euler Method Error on a Manifold

Let M be a k−dimensional Riemanian C j manifold, j ≥ 2, embedded in R
2k+1 -

compare Whithey Theorem 4.5. For the points x, y ∈ M, transformed by the same
chart ϑ, the following inequalities hold (see [160]), p. 453, formula (2.2))

m1 · dR
k ( ϑ(x), ϑ(y) ) ≤ �Riem(x, y) ≤ m2 · dR

k ( ϑ(x), ϑ(y) ), (14.4)

where m1,m2 are constant for a given map ϑ.

Let the time step h be constant. By the inequalities (14.4), for sufficiently small
h, the Euler method on compact subset of a manifold is, similarly as in Euclidean
space, a method of the first order.

The error of a single step of the Euler method is a continuous function of x . Let
us denote by

r(x, h) := �R( ψh(x), φh(x) ) (14.5)

the error of a single step of the Euler method.
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The set M ⊃ A := {y ∈ M, �R(φ(x0, t), y) ≤ en, t ∈ T } is compact.
Let us define

rn(h) := max
m≤n

{
r
(
φm
h (x0), h

)}
.

Then

en(x0, x̃0, h) := �R( ψn
h (x0), φn

h (x̃0) ) = �R

(
ψh(ψ

n−1
h (x0)), φh(φ

n−1
h (x̃0))

) ≤

�R

(
ψh(ψ

n−1
h (x0)), ψh(φ

n−1
h (x̃0))

) + �R

(
ψh(φ

n−1
h (x̃0)), φh(φ

n−1
h (x̃0))

) ≤

�R

(
ψh(ψ

n−1
h (x0)), ψh(φ

n−1
h (x̃0))

) + rn(h).

By formula (5.3) the last inequality can bewritten as follows, by using local exponents

en(x0, x̃0, h) ≤

≤ �R

(
expψn−1

h (x0)

(
h · f (ψn−1

h (x0))
)
, expφn−1

h (x̃0)

(
h · f (φn−1

h (x̃0))
) )

+ rn(h).

Let W be an envelope of the bundle T M zero section defined as T M(0) :=
{(p, 0), p ∈ M} ⊂ T M. The mapping exp : W → M is defined as exp(p, ·) =
expp . The exponent mapping can be constructed on every C j manifold if j ≥ 2 and
it is a C j−1 map. The restriction of the exponent to the zero section is the identity
mapping. By using the exponent mapping instead of the local exponents the error is
estimated in the following way

en(x0, x̃0, h) ≤

�R

(
exp(ψn−1

h (x0), h · f (ψn−1
h (x0))), exp(φn−1

h (x̃0), h · f (φn−1
h (x̃0)))

) + rn(h).

The maximal difference between the values of the function in two different points
is upper bounded by the product of the maximum value of the function differential
on the interval determined by these points and the interval length. Since j ≥ 2, the
differential of the exponent is, at least, aC1 mapping. Thus, it is a Lipschitz mapping
on a compact space. As the set A is compact, the envelope {(p, v), p ∈ A, v ∈
TpM, ‖v‖ ≤ ε} of T M(0) is also compact. Let Uh := { (p, v), p ∈ M, ‖v‖ ≤
h · L1 } be a small closed envelope Uh of the set A ⊂ T M(0). Let us notice that the
envelope “width” is proportional to the time step h. Let, furthermore, for every point
p ∈ A, the pair (p, h · f (p)) be contained in Uh . Since the envelope Uh is compact,
the exponent differential is a Lipschitz mapping and its norm on the zero section is
equal to 1. The maximum of the differential norm can be estimated by (1 + h · c),
where c is a constance depending on L1. Thus

en(x0, x̃0, h) ≤
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≤ (1 + h · c) · �T M

(
(ψn−1

h (x0), h · f (ψn−1
h (x0))), (φn−1

h (x̃0), h · f (φn−1
h (x̃0)))

)
+ rn(h),

where �T M is a metric on the tangent bundle consistent with its topology. This metric
can be defined as follows

�T M ( (p1, v1), (p2, v2) ) := d
R
k (p1, p2) + ‖v1 − v2‖Rk ,

where ‖ · ‖R
k is a norm on Rk . Thus, the error can be estimated in the following way

en(x0, x̃0, h) ≤

(1 + h · c) ·
[
d
R
k

(
ψn−1
h (x0), φn−1

h (x̃0)
)

+ ‖h · f (ψn−1
h (x0)) − h · f (φn−1

h (x̃0))‖Rk
]

+ rn(h)

= (1 + h · c) ·
[
d
R
k

(
ψn−1
h (x0), φn−1

h (x̃0)
)

+ h · ‖ f (ψn−1
h (x0)) − f (φn−1

h (x̃0))‖Rk
]

+ rn(h).

The metrics �R and dR
k are equivalent on compact sets. Therefore, the map f is also

a Lipschitz function on the set A considered as a subset of Rk

en(x0, x̃0, h) ≤

≤ (1 + h · c) ·
[
d
R
k

(
ψn−1
h (x0), φn−1

h (x̃0)
)

+ h · L2 · d
R
k

(
ψn−1
h (x0), φn−1

h (x̃0)
)]

+ rn(h)

= (1 + h · c) · (1 + h · L2) · d
R
k

(
ψhn − 1(x0), φn−1

h (x̃0)
)

+ rn(h).

The length of the line segment which connects two points inRn is less than the length
of any curve connecting the same points, thus dR

k (p, p̃) ≤ �Riem(p, p̃). Therefore,

en(x0, x̃0, h) ≤ (1 + h · c) · (1 + h · L2) · �R

(
ψn−1

h (x0), φn−1
h (x̃0)

) + rn(h) =

= (1 + h · c) · (1 + h · L2) · en−1 + rn(h).

Iteratively,

en(x0, x̃0, h) ≤ (1 + h · c) · (1 + h · L2) · [ (1 + h · c) · (1 + h · L2) · en−2 + rn(h) ]
+ rn(h) =

= [ (1 + h · c) · (1 + h · L2) ]2 · en−2 + [ (1 + h · c) · (1 + h · L2) ]
·rn(h) + rn(h) = ...
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[ (1 + h · c) · (1 + h · L2) ]n · e0 + rn(h) · { 1 + [ (1 + h · c) · (1 + h · L2) ]
+ [ (1 + h · c) · (1 + h · L2) ]2 + ...

... + [ (1 + h · c) · (1 + h · L2) ]n−1} =

[ (1 + h · c) · (1 + h · L2) ]n · e0(x0, x̃0)
+ rn(h) · (1 + h · c)n · (1 + h · L2)

n − 1

(1 + h · c) · (1 + h · L2) − 1
=

= [ (1 + h · c) · (1 + h · L2) ]n · e0(x0, x̃0)
+ rn(h) · (1 + h · c)n · (1 + h · L2)

n − 1

1 + h · (c + L2) + h2 · c · L2 − 1
<

< [ (1 + h · c) · (1 + h · L2) ]n · e0(x0, x̃0)
+ rn(h) · (1 + h · c)n · (1 + h · L2)

n − 1

h · (c + L2)
.

The Euler method is a numerical method of the first order, thus rn(h) ≤ b · h2. Since
for s > 0 the inequality (1 + s · h) < es·h is satisfied and a = n · h, it is obtained

en(x0, x̃0, h) ≤ en·h·c · en·h·L2 · e0(x0, x̃0) + b · h · e
n·h·c · en·h·L2 − 1

c + L2
=

= ea·(c+L2) · e0(x0, x̃0) + b · h · e
a·(c+L2) − 1

c + L2
.

Thus

en(x0, x̃0, h) ≤ ea·L · e0(x0, x̃0) + b

L
· (
ea·L − 1

) · h.
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In Cader A., Rutkowski L., Tadeusiewicz R. & Żurada J. (Eds.) Artificial intelligence and soft
computing. Challenging problems of science - computer science, Bolc L. - series editor (pp.
8–14). Warszawa: Academic Publishing House EXIT.

50. Bobrowski, A., & Morawska, K. (2012). From a PDE model to an ODE model of dynamics
of synaptic depression. Discrete and Continuous Dynamical Systems B, 17, 2313–2327.

51. Boyd, I. A., & Martin, A. R. (1956). The end-plate potential in mammalian muscle. Jourenal
of Physiology, 132, 74–91.

52. Brammer, R. F. (1972). Controllability in linear autonomous systemswith positive controllers.
SIAM Journal on Control, 10, 339–353.

53. Broomhead, S., & Lowe, D. (1988). Multivariable functional interpolation and adaptive net-
work. Complex Systems, 2, 321–323.

54. Chen, C. T. (1970). Introduction to linear systems theory. New York: Holt, Rinehart and
Winston Inc.

55. Chen, C. T., & Desoer, C. A. (1967). Controllability and observability of composite systems.
IEEE Transactions on Automatic Control, 12, 402–409.

56. Chen, L., & Aihara, K. (1995). Chaotic simulated annealing by a neural network model with
transient chaos. Neural Networks, 8, 915–930.

57. Corless, R., & Pilyugin, SYu. (1995). Approximate and real trajectories for generic dynamical
systems. Journal of Mathematical Analysis and Applications, 189, 409–423.

58. McCulloch, W. S., & Pitts, W. H. (1943). A logical calculus of the ideas immanent in nervous
activity. Bulletin of Mathematical Biophysics, 5, 115–133.

59. Cybenko, G. (1989). Approximation by superposition of a sigmoidal function. Mathematics
of Control, Signals and Systems, 2(1989), 303–314.

60. Dauer, J. P. (1971). Perturbations of linear control systems. SIAM Journal on Control, 9,
393–400.

61. Demidowicz, B. (1972). Mathematical Theory of Stability. Warszawa: WNT (in Polish).



152 References

62. del Castillo, J., & Katz, B. (1954). Quantal components of the end-plate potential. Journal of
Physiology, 124, 560–573.

63. Destexhe, A., Mainen, Z. F., & Sejnowski, T. (1994). Synthesis of models for excitable
membranes, synaptic transmission and neuromodulation using a common kinetic formalism.
Journal of Computational Neuroscience, 1, 195–230.

64. Dreyfus, S. (1973). The computational solution of optimal control problems with time lag.
IEEE Transactions on Automatic Control, 18(4), 383–385.

65. Du, Y., Wang, F. & Cheng, T. C. (1993). A case study of neural network application: Power
equipment failure diagnosis, In Neural Network Computing for the Electric Power Industry:
Proceedings of the 1992 INNS (International Neural Network Society) Summer Workshop
(pp. 207–211).

66. Evans, L. C. (1998). Partial differential equations. Rhode Island: American Mathematical
Society.
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